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We consider an interface between two non-Abelian quantum Hall states: the Moore-Read state,

supporting Ising anyons, and the k ¼ 2 non-Abelian spin-singlet state, supporting Fibonacci anyons. It

is shown that the interface supports neutral excitations described by a (1þ 1)-dimensional conformal field

theory with a central charge c ¼ 7=10. We discuss effects of the mismatch of the quantum statistical

properties of the quasiholes between the two sides, as reflected by the interface theory.

DOI: 10.1103/PhysRevLett.103.076803 PACS numbers: 73.43.Cd

The quantum statistics of particles confined to two spa-
tial dimensions is not confined to be either bosonic or
fermionic. Particles called (Abelian) anyons pick up phase
factors upon braiding, while for non-Abelian anyons braid-
ing is represented by nontrivial matrices acting on multi-
component wave functions or state vectors. Non-Abelian
anyons offer most exciting perspectives for what is called
topological quantum computation (TQC) [1,2]. The idea is
that a collection of non-Abelian anyons, realized as exci-
tations in a suitable quantum medium, open up a quantum
register whose dimension depends on the number and the
type of the anyons. This register can then be manipulated
via a braiding of world lines of the anyons, leading to
quantum logic gates.

The leading candidate for physical systems that can
support non-Abelian anyons is specific fractional quantum
Hall (QH) liquids. Current experimental investigations
seek to confirm the tentative identification of the state
underlying QH plateau observed at filling fraction 5=2
with the Moore-Read (MR) state [3], or a close relative
thereof [4,5]. This state is known to support non-Abelian
anyons of so-called Ising type, the name deriving from an
underlying algebraic structure which it has in common
with the 2D Ising model at criticality. The braid matrices
for Ising anyons are nontrivial, but they fall short of
allowing universal TQC.

The other prototypical class of non-Abelian anyons is
the so-called Fibonacci anyons. Their name derives from
the fact that the dimensionality of the quantum register for
an n-anyon state is the nth entry in the famous Fibonacci
sequence fn ¼ 1; 2; 3; 5; . . . , fn ¼ fn�1 þ fn�2. Matrices
generated by successive braidings of such Fibonacci an-
yons are dense in the unitary group, implying that they are
universal for TQC. All logic operations on the quantum
register can be approximated to arbitrary accuracy by
successive braidings (see, for example, [6]).

Two relatively simple quantum Hall states are known to
support Fibonacci anyons (see, e.g. [7]). The first is the so-
called Read-Rezayi state with order k ¼ 3 clustering, at
filling � ¼ 3=5 (possibly related to a quantum Hall plateau
observed at � ¼ 12=5). The other is the k ¼ 2 non-Abelian

spin-singlet (NASS) state proposed by Ardonne and one of
the present authors in 1999 [8], at filling � ¼ 4=7. In many
ways, this NASS state is similar to the MR state, the main
difference being that it describes two species of fermions,
which can be the spin-up and spin-down states of spin-1=2
electrons.
For general quantum Hall liquids, an edge separating the

liquid from vacuum carries one or more gapless modes,
described by a chiral conformal field theory (CFT). There
is always a charge mode, which is responsible for the low-
energy transport properties characteristic of quantum Hall
liquids. A non-Abelian state has neutral edge modes, which
can be linked to the fusion channel degeneracies of the
bulk non-Abelian state. For the MR state this neutral mode
is a Majorana (Ising) fermion (CFTwith central charge c ¼
1=2) while for the k ¼ 2 NASS state the neutral modes are
particular parafermions [descending from an SUð3Þ struc-
ture, with a CFT central charge c ¼ 6=5]; see [7–9] for
details.
In this Letter we consider an interface between the MR

liquid (supporting Ising anyons) and the k ¼ 2 NASS
liquid (supporting Fibonacci anyons) and we investigate
how the mismatch between the underlying topological
orders plays out in the properties of this interface. We
establish that the interface supports gapless neutral modes
described by a specific CFT of central charge c ¼ 7=10.
Dragging a Fibonacci anyon through this interface turns it
into an Ising anyon, in the process exciting a specific (h ¼
3=80) neutral interface mode. We also investigate to what
extent processes where neutral bulk excitations tunnel to
and from the interface can relax the internal state of qubits
spanned by pairs of quasiholes.
For a MR-NASS interface to be possible experi-

mentally, it will be necessary to have electronic interac-
tions such that both theMR state (in the polarized case) and
the NASS states (in the unpolarized case and at zero
Zeeman splitting) represent stable phases. Exact diagonal-
ization studies [10] in the second Landau level (LL) in-
dicate that it is indeed possible to modify the Coulomb
interaction such that both the MR and the NASS wave
functions (for up to N ¼ 12 particles) have high overlaps
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with numerically obtained ground states in the appropriate
regimes.

MR and NASS states.—The kinematic setting for the QH
states we consider is the lowest Landau level (LLL), where
N-body wave functions �ðz1; . . . ; zNÞ factor into an ana-

lytic, polynomial expression ~�ðz1; . . . ; zNÞ times a
Gaussian factor. Below we first describe the bosonic ver-
sions of the MR and NASS wave functions (at filling � ¼ 1
and � ¼ 4=3, respectively). Their fermionic counterparts
at � ¼ 1=2 and � ¼ 4=7 are obtained by multiplication
with an overall Jastrow factor

Q
i<jðzi � zjÞ. The bosonic

MR and NASS wave functions can be characterized as the
maximal density, zero-energy eigenstates of [11]

H ¼ X
i<j<k

�ð2Þðzi � zjÞ�ð2Þðzi � zkÞ: (1)

For the NASS states the coordinates fzig split as fz"i; z#jg.
The MR wave function can be written as

~�MR ¼ 1

N

X
S1;S2

Y
i<j2S1

ðzi � zjÞ2
Y

k<l2S2

ðzk � zlÞ2; (2)

where the sum is over all inequivalent ways of dividing the
N coordinates into groups S1, S2 with N=2 coordinates
each. In a similar way, the bosonic NASS wave function for
N# spin-down particles and N" spin-up particles is

~�NASS ¼ 1

N

X
S1;S2

�221
S1

ðz"i; z#j0 Þ�221
S2

ðz"k; z#l0 Þ; (3)

where the sum is over all inequivalent ways of dividing the
coordinates to two groups, each containing N"=2 spin-up

and N#=2 spin-down, and

�221
Sa

ðz"i;z#j0 Þ¼
Y

i<j2Sa

ðz"i�z"jÞ2
Y

i0<j02Sa

ðz#
i0�z#

j0 Þ2
Y

i;j02Sa

ðz"i�z#
j0 Þ:

(4)

Ising and Fibonacci anyons.—For Ising anyons there are
three particle types, I, c , and �, with fusion rules

c � c ¼ I; �� c ¼�; ���¼ Iþ c : (5)

In addition, I � x ¼ x for x ¼ I; c ; �. For Fibonacci an-
yons there are only two particle types, I and �,

I � I ¼ I; I �� ¼ �; ��� ¼ I þ�: (6)

The Virasoro primaries I, c , and � in the c ¼ 1=2 Ising
CFT, of conformal dimensions hc ¼ 1=2, h� ¼ 1=16, are

in direct correspondence with the particle types I, c , and

�. The relation between the Fibonacci particle types I and
� and the c ¼ 6=5 parafermion theory is more subtle. The
parafermion CFT has eight fields that are primary with
respect to the parafermionic chiral algebra: the identity I,
three h ¼ 1=2 parafermion fields c 1, c 2, and c 12, three
h ¼ 1=10 spin fields �", �#, and �3, and the h ¼ 3=5 spin

field �. The correspondence is

I $ fI; c 1; c 2; c 12g; � $ f�"; �#; �3; �g: (7)

A further subtle point is that the parafermion sector de-
noted as ‘‘�’’ contains two leading Virasoro primaries �c

and �s, of dimension h ¼ 3=5. The Virasoro fusion rule
�3�3 ¼ ½1þ �c� shows that �c acts as fusion channel
changing operator for two �3 fields, which correspond to
the spinless quasiholes over NASS state. Similarly, the
fusion rule �"�# ¼ c 12½1þ �s� shows that �s changes

the fusion channel for fields �" and �#, which come with

spin-full quasiholes. We refer to [7] for a complete de-
scription of the fusion rules and operator product expan-
sions in the c ¼ 6=5 CFT.
Quasihole counting formulas and edge characters.—

Our strategy for obtaining the partition sum for a MR-
NASS interface theory will be by reduction from a count-
ing formula for quasihole degeneracies in spherical geome-
try (‘‘giant hole approach’’). In the presence of N� flux

quanta piercing through the sphere, the LLL orbitals form
an angular momentum multiplet with L ¼ N�=2, with, up

to stereographical projection, the wave function zm corre-
sponding to the orbital with Lz ¼ m� N�=2, for m ¼
0; . . . ; N�. The Hamiltonian Eq. (1) acts on many-body

wave functions with N", N# spin-up and spin-down elec-

trons present. For N" ¼ N# and flux N� ¼ 3
4N � 2 there is

a unique zero-energy eigenstate, which is the bosonic
NASS state whose asymptotic filling is �¼4=3. If we now
add �N� extra flux quanta and unbalance the numbers of

up and down electrons, we create n", n# spin-up and spin-

down quasiholes, with n" þn# ¼4�N�, N# þn# ¼N" þn".
The zero-energy quasihole states in the presence of�N�

are degenerate for two reasons. The first is a choice of
orbital for the quasiholes and the second is a choice of
fusion channel. The full structure of the space of zero-
energy states is captured by a zero-energy quasihole parti-
tion sum Zsphere½N"; N#; n"; n#�ðqÞ ¼ trE¼0½qLz�. For the

Laughlin and MR states, expressions for ZsphereðqÞ have

been given in [12]. For the k ¼ 2 NASS the following
expression was obtained in [9]:

X
F1�N" mod 2

F2�N# mod 2

qðF2
1
þF2

2
�F1F2Þ=2

n"þF2

2

F1

 !
q

n#þF1

2

F2

 !
q

N"�F1

2 þ n"
n"

 !
q

N#�F2

2 þ n#
n#

 !
q

: (8)

The q binomial is [here ðqÞn�ð1�qÞð1�q2Þ���ð1�qnÞ]
n

m

 !
q � ðqÞn

ðqÞmðqÞn�m

: (9)

Putting N" ¼ N, N# ¼ 0, n" ¼ n, n# ¼ N þ n, the for-

mula reduces to the case of the N-particle MR state with n

quasiholes,
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X
F;ð�1ÞF¼ð�1ÞN

qF
2=2 n=2

F

� �
q

N�F
2 þ n
n

� �
q

: (10)

Let us now consider the MR state and demonstrate how
to extract the edge characters from the bulk counting
formula. The exact physical mechanism will be described
in the next section, but here we notice that if we take a
large number n of quasiholes in Eq. (10) and take the limit
N ! 1, the counting formula reduces to

�
1

ðqÞn
�� X

F¼0;2;...

qF
2=2 n=2

F

� �
q

�
: (11)

The first bracket coincides with the boson character when
the limit n ! 1 is taken. The second bracket coincides
with the Ising vacuum character when n ! 1. The edge
content of the MR state is thus completely reproduced.

MR-NASS interface.—We now use the ‘‘giant hole’’
technique to investigate the MR-NASS interface. We
wish to consider a 2-fluid configuration on the sphere
with NNASS particles making up a NASS state and NMR

particles making up a MR state, so that N" ¼ 1
2NNASS þ

NMR and N# ¼ 1
2NNASS. The number of flux quanta needed

to accommodate this 2-fluid state is N� ¼ 3
4NNASS þ

NMR � 2. Comparing with a situation where all NNASS þ
NMR particles form a NASS state we have an excess flux of
�N� ¼ 1

4NMR, giving rise to the presence of n" þ n# ¼
4�N� ¼ NMR quasiparticles. Using N# þ n# ¼ N" þ n"
we infer that n" ¼ 0, n# ¼ NMR.

For the values of N", N#, n", and n# thus specified, the
Hamiltonian (1) allows a large number of zero-energy
eigenstates, as given in Eq. (8). However, in the presence
of more realistic Coulomb interactions these states will no
longer be degenerate. One expects that the lowest energy
states will be phase-separated, with regions of NASS and
MR liquids separated by an interface. The other states in
Eq. (8) then correspond to excitations of this interface. One
can further stabilize such a configuration by assuming an
orbital-dependent Zeeman term which favors the liquid to
be spin polarized in a specific region, say near the south
pole on the sphere.

In the limit of N"; N# ! 1 Eq. (8) reduces to a charge

boson factor times the following factor, accounting for
neutral interface excitations

X
F1;F2¼0;2;4;...

qðF2
1
þF2

2
�F1F2Þ=2

n#þF1

2

F2

 !
q

F2=2
F1

� �
q
: (12)

This expression coincides with a finitized chiral character
for the vacuum sector in a c ¼ 7=10 minimal model of
CFT [13]. We conclude that the MR-NASS interface sup-
ports neutral excitations described by this precise CFT
[Table I] [15].

The fields of the CFT at c ¼ 6=5 can be written as a
direct product of fields of the CFTs at c ¼ 7=10 and c ¼
1=2. We identify the correspondence by the use of a
character formula and through the discrete symmetries

associated with the fields. This requires one to consider
an extended algebra produced by explicitly adding a fer-
mion parity operator to both the c ¼ 7=10 and the c ¼ 1=2

theories, ð�1ÞF and ð�1ÞF0
, which satisfy fð�1ÞF; �00g ¼ 0

and fð�1ÞF0
; c g ¼ 0. The Ramond sector is then effec-

tively ‘‘doubled,’’ so �, ~�, and ~�0 are replaced, respec-
tively, by ��, ~��, and ~�0�, each having a well-defined
fermion parity given by the subscript. Their fusion rules are
now constrained so that fermion parity is respected.
The fields are related through the following relations

�# ¼ ~�þ��þþ ~�� ���; �" ¼ ~�þ���þ ~�� ��þ;

�3 ¼ �0 � c þ�� I; c 1 ¼ ~�0þ ���þ ~�0� ��þ;

c 2 ¼ ~�0þ ��þþ ~�0� ���; c 12 ¼ �00 � Iþ I� c ;

�¼ �0 � Iþ�� c ; I¼ �00 � c þ I� I; (13)

where the notation �1 ��2 describes a direct product of a
field in the c ¼ 7=10 theory (�1) and a field in the c ¼ 1=2
theory (�2). In addition, the two Virasoro primaries �s and
�c have the following decompositions:

�s ¼ � � c ; �c ¼ �0 � I: (14)

A physical way of viewing the creation of the c ¼ 7=10
edge between the MR state and the NASS state is by
starting with counterpropagating edges, with �c ¼ 1=2
and c ¼ 6=5 ¼ 1=2þ 7=10, respectively, and introducing
tunneling between the two edges. As the tunneling in-
creases, the counterpropagating Majorana fermions gap
out, leaving behind only the c ¼ 7=10 edge. It is useful
in this case to consider an inverted form of Eq. (13), which
contains explicitly both counterpropagating modes. In this
way, one can identify those degrees of freedom which gap
out and those which remain behind. For example, at the
level of the characters the following relation holds:

�c c 12 þ �I1=2I6=5 ¼ I7=10ð �c c þ �I1=2I1=2Þ
þ �00ð �c I1=2 þ �I1=2c Þ: (15)

Here I1=2, I7=10, and I6=5 are the identity fields for the three
theories. The combinations of fields appearing within pa-
rentheses gap out when an effective mass term m �c c is
generated by tunneling, leaving only the c ¼ 7=10 degrees
of freedom behind on the edge.
Gedanken experiments.—To illustrate the role of the c ¼

7=10 interface as a ‘‘mediator’’ between two regions of

TABLE I. Primary fields of the conformal field theory at
central charge c ¼ 7=10, along with their conformal dimensions
h, and fusion rules (see, e.g., [14]).

h � �0 �00 ~� ~�0

� 1=10 I þ �0
�0 3=5 �þ �00 Iþ �0
�00 3=2 �0 � I
~� 3=80 ~�þ ~�0 ~�þ ~�0 ~� I þ �þ �0 þ �00
~�0 7=16 ~� ~� ~�0 �þ �0 I þ �00
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different quantum statistical properties, we consider sev-
eral gedanken experiments.

(i) Dragging a quasihole across the interface.—A �"
quasihole (charge q ¼ 1=7) is dragged from the � ¼ 4=7
side to the � ¼ 1=2 side, emerging as a q ¼ 1=4 � quasi-
hole. During this process, a ~� is emitted into the edge, and
a charge of 3=28 absorbed. (Fig. 1, upper left).

(ii) Qubit relaxation.—In both non-Abelian quantum
Hall states, a pair of bulk quasiholes constitutes a qubit
with two possible internal states. For a finite system, a
qubit may relax its state by exchanging a neutral particle
with a nearby edge or interface [16], through exponentially
small tunneling matrix elements. An edge to vacuum can
always relax a qubit state (see Fig. 1, upper right, for
an example where two quasiholes in a MR state exchange
a Majorana fermion with a MR-vacuum edge). Equa-
tions (13) and (14) lead to constraints on qubit relaxation
via the MR-NASS interface. Two �3 quasiholes can re-
lax their state by exchanging a �c with a MR-NASS inter-
face. However, this same interface cannot relax the state
of two � quasiholes on the MR side, or of a �"-�# qubit
on the NASS side. The combined process, involving a �s

on the NASS side and a c on the MR side, is possible
(Fig. 1, lower left).

(iii) Y junctions.—Consider a Y junction between a
NASS state, a MR state, and the vacuum (Fig. 1, lower
right). Thermal current through the junction splits propor-
tionally to the central charge, unidirectionally as depicted
in the figure, providing an observable which is directly
sensitive to the gapping out of the two counterpropagating
c ¼ 1=2 theories described in the above.

Our discussion is easily generalized to an interface
between k-clustered Read-Rezayi and NASS states, lead-
ing to a neutral mode CFT of central charge ck ¼
2ð2kþ3Þðk�1Þ
ðkþ3Þðkþ2Þ .

We close by mentioning some ideas related to the work
presented here. The authors of [17] discuss how condens-
ing a boson can transform a non-Abelian topological phase
(NA) into a phase with different topological order (NA0).
This construction naturally leads to properties of a
NA-NA0 interface. In [18] a finite density of non-Abelian
anyons is shown to nucleate a different topological liquid
within a ‘‘parent’’ non-Abelian liquid. Their interface is
shown to provide examples of edge states between non-
Abelian phases. Clearly, the various approaches to
NA-NA0 interfaces are complementary, and they illustrate
distinct features of the underlying physics.
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