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We report on a numerical experiment in which we use time-dependent potentials to braid non-Abelian

quasiparticles. We consider lattice bosons in a uniform magnetic field within the fractional quantum Hall

regime, where �, the ratio of particles to flux quanta, is near 1=2, 1, or 3=2. We introduce time-dependent

potentials which move quasiparticle excitations around one another, explicitly simulating a braiding

operation which could implement part of a gate in a quantum computation. We find that different braids do

not commute for � near 1 and 3=2, with Berry matrices, respectively, consistent with Ising and Fibonacci

anyons. Near � ¼ 1=2, the braids commute.
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Introduction.—When two identical quantum mechanical
particles exchange places, the wave function typically
acquires a phase: � ¼ 0 for bosons and � ¼ � for fermi-
ons. Remarkably, there exist 2D systems [1–8] whose
‘‘anyon’’ excitations display fractional statistics, with
� � 0; �. Even more remarkably, there are models in
which exchanging quasiparticles not only produces a
phase, but also rotates the system between degenerate
states [9–24]. Under these circumstances, exchanges may
not commute. Kitaev [22] proposed using such non-
Abelian quasiparticles for quantum computation, with qu-
bits constructed from the degenerate states. Quantum gates
are implemented by ‘‘braiding’’ the quasiparticles: using
time-dependent potentials to drag the quasiparticles around
one another, switching their positions. The collective na-
ture of the encoded quantum information provides protec-
tion against various decoherence mechanisms. Here we
start from a microscopic Hamiltonian and numerically
calculate the result of such a braiding experiment. We
find that even for surprisingly small systems (4� 4 latti-
ces), this procedure can be used to establish non-Abelian
statistics, and hence to implement quantum gates.

Explicitly calculating the results of a braiding operation
for a realistic microscopic Hamiltonian is difficult.
Previous studies have mostly focused on the properties of
variational wave functions [6,10,24–33]. As in physical
experiments, a numerical experiment must contend with
finite size effects, mixing of higher bands, the location of
unpinned quasiparticles, and uncertainty about both the
exact many-body wave function and the interaction be-
tween a quasiparticle and the applied perturbation.
Overcoming these difficulties is well worth the effort, since
observing the braiding of two quasiparticles provides a
definitive test of exchange statistics. This numerical ap-
proach complements more indirect experimental ap-
proaches, such as observing shot noise or interference
effects in the tunneling of edge states [34].

Model.—We choose a model which is both experimen-
tally relevant and computationally tractable: hard-core

bosons hopping on a square lattice, with phases on the
hopping matrix elements corresponding to a uniform mag-
netic field. This model describes Cooper pairs hopping on a
Josephson junction array in a magnetic field [35–37] when
the charging energy is large compared to the hopping
energy. It also describes cold atoms in a deep optical lattice
[38] with an artificial gauge field [39–43]. Recent develop-
ments in cold atom physics [43] suggest that the fractional
quantum Hall regime will be attained in the near future.
A general Hamiltonian for lattice bosons is

H ¼ �X
jk

ðJjkei�jkayj ak þ H:c:Þ þU2

2
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6
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ayk (ak) creates (annihilates) a boson at complex coordinate

zk on a square lattice with unit lattice spacing. Defining

z � zj � zk ¼ xþ iy as a complex integer, i�jk ¼
� ��

2 ðzjz� � z�jzÞ is the Peierls phase of the B field (with

� the density of flux quanta per plaquette). The properties
of this Hamiltonian depend on the form of Jij. The simplest

model would just include nearest-neighbor hopping [44].
As argued in [45], the fractional quantum Hall states are
particularly robust if we use a specific Gaussian hopping,
Jjk � JðzÞ ¼ J0GðzÞ exp½� �

2 ð1��Þjzj2�, where GðzÞ ¼
ð�1Þ1þxþyþxy and J0 is a constant. In all but one case
(see caption of Table I), we take the hard-core limit of

U2 ! 1. We define JNN ¼ J0e
��=4 as the energy scale of

the problem. U3 is an artificial three-body repulsion which
we introduce in some calculations. The magnetic length in
this system, lB ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
2��

p
lattice spacings, is very short

for the flux densities studied (lB ¼ 0:56 for � ¼ 1=2). We
showed in [45] that the single-particle spectrum of (1)
reproduces the continuum lowest Landau level (LLL)
with �L2 degenerate single-particle ground states on an
L� L lattice. As explained in [45], the longer range hop-
pings can be engineered by appropriately shunting the
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Josephson junction array or by appropriately tailoring the
optical lattice potential. For � & 1=3 it suffices to include
next-nearest-neighbor hopping. Since the lowest Landau
level is the ground state manifold of (1), a LLL-projected
calculation in the continuum would give similar results, at
the cost of more complexity in the calculation.

We add to Eq. (1) a time-dependent potential VjðtÞ
through a Hamiltonian Hp ¼ P

jVjðtÞayj aj. At time t¼0,

we take V to be zero except on a few sites, where it is
positive. We slowly change V such that VjðTÞ ¼ Vjð0Þ, but
with two of the potential bumps exchanged. If quasipar-
ticles are pinned to the defects, this will exchange them.
Experimentally, the potential Vj could be engineered by

gates on individual Josephson junctions, or through tar-
geted lasers in an optical lattice. Such addressability was
recently demonstrated in [47]. In our numerics, we move
our bumps by linearly reducing the amplitude of V on one
site, while linearly increasing it on a neighbor.

Under an adiabatic cyclic change of the Hamiltonian,
nondegenerate states will return to themselves with an
additional phase factor, while degenerate states can mix:

e�iHTjc ii ¼ e�i
R

EdtP
jMijjc ji. Throughout we neglect

the
R
Edt term, where EðtÞ is the instantaneous energy at

time t. This temporal phase can be experimentally distin-
guished from the geometric phase by traversing the path at

different rates. The unitary matrix Mij is calculated by

integrating the Berry connection:

M ¼ P exp

�
2�i

I
d��

�
: (2)

Here, �ij ¼ ihc ijr�jc ji is the Berry connection matrix,

the jc ii are a basis of degenerate states, � parametrizes the
path, and P is the path ordering symbol. While the Berry
connection � is a gauge-dependent quantity, the matrix M
is physical and gauge invariant (up to joint choice of basis
at the start and end points).
To numerically calculate Eq. (2), we use a method

described in [48,49], breaking the path into many small
discrete steps, engineered to maintain the degeneracies of
the spectrum. For each point � on the path, we diagonalize
H to produce a basis jc ið�Þi. This basis is not unique: the
phases of jc ið�Þi are arbitrary, and one can form a new
basis by taking arbitrary linear superpositions of degener-
ate states. We fix this arbitrariness by choosing
hc ið�Þjc jð�þ d�Þi ¼ �ij þOðd�2Þ. The Berry matrix

is then

Mij ¼ hc ið�fÞjc jð0Þi: (3)

Following [49], we generate the states jc ið�þ d�Þi ¼P
jðA�1Þijj ~c jð�þ d�Þi by first determining the eigenstates

TABLE I. The results of our numerical braiding studies. Here, N is the total particle number, N� is the total number of flux quanta,
and Nimp impurity sites have a repulsive potential applied. ‘‘GFS’’ refers to whether the degenerate pair of eigenstates are the ground

(G), first excited (F), or second excited (S) states. The braids are each characterized by a unitary matrix with eigenvalues
ei�p1 ; ei�p2 ! ðp1; p2Þ. The exchange paths are shown in Fig. 1, with Rij denoting the exchange of impurities i and j. The algebras

in the non-Abelian cases approximate those described in the text [33,46]; cases labeled as ambiguous contain noncommuting paths, but
the transformations associated with these paths depended on the details of the path and/or did not match the analytical predictions.
Because of finite size splitting, not all paths were accessible on all lattices; only paths which led to a sensible braid and which were
stable against small changes in the impurity strength Vj are quoted here. Hard-core interactions (U2 ¼ 1) were used in all cases except

4� 4�, where we also used (U2 ¼ 0, U3 ¼ 1). These two interactions gave nearly identical results.

Lattice N N� Nimp GFS �eff Braid path, phases (all ��)

Abelian

4� 4 3 8 2 G 1=2 (a) (0.49,0.49), (c) (0.99,0.99)

4� 4 6 8 2 F 1 (a) (0,0.99), (b) (0,1)

4� 4 7 8 2 G 7=6 (b) (0,1)

Non-Abelian

6� 4 4 8 4(i) S 1 R12, R34: ð0:28;�0:28Þ
R24: ð�0:26;�0:75Þ
R13: ð0:22;�0:22Þ

4� 4 7 8 3(g) F 7=5 R13, R23: ð0:08; 0:73Þ
R12: ð0:08ð1Þ; 0:76ð4ÞÞ

Ambiguous

4� 4� 4 8 4(d) F 1 R12, R13, R24, R34: ð0; 1Þ
4� 4 7 10 4(e) F 7/6 R12, R13, R24, R34:

(0.25(2),-0.25(2))

5� 4 4 10 4(f) G 2/3 R12, R34: ð�0:75; 0:75Þ,
8� 2 6 8 4(h) F 3=2 R12, R34: ð0:32;�0:32Þ

R23, R14: ð0; 1Þ
9� 2 9 10 4(j) F 3=2 R34: ð0:69;�0:69Þ
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j ~c ið�þ d�Þi using a generic diagonalization algorithm,

and then calculating the overlap matrix Aij ¼
hc ið�Þj ~c jð�þ d�Þi. Since A will be unitary only up to

corrections of order d�, we perform a Gram-Schmidt
orthogonalization at each step.

In Fig. 1, we illustrate the initial configurations of the
impurities and some of paths over which we move them.
We use relatively small systems: between 3 and 9 particles
on lattices of up to 24 sites with periodic boundary con-
ditions, with the hard-core constraint the largest Hilbert
spaces studied contained about 50 000 states. While state-
of-the art algorithms on high performance computers
would allow us to study larger systems, we find that finite
size effects are already sufficiently small on these modest
grids, presumably due to the robust nature of the topologi-
cal effects of interest. Our algorithm was implemented in
MATHEMATICA on a desktop computer.

Results.—The results of our braiding calculations are
summarized in Table I. In all cases, the applied impurity
potentials are strong. We assign each state an effective
filling fraction �eff ¼ N=NLLL, where NLLL is the number
of single-particle states in the LLL in the presence of the
impurities. In every case studied, for Nimp impurities

NLLL ¼ N� � Nimp (where N� is the number of flux

quanta), showing that a full quasihole (QH) is pinned at
each impurity. Each quasihole is a first order zero of the
many-body wave function and binds a single flux quantum.
These full QHs will be supplemented by non-Abelian frac-
tional QHs at the appropriate filling fractions, though due
to the small sizes of our systems and the nearly zero
amplitude of the wave function near impurities, we cannot
be certain of their locations. Our braiding results are con-
sistent with the assumption that any non-Abelian fractional

QHs track the locations of the impurities. In the thermody-
namic limit, �eff ! �. In the table, each unitary braid
matrix M is denoted by a pair of phases (p1; p2), where
ei�p1 and ei�p2 are the eigenvalues of M. For cases with
more than 2 impurities, we label the exchange of impurities
i and j (as labeled in Fig. 1) by Rij.

The simplest case �eff ¼ 1=2 provides an excellent test
of the algorithm, since we know (in the absence of a
perturbing potential) that both the ground state wave func-
tion and its quasihole excitations are given exactly by
Laughlin’s variational ansatz [45]. On the torus, the ground
state is twofold degenerate [50,51]. Excitations about these
two degenerate ground states require overcoming an en-
ergy gap�� JNN . The quasiholes are Abelian anyons, and
the Berry matrix in the ground state subspace should be the
identity times a phase of��=2, depending on the direction
of the exchange path [5,6]. This is consistent with our
numerical studies of the path in Fig. 1(a). Since a complete
braid of one quasihole around another is equivalent to two
exchanges, we find a phase of � for the path 1(c). As
expected, when we introduce more impurities, we find
that near �eff ¼ 1=2 all braids commute.
A generic potential splits the twofold degeneracy of the

ground state by a small energy �. We attribute these split-
tings to interactions between the quasiparticles when they
are moved close to one another. By optimizing the shapes
of the potential at each time step, we can make � < 0:02�
for all points in the �eff ¼ 1=2 braid. While largely irrele-
vant for �eff ¼ 1=2, this optimization can be crucial for
producing sensible results near �eff ¼ 1 or 3=2. If the
trajectory is traversed in a time T such that @=� � T �
@=�, these splittings have no physical effect, and we there-
fore neglect them when calculating M. The splittings can
be further reduced by using larger systems. Detailed graphs
of our optimized potentials are shown in the Supplemental
Material [52].
The physics near �eff ¼ 1 and 3=2 is richer. At �eff ¼ 1

for U2 small, all particles are in the lowest Landau level
and the ground state �G has a large overlap [16] with the
Moore-Read (MR) Pfaffian state�MR [9–12,23,24], a state
with non-Abelian excitations. We typically perform our
calculations using hard-core interactions, for which mixing
with excited bands is significant and the overlap is smaller:
jh�MRj�Gij< 0:3. Despite the small overlaps, the ground
state with hard-core interactions is expected to be adiabati-
cally connected to the MR state and should share topologi-
cal invariants such as exchange statistics. The MR state is
the exact ground state [11] of a Hamiltonian with repulsive
three-body interactions (U2 ¼ 0, U3 > 0). As we expand
on below, we find excellent agreement between calcula-
tions using the two- and three-body interactions.
The MR state is gapped and has two types of fundamen-

tal vortex excitations. In addition to the full QHs described
earlier, the MR state has half-quasihole (HQH) excitations,
which bind half a flux quantum, partially exclude particles

FIG. 1 (color online). (a)–(c) Exchange paths used to braid
quasiparticles on various lattices. In each path, the impurities
(shaded red) are incrementally moved along the segments
(1; 2; 3; . . . ) until they return to their starting positions, ex-
changed. The dashed box represents the periodic lattice bound-
ary. Panels (d)–(i) show the initial configurations of the
impurities for the 3- and 4-impurity braids.
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from their location, and are non-Abelian Ising anyons [10].
Wave functions of the MR type with 2n HQHs are
2n�1-fold degenerate [24] in the limit that all the HQHs
are far apart. Given our strong impurity potentials (Vj 	
JNN), we expect each repulsive impurity to bind a full QH
and a half quantum vortex. Exchanging two HQHs per-
forms a �=2 rotation within the degenerate subspace, and
the rotations produced by exchanging different pairs of
HQHs do not generally commute. Up to Abelian phases,
for four HQHs there is a basis [53,54] in which the braid
matrices take the form

R12¼R34¼e�ið�=4Þ	y ; R13¼R24¼e�ið�=4Þ	x: (4)

To estimate the overlap of the unitary transformations
which result from our braids with the predictions of the
analytical theories of Bose quantum Hall states, we use the

matrix overlap measure ðM1;M2Þ � jtrðM1M
y
2 Þj=2. This

quantity is insensitive to overall phases or changes to the
shared basis of M1 and M2, and we consider two unitary

matrices to be equivalent if jtrðM1M
y
2 Þj=2 ¼ 1.

For the case of N ¼ 4, N� ¼ 8, and Nimp ¼ 4 on the

6� 4 lattice (where two impurities need never be nearest
or next-nearest neighbors in a braid), our numerical results
are in remarkable agreement with Eq. (4). Labeling the
analytical predictions by R and the numerical matrices M,
we can find a basis where ðR12;M12Þ ¼ ðR34;M34Þ ¼ 0:99,
ðR24;M24Þ ¼ 0:98, and ðR13;M13Þ ¼ 0:97.

When impurities are allowed to approach more closely,
however, the numerical results diverge from the analytical
predictions, and in many cases, the exchange of two strong
impurities produces a rotation by �. We conjecture that
this represents the exchange of two pairs of HQHs, which
either do not sit directly on the impurities but move with
them as they are exchanged, or experience tunneling events
when impurities move too close to one another. For the
case of a 4� 4 lattice with N ¼ 4, N� ¼ 8, and Nimp ¼ 4,

we obtained identical results when considering the ordi-
nary hard-core two-body or a hard-core three-body inter-
action, where the MR state is the exact ground state [11].
For N ¼ 7 and N� ¼ 10 on the same lattice [Fig. 1(e)], we

consistently obtained rotations by ð0:5� 0:03Þ�, but the
matrices which resulted were not straightforwardly related
to the analytical predictions in Eq. (4), and depended
strongly on the path by which a pair of impurities were
exchanged. These results show that the precise relationship
of the non-Abelian vortices to the impurities is subtle
[29,55–57]. Further, they reveal that the Berry matrices
can be strongly modified for paths whose impurities come
close together. Surprisingly, the degeneracies are not nec-
essarily broken by these close approaches.

Finally, near �eff ¼ 3=2 [Figs. 1(g), 1(h), and 1(j)], we
obtained a result consistent with the predictions for a
Fibonacci anyon theory [46], the effective theory of the
Read-Rezayi state at k ¼ 3 [13]. Previous numerical stud-
ies of continuum bosons in the LLL [16] have found strong

evidence for this state, a particularly exciting result since
Fibonacci anyons are capable of universal topological
quantum computing. Comparing our numerically derived
matrices at N ¼ 7, N� ¼ 8, and Nimp ¼ 3 with the trans-

formations derived by Hormozi et al. [46], we obtained
ðR13;M13Þ ¼ 0:99 and ðR23;M23Þ ¼ 0:90. However, for the
exchange of impurities 1 and 2, we found two sensible
paths [1(a) and 1(b)]: in path (a) impurity 3 was allowed to
move during the braid and in (b) it was not. We found that
ðR12;M12ðaÞÞ ¼ 0:93, but ðR12;M12ðbÞÞ ¼ 0:69, and
ðM12ðaÞ;M12ðbÞÞ ¼ 0:46. As discussed above, this dis-
agreement is likely due to tunneling events when the
impurities approached as next-nearest neighbors. For the
8� 2 and 9� 2 lattices, we obtained rotations of nearly
3�=5 as predicted, but the resulting matrices had little
overlap with those predicted from the Fibonacci anyon
theory.
Summary and conclusions.—In summary, we have nu-

merically studied a realistic model, Eq. (1), which has
anyon excitations at filling fraction �eff ¼ 1=2 and non-
Abelian anyons at �eff ¼ 1 and 3=2 analogous to those in
the Moore-Read and Read-Rezayi states. These results
suggest adiabatic continuity between the states of our
lattice model with hard-core interactions and those found
purely in the LLL [16], to which our model reduces in the
limit of weaker on-site interaction. We have also shown
that surprisingly small lattices can reproduce infinite-
system predictions, without resorting to trial wave func-
tions. This robustness is likely related to the topologically
protected nature of the states, and is encouraging for future
experiments.
The most intriguing implication of our result is in quan-

tum computation. In recent years, a wealth of theory
[10,32,33,54,58,59] has shown that the MR state of elec-
trons at � ¼ 5=2 could be used to construct topologically
protected quantum memory and quantum computing op-
erations, and has described potential implementations.
While non-Abelian statistics in the � ¼ 5=2 state have
not yet been confirmed experimentally, the fact that the
� ¼ 1 MR state and the � ¼ 5=2MR state are in the same
universality class implies that the theory for manipulating
quasiholes in the � ¼ 5=2 electron gas can be applied
directly to our lattice boson system. Our � ¼ 3=2 results
are even more exciting since the Read-Rezayi states can be
used to construct a universal set of quantum gates.
Implementing our model in a Josephson junction array
would open a new area of physics to study topological
noise protection and non-Abelian statistics, since for � 

1=4 three non-Abelian plateaus (� ¼ 1, 3=2, and 2) could
be studied in the same experiment. The ability to individu-
ally address any lattice site would provide an unprece-
dented ability to manipulate quasiholes [32], potentially
creating a truly universal ‘‘quantum loom.’’
We thank Chetan Nayak, Andrei Bernevig, Chris

Laumann, and Chris Henley for useful discussions. This

PRL 108, 066802 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

10 FEBRUARY 2012

066802-4



work was supported by an Army Research Office grant
with funding from the DARPA OLE program, by NSF
Grant No. PHY-1068165, and by the Department of
Defense (DoD) through the National Defense Science
and Engineering Graduate (NDSEG) program.

*ek359@cornell.edu
[1] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[2] F. D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
[3] R. E. Prange and S.M. Girvin, The Quantum Hall Effect

(Springer, New York, 1986).
[4] D. Yoshokia, The Quantum Hall Effect (Springer-Verlag,

New York, 1998).
[5] X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[6] X. G. Wen, E. Dagotto, and E. Fradkin, Phys. Rev. B 42,

6110 (1990).
[7] D. F. Schroeter, E. Kapit, R. Thomale, and M. Greiter,

Phys. Rev. Lett. 99, 097202 (2007).
[8] R. Thomale, E. Kapit, D. F. Schroeter, and M. Greiter,

Phys. Rev. B 80, 104406 (2009).
[9] G. Moore and N. Read, Nucl. Phys. B360, 362 (1991).
[10] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[11] M. Greiter, X.G. Wen, and F. Wilczek, Nucl. Phys. B374,

567 (1992).
[12] N. Read and E. Rezayi, Phys. Rev. B 54, 16 864 (1996).
[13] N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999).
[14] P. Bonderson, V. Gurarie, and C. Nayak, Phys. Rev. B 83,

075303 (2011).
[15] S. H. Simon, E. H. Rezayi, N. R. Cooper, and I. Berdnikov,

Phys. Rev. B 75, 075317 (2007).
[16] N. R. Cooper, N. K. Wilkin, and J.M. F. Gunn, Phys. Rev.

Lett. 87, 120405 (2001).
[17] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[18] M.A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110

(2005).
[19] M. Greiter and R. Thomale, Phys. Rev. Lett. 102, 207203

(2009).
[20] B. Scharfenberger, R. Thomale, and M. Greiter, Phys. Rev.

B 84, 140404(R) (2011).
[21] A. Kitaev, Ann. Phys. (N.Y.) 321, 2 (2006).
[22] A. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003).
[23] E. Fradkin, C. Nayak, and K. Schoutens, Nucl. Phys.

B546, 711 (1999).
[24] C. Nayak and F. Wilczek, Nucl. Phys. B479, 529 (1996).
[25] G. S. Jeon, K. L. Graham, and J. K. Jain, Phys. Rev. Lett.

91, 036801 (2003).
[26] G. S. Jeon, K. L. Graham, and J. K. Jain, Phys. Rev. B 70,

125316 (2004).
[27] Y. Tserkovnyak and S. H. Simon, Phys. Rev. Lett. 90,

016802 (2003).
[28] M. Baraban, G. Zikos, N. Bonesteel, and S. H. Simon,

Phys. Rev. Lett. 103, 076801 (2009).

[29] E. Prodan and F.D.M. Haldane, Phys. Rev. B 80, 115121
(2009).

[30] V. Lahtinen and J. K. Pachos, New J. Phys. 11, 093027
(2009).

[31] A. T. Bloukbasi and J. Vala, arXiv:1103.3061.
[32] M. Freedman, C. Nayak, and K. Walker, Phys. Rev. B 73,

245307 (2006).
[33] L. S. Georgiev, Phys. Rev. B 74, 235112 (2006).
[34] R. L. Willett, L. N. Pfeiffer, and K.W. West, Phys. Rev. B

82, 205301 (2010).
[35] H. S. J. van der Zant, W. J. Elion, L. J. Geerligs, and J. E.

Mooij, Phys. Rev. B 54, 10 081 (1996).
[36] R. Fazio and H. van der Zant, Phys. Rep. 355, 235 (2001).
[37] L. B. Ioffe et al., Nature (London) 415, 503 (2002).
[38] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,

885 (2008).
[39] Y.-J. Lin, R. L. Compton, K. Jiménez-Garcı́a, J. V. Porto,

and I. B. Spielman, Nature (London) 462, 628 (2009).
[40] R. A. Williams, S. Al-Assam, and C. J. Foot, Phys. Rev.

Lett. 104, 050404 (2010).
[41] N. R. Cooper, Adv. Phys. 57, 539 (2008).
[42] X.-J. Liu, X. Liu, C. Wu, and J. Sinova, Phys. Rev. A 81,

033622 (2010).
[43] I. B. Spielman, Phys. Rev. A 79, 063613 (2009).
[44] D. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[45] E. Kapit and E. Mueller, Phys. Rev. Lett. 105, 215303

(2010).
[46] L. Hormozi, G. Zikos, N. E. Bonesteel, and S. H. Simon,

Phys. Rev. B 75, 165310 (2007).
[47] C. Weitenberg et al., Nature (London) 471, 319 (2011).
[48] S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247

(1956).
[49] R. Resta, Berry Phase in Electronic Wave Functions

(EPFL, Lausanne, 1996.
[50] F. D.M. Haldane and E.H. Rezayi, Phys. Rev. B 31, 2529

(1985).
[51] M. Oshikawa, Y. B. Kim, K. Shtengel, C. Nayak, and S.

Tewari, Ann. Phys. (N.Y.) 322, 1477 (2007).
[52] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.108.066802 for a de-

tailed pseudocode description of our braiding algorithm,

as well as the explicit paths used in the braiding calcu-

lations with calculations of the degeneracy splitting at

intermediate substeps.
[53] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[54] S. Bravyi, Phys. Rev. A 73, 042313 (2006).
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