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Non-Abelian adiabatic geometric transformations
in a cold strontium gas
F. Leroux1,2, K. Pandey1, R. Rehbi1,2, F. Chevy3, C. Miniatura 1,2,4,5, B. Grémaud1,2,4 & D. Wilkowski 1,2,5

Topology, geometry, and gauge fields play key roles in quantum physics as exemplified by

fundamental phenomena such as the Aharonov–Bohm effect, the integer quantum Hall effect,

the spin Hall, and topological insulators. The concept of topological protection has also

become a salient ingredient in many schemes for quantum information processing and fault-

tolerant quantum computation. The physical properties of such systems crucially depend on

the symmetry group of the underlying holonomy. Here, we study a laser-cooled gas of

strontium atoms coupled to laser fields through a four-level resonant tripod scheme. By

cycling the relative phases of the tripod beams, we realize non-Abelian SU(2) geometrical

transformations acting on the dark states of the system and demonstrate their non-Abelian

character. We also reveal how the gauge field imprinted on the atoms impact their internal

state dynamics. It leads to a thermometry method based on the interferometric displacement

of atoms in the tripod beams.
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I
n 1984, Berry published the remarkable discovery that cyclic
parallel transport of quantum states causes the appearance of
geometrical phase factors1. His discovery, along with pre-

cursor works2,3, unified seemingly different phenomena within
the framework of gauge theories4,5. This seminal work was
rapidly generalized to non-adiabatic and noncyclic evolutions5

and, most saliently for our concern here, to degenerate states by
Wilczek and Zee6. In this case, the underlying symmetry of the
degenerate subspace leads to a non-Abelian gauge field structure.
These early works on topology in quantum physics have opened
up tremendous interest in condensed matter7–11 and more
recently in ultracold gases12–20 and photonic devices21–23.

Moreover, it has been noted that geometrical qubits are resi-
lient to certain noises, making them potential candidates for fault-
tolerant quantum computing24–27. So far, beside some recent
proposals28,29, experimental implementations have been per-
formed for a two-qubit gate on NV centers in diamond30 and for
a non-Abelian single-qubit gate in superconducting circuits31.
These experiments were performed following a non-adiabatic
protocol allowing for high-speed manipulation29,32,33. Recently,
coherent control of ultracold spin-1 atoms confined in optical
dipole traps was used to study the geometric phases associated
with singular loops in a quantum system34. If non-adiabatic
manipulations are promising methods for quantum computing,
they prevent the study of external dynamic of quantum system in
a non-Abelian gauge field, where non-trivial coupling occurs
between the internal qubit state dynamics and the center-of-mass
motion of the particle.

Here, we report on non-Abelian adiabatic geometric transfor-
mations implemented on a non-interacting cold fermionic gas of
strontium-87 atoms by using a four-level resonant tripod scheme
set on the 1S0; Fg ¼ 9=2 ! 3 P1; Fe ¼ 9=2 intercombination line
at λ= 689 nm (linewidth: Γ ¼ 2π ´ 7:5 kHz). About 105 atoms
are loaded in a crossed optical dipole trap, optically pumped in
the stretched Zeeman state jFg ¼ 9=2;mg ¼ 9=2i and Doppler
cooled down to temperatures T∼ 0.5 μK35,36, see Methods. A
magnetic bias field isolates a particular tripod scheme in the
excited and ground Zeeman substate manifolds. Our laser con-
figuration consists of two co-propagating beams (with opposite
circular polarizations) and a third linearly polarized beam
orthogonal to the previous ones. These three coplanar coupling
laser beams are set on resonance with their common excited state
jei ¼ jFe ¼ 9=2;me ¼ 7=2i.

Results
Dark states basis. For any value of the amplitude and phase of
the laser beams, the effective Hilbert space defined by the four
coupled bare levels contains two bright states and two degenerate
dark states jD1i and jD2i. These dark states do not couple to the
excited state jei and are thus protected from spontaneous emis-
sion decay by quantum interference. For equal Rabi transition
frequencies, we conveniently choose

jD1i ¼
e�iΦ13ðrÞj1i � e�iΦ23ðrÞj2i

ffiffiffi

2
p

jD2i ¼
e�iΦ13ðrÞj1i þ e�iΦ23ðrÞj2i � 2j3i

ffiffiffi

6
p ; ð1Þ

where jii � jmg ¼ iþ 3=2i (i= 1,2,3). Φij ¼ Φi �Φj, where the
space-dependent laser phases read ΦiðrÞ ¼ ki � rþ ϑi. ki is the
wavevector of the beam coupling state jii to jei and ϑi its phase at
origin, see Fig. 1. To implement non-Abelian transformations on
the system, the two independent offset phases tuned by the

electro-optic modulators (EOM), shown in Fig. 1a, are ϕi ¼
ϑi � ϑ3 (I= 1,2).

In a first set of experiments, we probe and quantify the thermal
decoherence of the dark states induced by the finite temperature
of our atomic sample. In a second set of experiments, we analyze
the non-Abelian character of geometric transformations within
the dark-state manifold. To do so, we consider a certain phase
loop in the parameter space defined by the two relative phases ϕ1
and ϕ2 of the tripod lasers, and we compare the final populations
of the internal atomic states when the cyclic sequence is
performed, starting from two different initial points on the loop.
In all experiments, we monitor the subsequent manipulation and
evolution of the atomic system in the dark-state manifold by
measuring the bare ground-state populations with a nuclear spin-
sensitive shadow imaging technique, see Methods.

Thermal decoherence. Starting from state j3i, we prepare the
atoms in dark state jD2i after a suitable adiabatic laser ignition
sequence, see Methods. We assume that the atoms do not move
significantly during the time duration of this sequence, see Fig. 2.
Following refs. 37,38, the subsequent evolution of the atoms is
described by the Hamiltonian

H ¼ ðp̂11� AÞ2
2M

þW ð2Þ

where p̂ ¼ �i�h∇ is the momentum operator, 11 is the identity
operator in the internal dark-state manifold, M the atom mass, A
the geometrical vector potential with matrix entries Ajk ¼
i�hhDjj∇Dki and W the geometrical scalar potential with matrix
entries

Wjk ¼
�h2 ∇Djj∇Dk

D E

� A2ð Þjk
2M

� ð3Þ

With our laser geometry, A, A2, and W have the same matrix
form, and are uniform and time-independent, see Methods. Thus,
we can look for states in the form jψi � jpi where p=Mv is the
initial momentum of the atoms and jψi some combination of dark
states. Denoting by P0(v) the initial atomic velocity distribution,
we find that the population of state j2i remains constant while the
two others display an out-of-phase oscillatory behavior at a
velocity-dependent frequency ωv ¼ 2

3 ½kðvx � vyÞ þ 2ωR�:

P1ðv; tÞ¼ 5P0ðvÞ
12 1� 3

5 cosωvt
� �

;

P2ðv; tÞ¼ P0ðvÞ
6 ;

P3ðv; tÞ¼ 5P0ðvÞ
12 1þ 3

5 cosωvt
� �

;

ð4Þ

where ωR ¼ �hk2=ð2MÞ is the recoil frequency and k = 2π/λ is the
laser wavenumber. The frequency component proportional to
kðvx � vyÞ comes from the momentum-dependent coupling term
A � p̂=M in Eq. (2) (Doppler effect), whereas the other frequency
component, proportional to ωR, comes from the scalar term
A2=ð2MÞ þW. With our laser configuration, light-assisted
mechanical forces can only come from photon absorption and
emission cycles between a pair of orthogonal laser beams. Such
photon exchanges would induce a population change of state j2i.
Since no force is acting here on the center of mass of the atoms
(the Abelian gauge field is uniform and can be gauged away), the
population P2(v, t) must stay constant, as predicted by Eq. (4).
Since photon absorption and emission cycles between the pair of
co-propagating laser beams do not impart any net momentum
transfer to the atoms, population transfer between states j1i and
j3i is possible and P1(v, t) and P3(v, t) change in time, their sum
being constant due to probability conservation.
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Averaging over the Maxwellian velocity distribution of the
atoms, the bare-state populations of the thermal gas read

�P1ðtÞ ¼
5

12
� 1

4
cos

4

3
ωRt

� �

exp � 4

9
k�vtð Þ2

� �

;

�P2ðtÞ ¼
1

6
;

�P3ðtÞ ¼
5

12
þ 1

4
cos

4

3
ωRt

� �

exp � 4

9
k�vtð Þ2

� �

; ð5Þ

where �v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=M
p

is the thermal velocity of the gas at
temperature T. We see that �P1 and �P3 converge to the same value
at long times. This means that the thermal average breaks the
tripod scheme into a Λ-scheme coupled to the two circularly

polarized beams and a single leg coupled to the linearly polarized
beam. As a consequence, quantum coherence partially survives
the thermal average.

Our experimental results confirm this behavior even if �P1 and
�P3 do not merge perfectly, see Fig. 2. This discrepancy can be
lifted by introducing a 10% imbalance between the Rabi transition
frequencies in our calculation. The population difference �P3 � �P1
measures in fact the Fourier transform of the velocity distribution
along the diagonal direction x̂ � ŷ. It decays with a Gaussian
envelope characterized by the time constant τ ¼ 3=ð2k�vÞ, as
predicted by Eq. (5). This interferometric thermometry is similar
to some spectroscopic ones such as recoil-induced resonance39,40

or stimulated two photons transition41,42. From our measure-
ments, we get T= 0.5(1) μK, τ ’ 24 μs and �v ’ 6:9 mm/s.

Non-Abelian transformations. We now investigate the geo-
metric non-Abelian unitary operator U acting on the dark-state
manifold when the relative phases of the tripod beams are adia-
batically swept along some closed loop C in parameter space. For
a pinned atom M ! 1ð Þ, U is given by the loop integral along C
of the 2 × 2 Mead–Berry 1-form ω � ½ωjk� � ½i�hhDjjdDki�

U ¼ Pexp i

�h

I

C

ω

� �

; ð6Þ

where P is the path-ordering operator6.
As before, the system is initially prepared in dark state jD2i.

Then, starting from the origin, the phase loop is cycled
counterclockwise, see Fig. 3a. Each segment is linearly swept in
Δt= 4 μs and the phase excursion is ϕ0. The total duration 3Δt of
the loop is thus less than the thermal decoherence time τ discussed
above. In Fig. 3b, we plot the bare-state populations measured
right after the phase loop as a function of ϕ0 and their comparison
to theoretical predictions for pinned atoms and for atoms at finite
temperature under the adiabatic assumption. This clearly shows
that thermal effects are an important ingredient to reproduce the
experimental results and that the adiabatic approximation is well
justified, see Methods. Note that the mismatch with pinned atoms
decreases with increasing ϕ0. This is because the thermal
decoherence is quenched by the increasing geometrical coupling
among the dark states when the sweep rate γ ¼ ϕ0=Δt > k�v;ωR

(The thermal decoherence quenching can be quantified by the

bare population distance ΔP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P3
i¼1ðPi � P0iÞ2

q

, where Pi and

0.6

0.4

0.2

0 10 20 30

t (µs)

40 50

P
o
p
u
la

ti
o
n

Fig. 2 Ballistic expansion. Time evolution of the bare-state populations after

the tripod ignition sequence (duration t0 ’ 8 µs) is completed and laser

beams have reached equal Rabi frequencies Ω ¼ 2π ´ 250 kHz. The blue

circles, the green squares, and the red stars correspond to the populations
�P1,

�P2, and
�P3 with jii � jmg ¼ iþ 3=2i (i= 1, 2, 3), respectively. The error

bars correspond to a 95% confidence interval. Solid lines: theoretical

predictions given by Eq. (5). The temperature T, the initial and the final

populations of each spin state are the fit parameters. The dashed lines, at

early times, extrapolate the fits into the time window t0. We get a

temperature T ¼ 0:5ð1Þ µK meaning that the atoms do not move

significantly during the dark-state preparation sequence since �vt0=λ ’ 0:08
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Fig. 1 Tripod scheme. a Propagation directions of the laser beams and their polarizations along a magnetic bias field B. Two electro-optic modulators

(EOM) are used to sweep the two independent relative phases of the laser beams. b Bare energy-level structure of the tripod scheme, implemented on the

intercombination line of strontium-87. The magnetic bias field shifts consecutive excited levels by ΔB ’ 760Γ ¼ 5:7 MHz. It allows each tripod polarized

laser beam to selectively address one of the magnetic transitions marked by the black arrows
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P0i are the experimental and pinned-atom populations. At φ0 ¼ π,
we get ΔP ¼ 0:04ð5Þ. This value increases when φ0 decreases,
reaching ΔP ¼ 0:19ð5Þ at φ0 ¼ 0). As a further approximation, we
now disregard thermal decoherence and consider that the system
after the phase loop is described by a pure quantum state jψouti ¼
P

j¼1;2 djjDji (A pure state is denoted by a density matrix ρ

fulfilling Trfρ2g ¼ 1. For a finite-temperature gas, we find Tr
fρ2g ¼ 0:95 at φ0 ¼ π. This value decreases when φ0 decreases,
reaching Trfρ2g ¼ 0:8 at φ0 ¼ 0). As shown in Fig. 3b, c, one can
easily extract the dark-state populations and the absolute value of
the azimuthal angle ϕ ¼ Argðd2Þ � Argðd1Þ from the measured
bare-state populations, see Methods. When ϕ0 ≳ 0:7π, the values
for φmatch well with the prediction for a pinned atom confirming
the quenching of thermal decoherence. At ϕ0= π, the two dark-
state populations are almost equal. In the language of the Bloch
sphere representation, this corresponds to a rotation of the initial
south pole state jD2i to the equatorial plane.

We now reconstruct the full geometric unitary operator U for
ϕ0= π. Up to an unobservable global phase, we write:

U ¼
α β

�β� α�

� �

ð7Þ

with jαj2 þ jβj2 ¼ 1. The previous dark-state reconstruction,
done after the phase loop applied on jD2i, gives access to jαj, jβj
and ArgðαÞ � ArgðβÞ, see Methods. To obtain Arg(α) and Arg(β)
and fully determine U, we start from a linear combination of dark
states jD1i and jD2i, perform the phase loop and process the new
data. The results are shown in Fig. 4a and compared to the
theoretical predictions for a pinned atom and a gas at finite
temperature. The good agreement with our data validates the
expected small impact of temperature for ϕ0= π.

Probing non-Abelianity. With the previous phase loop protocol,
we have U ¼ UcUbUa, where a, b, and c label the edges of the
loop, see Fig. 3a. To illustrate the non-commutative nature of the
transformation group, we will cycle the phase loop counter-
clockwise starting from the upper corner. We then reconstruct
the corresponding unitary operator U ′ ¼ UbUaUc like done for U.
The results are depicted in Fig. 4b and show that U and U′ are
indeed different, though unitarily related, confirming the sensi-
tivity of these geometric transformations to path ordering. The
Frobenius distance between the two unitaries is D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� jTrðUyU ′Þj
p

¼ 1:27ð25Þ and is in agreement with the the-
oretical result for a pinned atom (D= 1.09) and for a finite-
temperature gas (D= 1.14). These values have to be contrasted
with the maximum possible Frobenius distance D= 2.

Discussion
Using a tripod scheme on strontium-87 atoms, we have imple-
mented adiabatic geometric transformations acting on two
degenerate dark states. This system realizes a universal geometric
single-qubit gate. We have studied SU(2) transformations asso-
ciated to laser beams phase loop sequences and shown their non-
Abelian character. In contrast to recent works done in optical
lattices14–20, our system realizes an artificial gauge field in con-
tinuous space. Depending on the laser field configuration, dif-
ferent manifestations of artificial gauge fields can be engineered
such as spin–orbit coupling38,43, Zitterbewegung38, magnetic
monopole37, or non-Abelian Aharomov–Bohm effect43 (see
refs. 44,45 for reviews). A generalization to the SU(3) symmetry is
also discussed in ref. 46. Some of these schemes might be difficult
to implement in optical lattices. Gauge fields generated by optical
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Fig. 3 Geometric gate operation. a Phase loop in parameter space (ϕ2, ϕ1).

ϕi (i= 1, 2) are the two independent offset phases tuned by the EOMs

shown in Fig. 1a. We have performed two counterclockwise cycles: the first

one is a ! b ! c and starts from the origin, the second one is c ! a ! b

and starts from the upper corner. The loop is completed in 12 μs and its

excursion is ϕ0. b Measured bare-state populations �P1 (blue circles), �P2
(green squares), and �P3 (red stars) as a function of ϕ0 for the first cycle.

The Rabi frequencies are Ω ¼ 2π ´450 kHz and T= 0.5 μK. Dark-state

reconstruction as a function of ϕ0. c Population of jD1i (blue circles) and

jD2i (red squares). d Azimuthal phase φ. The solid and dashed curves in

b, c, and d are the theoretical predictions for a pinned atom and for a gas at

temperature T, respectively. The error bars correspond to a 95%

confidence interval
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Fig. 4 Unitary operators reconstruction. a Elements of operator U given by

Eq. (7) for the phase loop a ! b ! c at ϕ0= π, see Fig. 3a. The blue, red,

and green bars correspond to a pinned atom, a gas at temperature T=

0.5 μK, and the experimental data, respectively. b Same as a, but for the

phase loop c ! a ! b. The error bars correspond to a 95% confidence

interval
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fields come from a redistribution of photons among the different
plane wave modes and involve momenta transfer comparable to
the photon recoil. Observing mechanical effects of non-uniform
or non-Abelian gauge fields would thus require atomic gases
colder than the recoil temperature and thus cooling techniques
beyond the mere Doppler cooling done here47,48. However, the
gauge field is still driving the internal state dynamics regardless of
the temperature of the gas provided the adiabatic condition is
fulfilled. Noticeably, this internal state dynamics is still present
when the gauge field is Abelian and uniform. It led us to an
interferometric thermometry based on the Fourier transform of
the velocity distribution of the gas.

Methods
Cold sample preparation and implementation of the tripod scheme. The cold
gas is obtained by laser cooling on the 1S0 ! 3P1 intercombination line at 689 nm
(linewidth Γ ¼ 2π ´ 7:5 kHz). Atoms are first laser cooled in a magneto-optical
trap and then transferred into an ellipsoidal crossed optical dipole trap at 795 nm
(trapping frequencies 150, 70, and 350 Hz), where they are held against gravity.
Atoms are then optically pumped in the stretched mg ¼ Fg ¼ 9=2 magnetic sub-
state and subsequently Doppler cooled in the optical trap using the close mg ¼
Fg ¼ 9=2 ! m′

e ¼ F′

e ¼ 11=2 transition, see Fig. 5. The atomic cloud contains
about 105 atoms at a temperature T= 0.5 μK (recoil temperature
TR ¼ �hωR=kB � 0:23µK, where kB is the Boltzmann constant). A magnetic field
bias of B= 67 G is applied to lift the degeneracy of the Zeeman excited states.
Because the Zeeman shift between levels in the excited manifold Fe= 9/2 is
large, one can isolate a tripod scheme between three ground-state levels and a
single excited state, namely jei ¼ jFe ¼ 9=2;me ¼ 7=2i, as indicated in Fig. 5. The
Zee man shift of the ground-state levels (Landé factor g ¼ �1:3 ´ 10�4) is weak
(12 kHz) and is compensated by changing accordingly the frequencies of the three
tripod laser beams. The lasers are finally tuned at resonance and their polarizations
are chosen according to the electrical dipole transition selection rules. In practice,
the two laser beams with right and left-circular polarizations, respectively,
addressing the mg ¼ 5=2 ! me ¼ 7=2 and mg ¼ 9=2 ! me ¼ 7=2 transitions, are
co-propagating. The laser beam with linear polarization, aligned with the magnetic
bias field, addressing the mg ¼ 7=2 ! me ¼ 7=2, is orthogonal to the circularly
polarized beams, see Fig. 1b. The plane of the lasers is chosen orthogonal to the
direction of gravity. The two independent laser offset phases ϕ1 and ϕ2 (see main
text) can be tuned by using two electro-optic modulators.

Adiabatic approximation. The two independent laser offset phases ϕ1 and ϕ2 are
ramped from 0 to ϕ0 ≤ 1.2π at a constant rate γ during the sweep time Δt= 4 μs.
The AC-Stark shifts of the bright states is given by

ffiffiffi

3
p

Ω ¼ 2π ´ 780 kHz. Since

γ ¼ ϕ0=Δt 	 2π ´ 150 kHz, we have
ffiffiffi

3
p

Ω=γ 
 5:2 and the adiabatic approxima-
tion is well justified.

Initial dark-state preparation. Starting with atoms in the jmg ¼ 9=2i stretched
state, the tripod beams are turned on following two different sequences. The first
sequence prepares dark state jD2i, see Eq. (1). More precisely, we first turn on the
two laser beams connecting the empty bare states jmg ¼ 5=2i and jmg ¼ 7=2i to
the excited state jme ¼ 7=2i and then adiabatically ramp on the last laser beam.
This projects state jmg ¼ 9=2i onto jD2i with a fidelity of 95%. Since the bare-state
jmg ¼ 9=2i is only present in jD2i, our choice of basis in the dark-state manifold is
well adapted to understand the dark-state preparation. A different ignition
sequence is used to prepare a combination of dark states jD1i and jD2i. By turning
on sequentially abruptly the left-circular beam, and adiabatically the right-circular
beam, we create a coherent (dark) superposition of the state jmg ¼ 5=2i and
jmg ¼ 9=2i. Finally, we turn on abruptly the linearly polarized beam and we expect

to produce the linear combination ðjD1i þ
ffiffiffi

3
p

jD2iÞ=2. In practice, a systematic
phase rotation occurs once the last beam is turned on which adds an extra mixing
among the dark states. Performing the bare-state population analysis, we find that
this initial state corresponds in fact to 0:6jD1i þ 0:8ei0:15π jD2i.

Spin-sensitive imaging system. The bare-state populations in the ground-state
are obtained with a nuclear spin-sensitive shadow imaging technique on the Fg ¼
9=2 ! Fe

′ ¼ 11=2 line, see Fig. 5. First, we measure the population of state jmg ¼
9=2i with a shadow laser tuned on the closed mg ¼ 9=2 ! me

′ ¼ 11=2 transition.
Then, using the same atomic ensemble, we measure the population of state jmg ¼
7=2i by tuning the shadow laser on the mg ¼ 7=2 ! me

′ ¼ 9=2 transition. This
transition is open but its large enough Clebsch–Gordan coefficient

ffiffiffiffiffiffiffiffiffiffi

9=11
p

� 0:9
	 


ensures a good coupling with the shadow laser. The population of

state jmg ¼ 5=2i is measured in the same way (mg ¼ 5=2 ! me
′ ¼ 7=2 open

transition, its Clebsch–Gordan coefficient
ffiffiffiffiffiffiffiffiffiffiffiffi

36=55
p

� 0:8 being still large enough).
The shadow laser beam shines the atoms during 40 μs with an on-resonance
saturation parameter I/Is= 0.5 (saturation intensity Is ¼ 3μW=cm2). With such
values, the average number of ballistic photons scattered per atom is less than one
and optical pumping can be safely ignored, ensuring an accurate measurement of
the ground-state populations. To achieve a good statistics, the same experiment
was repeated 100 times and the corresponding data averaged. The error bars on the
bare-state populations correspond to a 95% confidence interval.

Dark states and unitary matrix reconstruction. A state in the dark-state mani-
fold takes the form jψi ¼

P

j¼1;2 dj jDji with jd1j2 and jd2j2 ¼ 1� jd1j2 the

populations of states jD1i and jD2i and ϕ ¼ Argðd2Þ � Argðd1Þ the azimuthal
angle. Using Eq. (1), we immediately find

jd2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

3�P3=2
p

;

cosφ ¼ ð�P1 � �P2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�P3ð2� 3�P3Þ
p

:

Do note that the normalization of jψi restricts the possible values of the �Pi sum-
ming up to 1. The sign of φ is determined using the prediction of Eq. (6) for a
pinned atom M ! 1ð Þ.

To reconstruct the unitary matrix U, as expressed in Eq. (7), we perform the
phase loop sequence on two different initial dark states (their representative points
on the Bloch sphere should not be opposite) and perform the dark-state
reconstruction for each of them. The two phase terms in U are reconstructed up to
a sign. As for the dark-state reconstruction, we rely on the prediction for a pinned
atom to lift this sign ambiguity.

Gauge fields and adiabatic Schrödinger equation. The time-dependent inter-
action operator for the resonant tripod scheme, in the rotating-wave approxima-
tion, has the following expression:

HðtÞ ¼ �hΩðr; tÞ
2

X

3

i¼1

jeihij þH:c: ð8Þ

We assume here that the laser Rabi frequencies coupling the ground states jii ¼
jmg ¼ iþ 3=2i to the excited state jei ¼ jme ¼ 7=2i have all the same amplitude
denoted by Ω. The time dependency comes from the cyclic ramping sequence of
the two offset laser phases ϕj (j= 1, 2). Neglecting transitions outside the dark-state
manifold (adiabatic approximation), the system is described by a quantum state
jψðr; tÞi ¼ Σj¼1;2Ψjðr; tÞjDjðr; tÞi, where Ψj is the wave function of the center of
mass of the atom in an internal state jDji. In this basis, the adiabatic Schrödinger
equation for the column vector Ψ ¼ ðΨ1;Ψ2ÞT reads:

i�h _Ψ ¼ p̂11� Að Þ2
2M

þW � ωt

� �

Ψ; ð9Þ

me = 5/2

me = 7/2

me = 9/2

me� = 7/2

me� = 9/2

me� = 11/2

Fe = 9/2

(g = 2/33)

Fg = 9/2

Fe� = 11/2

(g = 3/11)

(g = –1.3×10–4)mg = 5/2 mg = 7/2 mg = 9/2

Fig. 5 Energy levels and experimentally relevant transitions. A magnetic

bias field B= 67 G lifts the degeneracy of the different Zeeman manifolds

and allows to address each transition individually. The Landé factors g are

indicated for each hyperfine level. The black arrows correspond to the

tripod beams (see main text for more details). The dashed red arrows

indicate the transitions used for the shadow spin-sensitive imaging system.

The dash-dotted purple arrow is the red-detuned cooling transition used in

the far off-resonant dipole trap
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where the dot denotes time derivative. The first two terms on the right-hand side
describe the dynamics of an atom subjected to the synthetic gauge field. The last
term ωt � ½ωjk� � ½i�hhDjj _Dki� is due to the cyclic ramping sequence of the laser
phases. Only this term remains for a pinned atom M ! þ1ð Þ, in which case one
recovers Eq. (6). The general expressions of A and W are given in the main text.
With equal and constant Rabi frequencies amplitude, and for the orientation of our
laser beams, one finds:

A ¼ 2�h k2�k1ð Þ
3 M;

A2

2M¼ 8ER
9 M;

W¼ � 4ER
9 M;

where ER ¼ �hωR ¼ �h2k2=ð2MÞ is the recoil energy and kj is the wavevector of laser
beam j (see main text). As one can see, all these operators have the same matrix
form. The matrix M reads:

M ¼ 11þ s � σ
2

¼ 3=4 �
ffiffiffi

3
p

=4

�
ffiffiffi

3
p

=4 1=4

 !

; ð10Þ

and satisfies M2 ¼ M, its unit Bloch vector being s ¼ ð�
ffiffiffi

3
p

=2; 0; 1=2Þ. As a
consequence, all these operators can be diagonalized at once by the same trans-
formation and amenable to the simple projector matrix form:

M ! MD ¼ 1 0

0 0

� �

: ð11Þ

Because of our laser beams geometry, the vector potential A is in fact Abelian since
its only non-zero matrix component is along k2 − k1.

In contrast, the operator ωt has a different matrix form. Indeed, the two offset
phases ϕj of the lasers (see main text) can be addressed at will. Following ref. 44, we
get:

ωt ¼
�h

2

_ϕ1 þ _ϕ2 ð _ϕ1 � _ϕ2Þ=
ffiffiffi

3
p

ð _ϕ1 � _ϕ2Þ=
ffiffiffi

3
p

ð _ϕ1 þ _ϕ2Þ=3

 !

: ð12Þ

In particular, we note that ωt leads to non-Abelian transformations. An immediate
consequence is that, for a given phase loop in parameter space, the geometric unitary
operator associated with a cycle of phase ramps depends on the starting point of the
cycle on the loop. Different starting points lead to different, though unitarily related,
non-commuting geometric unitary operators.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the article. Extra data are available from the corresponding author on request.
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