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Indistinguishability of particles is afundamental principle of quantum mechanics'. For
all elementary and quasiparticles observed to date—including fermions, bosons and
Abelian anyons—this principle guarantees that the braiding of identical particles
leaves the system unchanged*. However, in two spatial dimensions, an intriguing
possibility exists: braiding of non-Abelian anyons causes rotations in a space of
topologically degenerate wavefunctions* 8. Hence, it can change the observables of
the system without violating the principle of indistinguishability. Despite the
well-developed mathematical description of non-Abelian anyons and numerous
theoretical proposals®, the experimental observation of their exchange statistics has
remained elusive for decades. Controllable many-body quantum states generated on
quantum processors offer another path for exploring these fundamental phenomena.
Whereas efforts on conventional solid-state platforms typically involve Hamiltonian
dynamics of quasiparticles, superconducting quantum processors allow for directly

manipulating the many-body wavefunction by means of unitary gates. Building on

predictions that stabilizer codes can host projective non-Abelian Ising anyons

9,10’ we

implement a generalized stabilizer code and unitary protocol® to create and braid
them. This allows us to experimentally verify the fusion rules of the anyons and braid
them to realize their statistics. We then study the prospect of using the anyons for
quantum computation and use braiding to create an entangled state of anyons
encoding threelogical qubits. Our work provides new insights about non-Abelian
braiding and, through the future inclusion of error correction to achieve topological
protection, could open a path towards fault-tolerant quantum computing.

Elementary particlesinthree dimensions are either bosons or fermions.
The existence of only two typesis rooted in the fact that the worldlines
of two particlesin three plus one dimensions can always be untied in a
trivial manner. Hence, exchanging a pair of indistinguishable particles
twiceis topologically equivalent to not exchanging thematall, and the
wavefunction must remain the same. Representing the exchange as a
matrix R acting on the space of wavefunctions with a constant number
of particles, itis thus required that R* = 1 (ascalar), leaving two possibili-
ties: R =1(bosons) and R = -1 (fermions). Such continuous deformation
is not possible in two dimensions, thus allowing collective excitations
(quasiparticles) toshowricher braiding behaviour. In particular, this per-
mits the existence of Abelian anyons>*¢#2*% inwhich the global phase
change due to braiding can take any value. It has been proposed that
thereexists another class of quasiparticles known as non-Abelian anyons,
in which braiding instead results in a change of the observables of the
wavefunction*>*. In other words, R? does not simplify to a scalar, but
remains a unitary matrix. Therefore, R?is afundamental characteristic
ofanyonbraiding. The topological approach to quantum computation®
aimsto leverage these non-Abelian anyons and their topological nature
toenable gate operations that are protected against local perturbations
and decoherence errors®”*, In solid-state systems, primary candidates
of non-Abelian quasiparticles are low-energy excitationsin Hamiltonian

systems, including the 5/2 fractional quantum Hall states®*?, vortices

in topological superconductors®>* and Majorana zero modes in semi-
conductors proximitized by superconductors® %, However, direct
verification of non-Abelian exchange statistics has remained elusive® .,
We formulate the necessary requirements for experimentally cer-
tifying a physical system as a platform for topological quantum com-
putation>?: (1) create an anyon pair; (2) verify the rules that govern
the ‘collision’ of two anyons, known as the fusion rules; (3) verify the
non-Abelian braiding statistics reflected in the matrix structure R*and
(4) realize controlled entanglement of anyonic degrees of freedom.
Notably, the observation of steps (2)-(4) requires measurements of
multi-anyon states, by means of fusion or non-local measurements.
The advent of quantum processors allows for controlled unitary
evolution and direct access to the wavefunction rather than the
parameters of the Hamiltonian. These features enable the use of local
operations for efficient preparation of topological states that can host
non-Abelian anyons, and—as we will demonstrate—their subsequent
braiding and fusion. Moreover, these platforms allow for probing arbi-
trary Pauli strings through destructive multiqubit (that is, non-local)
measurements. As the braiding of non-Abelian anyons in this platform
isachieved through unitary gate control rather than adiabatic evolution
of aHamiltonian system, we note that the anyons are not quasiparticles
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Fig.1|Deformations of the surface code. a, Stabilizer codes are conveniently
describedinagraph framework. Through deformations of the surface code
graph,asquaregrid of qubits (crosses) canbe used to realize more generalized
graphs. Plaquetteviolations (red) correspond to stabilizers withs,=-1and are
created by local Paulioperations. Inthe absence of deformations, plaquette
violations are constrained to move on one of the two sublattices of the dual
graphinthesurfacecode, hence the twoshades ofblue. b, A pair of D3Vs

inthe sense of eigenstates that persist throughout a Hamiltonian evolu-
tion. Theirmovementis achieved through local operations along their
paths, and they are kept spatially separated throughout the braiding.
We therefore emphasize that the two-dimensional braiding processes
are physically taking place on the device, leading to actual non-Abelian
exchange effects of local anyons in the many-body wavefunction, rather
than matrix operations that simply follow the same algebra.

To realize a many-body quantum state that can host anyons, it is
essential to control the topological degeneracy. A suitable platform
forachieving this requirement is astabilizer code*?, in which the wave-
functions are characterized by aset of commuting operators{ﬁp} called
stabilizers, with §p |$> =s, | and s, = +1. The code space is the set of
degenerate wavefunctions for whichs,=1for all p. Hence, every inde-
pendent stabilizer divides the degeneracy of the code space by two.

Whereas the physical layout of qubits is typically used to determine
the structure of the stabilizers, the qubits can be considered to be
degreej vertices (DjV;j € {2, 3, 4}) on more general planar graphs
(Fig. 1a)®. Using this picture, each stabilizer can be associated with a
plaquette p, whose vertices are the qubits on which Sp acts:

Sp= I Tpor 1)

v € vertices

1, ,is here asingle-qubit Pauli operator acting on vertex v, chosen to
satisfy a constraint around that vertex (Fig. 1b). An instance where
s,=—1onaplaquette is called a plaquette violation. These can be
thought of as quasiparticles, which are created and moved through
single-qubit Pauli operators (Fig. 1a). A pair of plaquette violations
sharing anedge constitute afermion, . We recently demonstrated the
Abelian statistics of such quasiparticles in the surface code®. Torealize
non-Abelian statistics, one needs to go beyond such plaquette viola-
tions; it has been proposed that dislocations in the stabilizer graph—
analogous to lattice defects in crystalline solids—can host projective

i Zijer)

(yellowtriangles) appears by removing an edge between two neighbouring
stabilizers, $;and $,, andintroducing the new stabilizer, § = §,$,. AD3V s
moved by applying atwo-qubit entangling gate, exp (%[3’, §]). Inthepresence
of bulk D3Vs, there is no consistent way of chequerboard colouring, hence the
(arbitrarily chosen) grey regions. The top right shows thatin ageneral stabilizer
graph,Sp canbefound froma constraintateach vertex, where {r;, 7,} = 0.

non-AbelianIsinganyons®. Forbrevity, we refer to these as ‘non-Abelian
anyons’ or simply ‘anyons’ from here on.

In the graph framework introduced above, it has been shown that
such dislocations are characterized as vertices of degree 2 and 3
(ref.23). Consider the stabilizer graph of the surface code®**, specifically
withboundary conditions suchthat the degeneracy is two. Althoughall
the verticesin the bulk are D4Vs, one can create two D3Vs by removing
anedgebetween two neighbouring plaquettes pand g, and introducing
the new stabilizer § = §p§q (Fig. 1b). Evidently, the introduction of two
D3Vs reduces the number of independent stabilizers by one and thus
doubles the degeneracy. This doublingis exactly whatis expected when
apair ofIsinganyonsisintroduced®; hence, D3Vs appear as a candidate
of non-Abelian anyons, and we will denote them as o.

To be braided and fused by unitary operations, the D3Vs must be
moved. Whereas the structure of the stabilizer graphis usually consid-
ered to be static, it was predicted by Bombin that the dislocations in
the surface code would show projective non-Abelian Ising statistics if
braided™. Here, we will use a specific protocol recently proposed by
Lensky et al.”for deforming the stabilizer graph (and thus moving the
anyons) using local two-qubit Clifford gates. To shift aD3V from vertex
utov,anedge mustbe disconnected fromvand reconnected to u. This
canbe achieved by means of the gate unitary exp (S, $,1) where S,
is the original stabilizer containing the edge and u, and S;, is the new
stabilizer that emerges after moving the edge®. In cases where the D3V
is shifted between two connected vertices, the unitary simplifies to
theformU.(3,,) = exp (ti%fufu), where ,and 7, are Pauli operators act-
ingonvertices uand v. We experimentally realize this unitary through
acontrolled Z (CZ) gate and single-qubit rotations (median errors of
7.3x107%and 1.3 x 1073, respectively; Methods).

Following these insights from Kitaev and Bombin, we now turn to
our experimental study of the proposed anyons, using the protocol
describedinref. 23.Inthe first experiment, we demonstrate the crea-
tion of anyons and the fundamental fusion rules of o and ¢ (Fig. 2a).
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Fig.2|Demonstration of the fundamental fusionrules of D3Vs.a, The
braiding worldlines used to fuse e and 0. b, Expectation values of stabilizers at
eachstep of the unitary operation after readout correction (see Extended Data
Fig.3for detailsand individual stabilizer values). We first prepare the ground
state of the surface code (step (i); average stabilizer value of 0.94 + 0.04, where
the uncertaintyis one standard deviation). AD3V (o) pairis then created (ii) and
separated (iii)-(iv), before creating afermion, £ (v). One of the plaquette
violationsisbroughtaround the right o (vi)-(viii), allowing it to annihilate with
the other plaquette violation (viii). The fermion has seemingly disappeared,
butre-emerges whenthe oare annihilated ((xi); stabilizer values -0.86 and
-0.87). The path (v) > (viii) demonstrates the fusion rule, 0 x £ = 0. The different
fermion parities at the end of the paths (viii) > (xi) and (iv) - (i) show the other

Ina 5 x 5grid of superconducting qubits, we first use a protocol con-
sisting of four layers of CZ gates to prepare the surface code ground
state (Fig.2b(i), see alsoref.43). The average stabilizer value after the
ground state preparation is 0.94 + 0.04 (individual stabilizer values
shown in Extended Data Fig. 3c). We then remove a stabilizer edge to
create a pair of D3Vs (o) and separate them through the application
of two-qubit gates. Fig. 2b(i)-(iv) show the measured stabilizer values
in the resultant graph in each step of this procedure (determined by
simultaneously measuring the involved qubitsin their respective bases,
n=10,000; note that the measurements are destructive and the proto-
colisrestarted after each measurement). InFig. 2b(v), single-qubit Z
gatesare applied to two qubits near the lower left corner of the grid to
create adjacent plaquette violations, which together form afermion.
Through the sequential application of X and Z gates (Fig. 2b(vii)—-(viii)),
one of the plaquette violations is then made to encircle the right o
vertex. Crucially, after moving around g, the plaquette violation does
not return to where it started, but rather to the location of the other
plaquette violation. This enables them to annihilate (Fig. 2b(viii)),
causing the fermion to seemingly disappear. However, by bringing
the two o back together and annihilating them (Fig. 2b(ix)-(xi)), we
arrive atastriking observation: an ¢ particle re-emerges ontwo of the
square plaquettes where the g vertices previously resided.

Our results demonstrate the fusion of e and 0. The disappearance of
the fermion from step (v) to (viii) establishes the fundamental fusion
ruleof eand o:

oxE=0. 2)

We emphasize that none of the single-qubit gates along the path of
the plaquette violation are applied to the qubits hosting the mobile g;
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fusionrule,oxo=1+z¢. Yellow triangles represent the positions of the a.
Thebrownandred lines denote the paths of the cand the plaquette violation,
respectively. Red squares (diamonds) represent X (Z) gates. Upper left shows a
table of two-qubit unitaries usedin the protocol. Each stabilizer was measured
n=10,000timesineachstep.c, Anon-local technique for hidden fermion
detection: the presence of afermionin ao-pair canbe deduced by measuring
the sign of the Pauli string P corresponding to bringing a plaquette violation
around the o-pair (grey path). ?is equivalent to the shorter string ?’ (black
path). Measurements of P’ in steps (viii) (top) and (iv) (bottom) give values of
-0.85+0.01and +0.84 + 0.01, respectively. Thisindicates that thereisahidden
fermion pairin the former case, but notin thelatter, despite the stabilizers
being the same.

our observations are therefore solely due to the non-local effects of
non-Abelian D3Vs, and exemplify the unconventional behaviour of the
latter. Moreover, another fusionrule is seen by considering the reverse
path (iv) » (i), and comparingit to the path (viii) > (xi). These two paths
demonstrate that a pair of o can fuse to form either vacuum (1) or one
fermion (steps (i) and (xi), respectively):

oxo=1]+e. 3)

The starting points of these two paths ((iv) and (viii)) cannot be dis-
tinguished by any local measurement. We therefore introduce a non-
local measurement technique that allows for detecting an € without
fusing the o (refs. 10,23,26). The key idea underlying this method is
that bringing a plaquette violation around a fermion should result in
amphase. We therefore measure the Pauli string P that corresponds
to creating two plaquette violations, bringing one of them around the
two o, and finally annihilating them with each other (grey paths in
Fig. 2c). The existence of an g inside the o-pair should cause (P =-1.
To simplify this technique further, 7 can be reduced to ashorter string
P’(black pathsin Fig. 2c) by taking advantage of the stabilizers it encom-
passes. Forinstance, if P contains three of the operatorsin afour-qubit
stabilizer, these can be switched out with the remaining operator.
Measuring(?’yinstep (iv), in which the oare separated but the fermion
hasnotyetbeen introduced, gives(?’) = +0.84 +0.01, consistent with
the absence of fermions (Fig. 2c). However, performing the exact same
measurementinstep (viii), in which the gareinthe same positions, we
find (P’y=-0.85+0.01, indicating that an € is delocalized across the
spatially separated o pair (Fig. 2c). This observation highlights the
non-local encoding of the fermions, which cannot be explained with
classical physics.



Braiding indistinguishable, non-Abelian D3Vs Step Gate Control: distinguishable D3Vs
2 . b e e e e ) oe om K) m W) [UZoke) S 1 1 i) m
A (] | (] | ) ([ | ([ | UZokeo) A
' ' ' U.(Z22X2,3)
A'A—I— *2‘ ?- —’2‘ i (i) —>(v) | Us(X42Z52)
T U.(X32Z5,1)
IA" lA" A'A.' " U.X2,1Z1,1)
(i1)=-0.45+0.06 U, (X1,1Z0,1)
- i) A e ()5() | UXoeZo0)
.. ‘. (V)= (vi) | Uu(Z2,2X32) °
2 —»A =V o) |U.ZaXen)
= (vii)—(viii) | U_(X2,2X2,1Z2,0)
A" (vii)—=(ix) | U(Zo,1X1,1)
U_(Z1,1X2,1)
& X=X | UdX1X22)
Bl 00 |U(XeoZso)
IA'D )= | ULXs2%s2)
- NN il
A A (Stabilizer)
l"'l II ZW T

Fig.3|Braiding of non-Abeliananyons. a, Wordline schematic of the braiding
process. b, Experimental demonstration of braiding, showing the values of the
stabilizers throughout the process. Two g pairs, Aand B, are created from the
vacuum 1, and one of the gin pair Ais brought to the right side of the grid. Next,
aofrom pair Bismoved to the top, thus crossing the path of pair A, before
bringing opairs Aand Bback together to complete the braid. In the final step,
two fermions appear inthelocations where the o pairs resided, constitutinga
changeinthelocal observables. The diagonal o moveinstep (iv) requires two
SWAP gates (three CZ gates each) and atotal of ten CZ gates. The three-qubit
unitary instep (viii) requires four SWAP gates and a total of 15CZ gates. Inthe

Having demonstrated the above fusion rules involving g, we next
braid themwith each other to directly show their non-Abelian statistics.
We consider two spatially separated o pairs, A and B, by removing two
stabilizer edges (Fig. 3a,b(ii)). Next, we apply two-qubit gates along
a horizontal path to separate the g in pair A (Fig. 3b(iii)), followed by
asimilar procedure in the vertical direction on pair B (Fig. 3b(iv)), so
thatone ofits o crosses the path of pair A. We then subsequently bring
the o from pairs A and B back to their original positions (Fig. 3b(v)-
(viii) and (ix)-(xi), respectively). When the two o pairs are annihilated
in the final step (Fig. 3b(xii)), we observe that a fermion is revealed
in each of the positions where the o pairs resided (average stabilizer
value —0.45 + 0.06). This shows a clear change in local observables
from the initial state in which no fermions were present. As a control
experiment, we repeat the experiment with distinguishable o pairs,
achieved by attaching a plaquette violation to each of the g in pair B
(Fig. 3c,d; see also Extended Data Fig. 8 for stabilizer measurements
through the full protocol). Moving the plaquette violation along with
the orequires a string of single-qubit gates, which switches the direc-
tion of the rotation in the multiqubit unitaries, U, > U..Inthis case, no
fermions are observed at the end of the protocol (average stabilizer
value +0.46 + 0.04), thus providing a successful control.

Fermions canonlybe created in pairsin the bulk. Moreover, the fusion
oftwo ocanonly create zero or one fermion (equation (3)). Hence, our
experiment involves the minimal number of bulk o (four) needed to
encode two fermions and demonstrate non-Abelian braiding. Because
the fermion parity is conserved, effects of gate imperfections and deco-
herence can be partially mitigated by postselecting for an evennumber
of fermions. This results in fermion detection values of -0.76 + 0.03
and +0.79 + 0.04 in Fig. 3b,d, respectively.

Together, our observations show the change inlocal observables by
braiding of indistinguishable cand constitute a direct demonstration
of their non-Abelian statistics. In other words, the double-braiding
operation R%is amatrix that cannot be reduced to a scalar. Specifically,

full circuit, atotal of 40 layers of CZ gates are applied (Methods). The yellow
trianglesrepresent thelocations of the o; thebrownand greenlinesrepresent
the paths of ¢from pairs Aand B, respectively. The four red stabilizers in (xii)
have ameanvalue of -0.45+0.06, where the uncertaintyis one standard
deviation. Each stabilizer was measured n=10,000 timesin eachstep.c,Asa
control experiment, we perform the samebraid asina, but with distinguishable
obyattachingaplaquette violationto the gin pair B (represented with purple
triangles).d, Same as b, but using distinguishable o (only showing steps (i), (iv)
and (xii)). In contrast tob, no fermions are observed in step (xii).

it corresponds to an X gate acting on the space spanned by zero- and
two-fermion wavefunctions.

The full braiding circuit consists of 40 layers of CZ gates and 41lay-
ers of single-qubit gates (36 of each after ground state preparation).
The effects of imperfections in this hardware implementation can
be assessed through comparison with the control experiment. The
absolute values of the stabilizers in which the fermions are detected
inthe two experiments (dashed boxes in Fig. 3b,d(xii)) are very similar
(average values of —0.45 and +0.46). This is consistent with the depo-
larization channel model, in which the measured stabilizer values are
proportional to the ideal values (+1).

We next study the prospects of using D3Vs to encode logical qubits
and prepare an entangled state of anyon pairs. By doubling the degen-
eracy, each additional o pair introduces one logical qubit, where the
|0), (1)) state corresponds to an even (odd) number of hidden fer-
mions. The measurements of the fermion numbers in several o pairs
arenot fullyindependent: bringing a plaquette violation around one
opairisequivalent to bringingit around all the other pairs (dueto the
conservation of fermionic parity). Hence, N> 2 anyons encode N/2 - 1
logical qubits. The D3Vs we have created and manipulated so far are
not the only ones present in the stabilizer graph; with the boundary
conditions used here, each of the four corners are also D3Vs, no dif-
ferent from those in the bulk®. Indeed, the existence of D3Vs in the
corners is the reason why a single fermion could be created in the
cornerinFig.2b(v). Thisisalso consistent with the fact that the surface
code itself encodes one logical qubit in the absence of additional
D3Vs. Here we create two pairs of D3Vs, in addition to the four that
are already present in the corners, to encode a total of three logical
qubits.

Through the use of braiding, we aim to prepare an entangled state
of these logical qubits, specifically a GHZ state on the form
(J000) + [111))/~/2. The definition of a GHZ state and the specifics of
howitis prepared is basis-dependent. In most systems, the degrees of
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Fig.4|Entangledstate ofanyon-encodedlogical qubits by means of
braiding. a, Logical operators of the three logical qubits encoded in the eight
anyons (other basis choices are possible). The coloured curvesin the left column
denote plaquette violation paths, before reduction to shorter, equivalent Pauli
strings measured in the experiment (right column). b, Worldline schematic of
thesingle exchange used torealize an entangled state of the logical qubits.

¢, Single exchange of the non-Abelian anyons, showing measurements of the
stabilizers throughout the protocol. Yellow triangles represent the locations of

freedom are local and there is a natural choice of basis. For spatially
separated anyons, the measurement operators are necessarily
non-local. Here we choose the basis defined as follows: for the first two
logical qubits, we choose the logical ZAL',» operators to be Pauli strings
encircling each of the bulk o pairs, as was used in Fig. 2c (green and
turquoise paths in the left column of Fig. 4a). For the logical surface
code qubit, we define Z, ;as the Pauli string that crosses the grid hor-
izontally through the gap between the bulk D3V pairs, effectively
enclosing four o (red path in Fig. 4a). In this basis, the initial state is a
product state.

Whereas a double braid was used to implement the operator Xin
Fig. 3, we now perform asingle braid (Fig. 4b) to realize /X and create
a GHZ state. We implement this protocol by bringing one o from each
bulk pair across the grid to the other side (Fig. 4c). For every anyon
double exchange across a Pauli string, the value of the Pauli string
changessign. Hence, adouble exchange would change |000) to |111),
whereas a single exchange is expected to realize the superposition,
(J111) +1000))/-/2.

To study the effect of this operation, we perform quantum state
tomography on the final state, which requires measurements of not
only Z_;, butalso X, ; and ¥, ; on the three logical qubits. For the first
two logical qubits, )?L,,- is the Pauli string that corresponds to bringing
aplaquette violation around only one of the g in the pair (as demon-
stratedin Fig. 2b). Both thelogical )?Ll,.and ZAL,,.operators canbe simpli-
fied by reducing the original Pauli strings (green and turquoise paths
intheleft columnof Fig.4c) to equivalent, shorter ones (right column).
Z, ;caninfactbereduced toasingleY-operator. For the logical surface
code qubit, we define )?m asthePaulistring that crosses the grid verti-
cally between the bulk D3V pairs (red path in Fig. 4a). Finally, the logi-
cal¥, -operatorsaresimply found from¥, ;= iX, /7, ; Measuring these
operators, wereconstruct the density matrix of the final state (Fig. 4d,e),
which has a purity of \| Tr{p?} = 0.646+0.003 and an overlap with the
ideal GHZ state of Tr{p,,,,,0} = 0.623+0.004 (uncertainties estimated
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the o, whereasbrownandgreenlines denote their paths. The average stabilizer
valuesare 0.95+0.04 and 0.88 + 0.05 (one standard deviation) in the firstand
laststep, respectively. Each stabilizer was measured n=20,000 timesineach
step.d,e, Real (d) andimaginary (e) parts of the reconstructed density matrix
fromthe quantum state tomography.Re(p) has clear peaksinits corners, as
expected foraGHZ state onthe form (|000) + |111) )/~/2.The overlap withthe
ideal GHZ stateisTr{p,,p} = 0.623+0.004, where the uncertainty isone
standard deviation determined from bootstrapping.

frombootstrapping method; resampled 10,000 times from the origi-
nal dataset). The fact that the state fidelity is similar to the purity sug-
gests that the infidelity is well described by a depolarizing error
channel.

In conclusion, we have realized highly controllable braiding of
degree-3 vertices, enabling the demonstration of the fusion and braid-
ing rules of non-Abelian Ising anyons. We have also shown that braiding
canbeusedto create an entangled state of three logical qubits encoded
inthese anyons. In other, more conventional candidate platforms for
non-Abelian exchange statistics, which involve Hamiltonian dynamics
of quasi-particle excitations, topological protection naturally arises
from an emergent gap that separates the computational states from
other states. To leverage the non-Abelian anyons in our system for
topologically protected quantum computing, the stabilizers must be
measured throughout the braiding protocol. The potential inclusion
of this error correction procedure, which involves overheads includ-
ing readout of five-qubit stabilizers, could open a new path towards
fault-tolerant implementation of Clifford gates, a key ingredient of
universal quantum computation.

Online content

Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-05954-4.

1. Sakurai, J. J. Modern Quantum Mechanics (Addison-Wesley, 1993).

2. Leinaas, J. & Myrheim, J. On the theory of identical particles. Nuovo Cim. B. 37,1-23
(1977).

3. Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957-959
(1982).

4. Wilczek, F. Fractional Statistics and Anyon Superconductivity (World Scientific, 1990).


https://doi.org/10.1038/s41586-023-05954-4

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and
topological quantum computation. Rev. Mod. Phys. 80, 1083-1159 (2008).

Camino, F. E., Zhou, W. & Goldman, V. J. /3 Laughlin quasiparticle primary-filling v=1/3
interferometer. Phys. Rev. Lett. 98, 076805 (2007).

Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173-177 (2020).
Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic
braiding statistics. Nat. Phys. 16, 931—936 (2020).

Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2-111 (2006).
Bombin, H. Topological order with a twist: Ising anyons from an Abelian model. Phys. Rev.
Lett. 105, 030403 (2010).

Hormozi, L., Zikos, G., Bonesteel, N. E. & Simon, S. H. Topological quantum compiling.
Phys. Rev. B 75, 165310 (2007).

You, Y.-Z. & Wen, X.-G. Projective non-abelian statistics of dislocation defects in a Zy rotor
model. Phys. Rev. B 86, 161107 (2012).

Barkeshli, M., Jian, C.-M. & Qi, X.-L. Twist defects and projective non-Abelian braiding
statistics. Phys. Rev. B 87, 045130 (2013).

Barkeshli, M. & Qi, X.-L. Topological nematic states and non-Abelian lattice dislocations.
Phys. Rev. X 2, 031013 (2012).

von Keyserlingk, C. W., Burnell, F. J. & Simon, S. H. Three-dimensional topological lattice
models with surface anyons. Phys. Rev. B 87, 045107 (2013).

Teo, J. C., Roy, A. & Chen, X. Unconventional fusion and braiding of topological defects in
a lattice model. Phys. Rev. B 90, 115118 (2014).

Zheng, H., Dua, A. & Jiang, L. Demonstrating non-Abelian statistics of majorana fermions
using twist defects. Phys. Rev. B 92, 245139 (2015).

Teo, J. C., Hughes, T. L. & Fradkin, E. Theory of twist liquids: gauging an anyonic symmetry.
Ann. Phys. 360, 349-445 (2015).

Brown, B. J., Laubscher, K., Kesselring, M. S. & Wootton, J. R. Poking holes and cutting
corners to achieve clifford gates with the surface code. Phys. Rev. X 7, 021029 (2017).
Zhu, G., Hafezi, M. & Barkeshli, M. Quantum origami: transversal gates for quantum
computation and measurement of topological order. Phys. Rev. Res. 2, 013285 (2020).
Benhemou, A., Pachos, J. K. & Browne, D. E. Non-abelian statistics with mixed-boundary
punctures on the toric code. Phys. Rev. A 105, 042417 (2022).

Tantivasadakarn, N., Verresen, R. & Vishwanath, A. The shortest route to non-Abelian
topological order on a quantum processor. Preprint at https://arxiv.org/abs/2209.03964
(2022).

Lensky, Y. D., Kechedzhi, K., Aleiner, |. & Kim, E.-A. Graph gauge theory of mobile non-
Abelian anyons in a qubit stabilizer code. Preprint at https://arxiv.org/abs/2210.09282
(2022).

Stern, A. Anyons and the quantum Hall effect: a pedagogical review. Ann. Phys. 323,
204-249 (2008).

Harle, N., Shtanko, O. & Movassagh, R. Observing and braiding topological Majorana
modes on programmable quantum simulators. Nat. Commun. 14, 2286 (2023)

Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2-30 (2003).
Freedman, M. H. P/np, and the quantum field computer. Proc. Natl Acad. Sci. USA 95,
98-101(1998).

Pachos, J. K. Introduction to Topological Quantum Computation (Cambridge Univ. Press,
2012).

Stern, A. & Lindner, N. Topological quantum computation—from basic concepts to first
experiments. Science 339, 1179-1184 (2013).

Field, B. & Simula, T. Introduction to topological quantum computation with non-Abelian
anyons. Quantum Sci. Technol. 3, 045004 (2018).

Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B
360, 362-396 (1991).

Willett, R. L., Pfeiffer, L. N. & West, K. W. Alternation and interchange of e/4 and e/2 period
interference oscillations consistent with filling factor 5/2 non-Abelian quasiparticles.
Phys. Rev. B 82, 205301 (2010).

Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity
and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61,
10267 (2000).

Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in P-wave superconductors.
Phys. Rev. Lett. 86, 268-271(2001).

Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase
transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105,
077001 (2010).

Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and majorana bound states in quantum
wires. Phys. Rev. Lett. 105, 177002 (2010).

Mourik, V. et al. Signatures of majorana fermions in hybrid superconductor-semiconductor
nanowire devices. Science 336, 1003-1007 (2012).

Nadj-Perge, S. et al. Observation of majorana fermions in ferromagnetic atomic chains on
a superconductor. Science 346, 602-607 (2014).

39. Banerjee, M. et al. Observation of half-integer thermal hall conductance. Nature 559,
205-210 (2018).

40. Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a
Kitaev spin liquid. Nature 559, 227-231(2018).

41.  Bonderson, P, Kitaev, A. & Shtengel, K. Detecting non-Abelian statistics in the v=5/2
fractional quantum Hall state. Phys. Rev. Lett. 96, 016803 (2006).

42. Gottesman, D. Stabilizer Codes and Quantum Error Correction (California Institute of
Technology, 1997).

43. Satzinger, K. et al. Realizing topologically ordered states on a quantum processor.
Science 374, 1237-1241(2021).

44. Wen, X.-G. Quantum orders in an exact soluble model. Phys. Rev. Lett. 90, 016803
(2003).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

By 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Google Quantum Al and Collaborators

T.1. Andersen', Y. D. Lensky? K. Kechedzhi', I. K. Drozdov'?, A. Bengtsson', S. Hong',
A.Morvan', X. Mi', A. Opremcak’, R. Acharya', R. Allen', M. Ansmann', F. Arute', K. Arya',

A. Asfaw', J. Atalaya', R. Babbush', D. Bacon', J. C. Bardin'“, G. Bortoli', A. Bourassa',

J. Bovaird', L. Brill', M. Broughton', B. B. Buckley', D. A. Buell', T. Burger', B. Burkett',

N. Bushnell', Z. Chen', B. Chiaro', D. Chik', C. Chou!', J. Cogan', R. Collins', P. Conner',

W. Courtney', A. L. Crook’, B. Curtin', D. M. Debroy', A. Del Toro Barba', S. Demura',

A. Dunsworth', D. Eppens', C. Erickson’, L. Faoro', E. Farhi', R. Fatemi', V. S. Ferreira',

L. F. Burgos', E. Forati', A. G. Fowler', B. Foxen', W. Giang', C. Gidney', D. Gilboa', M. Giustina',
R. Gosula', A. G. Dau', J. A. Gross', S. Habegger', M. C. Hamilton'®, M. Hansen',

M. P. Harrigan', S. D. Harrington', P. Heu', J. Hilton', M. R. Hoffmann', T. Huang', A. Huff',

W. J. Huggins', L. B. loffe', S. V. Isakov', J. Iveland', E. Jeffrey', Z. Jiang', C. Jones', P. Juhas',

D. Kafri', T. Khattar', M. Khezri', M. Kieferova'®, S. Kim', A. Kitaev', P. V. Klimov', A. R. Klots',
A. N. Korotkov", F. Kostritsa', J. M. Kreikebaum', D. Landhuis', P. Laptev', K.-M. Lau', L. Laws',
J. Lee", K. W. Lee', B. J. Lester', A. T. Lill', W. Liu', A. Locharla', E. Lucero', F. D. Malone',

O. Martin', J. R. McClean', T. McCourt', M. McEwen'?, K. C. Miao', A. Mieszala', M. Mohseni',
S. Montazeri', E. Mount', R. Movassagh', W. Mruczkiewicz', 0. Naaman', M. Neeley', C. Neill',
A. Nersisyan', M. Newman', J. H. Ng', A. Nguyen', M. Nguyen', M. Y. Niu', T. E. O’Brien’,

S. Omonije', A. Petukhov', R. Potter’, L. P. Pryadko''®, C. Quintana', C. Rocque', N. C. Rubin',
N. Saei', D. Sank', K. Sankaragomathi’, K. J. Satzinger', H. F. Schurkus', C. Schuster’,

M. J. Shearn', A. Shorter', N. Shutty’, V. Shvarts', J. Skruzny', W. C. Smith’, R. Somma’,

G. Sterling', D. Strain', M. Szalay', A. Torres', G. Vidal', B. Villalonga', C. V. Heidweiller’,

T. White', B. W. K. Woo', C. Xing', Z. J. Yao', P. Yeh', J. Yoo', G. Young', A. Zalcman', Y. Zhang',
N. Zhu', N. Zobrist', H. Neven', S. Boixo', A. Megrant', J. Kelly', Y. Chen', V. Smelyanskiy',
E.-A. Kim?"23¥ | Aleiner'™ & P. Roushan'™

'Google Research, Mountain View, CA, USA. “Department of Physics, Cornell University,
Ithaca, NY, USA. ®Department of Physics, University of Connecticut, Storrs, CT, USA.
“Department of Electrical and Computer Engineering, University of Massachusetts, Amherst,
MA, USA. *Department of Electrical and Computer Engineering, Auburn University, Auburn,
AL, USA. °QsI, Faculty of Engineering & Information Technology, University of Technology
Sydney, Sydney, New South Wales, Australia. 'Department of Electrical and Computer
Engineering, University of California, Riverside, CA, USA. ®Department of Chemistry,
Columbia University, New York, NY, USA. °Department of Physics, University of California,
Santa Barbara, CA, USA. "°Department of Physics and Astronomy, University of California,
Riverside, CA, USA. "Department of Physics, Ewha Womans University, Seoul, South Korea.
2Department of Physics, Harvard University, Cambridge, MA, USA. ®Radcliffe Institute for
Advanced Studies, Cambridge, MA, USA.

Nature | Vol 618 | 8 June 2023 | 269


https://arxiv.org/abs/2209.03964
https://arxiv.org/abs/2210.09282
http://creativecommons.org/licenses/by/4.0/

Article

Methods

Qubit decoherence and gate characterization

Theexperimentsare performed onaquantumprocessor withfrequency-
tuneable transmon qubits and a similar design to that in ref. 45.
Extended Data Fig. 1a shows the measured relaxation times of the
25 qubits that were used in the experiment, with a median value of
T,=21.7 pus. We also measure the dephasing time 7, in a Hahn echo
experiment, shown in Extended Data Fig. 1b, with the same median
value of 21.7 pus. We note that the equality of Tland T2 is a coincidence
and that the discrepancy between the measured decoherence rate
1/T,and the relaxation-limited rate 1/(27;) is due to remnant noise not
decoupled inthe Hahn echo experiment.

Next, we benchmark the gates used in the experiment. Extended
Data Fig. 2a,b show the cumulative distribution of the Pauli errors
for single- and two-qubit (CZ) gates, respectively. The median Pauli
errors are 1.3 x 107 for the single-qubit gates and 7.3 x 107 for the
two-qubit gates.

Readout details

Because the readout of the qubit state isimperfect, the raw datagives
asomewhat incorrect representation of the actual quantum state of
the system. We write the probability of readout error of state O(1) on
qubitiasp,,;, and the readout fidelity is thus given by 1- (p,,; + p; )/2.
To correct forany asymmetry betweenreadout of the |0) and |1) states,
we perform symmetrized measurementsinwhich mpulses are applied
to the qubits before the readout in half of the measurements and the
recorded qubit values areinverted. The measured value of astabilizer
with actual value {S) = ([,a;) (where the product runs over qubitsin the
stabilizer) is then:

Omeas=[1 APy =P, Jay=[] A=py ;= p, S, 4)

where we made use of the fact that each qubitis measured equally often
in the |0) and |1) states in the symmetrized measurements. Note
the absence of the factor 1/2 compared to the expression for the read-
out fidelity, as perfectly incorrect readout (p, = p, =1) would give a
readout fidelity of O, but a measured value of —a;. To correct for
the discrepancy between the measured stabilizer value and the
actual stabilizer value, we measure {(Z.. .. Z,) of the state |00 .. 00)
with the same qubits (using again symmetrized measurements)
to find:

4 Zdmeas= n l_pO,i Py ®)
1

Thereadout-corrected (S) is then found from:

<5>C0I'l' = <S>meas/<zl b Zn>meas (6)

Extended Data Fig. 3 shows the measured readout errors, as well as
acomparison of the stabilizer values in the surface code ground state
(same data as Fig. 2b(i)) before and after readout correction.

Dynamical decoupling

Tomitigate the effects of qubit decoherence during the circuits, we per-
form dynamical decoupling on qubits thatareidle for more than three
layers of gates. In particular, we use the Carr-Purcell-Meiboom-Gill
scheme, consisting of X pulses interspaced by a wait time of =25 ns.
Extended Data Fig. 4 shows an example comparison of the stabiliz-
ersin cases with and without dynamical decoupling, after braiding of
anyons (41layers of SQ gates and 40 layers of CZ gates). A clearimprove-
ment is observed, increasing the average absolute stabilizer value
from 0.50 to 0.58.

Circuit details

Extended Data Fig. 5 shows the circuits used in the experiments pre-
sented in the main text. In our experiment, the two-qubit unitaries
U.(fit,) are converted to single-qubit rotations and CZ gates, as shown
inExtended Data Fig. 6b. Inthe particular caseinwhichaD3Vis moved
diagonally (Fig. 3b(iv)), we realize the unitary by including two SWAP
gates (also converted to CZ gates) as the qubits are connected in a
squaregrid (Extended Data Fig. 6¢). Moreover, the three-qubit unitary
inFig. 3b(viii) is equivalent to acombination of single-qubit gates, four
SWAP gates and four CZ gates (Extended Data Fig. 6d), which can be
further converted to single-qubit gates and 15 CZ gates. In the experi-
mental implementation of the circuit, adjacent single-qubit gates on
the same qubit are merged and performed in the layer after the most
recent CZ gate (Extended Data Fig. 6e).

Numerical simulation of braiding in presence of noise

To better understand the role of errors in the experimental results in
Fig. 3 of the main text, we perform a numerical simulation of the den-
sity matrix evolution subject to the braiding circuit in the presence of
noise. We use the method of quantum trajectories to approximate the
expectation value of stabilizers with the 25-qubit density matrix. The
model of noiseincludes 7;and T, effects described by the single-qubit
Kraus operators,

1 0
Ko= [0 eXP(‘f/Tz)j' @

_(0 Ji=exp(-¢/T)
K , (8)

0 0

0 0
K= (O Jexp(=t/T) - exp(-2t/TZ)J' ®

where tis the duration of the evolution, as well as additional one- and
two-qubit depolarizing channel error for each gate. The depolarizing
channel errorrateis chosensuch that the combined Paulierror from 7;,
T,and depolarizing error matches the gate Pauli error measuredinan
independent experiment (Qubit decoherence and gate characteriza-
tion). We take these values to be uniform across the chip. The expec-
tation values of the four stabilizers that correspond to the noise-free
value of -1, see light red stabilizers in Fig. 3b(xii) and Extended Data
Fig. 7, have the following values (x100): (58, -46, -34, -46) with sta-
tistical error 4. For comparison, the experimental values for the same
set of stabilizers is (=52, —41, -39, —49). Our simulation results are in
relatively good agreement with the measured data, suggesting that
the model captures the effects of noise well. The observed discrepan-
ciesare expected to be due toinhomogeneity of the errors, which was
notincludedinourerror model. The simulations used an open source
simulator qsim*.

Additional braiding data

InFig. 3, we demonstrate that no fermion appears when distinguish-
able g are braided with each other. In Extended Data Fig. 8, we show
the data for each step in that protocol, analogous to those shown for
indistinguishable gin the main text. Moreover, we also present an alter-
native braiding scheme in Extended Data Fig. 9, which requires fewer
(18) CZ gates. Inthis case, however, pair Bis not brought back together,
and neither of the o pairs are annihilated. Therefore, similar toin Fig. 2c,
we measure the Pauli string corresponding to bringing a plaquette
violation around pair A (grey path in Extended Data Fig. 9c), whichin
this case canbe reduced to ¥ on the qubit where the two o overlap. We
find (PY=(¥)»=-0.71 £ 0.01, indicating that braiding the o led to the
creation of a fermion (Extended Data Fig. 9c). Note that we here only



search for fermions in one of the g pairs. As a control experiment, we
repeat the experiment with distinguishable g pairs, as in the main text
(Extended Data Fig. 9d). In this case, we find (P) =+0.71 + 0.01, thus
demonstrating that no fermionwas produced. Together, these obser-
vations constitute another demonstration of non-Abelian exchange
statistics of the D3Vs.

A summary of the theoretical framework

It was observed by Kitaev that fluxes of the e-m exchange symmetry are
expected to host Majorana modes and therefore have the degeneracy
ofIsing anyons’. Bombin gave a particular stabilizer configuration real-
izing such a flux as a fixed lattice dislocation in a square grid, showed
on general grounds that if such fluxes were well-separated and could
be braided they would be projective Ising anyons, and noted that it
may be possible to braid such fluxes by code deformation’®. A general
formalism for theories realized by braiding of symmetry fluxes was
described in ref. 47. These constructions focus on the long-distance
physics, and in practical terms® gives anaccount of ‘microscopics’. An
explicitmappingto agauge theory shows how the anyons are localized
toasingle qubit, andis used to derive asimple, efficient and systematic
procedure for creating, braiding and measuring the fusion outcomes
of Ising anyons on general stabilizer graphs. The bridge between the
microscopics and general arguments established by the gauge the-
ory mapping allows us to fit several anyons on present-day devices,
probe the full two-dimensional nature of their braiding by main-
taining their separation, and demonstrate braid generators that
restore all local observables. For details discussions of the protocol,
seeref.23.

Data availability

Thedatathat supportthe findingsin this study are available at https://
doi.org/10.5281/zen0do0.7869220.

45. Arute, F. et al. Quantum supremacy using a programmable superconducting processor.
Nature 574, 505-510 (2019).

46. Isakov, S. V. et al. Simulations of quantum circuits with approximate noise using gsim and
cirg. Preprint at https://arxiv.org/abs/2111.02396 (2021).

47.  Barkeshli, M., Bonderson, P., Cheng, M. & Wang, Z. Symmetry fractionalization, defects,
and gauging of topological phases. Phys. Rev. B100, 115147 (2019).

Acknowledgements Y.L. and E.A K. acknowledge support by a New Frontier Grant from
Cornell University’s College of Arts and Sciences. E.A.K. acknowledges support by the
National Science Foundation under grant no. OAC-2118310, the Ewha Frontier 10-10 Research
Grant and the Simons Fellowship in Theoretical Physics award no. 920665. E.A K. performed a
part of this work at the Aspen Center for Physics, which is supported by the National Science
Foundation grant no. PHY-160761.

Author contributions Y.D.L., K.K., E.-A.K. and I.A. developed the underlying theory. T.l.A., Y.D.L.,
K.K., E.-AK., I.A.and P.R. developed the experiment. T.I.A. performed the experiment and
analysed the data. I.K.D., A.B., S.H., A.M., X.M. and A.O. provided assistance with calibration.
T.IA. Y.D.L., KK., E.-AK., lLA.and P.R. wrote the manuscript. T.I.A., Y.D.L., K.K. and P.R. wrote the
Methods. All authors contributed to revising the manuscript. All authors contributed to the
experimental and theoretical infrastructure to enable the experiment.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-023-05954-4.

Correspondence and requests for materials should be addressed to E.-A. Kim, |. Aleiner or

P. Roushan.

Peer review information Nature thanks Bernard van Heck and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.


https://doi.org/10.5281/zenodo.7869220
https://doi.org/10.5281/zenodo.7869220
https://arxiv.org/abs/2111.02396
https://doi.org/10.1038/s41586-023-05954-4
http://www.nature.com/reprints

Article

8

g

=]
~
5

Vg

0 10 20

Ty (us)
o

0 10 20

Cummulative percentage of qubits (%) &
3
o

Cummulative percentage of qubits (%) <
3
o

Qubit number E Qubit number E
1 ]
] !
25} ; 251 i
] I
i i

E Median=21.7 us E Median=21.7 ps

0 0 10 0 30 0 0 10 20 30
T (us) T (us)

Extended DataFig.1|Qubitrelaxation (7,) and coherence (T,) times. a,b, Cummulative distributions of 7, (a) and 7, (b), where the latter is measured using a
Hahnechosequence. Dashed linesindicate the median values of 21.7 us for both measures. Insets: 7;and T, plotted against qubit number.



a Single qubit gate errors b CZ gate errors
100 100 T
i
]
= i
g £ i
e [ !
2 75t g 75¢ i
3 = i
& 5 !
5 : & i
¥ : |
1

g S0+ § 50}

2 : :
o i 2 i
2 ! by i
E = i
g i
25} E 25} |
3 i
3 |

Median=1.3e-3 | Median=7.3e-3
)

0 A A 1 A A 0 A A A .: PR | A A
1e-3 2e-3 3e-3 Se-3 1e-2 2e-2  3e-2
Pauli error Pauli error

Extended DataFig.2|Gate errors.a,b, Cummulative distributions of the Pauli error for single-qubit (a) and two-qubit CZ (b) gates. We find median error values
of1.3x10and 7.3 x 10~ for the single-qubit and CZ gates, respectively.



Article

a Readout benchmarking
100 T
Median = 2.0% |
i
1
1
= i
X i
» 5 i
5 i
3 ]
o 1
5 i
S i
2 i
g 50|
2 £ 6f
2 -
g N
g | 3
£ 18 2}
5 25} 1 8
o A
: 0 2 2 2
! 0 10 20
! Qubit number
i
1
0 L 1 1 1 1
2 3 4 5 6
Readout error (%)

c

Before readout correction

e [ [
DoEm
o R [

(Stabilizer)
-1.0 0 1.0
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improves the average absolute stabilizer value from 0.50 to 0.58.
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a - Fusion experiment (Fig. 2)

c Half-braid experiment (Fig. 4)
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-1 - (see separate figure for CZ-decompositions)
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: Diagonal move
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U.(X5 X512, 0)f= : 3Q unitary move
b . Full-braid experiment (Fig. 3)
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Extended DataFig. 5| Circuit details. Circuits used for the fusion experiment
(a), the full-braid experiment (b), and the half-braid experiment (c), shownin
Figs.2-4, respectively, in the main text. Turqoise and gray boxes denote
dynamical decoupling and phased XZ-gates, respectively. In the full-braid
experiment (b), we include five single-qubit rotations to permute X, ¥ and Z of

thethreestabilizers touching the moving D3Vinsteps V-VIIland IX-XI, as well as
three Hadamard-gates to return all stabilizers to the original ZX X Z-form in XIL.
See Extended DataFig. 6 for the circuit used for ground state preparation, as
well as details on how the multi-qubit unitary gates used to move anyons are
decomposedinto CZ-gates.
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inclusion of Hadamard gates on alternating qubits in the final step, since we use
symmetrized stabilizers on the form ZXXZ.b, The unitary needed tomovea
D3Vbetween twoneighboring verticesisrealized in the experiment through

-1

é= CNOT-gate D = SQ-gate

the use of one CZ-gate and single-qubit rotations. c, When D3Vs are moved
diagonally, weinclude two SWAP gates, requiring three CZ-gates each. d, Main:
thethree-qubitunitary usedinstep VIIlin Fig.3isequivalenttoacombination
of single-qubitgates, 4 SWAP-gates and 4 CZ-gates. Right dashed box: decomposition
of aSWAP-gateinto CZ-gates. e, Adjacent single-qubit gates are merged and
shifted left tothe nearest CZ-gate.
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Simulation

(Stabilizer)
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Extended DataFig.7|Simulation ofbraidinginthe presence of noise. a, Simulationresults. b, Experimental data (same asinstep XlIlin Fig. 3b). We observe
relatively good agreement between the simulation and the experimental results, except some discrepancies that are attributed toinhomogeneity of the errors.
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Extended DataFig. 8| Braiding distinguishable D3Vs. a, Braiding schematic of worldlines. b, Step-by-step depiction of stabilizers as the two g are braided,
analogousto thatinFig. 3, but with distinguishable o.
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Braiding of indistinguishable D3Vs
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Extended DataFig. 9| Alternative protocol for braiding o. a, Schematic
displaying thebraiding process of the two o-pairs. b, Experimental demonstration
of braiding, displaying the values of the stabilizers throughout the process.
Two o-pairs, Aand B, are created from the vacuum 1, and one of the D3Vsin pair A
isbrought totherightside of the grid. Next, aofrom pair Bismoved to thetop,
thus crossing the path of the first g, before bringing the o from pair Aback again
tocompletethe braid. The diagonal move performedinstep Vlisachieved by
including two SWAP-gates, corresponding to 6 additional CZ-gates. The yellow
trianglesrepresent the locations of the g, while the brown and greenlines
represent the paths of ofrom pair Aand B, respectively. The average absolute

asn

.25 “E’
A!Al

{(P)=(Y)=+0.71£0.01

stabilizer valueis 0.93 + 0.06 and 0.77 + 0.09 in the first and last step,
respectively. ¢, After braiding the o, we search for hidden fermions by
measuring the Pauli string P (left panels), which here s equivalent to¥ on the
qubit where the two goverlap. The measurement yields(P)=(¥)=-0.71+ 0.01,
indicating creation of afermion. Right: world-lines of braiding process,
including non-local measurementbased on plaquette violationloop. d, Same
asc,butafterbraiding two distinguishable o, achieved by applying the inverse
two-qubit gates when moving the oin pair B. The measurement yields
(¥)=+0.71+0.01, indicating no fermion creation.
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