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The main aim of this paper is the slight developing of the Donaldson-Thomas program

(see [D-T]) for odd dimensional case. In this case it is possible to reduce the main

constructions of this program to the "conventional" finite dimensional simplectic or

algebraic geometry. The original Abelian integral has the Jacobian of a curve as its

target space. Similarly the analogue of Abelian integral for complex threefolds has an

intermediate Jacobian (see [G]) as its target space.

C H . 1 . THE CLASSICAL REAL CASE.

§1 THE INTEGRAL OF THE CHERN-SIMONS FORM.

Let Y be a compact, smooth, 3-dimensional manifold and Eh be a Hermitian vector

bundle of fixed topology type (r, c\), where r is the rank of the bundle and c\ £ H2(Y, Z)

is the first Chern class of it. As usual let A(Eh) be the affine space (over the vector

space 0 1 (EndEh)) of Hermitian connections and let Qh be the Hermitian gauge group.

Then the space of orbits

= A(Eh)/gh (1.1.1)

is a Banach orbifold of infinite dimension.

Sending a connection to its curvature tensor defines the Qh- equivariant map

F : A(Eh) -+ Q,2(EndEh) (1.1.2)

Thus the zero set of this map is defined in the orbit space By (Eh) correctly and

(F)o = Rep^^Y)) eBY(Eh) (1.1.3)

is the space of classes of U(r)- representations of the fundamental group of Y. It is the

finite dimensional orbifold which can be fibered

det : i2ep(7ri(y)) -+ H1(Y,R)/H1(Y,Z) = Alb(Y). (1-1-4)

sending a representation to the determinant of it and using the standard exact sequence

for characters of the fundamental group.

On the orbit space By (Eh) one has 1-form of Chern-Simons defined by the Q -

invariant 1-form on A(Eh) a value of which on a tangent vector u £ ft1 (EndEh) at a

point a is given by the formula

8CSY(UJ) = / tr(ujAFa)} (1.1.5)
JY

where the 2-form Fa is the curvature form of a.

This form can be integrated along any path in the orbit space (1.1.1) and, in partic-

ular, along paths coming from the affine space of connections A(Eh)- Here any pair of

connections (ao, ao + to) can be joined by the interval [0, 1] of the line <JQ + t • to. So inte-

grating the form (1.5) along this interval one gets the function on the space ft1 (EndEh)

(identified with A(Eh) by the choice of ao) :

CSy(a0+Lo)= I tr(uj A Fao - 2/3 • u A u A u) (1.1.6)
JY



If our vector bundle is trivial then

gh = Map(Y,U(r)) (1.1.7)

and the Chern-Simons function (1.8) subjects to relation

CSY(g(a)) = CSY(a) + aY • degg (1.1.8)

where g is any element of the gauge group which one considers as a map. It is easy to

see that one has the formula of the same type for any vector bundle.

So this integral gives the continuous map

CSY : BY(Eh) -+ R/aY • Z (1.1.9)

defined up to rotation of the circle IR/ay • IR by another choice of the beginning point

It is natural to call this constant the period of a 3-fold Y and the circle

J3(Y) = R/aY-% (1.1.10)

as the intermediate Jacobian of Y.

The geometrical meaning of periods is the following: let us consider the universal

connection A on the direct product Y X By (Eh) and the cohomology class

ch2(A) = [trFA A FA] G H4(Y x BY(Eh)) (1.1.11)

and the Kunnet component of it

'1 : H3(Y) -> H\BY{Eh)) (1.1.12)

Then the value of the image of the fundamental form of Y on the natural generator of

H1(BY{Eh)) is the period of Y.

Thus the maps (1.9) and (1.4) define (component-wise) the map:

CSY • det : RepimiY)) -+ J3(Y) x Alb(Y). (1.1.13)

We will call this map the Chern-Simons-J'acobi map.

If the moduli space Rep(iri(Y)) is smooth as an orbifold (in particular, it has "ex-

pected dimension") and Rep(iri (Y))%rr is the subspace of irreducible representations,

then the projection det restricted to Rep(iri (Y))%rr is proper (see [T]) and the degree

of projection det is called the Casson invariant of Y.

Main question. Is (CS • det)trr embedding?

We will call the positive answer the analogue of the Abel theorem.

For simplicity consider now the very known case when Y is a homological sphere and

the gauge group is SU(2). In this case the expected behavior of the zero set of the

Chern-Simons differential in Rep(iTi(Y)yrr is the finite set of points:

)\r = {au....,an+}U{bu....,bn_} (1.1.14)



besides the trivial representation, where {a{\ and {bj} are sets of irreducible represen-

tations with the same orientations. Then the Casson invariant of Y is

Cas(Y) = \{n+ - n_) (1.1.15)

(see [T] for explanations of the coefficient | ) . On the other hand, Alb(Y) = 0 and

C Sy • det = C Sy maps this finite set of points to the circle J3(Y). If CSy(ai) =

CSy(bj), one has to cancel both of them from our sets. So the analogue of the Abel

theorem for this case says

az ± aj =>• CSy(az) ^ CSY(aj) (1.1.16)

and the statement is the same for \bi}.

Remark. The Casson invariant of threefold is a correlation function of the Topological

Quantum Field Theory. Thus this "proof of the Analogue of Abel theorem has to be

pure topological.

At any case the topology of the fibration

CSy.BY{Eh)^j\Y). (1.1.17)

and the topology of smooth fibers outside of critical points {CS(ai)} U {CS(bj)} is

very important to prove that every singular fiber can contain only one simplest singular

point. Suppose we can prove that the topology structure of non-singular fiber is very

simple : namely

H*(CSy1(a),Q)=Q[v] (1.1.18)

where v is some special cohomology class (like in the case when a smooth fibre has a

homotopy type of a cylinder). Then the monodromy around a singular point changes a

sign of v. So every singular fibre can care only one simplest singular point.

Another way to investigate this problem is reducing it to the ordinary finite dimen-

sional geometry of Lagrangian submanifolds of the standard orbifolds such as the spaces

of classes of unitary representations of fundamental groups of Riemann surfaces.

§2 THE GEOMETRY OF HEEGARD DIAGRAM.

The classical way to define the Casson invariant is to use the cutting-pasting method

(see [A-M]). Consider a Riemann surface S in 7 and cut Y along this smooth surface.

Then we get two 3-folds Y± with boundaries

dY± = ±S (1.2.1)

and Y is a gluing of Y± along E.

Following Taubes let us describe the same construction of CS-map for 3-folds, say M,

with a boundary dM = E - a smooth oriented Riemann surface of genus g > 1. Here

we have to restrict ourselves to the case when a vector bundle E is trivial and we note

it by EQ with the Hermitian structure of the direct product. Consider again the affine

space of smooth A(EQ) (over the vector space 0 1 (EndEo)) of Hermitian connections



and the Hermitian gauge group QQ. These spaces will be considered as Frechet spaces

in C°°-topology or as pre-Hilbert manifolds with L^-Sobolev structure or (LP
k with

p > 2, k > 1). Then the space of orbits

BM(EO) = A(E0)/g0 (1.2.2)

has the structure of the same type (with others p and q).

Sending a connection to its curvature tensor defines the QQ- equivariant map

F : A(E0) -+ fl2(EndE0) (1.2.3)

Thus the zero set of this map is defined in the orbit space BM(EQ) correctly and

(F)o = Repim(M)) G BM{E0) (1.2.4)

is the space of classes of representations of the fundamental group of M. It is the finite

dimensional orbifold which can be fibred

det : Rep(ir1(Y±)) -+ H1(Y±,R)/H1(Y±,Z) = Alb(Y±) (1.2.5)

Let

A(Eoy
rr,BM(Eo)

irr... (1.2.6)

be subsets of connections with irreducible restrictions to the boundary E.

On the orbit spaces BM(EQ) one has the Chern-Simons form SCSM defined by the

Qo - invariant 1-forms on A(EQ) a value of which on a tangent vector UJ £ 0 1 (EndEo)

at points a is given by just the same formula as (1.1.5).

Again these forms can be integrated along any path in the orbit space (1.2.2) and,

in particular, along paths coming from the affine space of connections A(Eo). Now one

can fix a connection <JQ on M in such a way that any pair of connections (ao,ao + ^)

can be connected by the interval [0, 1] of the line <JQ + t • to as before. So integrating the

form SCSM along such interval one gets the CS-function on the space A(Eo) that is,

the continious map to the circle

CSM : BM{Eo) -+ R / « M • Z. (1.2.7)

Again let us call the constant a ^ as the period of 3-folds M and the circle

J3(M) = R/aM-% (1.2.8)

as the intermediate Jacobian. But in this case the period a ^ has a slightly different

interpretation.

Now the exact excision sequence of the pair (M, E) gives the equality

(1.2.9)

Considering as before the universal connection A on the direct product M

and the cohomology class

ch2(A) = [trFA A FA] G E\M X BM(E0), dM x BM(E0)) (1.2.10)



and the Kunnet component of it we get the homomorphism

^ : #3(M,£) -> H1(BM(E0)) (1.2.11)

Then, using the identification (1.2.9), the value of the image of the fundamental form
[£] G H2(Ti) of E on the natural generator of H1(BM(EQ)) given by the degree of
g -+ S77(2) is the period of M.

So the intermediate Jacobian of M in this case admits the new interpretation

J3(M) = # 2(E,R)/# 2(E,Z) = J2(E) (1.2.12)

and we can call it as the second Jacobian of a Riemann surface. Now we would like to
apply these constructions to the parts of the decomposition (1.2.1) that is, let M = Y±

with dY± = ±£, that is the Riemann surface with opposite orientations,

E0 = E±, BM{EO))=BY±{E±) and so on... (1.2.13)

Then (1.2.9) gives

#3(Kt,£) = ±# 2 (£) . (1-2.14)

Now if we note By (Eh)0 C By (Eh) the subspace of connections with irreducible restric-
tion to E (like in (1.2.6)) we get the "exact sequence"

By(Eh)
irr -+ BY+(E+yrr x By_(E-)irr -+ B^(E\^)irr x B^(E\^)irr (1.2.15)

where / is induced by the natural embeddings and J is induced by restrictions to the
boundary. The "exactness" means that / is an embedding, J is a submersion and the
image

1 (1.2.16)

where A is the diagonal. (For the proof and details see §4 of [T].)
Now if our fix connection a^ is in By (Eh) then it is easy to see that the periods are

related by the equality
ay+ — ay_ = ay. (1.2.17)

Moreover, from the excision sequence of the pair (Y, S) one can see that the relative
cohomology group

# 3 ( r , £ ) = # 3 ( l 0 © # 2 ( £ ) (1.2.18)

contains the couple of special elements ([y],±[S]). Thus in parallel to (1.2.15) for
intermediate Jacobians we have the exact sequence

J3(Y) -+ J3(Y+) x J3(F_) -+ J2(S) x J2(E) (1.2.19)

(see (1.2.12)).
Thus one can identify the intermediate Jacobians naturally:

J3(Y+) = J3(F_) = J2(S) = J3(Y) (1.2.20)



Thus our partial CS- maps define (componentwise) Chern-Simons-Jacobi maps:

CSY± • det± : Rep{TT1{Y±)) -+ J3(Y) x Alb(Y±). (1.2.21)

Now, the fundamental group TTI(E) admits epimorphisms

^±:7ri(S)-^7n(Kt) (1.2.22)

Thus spaces of classes of representations

(F±)o = Rep(7r1(Y±)) e BY±(E±) (1.2.23)

are embedded to the space of representations of the fundamental group of E:

<f>*± : Rep(^(Y±)) -> Rep(^(T,)). (1.2.24)

Let images be

<j>*{Rep{K1{Y±)))=C±. (1.2.25)

Recall that on the orbit space B^(Eh) for any Hermitian vector bundle Eh on a surface

E there exists the canonical symplectic structure. This structure is induced by the

canonical 2-form given on the tangent space 0 1 (EndEh) of a connection a by the formula

/ r(cui Acu2). (1.2.26)

It's well known that this form

1) is closed (because of constant coefficients),

2) Qh - invariant (because of "tr"),

3) degenerated along (^-orbits only.

Moreover, the curvature map F : A(Eh) —> ft2(EndEh) (1-2) is the moment map for

the gauge group action. Thus we get the canonical symplectic structure to^ on B^(Eh)

by the symplectic reduction procedure.

On the other hand, repeating the construction (1.1.11-12) of "/i-classes", one consid-

ers the universal connection A on the direct product E X B^(Eh) and the cohomology

class

ch2(A) = [trFA A FA] G # 4 ( £ x Bs(Eh)) (1.2.27)

and the Kunnet component of it

ch2(Af>2 : # 2 (£) -> H2(Bz(Eh)) (1.2.28)

Then it's easy to see that the restriction of the image of the fundamental class of E

c/z2(A)2'2([E])Uep(7ri(E)) = [WE]. (1.2.29)

Now, it is easy to see that the submanifolds

JC± C Rep(7T1(^)) (1.2.30)



are Lagrangian with respect to the canonical symplectic structure to^.

Now let
i ) ) C i2ep(7n(S)) (1.2.31)

be the subset of irreducible representations and

Clr =jC±r\Repirr(TT1(Z)) (1.2.32)

Then it can be shown that the intersection

ClrC\CLr (1.2.33)

is compact (see [A-M]) and the Casson invariant (1.1.15) is the intersection number

Cas(Y) = alg #(£!^ n CLr) (1.2.34)

where the intersection points are considered with orientation (and multiplies).

This number doesn't depend on this cutting-pasting procedure (see [A-M]).

We get the classical definition of the Casson invariant via ordinary finite dimensional

geometry. In parallel to this description we would like to reduce our Main question from

§1 to the problem in the finite dimensional symplectic geometry.

§3. LAGRANGIAN GEOMETRY.

Now one has to recall the main geometrical construction for a pair (C C S) where

S is a smooth symplectic manifold and £ is a smooth, oriented, maximal (= 2dimC =

dimS = 2 • /) Lagrangian submanifold in S. Let the symplectic structure on S be

given by the symplectic form u. Then any tangent space TSP at a point p admits the

symplectic form < , > = up and one can consider the Lagrangian Grassmanian Ap of

maximal Lagrangian subspaces in TSP and the double cover of it which is

7\p C Grt(dimjC,TSp) (1.3.1)

the Grassmanian of oriented Lagrangian subspaces.

Taking this space over every point of S we get the Oriented Lagrangian Grassmani-

sation

S ; TT-1(P)=7\P (1.3.2)

of the tangent bundle TS.

Let us equip S with any compatible almost complex structure. Then the tangent

bundle TS becomes a U(l)-bundle and locally over every point

Ap = U(l)/SO(l) (1.3.3)

This space admits the canonical map

det : 7 w £7(1) = S1 (1.3.4)



sending every matrix u £ U(l) to det u £ U(l) = S1. Recall that the preimage of the
fundamental class of S1 on A is the Universal Maslov class. Taking this map over every
point of S we get the map

S1{L-K) (1.3.5)

where S^^L-K) is the unit circle bundle of the line bundle f\lTS = detTS with the first
Chern class

Cl(detTS) = -Ks (1.3.6)

where Ks is the canonical class of S. Recall that as a cohomology class Ks does not
depend on a compatible almost complex structure.

Let us emphasize again that a choice of a compatible almost complex structure equips
TS and detTS = L-K with the Hermitian structure and unit circle bundle (1.3.5) is
given in this metric. The precise choice of such metric will be described in the next §.

Now for every pair (C C S) we have the Gauss lifting of the embedding i : C —> S to
the section

(1.3.7)

sending a point p £ C to the oriented subspace TCP C TSp. The composition of this
Gauss map with the projection (1.3.5) gives the map

det-G^-.C^S^L-K^c (1.3.8)

Now suppose that the cohomology class of the symplectic form is proportional to the
canonical class of S :

K-[U] = Ks; K £ Q (1.3.9)

then the restriction detTS\c is trivial because the restriction of [UJ] to a Lagrangian
C is zero. Moreover there exists the canonical trivialization (given by the Levi-Civita
connection of Hermitian structure induced by the choice of a compatible almost complex
structure or a compatible metric on S )

S1{L-K)\c = £xS1 (1.3.10)

preserving the Hermitian form and the canonical projection

pr-.S^L-K^c^S1 (1.3.11)

Now composing (1.3.8) and (1.3.11) we get the map

I = pr -det-G(i) : C -^ S1 (1.3.12)

It is easy to see that under changing of a compatible complex structure this map is
changed at most by some diffeomorphism of S1 and properties of this map aren't chang-
ing but in our special case S = Rtrr there exists the canonical choice of the compatible
almost complex structure. We describe it in the next §.
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Mirror digression. The property (1.3.9) satisfies automatically if S is Calabi-Yau
manifold (n = 0). For example if £ is a special Lagrangian subthreefold (SLag-cycles
for short) in the sense SYZ (see [SYZ]) of a complex Calabi-Yau threefold S this con-
struction gives the map (1.3.12) / : C —> S1 and we have to prove that the non-singular
fibre is T2. In the same vein we get such map for an elliptic curve from some ellip-
tic pencil on K3-surface with changed complex structure. In this case S1 is the moduli
space of SLag - 1 - cycles and the mirror symmetry sends the S1 -bundle over this moduli
space to the dual bundle.

Now, returning to our cutting-pasting situation for the homological spheres and ap-
plying this construction to S = Repair (Y})) containing C± (1.2.30).

These Lagrangian subspaces can be chosen almost canonically. Recall that we restrict
ourselves by the SU{2) case.

Let S be a compact, smooth, oriented Riemann surface of genus g and let TTi(g) be
the fundamental group of it. Then TTi(g) admits the usual presentation

Kiig) = < a i , . . . , a 9 ,6 i , ...,bg\I[
9

i=1[ai,bi] = id > .

The space Rep(iTi(g)) of classes of SU{2) - representations of iri(g) which is smooth
as an orbifold. But as a manifold

SingRepimig)) = Rep(^ (g))red. (1.3.13)

The space Rep(iTi(g)) contains the special subspace of representations which are trivial
on {bt}:

= id,i = l,...,flf} (1.3.14)

As usual

Birr C Repimig))^ (1.3.15)

is the subset of irreducible representations.
Then B is a Lagrangian suborbifold of Rep(iTi(g)) with respect to the canonical

symplectic form to^ (1.2.26), (1.2.29). One can apply the collection of maps (1.3.7),
(1.3.8) and (1.3.11) to this Lagrangian submanifold C = B in S = Rg.

We can do it because of the equality

[uv] = -4-KRg (1.3.16)

(see [N-R], [R]).
Using the full collection of constructions (1.3.1 - 12) of Lagrangian geometry we get

the map
Ig : Bzrr -+ S1 = £7(1) (1.3.17)

which can be investigated in the usual way (like in [A-M]).
The subspace B will be our Lagrangian space C+ from (1.2.30 - 34). The second

Lagrangian subspace C- can be constructed in the following way:
Let

Modg = Autn1(g)/Autin (1.3.18)
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be the quotient group by the group of inner automorphisms. This group can be realised

as the quotient group of the diffeomorphisms group of a Riemann surface E of genus g:

Modg = Aut^{g)jAutm = Diff+(Z)/Diffo(Z) (1.3.19)

where Diffo(Y}) is the connected component of id in

This group acts on all our general objects (see (1.3.1 - 5))

in such a way that, for example, the map (1.3.5)

det:7\(Rg)^S1(L-K) (1.3.20)

is Modg-equivariant.

The important point is

Proposition 1.3.1. The action of the group Modg on Sll(L_/i') is trivial.

To show this it is enough to remark that the group Q of automorphisms of the line

bundle L-K is abelian. So one has

Modg/[Modg,Modg]^g (1.3.21)

But by the Mumford theorem Modg/[Modg, Modg] is the finite group the order of which

divides 12. Using the precise description of this group we can check the triviality of

action.

Now we can describe the second Lagrangian subspace C- from (1.2.30 - 34) : there

exists some element Ty £ Modg such that the second Lagrangian subspace

C- = TY(B) £ Rg (1.3.22)

that is

£_ = {r £ i2epMflO)kCM&0) = id,i = l,...,g} (1-3.23)

Obviously

Modg(Rg
rr) = Rg

rr (1.3.24)

Moreover, spaces Btrr, Rtrr,... are non-singular and both of our Lagrangian subspaces

are oriented.

An element T £ Modg is called B- regular if the intersection

Birr C\T(Birr) (1.3.25)

is compact and transversal. For such element we can define the Casson invariant

2Cas(T) = alg #(Birr n T(Birr)). (1.3.26)
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In particular, if a threefold Y is given by the Heegard diagram with the transformation

Ty then

Cas(TY) = Cas(Y). (1.3.27)

Now we can use the Gauss lifting (1.3.7)

G(i) : Birr -+ A(Rg)\Birr (1.3.28)

and

and the image of this map

G{i){T(Birr)) = T(G(i)(Birr)) (1.3.29)

where in RHS of this equality T acts on A(Rg) and by the transversality

G{i){Birr) n T(G{i){Birr)) = 0 (1.3.30)

Now we can use the map (1.3.8)

det-G^-.B^S^L-K) (1.3.31)

and

det-G(i) : T(B) -^ ̂ ( L - K ) (1.3.32)

Now, by Proposition 1.3.1, every point of intersection (1.3.25)

r G 5 z r r n T{B)trr C i?;rr

can be lifted uniquely to the intersection point

fedet- G(i)(Bzrr) n T(det • G(i)(Bzrr)) G ̂ ( L . ^ ) (1.3.33)

So we have the canonical lifting of the intersection Birr n T(Birr) (see (1.3.25))

rfet • G(i) : 5 z r r n T(Birr) -^ ̂ ( L . ^ ) . (1.3.34)

Now, the trivialization (1.3.10)

^ ( L - I O I B — = Birr x 51 (1.3.35)

is sent by T to the trivialization

S^L-K^TiB"-) = T(Birr) x S1 (1.3.36)

Thus the projections (1.3.17) or the projection

T(Ig) : T{Birr) -^ S1 = £7(1) (1.3.37)

defines the map

7ff = T(Ig) : 5
z r r n T(5 z r r) -+ 51 . (1.3.38)

Now returning to the set-up of Heegard diagrams from §2 we get
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Proposition 1.3.2. For the transformation Ty £ Modg which gives the Heegard dia-

gram (1.2.1) there are the identifications of the circle S1 from (1.3.37) with circles from

(1.2.20)

S1 = J3(Y+) = J3(F_) = J2(E) = J3(F) (1.3.39)

in such a way that the Chern-Simons map for Y (1.1.15 - 9)

CSY = Ig = T{Ig) (1.3.40)

on the set of irreducible flat connections on Y.

For the proof one has to accurately check the full chain of identifications. Here

the very important point is the description of the canonical Hermitian connection on

Sll(L_/i') which is invariant with respect to the Modg - action and to get the canonical

trivialization of the canonical unit circle bundle restricted to B. We will do it in the

next section.

So the main problem of the classical set-up is coming out from the Gauge Theory

to very concrete Lagrangian finite dimensional geometry of classes of representations

spaces, moreover, without any relation to the geometry of real threefolds just like in

the classical theory of Casson invariant in [A-M]. Like in this theory it is very useful to

investigate cases of minimal genus 2 and 3 as the minimal even and odd genus cases.

§4. THE "TOPOLOGICAL" METRICS ON THE REPRESENTATIONS SPACE.

The following constructions were proposed by Guruprasad and Nilakantan in much

more complicated case of parabolic representations (see [G-N]).

Let S be a compact, smooth, oriented Riemann surface of genus g and let TTi(g) be

the fundamental group of it. This group admits the standard presentation

Kiig) = < a i , . . . , a 9 ,6 i , ...,bg\I[
9

i=1[ai,bi] = id > . (1-4-1)

We will use this standard presentation of this group and the other "dual" presentation

given by the following construction (see [G-N]): let

(1.4.2)

Then

Tri(flf) = < a i , . . . , ag, /?i,..., Pg\U
9
j=1[aj, &,] = 1 > (1.4.3)

is another presentation of TTi(g). Sending the generators a,i,bj to &i,f3j one gets the

automorphism W of TTi(g) that is W £ Modg, and it is an involution: W2 = id. On

(1.4.4)

this involution acts as a "complex structure":

W(at) = bt; W(bj) = a3 (1.4.5)
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in such a way that the skew symmetrical intersection form < 71,72 > defines the
symmetrical form

(71,72) = < 71,^(72) > • (1-4-6)

Now for the space Rg one has the stratification

SmgRr
g
ed C Rgred = SmgRg C Rg (L4-7)

where
Rg — Rgred = Rgirr

is the smooth part of Rg,

Rgred = T29 /{±id} = Kg (1.4.8)

is the "Kummer variety of genus g" of the 2g-dimensional torus

T29 = i f 1 (E,E)/ i / ' 1 (E,Z) (1.4.9)

and SingKg is the set of 229 points of second order of the torus T29.

To describe the tangent space (TRg)p recall that a S'?7(2)-representation p makes the
Lie algebra su(2) into TT\ (g)-modul su(2)p by the adjoint action and

(TRg)[p]=H1(7r1(g),su(2)p) (1.4.10)

as a tangent space to a point of orbifold. Recall also, that the group of cycles of the
module su(2)p is the group of skew homomorphisms from TTi(g) to this module, that is

Z1(su(2)p) = {u : 7n(flf) -> su(2)p\u(gi-g2) = u(9l) + gi(u(g2))}. (1.4.11)

Of course, any such function u can be extended to the Z-linear map of the integral
group algebra

u : ZTTi(flf) -^ su{2) (1.4.12)

and the boundary subspace is

B1(su(2)p) = {u : TTi(flf) -^ su(2)p\u(g) = g(v) -v, for some v G su(2)}. (1.4.13)

Thus

(TRg)[p] = Z1(su(2)p)/B
1(su(2)p). (1.4.14)

Now the canonical symplectic structure on Rg

W j = w s (1.4.15)

given by (1.2.26) can be defined as a skew symmetrical bilinear form on the tangent
space of every class of representations [p] by the bilinear and P£7(2)-invariant form on
Z1(su(2)p) given by the formula

a

< u, v > =
i = l
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+ (u(a"1r-_1
1 - r " 1 , ^ ) ) (1.4.16)

where (,) is the standard inner product on su(2):

(m,m) = —trm2 (1.4.17)

The dual presentation (1.4.3) gives the inner product on the space of cycles Z1(su(2)p)

(1.4.10) by the formula

(1-4.18)

(see [G-N]) where the more complicated "parabolic" case is considered).

Proposition 1.4.1 [G-N]. This inner product is non degenerate and positive.

Now we can consider the orthogonal

B1(su(2)p)
± = (TRg)[p] (1.4.19)

and the restriction of the inner product (1.4.18) to this orthogonal defines the special

Riemannian metric on Rtrr and on Rg as an orbifold. Let us call it GN-metric.

Obviously this metric is invariant with respect to Modg action and it can be checked

(see Proposition 3.1 of [G-N]) that this metric is compatible with the symplectic form

(1.4.15). So we get the canonical almost complex structure on Rg as on an orbifold. Now

we can use it to get the canonical Herniitian structure and the canonical connection on

the tangent bundle (the Levi-Civita connection) and the induced Herniitian structure

and connection on the determinant line bundle L-K- NOW our map (1.3.12) is absolutely

canonical.

Remark. We saw that the canonical symplectic form (1.4.16) on the representations

space Rg is the restriction of the canonical symplectic structure fio (1.2.26) on the orbit

space B^(Eh)- We can ask the question of the same type for the GN-metric.

Question 1.4.1. Can we get the GN-metric as the restriction of the canonical metric

on the orbit space

Of course, we can construct a metric on Bs(Eh) the restriction of which to Rg is the

GN-metric. For this it is enough to lift the involution W (see (1.4.6)) to a diffeomorphism

WeDiff+(Xg) (1.4.20)

and to define the metric by the inner product

r(wi AW*{UJ2)). (1.4.21)

It is easy to see that the GN-metric is the restriction of this metric to Rg. But a priori

this metric depends on the lifting W (1.4.20).
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CH II. THE COMPLEX CASE.

§1. SPACES OF ORBITS.

We have to add a new notion to the standard collection of algebro-geometrical - the

notion of connection in the case of complex varieties. There is a beautiful text about

this subject - the book [D-K]. We have to extract from it some small parts.

Let X be a complex variety (smooth or with an orbifold structure) and let £ be a

complex vector bundle on it. Let A be the space of connections on this bundle. Every

connection a £ A is given by the covariant derivative

Va:T(E) -^T(E(g)T*X) (2.1.1)

as a differential operator of degree 1 with the ordinary derivative d as the principal

symbol. The complex structure gives the decomposition d = d + d, so any covariant

derivative can be decomposed as

V7 — r) _|_ 7) (2 1 2)

where

da : T(E)

and

da:T(E)^T(E(g)Q0'1) (2.1.3)

Thus in the complex case the space of connections admits the decomposition

A = A'xA" (2.1.4)

and A' is the affine space over Q}>°(EndE) and A" is the one over 9P^

Now the group of all automorphisms Q of E acts as the group of gauge transformations

and the projection

pr:A^A" (2.1.5)

is equivariant with respect to (/-action. We will call the space A" as the space of

d-operators on E (and the space A' as the space of d - operators).

Equipping E with a Hermitian structure h one gets the subspace Ah C A of Hermitian

connections. It is well known that the restriction of the projection (2.1.5) to Ah is one-

to-one (see, for example, [D-K]) and this identification

Ah=A" (2.1.6)

defines the section of the fibration (2.1.5). The subgroup Qh C Q preserves this section.

To consider the full group Q as the complexification of Qh

Ql = Q (2.1-7)

we have to recall precisely how the complex group Q acts on the direct product (2.1.4).

Of course we have to use the Hermitian structure h on E. For any element g £ Q this

Hermitian metric gives the element

g = (g*)-1 (2.1.8)
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(remark, that * is defined by h) and

g = g = gegh. (2.1.9)

Now, the action Q on the component A" is the standard : for g £ Q

dgia) = 9 • A • g-1 = da - (Bag) • g-1; (2.1.10)

But on the first component A' of 9-operators the action is

dg(a) = g • da • g-1 = da - ((dag) • g'1)*. (2.1.11)

It is easy to see that if g = g then this element acts as an element of Qh on the full

covariant derivative Va (2.1.2).

On the other hand, it is easy to see directly that described in (2.1.10 - 11) action

preserves unitary connections:

g(Ah) = Ah (2.1.12)

and the identification (2.1.6) is equivariant with respect to described action.

It is easy to see (because (d')2 = 0) that

dl £ n°'2(EndE) (2.1.13)

is a tensor and under the identification (2.1.6)

dl=F°>2 (2.1.14)

is the (0, 2) -Hodge component of the curvature tensor.

The analogue of the orbit space (1.1.1) is the orbit space

VJc(E) = A"/g = Ahg (2.1.15)

which does not have such as Bx(Eh)- We will look out for the "good" subloci of the

space (2.1.15) imitating the zero level loci of moment maps.

At any case one has the map

p:Bx(Eh)^V'^(E) (2.1.16)

and in a number of constructions on T>X(E) we will construct something on the good

space Bx(Eh) and check that it is (^-invariant.

The diagonal action of Q on the direct product A" X Q,0)2(EndE) defines the vector

bundle

Q,°'2(EndE) = {A" x Q,°>2(EndE))/g -+ VX(E) (2.1.17)

with the infinite-dimensional space Q,0)2(EndE)) as a fibre.

Sending an 9-operator da to its square (<9a)
2defines the Q - equivariant map
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that is the section

F = (df : VX(E) -+ n°'2(EndE) (2.1.18)

of this bundle. The zero set of this section

(F)o = {{df)o = UMl (2.1.19)

is the union of all components of moduli spaces of holomorphic bundles on X of the
topological type E. This union doesn't admit any good structure because it contains
all non stable vector bundles. It shows that this section isn't transversal in any sense.

In the same vein we can use the standard orbit space Bx{Eh) of Hermitian connec-
tions and consider the diagonal action of Qh on the direct product Ah X Q2(EndEh)

which defines the vector bundle

Q2(EndEh) = (Ah x Q2(EndEh))/gh -+ Bx(Eh) (2.1.20)

with the infinite-dimensional space Q2(EndEh)) as a fibre.
Sending a Hermitian connection a to (0, 2)-Hodge component of its curvature defines

the section
F0'2 :Bx(Eh) -^n2(EndEh) (2.1.21)

of this bundle. The zero set of this section is the union of infinite-dimensional compo-
nents and it is easy to see that the vector bundle contains preimage with respect to the
map p (2.1.16) of the bundle (2.1.17) and

( jP°'2)o=p-1(((a)2)o) . (2.1.22)

To make this subspace finite-dimensional one has to consider the Hitchin - Kobayashi

conditions. One has to fix a polarisation H of X with the Kahler form LOH and hence,
some Kahler metric and consider the subspace

0} (2.1.23)

It is easy to see that Aasd is Gh - invariant (but non Q-equivariant) and the intersection

°2 (2-1.24)

is the union of all components of moduli spaces of iJ-stable holomorphic bundles on X

of the topological type E. This union admits quite a good structure and this section is
transversal in any sense. It was just a brief reminding of results and constructions of
Ch.6 of [D-K].

§2. HOLOMORPHIC DIFFERENTIALS ON ORBIT SPACES.

Consider a smooth, compact, complex-analytical threefold X and let us return to
the complex orbit space T>X(E). Here every holomorphic (3,0)-form 6 on X defines the
complex analogue of the Chern-Simons 1-form on the orbit space T>X(E) by almost the
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same formula as (1.1.5). Namely, one defines (^-invariant 1-form on A" a value of which
on a tangent vector u £ QP^^EndE) at a 9-operator da is given by the formula

De(u)= / tr{uA{day)A9 (2.2.1)
>x

We will note by the same symbol the form on the orbit space T>'^{E). Thus one gets
the linear isomorphism of the complex space H3'°(X) to the complex vector space
H1'°(T>'^(E)) (we don't want to discuss any Hodge meaning of this notation but of
course it's easy to see that in some imprecise sense these differential forms are holomor-
phic). Now, suppose that the intersection of zero sets of these forms

= 0 (2.2.2)

is empty. This means that the canonical complete linear system is base points free.

Proposition 2.2.1. Under condition (2.2.2) the intersection

() (2.2.3)

is the union of all components of moduli spaces of holomorphic bundles on X of the

topological type E as in (2.1.11).

For the proof it is enough to remark that conditions (2.2.2) and LHS of (2.2.3) for
9-operator da implies the equality (da)

2 = 0 which gives the integrability condition for
holomorphic structure.

Now, one can integrate these forms along any path in the orbit space (2.1.8) and in
particular along paths coming from the affine space of connections A". Here any pair of
9-operators (dao, dao + to) can be connected by the interval [0, 1] of the line dao -\-t-u.

Consider some basis 9\, ...,9^3,0 of the space H3)0 of holomorphic differential forms
and the vector

9h3,0

This vector defines the vector 1-forms on /D'Ji(E)

(2.2.4)

Then integrating this vector of forms along such interval one gets the map of the space
QP^i^EndE) (identified with A" by the choice of a$) to the vector space Ch ' . This
map is locally CJ-equivariant and defines the map of the universal cover ofD

Ix :V^{E)^Ch3'0. (2.2.5)

with the covering group at most H3(X, Z).
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Definition 2.2.1. The restriction of this map to any component Aii (2.1.11) of moduli

space of holomorphic bundles on X is called the analogue of the Abel integral (AAI for

short).

This situation suggests that as soon as the right interpretation of the Abel integral is
the map to the Jacobian of curve in the same vein AAI can be extended to the map to
the intermediate Jacobian of X. To realise this program let us return to the "Hermitian"
situation.

For our 3-fold X consider the vector space H3)0 © H2)1 as the space of differential
3-forms on X and let 9\,..., 0^3,0, fi1?..., 0^2,i be some basis of this space which we will
consider as the vector

01 \

9h3,0
(2.2.6)

This vector defines the vector of forms on A" given on a tangent vector UJ £ Q}

by the formula

D01(u) = Jxtr(u/\Fa)/\e1 \

= fxtr(u/\Fa)/\6h3,0 r

= Jxtr(ujAFa)AQh2,i)

components of which are Qh - invariant and define the vector of 1-form ( with the same
symbol ) on the orbit space Bx{Eh)-

Remark . We have to repeat the definition for holomorphic components because we
are sitting on the other space of connections. We don't distinguish notations of these
components of integrals.

Now it is easy to check that the collection of path integrals of these forms defines the
map

7 K? ( Z71 \ v 7^ ( V\ T _ 7 3 / " V ^ T n > \ / r 7 3 / x ^ r 7 7 \ / O O Q \

JE • DXy&h) —̂  <J \-<*- ) = -" i^- j^ , ) / -" (A.,£i). [Z.Z.oj

(we use here the Poincare duality in middle cohomology of X).

Definition 2.2.2. The restriction of this map to any component Ai? (2.1.15) of the

moduli space of stable holomorphic bundles on X is called the Abel - Jacobi map.

Again in parallel to the abelian case we would like to ask

Question 2.2.1. Are JE- images of disjoint components of moduli spaces of holomor-

phic bundles disjoint in J3(X)?

Moreover if the restriction of JE to one of the components is embedding we can call
this result the Non-Abelian analogue of the Abel theorem .

In the next section we will explain the cohomological correspondence which gives this
construction.
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§3. COHOMOLOGICAL CORRESPONDENCE.

The construction of the cohomological correspondence which sends 3 - classes of X

to 1 - classes of Bx{Eh) can be done precisely like in (1.1.11 - 13) of §1 of Ch.L: let

us consider the universal connection A on the direct product X X Bx(Eh) and the

cohomology class

ch2(A) = [trFA A FA] G H\X X Bx(Eh)) (2.3.1)

and the (3,1) - Kunnet component of it

ch2(A)3^ : H3(Y),Z) -> H^BxiEh)^). (2.3.2)

This cohomological correspondence induces the homomorphism of tori

(ch^A)3'1)* : Alb(Bx(Eh)) = H^BxiEk^/H^BxiEk^Z) ->

-> J3(X)=H3(Y),R)/H3(Y),Z) (2.3.3)

Remark. The formula of the Chern character contains some divisions by 2. It is easy

to see the way to lift this construction to integers.

Now, as usual, the integration of the collection of 1-forms gives the Jacobi map

J:Bx(Eh)^Alb(Bx(Eh)) (2.3.4)

and the composition of (2.3.3) and (2.3.4) gives the map

^J3(X) (2.3.5)

restrictions of which to components of moduli spaces of holomorphic vector bundles give

JE (2.2.8).

Now, the intermediate Jacobian J(X) admits the complex structure, defined by Grif-

fiths (see, for example [G]). On the other hand, any component of moduli space Aii

(2.2.3) admits the complex structure too.

Proposition 2.3.1. The map JE is holomorphic with respect to these complex struc-

tures.

To prove this statement one has to recall that the complex structure on J(X) is

defined by the identification

H3(X, R) = H3'0 © H2'1 = (TJ3(X))o (2.3.6)

which is given by the projection of the complexification H3(X, C) to the sum of Hodge

components. Now, on the Hodge component H3'°(X) the map JE goes through the

space T>X(E) and is defined by AAM (2.2.4). It is holomorphic because the complex

structure o n M ; is induced by the natural holomorphic structure on T>X(E). To check

holomorphity on the iJ2'1-component one has to give another interpretation of this map.

Let CH2(X) be the space of 1-dimensional algebraic cycles codimension 2 on X of

the topology type ch2(E) up to rational equivalence. For it there exists the Abel-Jacobi

map

a : CH2(X) -+ J3(X). (2.3.7)
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sending a class c — CQ where CQ is a fixed class to the vector

Js i \

Is'-" (2.3.

where 8 is any 3-cycle with the boundary

dS = c-c0 (2.3.9)

The following statement is well known

Proposition 2.3.2. / / algebraic cycles c and CQ can be joint by algebraic curve C then

locally the image a(C) is contained in H2'1 -component .

Now, every component Aii of moduli spaces of holomorphic bundles admits the map:

c:Mi^CH2(X) (2.3.10)

sending a vector bundle F to the class of rational equivalence of the algebraic class

ch,2(F). Because the map JE is given by ch,2 of the quasi universal bundle (see (2.3.1))

it is easy to see that this map up, to shift, has the form of composition of two maps

c-a:Mt -^ J 3 (X) (2.3.11)

Thus JE is holomorphic.

Moreover one can see that the map JE is defined correctly on any component of

moduli space of holomorphic vector bundles (2.2.3), not on components of stable bundles

(2.1.15) only.

The following problem is natural in this situation: one can see that the map JE on

H3'0 part is a restriction of A AM defined on T>'-^(E). On the other hand, on the other

Hodge component H2'1 the map JE is defined a priori on the subsets Aii of T>

only.

Question 2.3.1. Can the map c (2.3.8) be extended to the map

C : V'^(E) -+ CH2{X)1

Now consider a local lifting JE(Mi) of the image of the JE map of some component

Aii to the universal cover H3)0 © H2)1 of the intermediate Jacobian J(X).

Proposition 2.3.3. The image of the projection p^^ of the direct product H3)0 © H2)1

to the first component is a point. That is locally the image of component JE{-M-I) ^

contained in the affine space

JE{Ml)c<Pl,H
2'1 > (2.3.12)

To see this statement it is enough to return to the Proposition 2.3.1.
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Example. Let X be a smooth Calabi-Yau threefold with h2^{X) = 0. Then X is

infinitesimal rigid and the intermediate Jacobian of it

J{X) = £ (2.3.13)

is an elliptic curve. There is a number of threefolds of such type. The best example

is the Barth-Nieto threefold [DvS], which is the moduli space of abelian surfaces with

polarisation of type (2,6) and fixed theta structure of level 2. For threefolds of such

type the image of the Abel-Jacobi map JE is a finite set of points {ei,..., ecas(E)}- This

set is defined up to translation and one can kill this ambiguity by the condition

= 0 (2.3.14)

as points on elliptic curve. The arithmetic meaning of these points is quite interesting.

C H . I I I . HOLOMORPHIC VECTOR BUNDLES ON THREEFOLDS.

§ 1 . MUKAI LATTICES.

Let X be a smooth compact threefold and

H2*(X, Z) = ®\=QH2t{X, Z) (3.1.1)

is the algebra of even dimensional cohomology groups of X. Actually we have other

algebra,

A(X) = (B3
t=oA\X) (3.1.2)

- the algebra of algebraic cycles modulo algebraic equivalence, which is related to (3.1.1)

by the natural homomorphism

h: A(X) -^H2*(X,Z) (3.1.3)

but in the 3-dimensional case it isn't an isomorphism a priori because of the negative

solution of the Lefshetz conjecture and non triviality of the Griffiths group.

The involution * acts component wise:

*|jf°.4(x,z) = id; *\H2>6(X,%) =-id (3.1.4)

and in the same way on A(X) so that the map h (3.1.3) is *-equivariant. Of course we

have the natural identification

tl yJL,£ij = £i = tl yJL,£ij yo.i.o)

So any element u £ H2*(X,Z) is a vector u = UQ + 112 + u^ + u§ and we denote the
z-component of it by [u]i. Let Kx be the canonical class of X,

KxeH2(X,Z); Kx = (Kx)2 and kx = c2(TX) = c2(X) = (fcx)4. (3.1.6)
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Then on H2*(X, Z) we have two bilinear forms

< u , v > = -1/2KX • [u* - v ] 4

( u , v ) = - [ v * - u ] 6 (3.1.7)

It is easy to see that the first is symmetrical and the second is skew-symmetrical.

Now if we consider the algebraic K-functor K®, on X then the Chern-character gives

the chain of homomorphisms

K°alg —> A(X) -> H2*(X}Q) (3.1.8)
ch h

which is equivariant with respect to * which acts on K®, by sending a vector bundle E

to E*.

Now on K®, the following bilinear form is defined

3

-X(EUE2) = ^2(-l)i+1rkHi(X,EZ <g) E2) (3.1.9)
i=0

where cohomology spaces are coherent cohomology.

This form is the preimage of some bilinear form on H2*(X, Q). To see this recall that

by the Riemann-Roch theorem

x(Ei7E2) = [chE2 • chE{ • tdx]6 (3.1.10)

where tdx is the Todd class of X.

Decompose this form to symmetric and antisymmetric components:

E2) + x-{EuE2) (3.1.11)

It is easy to compute directly that

td*x = tdx • chKx = tdx • eKx (3.1.12)

Thus

2tdx = tdx ±td*x=tdx-(l± eKx) (3.1.13)

and

X(E1,E2)+ = [chE*2 • chE1 • tdx]6;

X(EUE2)- = [chE*-chE1-td+]6. (3.1.14)

Moreover we have one special class in A(X) (or H2*(X

24

defined uniquely by the conditions [\/tdx]o = 1.

td+ =! + -£- = Jtdx/Kx (3.1.15)
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Following Mukai we can correct slightly the Chern character homomorphism (3.1.8)

m(E) = chE • yjtcfy (3.1.16)

Let us call this vector the Mukai vector of E.

Now we can recompute the "non standard" forms (3.1.14) in terms of the standard
bilinear forms (3.1.7)

X(E1,E2)+ =< m(E1),m(E2) >

and

X(E1,E2)- = (m(E1),m(E2)) (3.1.17)

The precise formula for a Mukai vector is

m(E) = ch(E) + rkE.^ + ̂ - ^ . (3.1.18)

At last

E2)+ = ^ • Kx • [ci(^i) • Cl(E2) - ^ • rkE2 • 2

and

- \ • rkE1 • (Cl(E2)
2 - c2(E2)) - rkE1 • rkE2 • ^ | ] ; (3.1.19)

X(E,E)+ = ̂  • Kx[c\ - rk(cl - 2c2) - rk2 • ̂ | ] = rkKx[(c2 - ^ _ ^ ' C l ) - rk • ^ - ]

Summing these calculations we have

Proposition 3.1.1. T/ie virtual (expected) dimension of the moduli space of simple

vector bundles E is given by the formula

v.dimME = rk(E)((c2(E) - ( r ^ ~ )) _Cl^ ) • (-Kx) - (rk(E)2 - 1) • X(OX)
Z • rk\hj)

(3.1.20)
where x(Ox) = 1 - /z1'0 + h2^ - /z3'0 as usual.

Recall again that by the Riemann-Roch theorem

) = — - . (3.1.21)

Using the standard notation:

c2(E) - ^ l ^ • c,{Ef = A(E) (3.1.22)

recall that for the Bogomolov stability of E we need the equality

A(E)-H>0 (3.1.23)

for any polarisation H of X.

Now suppose that the canonical class Kx of X is defined and we have three cases
(just like for Riemann surfaces case):

< 0, so X is Fano variety;
= 0, so X is Calabi-Yau variety (CY for short);
> 0, in this case we call X a canonical general type variety (CG for short).
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Calabi-Yau case.

tdx=tdx; (3.1.24)

and the bilinear form (3.1.10)

x = x-; (3-1.25)

and we will define a topological type of E by the Mukai vector m = m(E) £ H2*(X, Q).

Corollary 3.1.0. In the Calabi-Yau case virtual dimensions of moduli spaces are zero.

For stable bundles we can expect that for every topological type m the moduli space

M.sx(m) is compact (more precisely admits the structure of a zero dimensional scheme).

As the length of this scheme the number

CD(X, m) = degMx{m) = #{Mx(rn)} (3.1.26)

is well defined.

We will call this number the Casson-Donaldson invariant (CD for short) because on

the one hand it is the obvious analogue of the Casson invariant from Ch. I proposed in

[D-T ] and on the other hand it is the obvious analogue of the Donaldson polynomial

of degree 0 for four manifolds.

Mirror digression. By the Striminger-Yau-Zaslow conjecture (see [SYZ]) for any CY-

threefold X there exists its mirror partner X' which is CY-threefold again and the

isomorphism

mir : H2*(X} Q) -+ H3(X'} Q) (3.1.27)

such that the skew symmetrical form \ (3.1.9), (3.1.10) becomes the intersection form :

x(mi,m2) = mir (mi) • mir (1122). (3.1.28)

Remark that the LSH of (3.1.27) admits the graduation (3.1.1). Conjecturally the same

graduation of the RSH of (3.1.27) is given by the monodromy transformation around the

large complex structure limit point. More precisely, transformations of Mukai lattice

given by twistings by divisor classes can be described in terms of monodromy trans-

formations around boundary divisors passing through the large complex structure limit

point (see [Gr]).

If the fundamental class of a 3-cohomology class mir(m) can be realised as a SLag-

cycle (see the Mirror digression in §3 of Ch.l ) which is a smooth oriented Lagrangian

3-submanifold Y, subjecting the calibration condition, then the tangent space to the

moduli space .A/fx'(m*r(m)) °f a n deformations of such realisations at point Y is

(TMX'(mir(m)))Y =H1(Y,R) (3.1.29)

(where H1(Y, IR is realised as the space of harmonic forms). Thus any SLag-realisation

of mir(m) by a homological sphere Y is rigid. We have the finite set of such realisations

M°x,(mir(m)).

Moreover, every such Y is carrying the finite set of flat S'?7(2)-bundles and the number

of supercycles of such type, that is, the set of pair (YJ, a,j), where Y{ is a SLag-homological
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sphere and a,j is an irreducible flat connection, is finite. So one can associate to every

3-homology class a of X' the number

CD(X', <r) = J2 Cas(Yi) (3.1.30)

The natural quite speculative conjecture is

CD(X, m) = CD(X', mir(m)) (3.1.31)

To see this we have to perform two steps. The first step is in the general set-up of

the theory of calibrated cycles in any Calabi-Yau threefold: we have to consider the

3-dimensional component J\4x,(cr) of the moduli space of SLag-cycles which are 3-tori.

Now if there exists some good compactification of this moduli space then one can see

(using the trick, which currently became usual) that

CD(X\(T) = Cas(Mx,((j)).

The second step is to use the "twistor construction" decribed in the section 5 of Ch. 4

to link flat bundles on Mx,(a) and holomorphic bundles on X (of course if you believe

the mirror conjecture).

Let us return to the complex case. Of course there exists the special case of vector

bundles when this invariant is 1:

CD(X,m(L)) = 1

for any line bundle L on X (if h1'0^) = 0).

On the other hand, there exists a lot of sheaves such that the moduli space Mx{m)

is compact and smooth. For example F = Op where p £ X is a point. In this case, the

deformation to the normal cone predicts that

CD(X,m(Op)) =XtoP(X) = ]T(-l)V£;ir(X,Z) (3.1.32)

Moreover, one can see from §2 of Ch.2 that Mx(m) is the zero set of the holomorphic

differential (2.2.1) on the space T>X(E). Recall that this space depends on the topolog-

ical type of E only, that is on the Chern character ch(E) or on the Mukai vector m(E).

So in parallel to (3.1.8) one has the interpretation

CD(X, m(E)) = XtoP{Vx{E)). (3.1.33)

in spite of the fact that the space T>X(E) is infinite dimensional.

Now suppose we have the transversal situation, that is, there are finite sets of infini-

tesimal rigid, simple vector bundles

{E1} ...}ECD(m)} (3.1.34)
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of the topology type m = m(E). Then the Abel-Jacobi map (2.2.8) sends this collection

of bundles to the intermediate Jacobian of X:

{Jm(E1),...,Jm(ECD(m))} C J(X) (3.1.35)

This collection is defined up to translation and we can kill this ambiguity by the condi-

tion

] T m ( £ 0 = 0 (3.1.36)

In some cases we can prove that

i + 3 =^ Jm(Ei) + Jm(Ej). (3.1.37)

In parallel to the Clemens conjecture about rational curves on generic quintic in IP4

we can propose the following

Conjecture 3.1.1. On generic quintic in IP4 every stable rank 2 vector bundle E is

infinitesimally rigid that is H1(adE) = 0.

Remark. It is well known that for rank 3 vector bundles this statement isn't true: the

tangent bundle isn't rigid.

Fano case. The number

A(E)-(-Kx) = Dx(E)>0 (3.1.38)

has to be positive and the virtual dimension of stable vector bundles

v.dimMs
E = rk(E) • DX(E) - (rk(E)2 - 1) (3.1.39)

because

k x ' ^ K x ) = XiOx) = 1 (3.1.40)

One can see that there exists the infinite collection of stable moduli spaces of increasing

dimensions.

Now suppose for simplicity that

H2(X,Z) = Z- H. (3.1.41)

Then the geometrical situation is described by one positive constant - the index of Fano

variety :

-Kx = ix-H. (3.1.42)

Then we can define Chern classes of E as constants:

= c1-P.D.(H); c2(E) = c2-H (3.1.43)
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and

DX(E) = (c2 -
 r-i-^c\) • ix (3.1.44)

z • rk
and the virtual dimension of the moduli space

v.dimME = ix-rk- ((c2 - ~ • c2) - (r£;2 - 1). (3.1.45)
2 • rk

We can consider the case when
0 < a < rk. (3.1.46)

Then
(rk — l)(rk + 3)

v.dimME > ix • rk • c2 - -. (3.1.47)

One can see all possibilities for positive dimensional moduli spaces.
Now, if S is an algebraic surface then there are formulas of the same type for di-

mension of moduli spaces of vector bundles: on the even cohomology ring H2*(S, Q) we
have the standard bilinear form (u,v) = (u* • v)± and the non-standard" bilinear form

2

-X(E1,E2) = Y,(-iy+1rkHt(X,El ® E2) (3.1.48)
i=0

with the symmetrical x(Ei, E2)+ and skew symmetrical x(Ei, E2)- parts. The same
correction of the Chern character :

m (E) = chE • Jtd+

defines a Mukai vector and reduces the non-standard" bilinear form to the standard
form (for details of this machinery see [Ty]).

In parallel to (3.1.19)

X(E1,E2)+ = c1{E1) • Cl{E2) - l- • rkE2 • {c1{E1f - c2{E1))-

-l- • rkE1 • (Cl(E2)
2 - c2(E2)) - rkE1 • rkE2 • X(OS)] (3.1.49)

and

= 2rk-(A(E)-rk

Proposition 3.1.2. The virtual (expected) dimension of moduli space of simple vector

bundles E on S is given by the formula

v.dimME = 2[rk(E) • A(E) - (rk(E)2 - 1) • X\°)
S\ (3.1.50)

where x(@s) = 1 ~ h1'0 + h2'0 as usual.

Now if S G | — Kx | is a smooth K3-surface from the anticanonical linear system on
X and x((9x) = 1 (as for example for a quasi Fano variety, see below), then

Dx(E) = A(E\s) a n d ^ ^ = x(Ox) (3.1.51)

Thus we get
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Proposition 3.1.3. If S £ \ — Kx\ is a smooth K3-surface from the anticanonical

linear system on X , then for any pair E\,E2 of vector bundles on X

X+{E1}E2) =

and for any simple vector bundle on X

v.dimM RL
v.dimME = (3.1.52)

One can see from the next section that it isn't just a simple numerical coincidence.

Canonical general type case. The Bogomolov stability condition says that

A(E)-(-K) <0 (3.1.53)

and the formula for the virtual dimension has the form

v.dimMs
E = (rk(E)2 - 1) • x(Ox) ~ rk(E) • DX(E) • KX- (3.1.54)

One gets

Corollary 3.1.1. The virtual (expected) dimension of moduli space of simple vector-

bundles E on X is non negative iff

(rk(E)2 - 1) • x(Ox) ~ rk(E) • degDx(E) > 0 (3.1.55)

where deg is with respect to the canonical polarisation Kx •

So the collection of components is a priori bounded.

As an illustration consider the case (3.1.36) with the pair of positive constants

= d-H. (3.1.56)

Then using constants (3.1.40) we can write down

v.dimME = (rk(E)2 - 1) • X(Ox) - rk(E)((c2 - ^—1 . c\) . d. (3.1.57)
2 • rk

Again we can consider the constrain (3.1.46) and under it one has

(rh — \\2

v.dimME < (rk(E)2 - 1) • x(OX) + ^ - • d - rk(E) • c2 • d (3.1.58)
4

and you can see that the virtual dimension of the moduli spaces is non negative iff

(rk(E)2 - 1) • x(Ox) + ̂ ^ • d
rk(E) • d

Thus we have the finite set of solutions to these inequalities.



31

§2. POLYNOMIALS OF POSITIVE DEGREES.

The results of §1 show that one may expect the existence of moduli spaces of positive

dimensions in Fano and CG- cases only. All our computations are preserved if we

consider a little more large classes of varieties:

Definition 3.2.1. 1) A variety Y is called a quasi Fano iff the anticanonical linear-

system contains a smooth KS-surface and

X(OY) = 1 (3.2.1)

2) A variety X is called a variety of quasi canonical general type (quasi CG for short)

if the canonical class Kx is nef and

ho'1(X)=h°'2(X)=0 and h°'3>0. (3.2.2)

A good example of quasi Fano variety is the blow up of a classical Fano variety.

Suppose we have the transversal situation for a Mukai vector m that is there is the

finite set of components of correct dimension of the moduli space J\Ax(m)

{Ms
x(m)ll...1M

s
x(m)N} (3.2.3)

of the topological type m = m(E). Then in parallel to the classical Donaldson poly-

nomial for the real 4-dimensional case one can define the collection of polynomials

Dx(m)j of degree

d=m2+X(Ox) (3.2.4)

on the truncated ring (3.1.1)

H2*(X} Q)' = H°(X, Q) © H2(X} Q) (3.2.5)

using intersections of /i-classes on the compactification of Ais
x(m)j. It is quite ex-

pectable construction:

Df(a)=/j(a)d (3.2.6)

on Mx(m)j for any a G H2(X}Q)'.

Now the Abel-Jacobi map (2.2.8) sends every component Ais
x(m)j of the moduli

space to the intermediate Jacobian of X:

Jm(Mx(m)j) C J3(X). (3.2.7)

Let the codimension of the image be

codim j3(x)Jm(M-x(m) j) = cd™1. (3.2.8)

Then one can define the new symmetrical polynomial on iJ2(J3(X),Z) of degree cd =

cdf :
A?(<T) = {a)cd • [Jm(Mx(m)j)]. (3.2.9)

in the cohomology ring of the torus J3(X).
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Remark. The image Jm(J\Ax(m)j) admits the natural compactification in the inter-

mideal Jacobian, so the fundamental class [Jm(Aix{m)j)\ is defined correctly.

Now the restriction of this polynomial to the subspace

A 2 TTI ( T3 / \r \ 17 \ ^ Tj'i I 73 / V \ 17 \ /o o in\

l\ n \J {A.),£i) C tl \J {A.),£i) {6.Z.i(j)

defines the tensor

Af(X) e Scd(A2H3(X}Z). (3.2.11)

Remark. The amazing fact is that the number of such polynomials for Mukai vectors

of vector bundles with fixed rank is finite. It is quite easy to see for quasi CG-varieties

(see (3.1.52) and (3.1.56). But for the quasi Fano case it is easy to see that if v.dim of

the component of moduli space is big enough then the Abel-Jacobi map is surjective.

Now Proposition 2.3.1 shows

Proposition 3.2.1. / / X is quasi CG-variety and J\Ax(m)j is a regular component

then the invariant A^^X) (3.2.11) is non trivial.

Indeed in this case the Abel-Jacobi map isn't surjective.

In the quasi Fano and CG realm it is quite reasonable to define the Casson - Don-

aldson invariant in the following way:

Definition 3.2.2. For a variety X and a Mukai vector m the Casson-Donaldson in-

variant

CD(X,m) = # of connected components of J\Ax(m) (3.2.12)

It is quite reasonable because formally the Casson-Donaldson invariant admits the

interpretation of the same type as (3.1.29) by Proposition 2.3.1.

In the transversal situation there is the finite set of right dimensional components of

Mx(m)

{Mx(m)1,...,Mx(m)CD{m)} (3.2.13)

of the topological type m = m(E). Then the Abel-Jacobi map (2.2.8) sends this collec-

tion of spaces to the intermediate Jacobian of X:

{Jm(Mx(m)1),...,Jm(Mx(m)CDim))} C J(X) (3.2.14)

This collection is defined up to translation and we can kill this ambiguity by the condi-

tion

" rHs,o • Jm(Mx(m)l) = 0 (3.2.15)

where prjj3,o is the projection described in Proposition 2.3.1.

In some cases which are very close to trivial we can prove that

i+3 =^ Jm(Mx(m)i)nJm(Mx(m)j) = ®. (3.2.16)

In parallel to the classical Casson invariant which can be computed using the cutting-

pasting procedure given by Heegard diagrams ( see Ch.I and [A-M]). Donaldson and

Thomas [D-T] proposed to compute complex Casson-Donaldson invariants (3.1.6) using

the analogical complex "cutting-pasting" procedure.
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§3. GEOMETRY OF VECTOR BUNDLES ON FLAGS.

As usual for computations it is quite productive to use the degeneration principle

considering our main problems for special type of degenerations of Calabi-Yau threefolds:

X = Y+ Us Y_, where Y^ are smooth threefolds transversally intersecting along non-

singular surface S of K3-type from the anticanonical systems S £ | — Ky± .

Before going to the problem of gluing of two quasi Fano flags to the virtual Calabi-

Yau threefold let us describe (in real parallel to §2 of Chapter I) the geometry of vector

bundles on a pair (S C Y) where S £ | — Ky | is a smooth K3-surface of the anticanonical

linear system of variety Y.

First of all, returning to topological invariants of vector bundles on Y it is easy to

see from (3.1.17), (3.1.9) and (3.1.19) that the symmetric form \+(Ei, E2) depends on

three first components of the cohomology ring (3.1.1).

Now,

) = OY(-S). (3.3.1)

As any invertible sheaf this line bundle defines the automorphism TKY °f the lattice

K® = H2*(Y, Z) (3.1.1) which we consider as the Mukai lattice with the symmetric

bilinear form (3.1.16). Then

TKY(m) = m-eKY (3.3.2)

and the restriction map defines the map of Mukai lattices

res : MY -+ Ms = H*(S,Z). (3.3.3)

So the image in the Mukai-lattice of S is the image of operator

im(id-T-S) = MS. (3.3.4)

More precisely,

(id-T-s)(uQ,u1,u2,u3) = (0,-Kx-uo,u1-S,u2-S) = (uo,u1-S,u2-S) £ H*(S) (3.3.5)

From (3.1.7) one can see that the bilinear

<,>=Ires*(,) (3.3.6)

is the preimage of the standard symmetric bilinear form

(u,v) = -[v*-u]4: (3.3.7)

on H*(S,Z).

Now the restriction (transformation (3.3.5)) of the root (3.1.15)

(id - Ts)(yftd+) = (1, 0,1) = ^fid~s (3.3.8)

is the root of the Todd class of K3-surface, because on a quasi Fano variety Y
2±

Y = 1-

Thus for any Mukai vector (3.1.16) of a vector bundle on Y

(id - T-S)(m(E)) = m(E\s) = ch(E\s) • ̂ s (3.3.9)
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is the classical Mukai vector of vector bundle E\s on K3-surface S (see [M]).

Moreover, the symmetrical bilinear form x{Ei, E2)+ (3.1.17) on Y is the preimage

of the classical symmetric form

x{E1\s,E2\s) = {m{E1\s),E2{\s)) (3.3.10)

where (,) is (3.3.7). (We saw it already in the previous section.)

Now using the Bertini theorem one has

H2(Y,Z) = H1'1(S)nH2(S,Z) (3.3.11)

and by Mukai theorem for any primitive vector m = (uo, u2, u±) inH2*(S, Z), satisfying

u0 > 0; u2eH1'1(S); m2 > - 2 =>• Ms(m) ^ 0 (3.2.12)

that is there exists a stable bundle En such that m = m(E). It is easy to see that then

dimMs(m) >m2 + 2. (3.3.13)

Suppose there exists a (—Ky) - stable vector bundle E onY such that En = E\s- Then

MY(m)^$ and dimMY(m) > \m2 + 1 (3.3.14)

(see [M]).

Definition 3.3.1. A vector bundle E on Y is called regular if

H2(adE) = 0 (3.3.15)

An irreducible component Aiyi^o is called regular if a generic bundle E of it is regular.

By the deformation theory one has in this case

dimMY{m)n = v.dimMY{m)n = \m2 + 1 (3.3.16)

Now the restriction map

r : MY{m)n ^ Ms{m) (3.3.17)

is immersion on bundles E with condition (3.3.15).

Both of these statements follow from the short exact sequence

0 -+ H^adE) —• H^adEls) -+ H2(adE(Kx)) -+ 0 (3.3.18)
dr

of the restriction sequence for adE:

0 -+ adE(Kx) -+ adE -+ adE\s -^ 0. (3.3.19)

Moreover, the continuation of the cohoniological sequence (3.3.18)

0 -^ H2(adE\s) -^ H3(adE(Kx)) (3.3.20)

shows that iJ2(a<i.E|s) if S is simple :

H°(adE) = 0 =>• H3(adE(Kx)) = H°(adE)* = 0 (3.3.21)

Thus for a simple bundle on K

E is regular = ^ E | s is regular. (3.3.22)

and one has
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Proposition 3.3.1. The restriction map r (3.3.17) is generically an immersion to the

regular component M.s{m)o and

dimMs{m)0 = 2dimMY{m)0 (3.3.23)

Now every regular component J\As(m)o of vector bundles on S admits the Mukai

holomorphic symplectic structure

us : TMs(m)0 -> T*Ms(m)0 (3.3.24)

which can be defined in parallel to the canonical symplectic form on Riemann surface

S (1.2.26-29).

Namely for an algebraic surface S consider a topological vector bundle E with the

Mukai vector m and the space 9-operators on E. Consider the 2-form on this space

given on the tangent space Q,0)1(EndE) of a 9-operator da by the formula

/ Au2) A0. (3.3.25)

where 6 is any (2,0)-form on S.

Again this form

1) is closed,

2) Q - invariant (because of "tr"),

3) degenerate along (/-orbits only.

From this we get the (2,0)-form on the orbit space T>"S{E) and by restriction of it to

((d)2)0 = UMt D Ms(m)0 (3.3.26)

we get the symplectic structure us on any regular component M.s{m)o on S.

Proposition 3.3.2. The image r(A/ly(m)o) G M.s{m)o is a maximal symplectic sub-

variety of M.s{m)o with respect to us-

Indeed, the tangent space of A^s(m)o at any regular bundle r(E) is H1(adE\s) and

we can consider the monomorphism of (3.3.18) as the differential of the restriction map:

0 -> {TMY{m)o)E —> {TMs{m)o)E\s (3.3.27)
dr

On the other hand the epimorphism of this exact sequence

(T*Ms(m)0)Els —> (T*MY(m)0)E -> 0 (3.3.28)
dr

we can consider as the codifferential conjugate to the differential monomorphism using

the identification

(TMs(m)0)Els = H^adEls) = H^adE^f = (T*Ms(m)0)Els (3.3.29)
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given by Serre-duality which is the restriction of the symplectic structure us on the

fibre of the tangent bundle (see [M]). But the sequence (3.3.18) is exact thus

E = 0 (3.3.30)

and we are done. Moreover, in the regular case the normal bundle

= T*MY{m)0 (3.3.31)

is the cotangent bundle of the moduli space of vector bundles on Y.

Now recall that every moduli space M.s{m) defines the //-map

/i : H*(S,Z) -+ H2{Ms{m)) © H4(Ms{m)). (3.3.32)

by the slant-product on C2 of the quasi universal bundle on S X J\As(m)- Thus one gets

the polynomial on H2(S,1i) :

DsCY[m]m2+1(a) = / i (a) l m 2 + 1 • [r{MY{m))\ (3.3.33)

just like Donaldson polynomial for 4-fold.

We don't want to discuss here technical problems like compactness, correct defini-

tions of the fundamental cycle [r(.A/fs(m))] and so on. This can be done by the usual

procedure.

But much more interesting is another integer invariant of a Mukai vector m o n a pair

(SCY):

CD(SCY)(m) = [r(MY(m))]2 (3.3.34)

which we call the relative Casson-Donaldson invariant of a pair (S C Y).

In the compact and non-singular case this number can be computed as the top Chern

class

CD(ScY)(m) = ctop(Nr(MY(my)cMs(m)) (3.3.35)

of the normal bundle.

Suppose that we are in the regular case. Then from (3.3.31)

Nr(MY(m))cMs(m) = T*MY(m) (3.3.36)

is the cotangent bundle of the moduli space and

CD{ScY)(m)=xtopMY(m) (3.3.37)

We can use this relative Casson-Donaldson invariant for computation of Casson-

Donaldson invariants in Calabi-Yau case.
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§4. DEFORMATIONS OF FLAGS AND VECTOR BUNDLES.

The deformation theory of flags or pairs is quite parallel to the deformation theory for

complex manifolds : one has the vector bundle (or the coherent sheaf) T(S C Y) such

that H1(T(S C Y)) is the space of formal linear deformations, H2(T(S C Y)) is the

space of obstructions for such deformations and there exists the connecting Kuranishi

map

$ : i J 1 ( T ( 5 c F ) ) ^H2(T(S CY)). (3.4.1)

Then locally $ - 1(0) is modelling the moduli space of deformations.

It is easy to construct such sheaf T(S C Y) for deformations of flags (or pairs)

(S C Y) : consider the restriction sequence for the tangent bundle

^O (3.4.2)

and the standard exact sequence on S

0 -+ TS -+ TY\S -+ iV(ScY) -+ 0, (3.4.3)

where the last line bundle is the normal sheaf of the surface in the threefold.

The kernel of the composition of epimorphisms of these sequences is the required

sheaf and we get the sequence

0^T(S CY)^TY ^ NiSCY) -+ 0. (3.4.4)

The kernel of this epimorphism is just our sheaf of vector fields (3.3.1) for deformations

of pairs. Recall that for the classical Kuranishi model one has to use the tangent bundle

TY for deformations Y or TS - for deformations S. We suppose (and it is reasonable

for (K3 C quasi Fano) flags) that

H1(S,N(SCY)) = 0. (3.4.5)

Then parts of long exact sequence (3.3.4) can be joined by Kuranishi maps

(SCY)) -> H^TiScY))^ H1(TY)^0

I I I (3.4.6)
0 ^ H2(T(S CY)) -+ H

H°(N(S

From this we immediately get

Proposition 3.4.1. Deformations of Y are unobstructed =^- deformations of the

pair (S C Y) are unobstructed.

From the definition of T(S C Y) one has the exact sequence

0 -^ TY(-S) -^ T(S C Y) -^ TS -^ 0 (3.4.7)

If our pair is a (K3 C Fano)- flag then we have as the long cohomological sequence of

(3.4.7)

0 -^ H1(A2nY) -^ H^TiS C Y)) -^ H^ttS)* -^ H^ttY)* -^
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-^ H2(T(S CY)) -+0. (3.4.8)

We are using here the equality E 0 A3 E* = A2 E* if rkE = 3 and the Serre-duality.

Consider the restriction map. It is easy to see that the homomorphism

of the exact sequence (3.4.8) is dual to the restriction map

r:H1'1(Y)^H1'1(S). (3.4.9)

(under the Dolbeault isomorphism).

Thus we get

Proposition 3.4.2. The obstructions space

H2(T(S cY)) = (ker r)*cH2'2(Y) (3.4.10)

In particular PicY = Z ==>• deformations of pairs (S C Y) are unobstructed and thus

by (3.3.6) deformations of Y are unobstructed too.

Indeed, the homomorphism H1(Q,S)* —> H1(Q,Y)* is non trivial so under the condi-

tion it has to be an epimorphism.

Moreover, the space

H1(TY(KY))=H1(A2QY) (3.4.11)

is the space of infinitesimal deformations of the pair preserving complex structure on S.

On the other hand this space is the tangent space at 0 of the intermediate Jacobian of

Y:
1 2 )o (3.4.12)

This fact is quite expected from the point of view of deformations of reducible Calabi-

Yau threefolds.

Recall that there exists the collection of obstructions for the equivalence of nth-order

thickening of our K3-surface S in the quasi Fano Y and the flat model of it. The first

obstruction is the class

wi G H^TS ® iV(*ScY)). (3.4.13)

and from the standard exact sequence

H^TS <g) iV(*ScY)) = H1{A29Y\s) (3.4.14)

On the other hand, for our special case by the Serre-duality

H1{TS®NlSCY)) = H1(TS®N{ScY)Y- (3.4.15)

We use these indentifications for the gluing procedure.
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CH. IV. CUTTING-PASTING IN THE COMPLEX CASE.

§1. CUTTING-PASTING IN THE ALMOST COMPLEX CASE.

We can apply the constructions of Ch.II to a real 6-fold with almost complex struc-

tures. But in this general case we can't control the finiteness (or compactness) of spaces

of solutions. In spite of the fact that some other serious technical problems like "stabil-

ity conditions" can be avoided in the general case (see [B-T]) it is productive to restrict

ourselves now by the algebro-geometrical case. The interpretation of a complex orienta-

tion as a holomorphic trivialization of the determinant of the tangent bundles sends us

to the realm of Calabi-Yau varieties (for the general picture see [D-T]). In this realm de-

generations of Calabi-Yau threefolds are very important for one of the approaches to the

description of "mirror symmetries" of varieties of such type. On the other hand a large

complex structure limit points of the compactification family of Calabi-Yau threefolds

play an important role for comparing the Yakawa coupling with the (l,l)-topological

coupling of the mirror. For the investigation of vector bundles on CY-threefolds we will

use (following [D-T]) the special type of degenerations of Calabi-Yau threefolds like :

Xo = Y+UsY- (4.1.1)

where (S C Y±) is a considered pair of a smooth K3-surface S from the anticanonical

system of a quasi Fano threefold Y. There are three levels of the problem of deformations

of such singular object to the non-singular one:

1) as an almost complex variety;

2) as a complex variety but without a polarisation;

3) as an algebraic variety with the polarisation.

4) with smooth total space of deformation.

Remark. The last condition is quite important for the investigation of vector bundles

on fibres of deformations.

The full collection of these deformation problems was investigated in [D-F], [L]. These

deformations problems are quite different but for every of them the main question is

the same:

Question 4.1.1. How many topological types of smooth deformations of threefolds

(3.3.1) can one get by this construction?

Remark, that the set of types of quasi Fano threefolds is bounded and finite, so we

can expect that we get the finite set of topological types of 6-folds.

Starting with the configuration (4.1.1) first of all we get on the K3-surface S two

normal bundles OS(—KY± ) = NscY± a priori of quite different genus. Now our cutting-

pasting procedure is quite parallel to the real case : first of all cut a small neighbourhood

of the singular locus S in XQ considering small tubes

) C NSCY± = L-KY± (4.1.2)

in normal bundles

NSCY± =L-KY±. (4.1.3)
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So we are removing a small disc-bundles

D2(NscY±) with the boundary dD2(NScY±) =-S1(NScY±) (4-1.4)

from quasi Fano variety Y± and get the open singular threefold

2 2 ) (4.1.5)

the union of a couple of disc-bundles gluing along zero-sections of normal disc-bundles.

Thus one gets three 6-manifolds with boundaries:

Vb; with the boundary OVQ = S (NscY+) U S (NscY_)',

Y£ = Y±- D2(NSCY± ) with boundaries S1(NSCY±) (4.1.6)

and XQ is the gluing of these three pieces along corresponding boundaries.

Now we can deform slightly the singular 6-fold Vb with the preserving of the boundary

dVo using the following construction (see [D-F]): consider the quadratic map of bundles

on S

q • NSCY+ © NSCY_ ->• NSCY+ <8> NSCY_ = L-KY+-KY_ . (4-1.7)

Considering any section s £ H°(L-KY -KY ) a s the embedding

is:S^L-KY+-KY_. (4.1.8)

our base S to the body of the line bundle. Then s defines the threefold

Vs = q-HisiSj) n D2(NSCY+) xs D2(NSCY_) (4.1.9)

It can be shown that if the neighbourhoods are small enough the boundary is diffeo-

morphic to

dVs = 5'1(iVscY+) U S'iNscY.) (4.1.10)

Now one can glue Vs with Y± along components of boundary and get new compact

6-manifold Xs.

Now if the zero set

(s)0 = C e \ - KY+ - KY_\ (4.1.11)

of the section s is a smooth curve on S then Vs (4.1.9) is non-singular and we have

some topomodel of Calabi-Yau threefold. If C admits some simple singularities then

Vs is singular in these points but the small resolution of these singular points gives the

topomodel of Calabi-Yau threefold of another topological type. It will be very useful to

get the full list of topomodels of CY-threefolds which can be done by this procedure.

In particular, we can consider topomodels which are coming from deformations when

(5)0 = C is a rational curve with double points only.
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Remark. We will get, by this construction, the topomodel of the Barth-Nieto-van

Straten rigid CY-threefold as a deformation of the reducible threefold of type (4.4.1).

It is easy to see that we can do this smoothing surgery procedure with almost complex

structure.

Now we have to describe deformations of complex structure along described deforma-

tions of topological types for a singular variety of type (4.4.1). We will use the canonical

procedure of deformation theory.

Recall from [D-F], [L], ... that in our case there exists the sheaf T(Y+ D S C Y-)

which can be constructed from T(S C Y±) (4.4.1) such that the space H1{T{Yjr D S C

I7-)) is the space of infinitesimal deformations of reducible threefolds of the same type

and the space 1-L1 of infinitesimal deformations is more complicated:

0 -> H1(T(Y+ DSC Y-)) -> H1 -> H0(S,N(scY+) <8> N(SCY_)) -> 0 (4.1.12)

but the space of obstructions has precisely the same type

•H2 =H2(T(Y+D S CY_)) (4.1.13)

(see 5.1 of [D-F]).

To describe T(Y+ D S C Y-) consider the disjoint union of two flags (S± C Y±) and

the identification maps

n± : S± ^ S = SmgXo (4.1.14)

Using the exact sequence (3.4.7) for every flag component (S± C Y±) one gets the

required sheaf from the exact sequence

0 -+ T(Y+ 3 S c F _ ) 4 T(S+ C Y+) © T(S- C Y-) ^ ^ ^ ^ TS _^ 0 . (4.1.15)

Thus in parallel to (3.3.7) for T(Y+ D S C Y-) we have the exact sequence

0 -+ (B±TY±(-S - ±) -^ T(F+ D 5 c F _ ) ^ T 5 = A;er|(n+ + n_)* -^ 0 (4.1.16)

and the long cohomology sequence

0 -+ © i i J ^ A ^ l i ) -^ H1(T(Y+ D S C YL)) -^ H^QS)* -^ ©iiJ^OF)* -^

-^iJ2(T(F+3 5 c F - ) ) ^ 0 . (4.1.17)

The sum of compositions (r± • (ra±)*) gives the map

(r+ • (n+),) + (r_ • (n_),) : F 1 ' 1 ^ ) © H^(Y.) ^ iJ1 '^^) (4.1.18)

Proposition 4.1.1. Then the space of obstructions

H2(T(Y+ DSC YL)) = (ker(r+ • (n+)*) + (r_ • (n_)*))* C F1 '1(y+)* © H^(Y-)*.

(4.1.19)

Returning to (4.1.12) one can see that the deformations complex with the Kuranishi

map is

o -+ H1(T(Y+ D s c y_)) -^ n1 -^

^ iJ°(5,iV (ScY+) (g) iV(ScY_)) A iJ2(T(F+ 3 S C y_)) = (4.1.20)

= (A;er(r+ • (n+)*) + (r_ • (n_)*))* C H^(Y+)* © i J 1 ' 1 ^ . ) * =

= i j2 '2(y+)©ij2 '2(y_).

For the precise description of \I/ see [D-F].
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Corollary 4.1.1. 1) If PicY± = Z and N($cY+) ® ̂ V(scY-) generated by sections and

non trivial then the dimension of space Mx0 of nonsingular deformations is

v.dimMXo = h1'2(Y+) + ̂ -2(y_) + h°(N(ScY+) <g) iV(ScY_)) - 1; (4.1.21)

2) if

(4.1.22)

then the deformations are unobstructed and

v.dimMxo = hh2(Y+) + hh2(Y-) + 1 (4.1.23)

and the body of the deformation family is smooth.

The second statement is quite known (see [D-F], and [L]). To show the first statement

we consider the 1st order jet that is consider the first obstruction classes of pairs (S± C

Y±) (3.4.13)

uf £ iJ1(T5(g)iV(*s±cY±)). (4.1.24)

and the natural homomorphism

AH1(TS®N(s±cY±)) = H1(TS®Nfs±cY±)y. (4.1.25)

(see (3.4.15) ). Now it is easy to see that 1-extension of the deformation given by a

section s £ H°(N(s+cY-) ® -^(S_CY_))
 1S constrained by only one condition:

uj-(c(s<g)uj+)) = 0 . (4.1.26)

From this it is easy to prove statement 1).

Suppose the K3-surface S of a quasi Fano flag (S C Y) admits an involution

i : S ^ S (4.1.27)

such that

i*(KY\s)^KY\s. (4.1.28)

Consider the reducible CY-threefold XQ given by gluing maps (4.4.14) with

n_|_ = id and n_ = i. (4.1.29)

Corollary 4.1.2. Then this double XQ can be deformed to a smooth CY-threefold.

For the proof remark that this situation is precisely the same as the gluing the twistor

space along the non-singular quadric in [D-F]. All arguments in [D-F] for proving the

existence of a smooth deformation work in our case too.
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§2. CUTTING-PASTING COLLECTION OF CY-THREEFOLDS.

Consider all possible quasi Fano flags

{ ( 5 C F ) } , (4.2.1)

all possible gluings

{(n± : S± -> S)}, (4.2.2)

all possible (and non possible) deformations of reducible CY-threefolds and all small

desingularisations of deformations.

Definition 4.2.1. This class of CY-threefolds is called CP-class.

Consider some reducible CY-threefold (which is of CP-type by definition)

X = (Y+ D S), n+ • ( n . ) " 1 = g, (S C YL). (4.2.3)

Then we have the pair of restriction maps of Mukai lattices (see (3.3.1 - 9)

res+ : MY+ -» Ms <- MY_ : g* • res- (4.2.4)

and the intersection

res+(MY+) n g* • res-(MY_) = Mo. (4.2.5)

From (3.3.8) one has

(id - T-S)(y/td+~) = (1, 0,1) = ^ftd~s e Mo. (4.2.6)

The restriction maps (4.2.4) define the pair of epimorphisms

p± : MY± -^ Mo (4.2.7)

and the Mukai lattice of X is

Mx =p-1(M0) ©Mo ©pI^Mo) (4.2.8)

In particular every Mukai vector is of the form

m = (m+,m-) (4.2.9)

and using the Poincare dualities on Y± and S it's easy to define the form (3.1.9) in in

such a way that it has to be skew-symmetric:

1
+,m1_),(m2

+,m2_) =< m\,m2
+ > - < m2_,mx_ > . (4.2.10)

Thus for every CY-threefold of CP-class we described the Mukai lattice that is the ring

H2*(X).

Now if we would like to define vector bundles on X the procedure is almost obvious:
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Proposition 4.2.1. A couple of stable vector bundles E± on the pair of quasi Fano

threefolds Y± can be glued to a vector bundle on X iff

E+\s=g*{E-\s) (4.2.11)

In the same vein we can define coherent cohology spaces of a vector bundle on X.

Now, because the expected behaviour of a vector bundle on X is to be infinitesimal

rigid the problem is to deform a holomorphic bundle along some smooth deformation of

X. From a technical point of view to reduce this problem to the problem of deformation

of projectivizations of the components of vector bundles (see [D-F]) it is much more easy

to consider deformations with smooth total spaces of deformations. It's easy to prove

the following

Proposition 4.2.2. The total space of described deformation of a reducible CY-threefold

is smooth only in the situation 2) of Corollary 4-1-2 that is iff the tensor product of nor-

mal bundles is trivial.

Returning to the description of deformations (see the previous section recall that a

tangent vector s to the deformation of X (4.2.3) is given by a section

s e H0(S,N(ScY+) (g) iV(ScY_)) (4.2.12)

and our threefold becomes smooth iff the zero set of this section

( s ) 0 = CcS (4.2.13)

is a smooth curve on our K3-surface S.

Remark. It is easy to see that if C admits simplest singular points only then a general

fibre of this one-dimensional deformation admits simplest singular points in these points

and small resolution defines a new smooth CY-threefold.

To reduce this situation to the situation with trivial tensor product (4.2.13) one has

to blow up the Fano variety Y+ along this curve C :

a : Y+ -+ Y+ (4.2.14)

and get the quasi Fano variety Y+ with the anticanonical class —Ky presented by our

surface S C Y+. Now the normal bundle

N(SCY+)
 = N(scY_)i (4.2.15)

the tensor product (4.2.13) is trivial and one comes to the situation 2) of Corollary

4.1.2.

Mirror digression. In the set up of our Mirror digression §3 of Ch. Ill the SYZ-

conjecture suggests that on the mirror partner X' of CY-threefold X there exists a

special Lagrangian 3-torus fibration

TT' :X' ^M3
x,(mir(m)), (4.2.16)
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where the base is the special compactification of the moduli space of SLag torus (3.1.29)

of the 3-cohomology class mir(m), and X is the suitable compactification of the dual

fibration:

: X -+ Mx,(mir(m)), (4.2.17)7T

A degeneration of CY-threefold to a reducible CY-threefold of described type admits

the limit fibrations on both of Fano components Y± which can be compactified to

fibrations:

7T± : (Y± -S)^ M\± (mir(m)) (4.2.18)

where every base is the 3-fold with the boundary which conjecturally is the curve C

(4.2.13).

Thus the degeneration procedure of CY-threefold X' to the reducible threefold X'o

provides the representation of the base J\A3
x,(mir(m)) of the SLag-torus filtration by

the Heegard diagram that is as a gluing of AiY (mir(m)) along C.

Let us return to reducible CY-threefold. The last problem is to describe odd-

dimensional cycles on CP-threefold X (4.2.3).

Proposition 4.2.3. LetXe.s be a smooth generic deformation of CP-threefold X (4-2.3)

given by a section s (4-2.13) with the smooth curve C (4-2.14)- Then there exists (non

canonical) isomorphism

H3{Xe.s,Q) =#3(y+,Q)©#3(y_,Q)©#1(C,Q)©#2(S,Q)o (4.2.19)

where H2(S,Q)o is the primitive part of H2(S,Q) that is

H2{S,Q)o = {H2{S,Q)o n Mo)"1. (4.2.20)

These 3-cycles coming from H2(S, Q)o can be observed in the part Vs (4.1.9)

It is easy to see that in the situation 2) of Corollary 4.1.2 the answer is precisely the

same because of the equality

iJ 3(f+ ,Z) = iJ3(F+ ,Z)©iJ1(C,Z). (4.2.21)

The last point is the description of the intermediate Jacobian of a CP-threefold X

(4.2.3). The deformation of Hodge structures along the deformation Xe.s shows that as

holomorphic group

J3(X)=lim£^0J
3(Xe.s) =

= J3(Y+) x J3(F_) x J(C) x (C)h2(s)o+1 (4.2.22)

where h2(S)0 is the rank of the primitive part of H2(S, Q) (4.2.20).

Remark. There exists a much more precise description of the degeneration of the

family J3(Xf.s) in terms of the Neron model of this family described in the unpublished

paper of Donagi and Griffiths. Thus the coefficients Q can be justified.
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Example. Consider the projective space IP4 and the intersection of generic quadric and

cubic:

S = Q n F3 C F4. (4.2.23)

Then the union

X = Q US F3 (4.2.24)

is a CY-threefold of CP-type.

Let F$ be any smooth quintic such that the intersection

C = SC\F5 (4.2.25)

is a smooth curve. Thus there exists the section

s e HO(N(SCQ) (g) iV ( S c F 3 )) = H°(Os(5)) (4.2.26)

such that the zero set

(s)0 = C C S. (4.2.27)

Then the described deformation Xe.s is following the deformation of quintics in the

pencil

<QUF3}F5> (4.2.28)

and by (4.2.20)

102 = dimJ3(F5) = dimJ3(Q) + dimJ3(F3) + g(C) + h2(S)0 =

= 0 + 5 + 76 + 21 = 102. (4.2.29)

R e m a r k . The rigid Barth-Nieto-van Straten quintic [DvS] is the deformation of the

CY-threefold of CP-type : consider IP5 with homogeneous coordinates (ZQ,...,ZQ) and

the system of Newton's hypersurfaces

zf. (4.2.30)
i-0

Then the pencil of quintics

<S5}S2-S3> (4.2.31)

in IP4, given by the linear equation S\ = 0, contains the unique quintic with 130 nodes.

It is the Barth-Nieto-van Straten quintic. For generic deformation of form (4.2.28) we

can kill J(C) considering a rational curve with 76 double points and to kill J3(F3)

considering the Segre cubic with 10 nodes. After that we have to kill 16 algebraic 2-

cycles on K3 and we can get a new rigid smooth CY with some elliptic curve as the

intermediate Jacobian.

In the next section we consider other examples of CY of CP-type.
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§3. VECTOR BUNDLES ON CY-THREEFOLDS OF CP-TYPE.

First of all we have a quite non transversal way to construct CY-threefolds: if we

have a quasi Fano flag S C Y like in §2 of the previous Chapter, then we can consider

the double of (S C Y)

= (YDS,id,ScY) (4.3.1)

as in (4.2.3) of the previous section. In some cases this double can be deformed to

a smooth CY-threefold X. Indeed, suppose that the complete linear system | — 2Ky

contains a smooth surface R. Then the double cover X of Y with the ramification diviser

R is a smooth CY-threefold. The deformation the smooth surface R to 2S defines the

deformation of double covers to the double 2sY.

Now any Mukai vector with m2 > 0 from the Mukai lattice My defines the Mukai

vector

m e M2sY with m2 = 0 (4.3.2)

of the Mukai lattice of the double (with the same symbol) (4.2.8).

Suppose there is a regular component J\Ay(m)o of the stable moduli space on Y.

Then for every vector bundle E £ J\Ay(m)o we can construct the double 2s E of it

gluing two copies of E along the restriction E\s- Thus instead of the expected finite set

of vector bundles we get non transversal component of the moduli space

M2sy(m) = {2SE} (4.3.3)

of positive dimension parametrised by the same variety Aiy(m)o.

This large component has to decay to a finite set of bundles after described deforma-

tion of 2sY to a smooth CY-threefold X. The expected cardinality of this finite set is

CD(scY){m) (3.2.34-37). The amazing fact is the coincidence of two topological Euler

characteristics

XtoP{V^{2sE)) = XtoP{My{m)o) (4.3.4)

(see (3.1.33) and (3.3.37)).

Example 1. Consider a smooth quartic surface S in IP3 and the double 2s'IP3 of this

Fano flag. Of course, it is the deformation of a smooth double cover of IP3 with the

ramification along a smooth surface of degree 8. Consider the vector bundle E on IP3

of rank 2, c\ = 0,C2 = 1 as in (3.1.43). So the Mukai vector of this bundle on the

projective space is

m{E) = 2-\P.D.{H) (4.3.5)

and the virtual dimension of the moduli space

, Q,-\P.D.(H), 0) = m2 + 1 = 5. (4.3.6)

It is well known that every stable vector bundle E of such type is given by a section of

OF3(2) and by the monad:

^ ^ OF3(-1) -+ E -+ 0. (4.3.7)
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Thus the compactification of the moduli space

Mwa(2,0,-\P.D.(H),0) = F5 = A2F3. (4.3.8)

The restriction of every vector bundle on our quartic S has the monad with the display

0 -+ Os(-l) -^-^> OF3(-1)|S -+ E\s -+ 0. (4.3.9)

From this it is easy to see that the restriction map

res : My* (2, Q,-\P.D.(H), 0) -+ Ms(2, 0, -2) (4.3.10)

is an embedding. Thus by (3.3.7) one gets

C D ( S D H » ) ( 2 , 0 , - ! P . D . ( # ) , 0 ) = 6 (4.3.11)

More geometrically, consider some general linear transformation

# : F 3 ^ F 3 (4.3.12)

and the skew double :

F 3 US #(F3) = (FD S, id, S C #(F3). (4.3.13)

Then a vector bundle E G M.^ (2,0, —^P.D.(H), 0) defines some vector bundle on
CY-threefold (4.3.13) iff

g*(E) = E. (4.3.14)

Now, the compactification Mfs (2, 0,-^P.D.(H), 0) can be identified as A2F3 (see (4.3.8)).

Let A2g be the acting of g on A2F3. Then

g*(E) = E =*• E is a fixed point of A2 g. (4.3.15)

Thus the set E1}..., E6 on F3

{g*(Ei) = Ei} = {/\2g(p)=p} (4.3.16)

is six edges of the simplex with vertex in fixed points of g in F3.

Warning. It seems that images of these 6 vector bundles in the intermediate Jacobian

are coincident.

Now consider some smooth curve

C = (s)0, seH0(S,Os(8)) (4.3.17)

and blow up it in F3:

a : F3 -^ F3. (4.3.18)

Then the gluing procedure gives us the reducible CY

F3US#(F3) (4.3.19)

which can be deformed to a smooth CY-threefold X with a smooth total deformation

space (see (4.2.15-16)).

Then 6 vector bundles (4.3.16) give 6 doubles

a*(Et)UEisEt. (4.3.20)
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Proposition 4.3.1. These vector bundles are infinitesimally rigid.

It can be checked directly by the gluing description of coherent cohomology spaces

of

End(a*(Et) UEils Et) = (a*(Et) UEils Et)* <g) (a*(Et) UEils Et). (4.3.21)

Corollary 4.3.1. For a smooth deformation X of the reducible threefold (4-3.19)

CD(X, ((2, 0, -**(}P.D.(H)), 0), (2, 0, - \P.D.(H), 0)) = 6. (4.3.22)

(see (3.1.26) and (4.2.10)).

It follows from the deformation theory of pairs (X, E) considered as the deformation

theory of algebraic varieries f(E) (see [D-F]).

Again it is easy to see that under the projection of the intermediate Jacobian of X

to the Jacobian of C images of these six vector bundles are coincidence.

Example 2. Now consider the moduli space MIk of mathematical instantons that are

stable vector bundles E on IP3 of rank 2, c\ = 0, C2 = k under the instanton condition

h1(E(-2)) = 0. (4.3.23)

Such vector bundles admit the monad description from which we can see that the

restriction to S is embedding (see (4.3.10)). This monad description shows that for

general linear transformation (4.3.12) the action

g* : Mh -> Mh (4.3.24)

admits the finite set

EU....,EN (4.3.25)

of fixed points which give the finite set of vector bundles (4.3.20) :

K ( E 0 U s , . | s E i } (4.3.26)

on CY-threefold (4.3.19).

Remark. Any general linear transformation defines a C* action on IP3 and on the

instanton moduli space MIk- The computation of the number N of fixed points on

MIk and "instanton" vector bundles on CY-threefold (4.3.19) is quite parallel to the

computation of the Euler characteristic of MIk by the Bott formula.

But this number N (4.3.25) isn't CD-invariant of CY-threefold because there exists

another component of the moduli space on IP3. Recall that any holomorphic vector

bundle E with c\ = 0 on any Fano variety Y of even index iy (see (3.1.42)) admits the

Atyiah-Rees invariant

AR{E) = h1{E{\KY)) mod 2 (4.3.27)

which distinguish components of moduli spaces. On the other hand, if c\(E) = 0 then

E is skew-symmetrically self dual and the Serre duality induces the non degenerated

skew-symmetrical form on iJ1(S). Thus

h1(E\s) = 0 mod 2 (4.3.28)
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always. So for every instanton vector bundle

AR(E) = 0 (4.3.29)

and besides MIk there exists another component Mk (see the good example k = 3).

For a small k it can be checked that the restriction map embeds this component into

the moduli space of vector bundles on S. Thus

ress(MIk)nress(Mk) = <fi. (4.3.30)

So the computation of the Euler characteristic of moduli spaces by the Bott formula

gives the answer

CD(X, ((2, 0, -<T*(^RD.(H)), 0), (2, 0,-^RD.(H), 0)) = XtoP(MI3) + XtoP(h).

(4.3.31)

In the next section we consider the more homogeneous case of gluing.

§4. THE GENUS 2 CASE.

Now consider IP5 and the smooth quadric

Gr e P5 (4-4.1)

which we consider as the Grassmanian of lines in some IP3. Then

H*(Gr, Z) = Z © Z • H © (Z • P+ © Z • p_) © Z • I © Z (4.4.2)

where classes p-t realised as projective planes of lines through fixed points in IP3 and

planes of lines in fixed planes. Now there are two spinor vector bundles E+ which are

the tautological bundle and E- which is the antitautological bundle. These bundles are

connected by the exact sequence

0 -^ E*_ -^ C4 ® OGr -^ E+ -^ 0. (4.4.3)

where PC4 = IP3. The Chern classes of these bundles are

Cl(E±) = H; c2(E±)=p±; (4.4.4)

so these bundles are topologically different because of c<i-

For a general quartic F^ in IP5 the intersection

(4.4.5)

is a smooth CY-threefold.

Now restricting vector bundles E± to X we get two vector bundles E±\x which are

topological identical

[p+ • F4] = [p_ • F4] G iJ4(X,Z). (4.4.6)

But in spite of this by the Claire Voisin result
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Proposition 4.4.1. For general F4 algebraic classes (p± • F4) are different with respect

to rational equvivalence.

Corollary 4.4.1. For general F4 holomorphic vector bundles E±\x are different.

Now we would like to prove that, for general quartic, images of these bundles in the

intermediate Jacobian are different too. To do this consider the degeneration of X of

CP-type.

Let Q± be a pair of quadrics of generic position in IP5 with respect to Gr. Then the

intersection

S = Gr n Q+ n Q- (4.4.7)

is the smooth K3-surface and intersections

Y± = Gr n Q± (4.4.8)

are rational Fano threefolds of index 2. Thus

Xo = Y+ Us Y- (4.4.9)

is the reducible CY-threefold.

For every Fano variety Y± consider the pencil of quadrics in IP5 through Y± :

\2H-Y±\ =<Gr,Q± >=F1
± (4.4.10)

and six singular quadrics in these pencils

{A±,...,A6
±}CP^. (4.4.11)

Then double covers of Pjj_ ramified in sets (4.4.11) are curves of genus 2

^ P ± (4.4.12)

parametrising pairs (Et,Qt) where Qt is a quadric from pencils (4.4.10) and E is the

tautological or antitautological bundle on Q (see (4.4.3)). Now by

Proposition 4.4.2 (Narasimhan and Ramanan) . The curve C± is the moduli space

•MY± of vector bundles on Y± of topologicaly type c\ = H, C2 = p± • Q±.

More precisely,

1) the Fano variety Y± (4.4.8) is the moduli spaces of rank 2 vector bundles on the

curve C± with fixed odd determinant;

2) there exists the universal bundle U on C± X Y± and for any point c £ C± the

vector bundle

E = U\cxY± (4.4.13)

is one of the pair of spinor bundles (4.4.3) on the quadric

Q = (j>±{c) £ \2H-Y±\ = F1
± (4.4.14)
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restricted to Y±.

Now consider the K3-surface S (4.4.6) as the base locus of the net of quadrics

\2H-S\=<Gr,Q+,Q- >=F2. (4.4.15)

The set of singular quadrics of this net is the smooth plain curve

D C \2H - S\ = F2. (4.4.16)

Then double covers of F2 ramified in this curve D (4.4.16) is the smooth K3-surface

SD again
cf>:SD^F2 (4.4.17)

parametrising pairs (Et,Qt) where Qt is a quadric from the net (4.4.15) and E is the

tautological or antitautological bundle on Q (see (4.4.3)).

Proposition 4.4.3(Mukai [M]). The K3-surface SD is the moduli space MsD of

stable vector bundles on K3-surface S of topology type c\ = H,C2 = 4.

Now pencils of quadrics (4.4.10) are embedded into the net (4.4.15)

< Gr, Q+ > U < Gr, Q- >C \2H - S\ =< Gr} Q+}Q- >= F2, (4.4.18)

curves C± (4.4.12) are embedded into our K3-surface SD-

^ SD (4.4.19)

and restrictions of doubles covers (4.4.12) are restriction of the double cover (4.4.17) to

these curves:

i±-<f>±=<f>\c±. (4.4.20)

So the direct interpretation shows that embeddings (4.4.19) are restrictions maps from

the moduli space of vector bundles on Fano varieties to the moduli space on K3-surface:

i±(C±) = ress(MY±). (4.4.21)

At last remark that the Mukai vector of our vector bundles on Y± is

m(E\Y±) = (2,H,-l) and m(E\s) = (2, H, -2) (4.4.22)

Corollary 4.4.2. The Casson-Donaldson invariant (3.3.34)

CDiSCY±)(2,H,-P.D.(H)) =g(C±) = 2 (4.4.23)

Indeed, the genus of the curve C± = M.y± is 2.

Corollary 4.4.3. The Casson-Donaldson invariant (3.1.26) of CY-threefold XQ (4-4-9)

CD(X0, ((2, H, - /+) , (2, H, -I-)) = (C+ • C-)s = 2. (4.4.24)

Now, from Newstead's result the intermediate Jacobian

J 3 ( l±) = J(C±) (4.4.25)
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Propos i t i on 4 .4 .4 . The Abel-Jacobi map (2.2.8), (3.2.7) is coincidence to the standard

Abel embedding

(J(2,H,-I±) • MY±(2,H,-l±) -> J3(Y±) = (a:C±̂  J(C±)) (4.4.26)

It can be checked using the interpretation of the map (2.2.8) in terms of the Abel-

Jacobi map for 2-cycles representing classes C2(E).

Now the components of the moduli space

Mxo((2,H,-l+),(2,H,-l-)) = ̂ (Gr) = {E±\Xo} (4.4.27)

From our computations in §2 the intermediate Jacobian

J3(X0) = J(C+) x J(C-) x C21 (4.4.28)

and images of components of moduli space (4.4.27) in this intermediate Jacobian

{Jm(E±\Xo)} = {(^(Gr^tZ^Gr)) (4.4.29)

are two different points.

Corollary 4.4.4. For CY-threefold Xo and the Mukai vector (4-4-24) the analogue of

the Abel theorem is true.

From Proposition 4.4.1 for general F± and the Mukai vector m (4.4.24) we have

CD(Grr\F4,m)>2. (4.4.30)

Now using the standard arguments of the degeneration principle we can prove

Theorem 4.4.1. For general F4 and the Mukai vector m (4-4-24)

1) CD(GrnF4,m) = 2

2) analogue of the Abel theorem is true.

To use the standard arguments of deformation theory of pairs (X, E), where E is an

infinitesimal rigid vector bundle on X, that is the deformation theory of the projectivi-

sation of E as variety we need the deformation of the reducible CY-threefold XQ to a

smooth one with non-singular total space. To avoid this tedious procedure we would

like to propose tricky geometrical arguments.

On a smooth intersection X (4.4.5) consider a vector bundle E of topological type

E±\x- The coherent Euler characteristic

X(E)=4 (4.4.31)

Using the standard tricks it is easy to prove that if E has a section, then it has 4

sections and is induced by the map of X to Grassmanian which is Gr and E is one of

the described bundles.
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If E hasn't any sections then

h2(E) = h1(E*) <4 . (4.4.32)

It is enough to consider the case when h2(E) = 4. Consider the general hyperplane

F4 C F5 and the smooth surface

z = i n P 4 = (Grnr 4 )n(F 4 nP 4 ) . (4.4.33)

This is a canonical surface in F4 that is

P4=\KZ\ (4.4.34)

and the restriction of E to Z is of rank 2 vector bundle with c\ = Kz and C2 = 4. The

exact sequence

0^E*^E^E\z^0 (4.4.35)

and the Serre-duality give isomorphisms

H°(E\z) = H^E*) = H2(E)* = H2(E\z)*. (4.4.36)

A general section Oz —^E\z can be extended to the exact sequence

0 -> Oz -> E\z -^ Jt(Kz) -^ 0 (4.4.37)

where Jj is the ideal sheaf of the zero-dimensional subscheme £ of Z. Thus

h°(E\z) = 4 =^ h°(Jz(Kz)) = 3

and

< ^ > = F 1 C F 4 = \KZ\. (4.4.38)

But the restriction E±\z admits the same exact sequence as (4.4.7) thus

E\z = E±\z (4.4.39)

for any general hyperplane F4 C F5. From this it is easy to get the equality

E = E±\z (4.4.40)

for some choice of sign. We are done.
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§5. CONCLUSIONS.

One can see that

1) the gluing surgery for CY-threefold is quite parallel to the gluing surgery of twistor

spaces of real fourfolds (see [D-F]). Namely, the description of twistor spaces of a con-

nected sum of 4-folds used gluings along a complex quadric instead of K3-surfaces as in

our case. The procedure of gluing of Fano varieties of index 2 described in the previous

section emphasizes this parallelism because an intersection of two quadrics in F5 is the

small desingularisation of the twistor space of the connected sum o of two copies of

CP2 = F2 (see [D-F]);

2) on the other hand the investigation of representations of any CY-threefold as a

SLag-torus fibration (4.2.17) suggests the way to construct the analogue of the "twistor

space" for any compact smooth 3-fold Y equipped with a Riemannian metric g. We

finish this paper with the coarse draft of this construction for the case when a metric g

is general enough.

Let g be a general metric on a smooth 3-fold Y. Consider a point p £ Y the

complexification and the projectivisation of the tangent space at this point

C 3 = T l f ; F2
p = projTYp

c. (4.5.1)

This plane contains two conies

qp and qfic C F2 (4.5.2)

where the first is the complexification of the metric quadric and the second is the

projectivisation of the Ricci tensor of the metric at the point p £ Y.

The intersection of these conies is the collection of four points on qp:

^ n g f c = {A 1 ,A 2 ,A 3 ,A 4 }C^. (4.5.3)

At last consider the double cover

<f> : Cp £ qp (4.5.4)

ramified in the collection of four points (4.5.3). This curve Cp is an elliptic curve that

is 2-torus.

This double cover is called the local invariant of the Riemannian threefold Y at point

p £ Y.

Now consider the canonical bundle L-K on Cp and the unit circle bundle S1(L-K

of this (trivial) line bundle. So the threefold

S1(L-K) = T3 (4.5.5)

The globalisation of this construction gives us:

1) F^bundle over Y:

T T - . T ^ Y ; 7 r - 1 ( p ) = qp p e Y (4.5.6)

which is the classical twistor space of the Riemannian threefold Y;
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2)the double cover

</>:C^T, </>~1(7r-1{p)) = Cp (4.5.7)

which is the cover (4.5.4) fibrewise;

3)at last we have S1 bundle on C

T(g) = S\L_Kllt) -> C, S\L_Kllt)\Cp = S^L-K). (4.5.8)

So the projection

(4.5.9)

is a T3-bundle over points where the intersection qp C\ q^lc is transversal. Denote the

open set of such points by YQ and the restriction of the T3-bundle (4.5.9) to YQ by the

symbol T(g)o-

Now it is easy to see that C(g)o is equipped with the canonical almost complex

structure

I:TT(g)o^TT(g)o (4.5.10)

conjugating tangent spaces to fibres to tangent spaces to the base.

The question about an integrability of this almost complex structure can be reduced

to the analogous questions for local deformations of calibrated 3-subtorus. The natural

question is how many CY-threefolds can we get by this construction?.
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