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Abstract: We construct five different two-parameter massive deformations of the unique

nine-dimensional N = 2 supergravity. All of these deformations have a higher-dimensional

origin via Scherk-Schwarz reduction and correspond to gauged supergravities. The gauge

groups we encounter are SO(2), SO(1, 1)+, R, R+ and the two-dimensional non-abelian

Lie group A(1), which consists of scalings and translations in one dimension. We make a

systematic search for half-supersymmetric domain walls and non-supersymmetric de Sitter

space solutions. Furthermore, we discuss which of the supergravities can be considered as

candidate low-energy limits of compactified superstring theory.
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1. Introduction

It is well-known that the low-energy limit of superstring theory and/or M-theory is de-

scribed by a supergravity theory in the same spacetime dimension and with the same

number of supersymmetries. Thus, M-theory leads to D = 11 supergravity and type-

IIA/IIB superstring theory leads to D = 10 IIA/IIB supergravity. The same applies to the

compactifications of these theories to lower dimensions.

The other way round is less clear: not every supergravity theory has necessarily a

string or M-theory origin. A well-known example of a supergravity theory whose role in

string theory was unclear until a few years ago is the D = 10 massive supergravity theory

of Romans [1]. It was pointed out by Romans that the D = 10 (massless) IIA supergravity

theory [2, 3] can be deformed into a massive supergravity with mass parameter mR. The

role of this massive supergravity within string theory has become clear only after the

introduction of the D-branes, in particular the D8-brane [4]. An interesting feature of

the massive supergravity of Romans is that the lagrangian possesses a dilaton potential

proportional to m2
R which acts as an effective cosmological constant. Due to this scalar

potential the massive supergravity, unlike the massless case, does not allow a maximally

supersymmetric Minkowski spacetime as a vacuum solution. Instead, the scalar potential

leads to the possibility of a half-supersymmetric domain wall solution interpolating between

different values of the cosmological constant. Such a solution indeed exists [5, 6] and is

identified as the D8-brane of [4].

The massive supergravity of [1] is not a gauged supergravity and, at the field theory

level, has no D = 11 origin.1 The only candidate symmetry of the lagrangian to be gauged

is a rigid R+ symmetry (see table 2). However, the Ramond-Ramond gauge vector has

a nontrivial weight under this R+ symmetry and this leads to inconsistencies with the

supersymmetry algebra. There does exist another massive deformation of D = 10 IIA

supergravity, with mass parameter m11, which is a gauged supergravity and does have a

D = 11 origin [8, 9]. However, it can only be defined at the level of the equations of motion.

The Ramond-Ramond gauge vector has weight zero with respect to the R+ group that is

gauged (see table 2) and in this case there are no inconsistencies with the supersymmetry

algebra. The role of this second massive deformation within string theory is not (yet) clear.

An interesting feature of the theory is that it allows for a (non-supersymmetric) de Sitter

space solution [9]. The possible physical significance of this de Sitter space solution has

been discussed in [10, 11].

A common feature of the D = 10 massive supergravity of [1] and the D = 10 gauged

supergravity of [8, 9] is that there is a dilaton potential which is proportional to the

square of the mass parameter, m2
R and m2

11, respectively. Due to this scalar potential

the D = 10 Minkowski spacetime is no longer a maximally supersymmetric vacuum so-

lution of the theory. Instead one can look for half-supersymmetric vacuum solutions. A

natural class of half-supersymmetric solutions that makes use of the scalar potential is

the set of domain-wall solutions, like the D8-brane mentioned above. Recently, domain

wall solutions of lower-dimensional supergravities have attracted attention in view of their

1We assume that we are not using the existence of extra Killing vectors, like in [7].
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relevance for a supersymmetric Randall-Sundrum scenario [12, 13], the domain-wall/QFT

correspondence [14, 15] and applications to cosmology [16, 17]. In all these applications

the properties of the domain walls play a crucial role and these properties are determined

by the details of the scalar potential.

Motivated by this we studied in a previous paper general domain wall solutions in

D = 9 dimensions [18].2 We took D = 9 because on the one hand this case shares some of

the complexities of the lower-dimensional cases, on the other hand the scalar potential for

this case is simple enough to study the corresponding domain-wall solutions in full detail.

The supergravity theory we considered in [18] was obtained by a generalized Scherk-Schwarz

reduction of D = 10 IIB supergravity. This is not the most general possibility in D = 9.

The aim of this paper is to make a systematic search for massive deformations of the

unique D = 9, N=2 supergravity theory. All deformations we find correspond to gauged

supergravities. Such supergravities have a gauge symmetry which reduces, for constant

values of the gauge parameter, to a nontrivial rigid symmetry. The hope is that the D = 9

case will teach us something about the more complicated situation in D < 9 dimensions.

In the first part of this paper we will present in two steps the D = 9 gauged supergrav-

ities we have found. In a first step we will present seven massive deformations with a single

mass parameter m, all giving rise to gauged supergravities. All of them are obtained by

generalized dimensional reduction [22] from a higher-dimensional theory (11D, IIA or IIB

supergravity). The consistency of these 9D gauged supergravities is guaranteed by their

higher-dimensional origin. The gauge groups we encounter are either3 SO(2), SO(1, 1)+, R
(all of which are subgroups of SL(2,R) with invariant metrics diag(1, 1), diag(1,−1) and

diag(1, 0), respectively [23, 24]), R+ or the two-dimensional non-abelian Lie group A(1).4

The latter is the affine group of the line and consists of so-called collinear transformations

(scalings and translations) in one dimension and forms a non-semi-simple Lie group [25, 26].

In a second step we will consider combinations of these seven massive deformations.

The closure of the supersymmetry algebra will be guaranteed based on a linearity argument

but it turns out that non-linear restrictions enter via the back door. Satisfying these

restrictions leaves us with five different two-parameter deformations (rather than the seven-

parameter deformation that one could have if there were no non-linear restrictions). These

are the most general gauged supergravities we construct in this paper.

In the second part of this paper we make a systematic search for vacuum solutions

of the supergravities we have obtained. The existence of such vacuum solutions is needed

in order to define the spectrum of the theory as fluctuations around this vacuum. Our

search includes half-supersymmetric domain wall solutions and non-supersymmetric de

Sitter spaces.

Throughout the paper we will reduce field equations rather than lagrangians. The

2For earlier discussions of domain wall solutions in D = 9 dimensions, see [19, 20]. For a more recent

discussion, see [21].
3Throughout the paper we will use the notation SO(1, 1)+ rather than the (isomorphic) R+ for the

scaling symmetry that is a subgroup of SL(2,R). The different notation is used to denote the different

origin.
4This is unrelated to the A-D-E classification of simple Lie groups.
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reason for this is the fact that (some of) the rigid symmetries we employ for Scherk-Schwarz

reduction scale the lagrangian. As was noted by [9] and is illustrated by the SS reduction of

a simple toy model in appendix B, Scherk-Schwarz reduction with a symmetry that scales

the lagrangian can only be performed at the level of the field equations. Reduction of the

lagrangian itself gives rise to the wrong equations. In fact, the reduced field equations can

not be obtained as Euler-Lagrange equations of any lagrangian.

This paper is organized as follows. In section 2 we briefly review the situation in

D = 11 dimensions where no massive deformation has been constructed so far. This case

is needed for the discussion of the D = 10 and D = 9 cases. In section 3 we discuss the

two different massive deformations of D = 10 IIA supergravity. In section 4 we review

the case of D = 10 IIB supergravity. This case does not allow massive deformations but

will be needed for the discussion of the D = 9 case. In section 5 we present 7 massive

deformations of the maximally supersymmetric D = 9 supergravity theory. They all are

gauged supergravities with gauge group SO(2), SO(1, 1)+, R, R+ or A(1). In section 6

we show, by combining the different gauged supergravities, that there exist five different

two-parameter massive supergravity theories. In section 7 we make a systematic search for

vacuum solutions of the supergravities we have obtained. Finally, in section 8 we give our

conclusions. In particular, we discuss which of the D = 9 supergravities can be considered

as candidate low-energy limits of (compactified) superstring theory. We give four appen-

dices. Appendix A contains our conventions. Appendix B discusses the Scherk-Schwarz

reduction of a dilaton-gravity toy model. Appendix C contains the supersymmetry trans-

formations of massless D = 11, 10 and 9 supergravity plus the reduction Ansätze to go

from D = 11 to D = 10 to D = 9. Finally, in appendix D we discuss some manipulations

with spinors and gamma-matrices in ten and nine dimensions.

2. D = 11 supergravity

We first consider eleven-dimensional supergravity. Its field content is given by5

D = 11 :

{

ˆ̂e ˆ
µ̂

ˆ
â,

ˆ̂
C ˆ
µ̂

ˆ
ν̂

ˆ
ρ̂
,
ˆ̂
ψ ˆ
µ̂

}

. (2.1)

TheD = 11 supersymmetry transformations are given
R+ ˆ̂e ˆ

µ̂

ˆ
â Ĉ ˆ

µ̂
ˆ
ν̂

ˆ
ρ̂

ˆ̂
ψ ˆ
µ̂

ˆ̂ε
ˆ̂L

ˆ̂α 1 3 1
2

1
2 9

Table 1: The R+-weights of the

D = 11 supergravity fields, the su-

persymmetry parameters ˆ̂ε and the la-

grangian
ˆ̂L.

in appendix C, see eq. (C.1). These supersymmetry

rules are covariant under an R+ symmetry with pa-

rameter ˆ̂α [27]. The weights of theD = 11 fields under

this R+ are given in table 1. Note that the lagrangian

is not invariant but scales with weight w = 9. There-

fore this R+ is a symmetry of the equations of motion

only.

No massive deformation of the eleven-dimensional supergravity theory is known. In

particular, no cosmological constant can be added [28]. One problem with a D = 11 super-

symmetric cosmological constant is that its reduction gives rise to a D = 10 cosmological

5In order to distinguish between D = 11, D = 10 and D = 9 we indicate D = 11 fields and indices with

a double hat, D = 10 fields and indices with a single hat and D = 9 fields and indices with no hat.
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R+ êµ̂
â B̂µ̂ν̂ eφ̂ Âµ̂ Ĉµ̂ν̂ρ̂ ψ̂µ̂ λ̂ ε̂ L̂ Origin

α̂ 9
8 3 3

2 0 3 9
16 − 9

16
9
16 9 ˆ̂α

β̂ 0 1
2 1 −3

4 −1
4 0 0 0 0

Table 2: The R+-weights of the D = 10 IIA supergravity fields, the supersymmetry parameter ε̂

and the lagrangian L̂.

constant with a dilaton coupling that differs from Romans’ massive deformation. A gen-

eral deformation of D = 11 supergravity involving the use of extra Killing vectors has been

considered in [29]. We will not consider this possibility in this paper.

3. Massive deformations of D = 10 IIA supergravity

A Kaluza-Klein reduction of the eleven-dimensional theory yields the IIA theory in ten

dimensions.6 The field content of the D = 10 IIA supergravity theory is given by

D = 10 IIA :
{

êµ̂
â, B̂µ̂ν̂ , φ̂, Âµ̂, Ĉµ̂ν̂ρ̂, ψ̂µ̂, λ̂

}

. (3.1)

The supersymmetry transformations rules are given in eq. (C.5). For later purposes we

indicate these (undeformed) supersymmetry transformations by δ0. The transformation

rules have two R+-symmetries, one with parameter α̂ that scales the lagrangian and one

with parameter β̂ that leaves the lagrangian invariant. The first symmetry follows via

dimensional reduction from the D = 11 R+-symmetry with parameter ˆ̂α. The weights

of these two R+-symmetries are given in table 2. The gauge symmetry associated to the

Ramond-Ramond vector, with parameter λ̂, reads

Â→ Â− dλ̂ , Ĉ → Ĉ − dλ̂ B̂ . (3.2)

The D = 10 IIA supergravity theory allows two massive deformations which we discuss

one by one below.

3.1 Deformation mR: D = 10 massive supergravity

The first massive deformation, with mass parameter mR, is due to Romans [1]. In this case

(the same is true for all other cases) the supersymmetry transformations receive two types

of massive deformations: explicit and implicit ones. The explicit deformations are terms,

at most linear in mR, that are added to the original supersymmetry rules. These explicit

deformations are denoted by δmR
and are given, in terms of a superpotential W (φ̂) and

derivatives thereof, by

mR :







δmR
ψ̂µ̂ = −1

8W Γ̂µ̂ε̂ , with W = 1
4e

5φ̂/4mR ,

δmR
λ̂ = 4 δW

δφ̂
ε̂ .

(3.3)

There are further implicit massive deformations to the original supersymmetry rules δ0,

6We have used the reduction Ansätze (C.4) with m11 = 0.
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which are given in eq. (C.5), due to the fact that in these rules one must replace all field

strengths by corresponding massive field strengths which are given by

F̂ = dÂ+mRB̂ , Ĥ = dB̂ , Ĝ = dĈ + ÂĤ +
1

2
mRB̂B̂ . (3.4)

The lagrangian contains terms linear and quadratic in mR. Again there are implicit defor-

mations, via the massive field strengths, and explicit deformations. The explicit deforma-

tions quadratic in the mass parameter define the scalar potential which can be written in

terms of the superpotential W (φ̂) and derivatives thereof.

Requiring closure of the supersymmetry algebra one finds the linear deformations of

the fermionic (gravitino and dilatino) field equations in Roman’s theory:

mR :

{

XmR
(ψ̂µ̂) ≡ mRe

5φ̂/4Γ̂µ̂ν̂(1
4 ψ̂ν̂ +

5
288 Γ̂ν̂ λ̂) ,

XmR
(λ̂) ≡ mRe

5φ̂/4Γ̂ν̂(−5
4 ψ̂ν̂ − 21

160 Γ̂ν̂ λ̂) .
(3.5)

The undeformed equations, X0(ψ̂
µ̂) and X0(λ̂), are given in eqs. (C.7).

Under supersymmetry the fermionic field equations, X0 + XmR
, transform into the

deformed bosonic equations of motion. Since we will only be interested in finding solu-

tions that are carried by the metric and the scalars it is convenient to truncate away all

bosonic fields except the metric and the dilaton.7 After this truncation we find that under

supersymmetry the fermionic field equations transform into

(δ0 + δmR
)(X0 +XmR

)(ψ̂µ̂) =
1

2
Γ̂ν̂ ε̂

[

R̂µ̂
ν̂ −

1

2
R̂ĝµ̂ν̂ −

1

2
(∂µ̂φ̂)(∂ν̂ φ̂)+

+
1

4
(∂φ̂)2ĝµ̂ν̂ +

1

4
m2

Re
5φ̂/2ĝµ̂ν̂

]

,

(δ0 + δmR
)(X0 +XmR

)(λ̂) =ε̂

[

¤φ̂− 5

4
m2

Re
5φ̂/2

]

. (3.6)

At the right-hand side we thus find the Romans’ bosonic field equations for the metric and

the dilaton, one solution of which is the D8-brane. Note that the bosonic field equations

contain terms quadratic in the mass parameter.

Romans’ theory is not known to have a higher-dimensional supergravity origin. Neither

is it a gauged supergravity. A candidate symmetry of the lagrangian to be gauged is the β̂

symmetry of table 2. However, the candidate gauge field Âµ̂ has a nontrivial weight under

β̂. This means that the curl dÂ transforms with a non-covariant term proportional to dλ̂Â.

Such a term cannot be cancelled by adding an extra term, such as B̂, to the definition of the

Â curvature. In short, the β̂ symmetry cannot be gauged [3]. The same table shows that on

the other hand Âµ̂ has weight zero under the α̂-symmetry which is a symmetry of the equa-

tions of motion only. This α̂-symmetry can indeed be gauged at the level of the equations

of motion. This gauging leads to the D = 10 gauged supergravity discussed below.

3.2 Deformation m11: D = 10 gauged supergravity

The second massive deformation, with mass parameter m11, has been considered in [8, 9]

and is a gauged supergravity. It can be obtained by generalized Scherk-Schwarz reduction of

7Note that a further truncation to φ = c is inconsistent.
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D = 11 supergravity using the R+ symmetry ˆ̂α of table 1 [9]. The corresponding reduction

Ansätze, with m11 6= 0, are given in eq. (C.4). This reduction leads to the following explicit

massive deformations of the D = 10 IIA supersymmetry rules:

m11 :

{

δm11 ψ̂µ̂ = 9
16m11e

−3φ̂/4Γ̂µ̂Γ11ε̂ ,

δm11 λ̂ = 3
2m11e

−3φ̂/4Γ11ε̂ .
(3.7)

The implicit massive deformations of the original supersymmetry rules δ0 are given by the

massive bosonic field strengths

Dφ̂ = dφ̂+
3

2
m11Â , F̂ = dÂ , Ĥ = dB̂ + 3m11Ĉ , Ĝ = dĈ + ÂĤ , (3.8)

while the covariant derivative of the supersymmetry parameter is given by

Dµ̂ε̂ =

(

∂µ̂ + ω̂µ̂ +
9

16
m11Γ̂µ̂ /̂A

)

ε̂ . (3.9)

The gauge vector in the definition of the covariant derivative is required to make the

derivative of the supersymmetry parameter and the spin connection R+-covariant.

The linear deformations of the fermionic field equations read in this case

m11 :

{

Xm11(ψ̂
µ̂) ≡ m11e

−3φ̂/4Γ11Γ̂
µ̂ν̂(−9

2 ψ̂ν̂ +
17
48 Γ̂ν̂ λ̂) ,

Xm11(λ̂) ≡ m11e
−3φ̂/4Γ11Γ̂

ν̂(3
2 ψ̂ν̂ − 9

16 Γ̂ν̂ λ̂) .
(3.10)

We first consider the truncation that all bosonic fields except the metric and the dilaton

are set equal to zero. Under supersymmetry the fermionic field equations transform into

(δ0 + δm11)(X0 +Xm11)(ψ̂
µ̂) =

1

2
Γ̂ν̂ ε̂

[

R̂µ̂
ν̂ −

1

2
R̂ĝµ̂ν̂ −

1

2
(∂µ̂φ̂)(∂ν̂ φ̂) +

1

4
(∂φ̂)2ĝµ̂ν̂+

+ 36m2
11e
−3φ̂/2ĝµ̂ν̂

]

+ Γ11ε̂
[

3m11e
−3φ̂/4∂µ̂φ̂

]

,

(δ0 + δm11)(X0 +Xm11)(λ̂) = ε̂ [¤φ̂] + Γ̂ν̂Γ11ε̂
[

9m11e
−3φ̂/4∂ν̂ φ̂

]

. (3.11)

The terms involving Γ11 are part of the vector field equation. Therefore, to obtain a

consistent truncation, we must further truncate the dilaton to zero. One is then left with

only the metric satisfying the Einstein equation with a positive cosmological constant, a

solution of which is 10D de Sitter space [9].

The reduced theory is a gauged supergravity where the R+ symmetry α̂ of table 2

has been gauged. In particular, the gauge parameter and transformation of the Ramond-

Ramond potentials read as follows:8

α̂ : Λ = ewα̂m11λ̂ with Â→ Â− dλ̂ , Ĉ → e3m11λ̂(Ĉ − dλ̂ B̂) , (3.12)

where wα̂ are the weights under α̂. We note that one can take two different limits of the α̂

gauge transformations. First, the limit m11 → 0 leads to the massless gauge transforma-

tions (3.2). Note that Ĉ transforms trivially under this gauge symmetry in the sense that

Ĉ can be made gauge-invariant after a simple field-redefinition. Secondly, one can take the

limit that α̂ is constant. This leads to the ungauged R+ α̂-symmetry of table 2.

8It is understood that each field with wα̂ 6= 0 is multiplied by Λ.
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A noteworthy feature of the D = 10 gauged supergravity is that no lagrangian can

be defined for it. In the search for supersymmetric domain wall solutions in D = 5 di-

mensions many other examples of gauged supergravity theories without a lagrangian have

been given [30]. Note that one can write down a lagrangian for the ungauged theory. The

reason that one cannot write down a lagrangian after gauging is that the symmetry that is

gauged is not a symmetry of the lagrangian but only of the equations of motion. It would

be instructive to construct the D = 10 gauged supergravity from the ungauged theory by

gauging the α̂-symmetry. Apparently, it shows that one can gauge symmetries that leave

a lagrangian invariant up to a scale factor.

4. D = 10 IIB supergravity

The other ten-dimensional supergravity theory is chiral IIB. Its field content is

D = 10 IIB:
{

êµ̂
â, φ̂, χ̂, B̂

(1)
µ̂ν̂ , B̂

(2)
µ̂ν̂ , D̂µ̂ν̂ρ̂σ̂, ψ̂µ̂, λ̂

}

. (4.1)

The supersymmetry variations are given in eq. (C.10). The IIB supersymmetry rules

transform covariant under the SL(2,R) transformations (omitting indices):

τ̂ → aτ̂ + b

cτ̂ + d
,

~̂
B → Ω

~̂
B , D̂ → D̂ , with Ω =

(

a b

c d

)

∈ SL(2,R) ,

ψ̂ →
(

c τ̂∗ + d

c τ̂ + d

)1/4

ψ̂ , λ̂→
(

c τ̂∗ + d

c τ̂ + d

)3/4

λ̂ , ε̂→
(

c τ̂∗ + d

c τ̂ + d

)1/4

ε̂ . (4.2)

We have used here the vector notation
~̂
B =

(

B̂(1), B̂(2)
)T

. The group SL(2,R) contains a

set of three one-parameter conjugacy classes defining one compact and two non-compact

subgroups. Since they are needed later we will describe them shortly. Each of the subgroups

is generated by a SL(2,R) group element Ω with detΩ = 1.

1. One non-compact subgroup R is generated by

Ωp = e
1
2
ζ̂ (σ1+iσ2) =

(

1 ζ̂

0 1

)

. (4.3)

Each element defines a parabolic conjugacy class with TrΩ = 2. These parabolic

transformations leave the combination (B̂(2))2 invariant. Therefore the invariant

metric is given by diag(0, 1). The action of the R ζ̂-symmetry on the fields can not

be expressed by assigning weights to the standard basis of fields given in (4.1).

2. An SO(1, 1)+ subgroup which is generated by elements

Ωh = eγ̂ σ3 =

(

eγ̂ 0

0 e−γ̂

)

. (4.4)

Each element defines a hyperbolic conjugacy class with TrΩ > 2. These hyperbolic

transformations leave the combination B̂(1)B̂(2) invariant. After diagonalization this

leads to an invariant metric given by diag(1,−1). The weights corresponding to the

SO(1, 1)+ γ̂-symmetry are given in table 3.
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R+ êµ̂
â eφ̂ χ̂ B̂

(1)
µ̂ν̂ B̂

(2)
µ̂ν̂ D̂µ̂ν̂ρ̂σ̂ ψ̂µ̂ λ̂ ε̂ L̂ symmetry

γ̂ 0 −2 2 1 −1 0 0 0 0 0 SO(1, 1)+

δ̂ 1 0 0 2 2 4 1
2 −1

2
1
2 8 R+

Table 3: The scaling weights of the D = 10 IIB supergravity fields, the supersymmetry parameter

ε̂ and the lagrangian L̂.

3. There is an SO(2) subgroup which is generated by elements Ω of SL(2,R) with

Ωe = eiθ̂ σ2 =

(

cos θ̂ sin θ̂

− sin θ̂ cos θ̂

)

. (4.5)

Each element defines an elliptic conjugacy class with TrΩ < 2. The elliptic trans-

formations leave (B̂(1))2 + (B̂(2))2 invariant. After diagonalization this leads to an

invariant metric given by diag(1, 1). The action of the SO(2) θ̂-symmetry on the

fields can not be expressed by assigning weights to the standard real basis of fields

given in (4.1).

Table 3 contains the weights of the γ̂-symmetry defined above9 and of a new R+ symmetry

δ̂ which is not a subgroup of SL(2,R) and that does not leave the lagrangian invariant. One

could combine SL(2,R) with this new R+ into a GL(2,R) symmetry that leaves the IIB

equations of motion invariant. Its action is the product of the two separate transformations:

Ω̃ = ΩΛδ̂. This exhausts all the symmetries of D = 10 IIB supergravity.

The IIB supergravity theory is not known to have massive deformations. One of the

reasons for this is that there is no candidate vector field like in the IIA case.

5. Massive deformations of D = 9, N = 2 supergravity

The Kaluza-Klein reduction of either (massless) IIA or IIB supergravity gives the unique

D = 9, N = 2 massless supergravity theory. Its field content is given by

D = 9 :
{

eµ
a, φ, ϕ, χ,Aµ, A

(1)
µ , A(2)

µ , B(1)
µν , B

(2)
µν , Cµνρ, ψµ, λ, λ̃

}

. (5.1)

The supersymmetry rules are given in eq. (C.16). The massless 9-dimensional theory

inherits several global symmetries from its parents: two R+ symmetries α, β from IIA

supergravity and one R+ symmetry δ plus a full SL(2,R) symmetry from IIB supergravity.

The latter leads in particular to an SO(2) symmetry θ, an SO(1, 1)+ symmetry γ and an

R-symmetry ζ. The weights of all these symmetries, except for the SO(2) θ-symmetry and

R ζ-symmetry, and their higher-dimensional origin are given in table 4 (see also [27]).

It turns out that only three out of the four scalings given in table 4 are linearly

independent. There is a relation

4

9
α− 8

3
β = γ +

1

2
δ . (5.2)

9The other two symmetries defined above cannot be defined in terms of weights of real fields only.
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R+ eµ
a eφ eϕ χ Aµ A

(1)
µ A

(2)
µ B

(1)
µν B

(2)
µν Cµνρ ψµ λ λ̃ ε L Origin

α 9
7 0 6√

7
0 3 0 0 3 3 3 9

14 − 9
14 − 9

14
9
14 9 11D

β 0 3
4

√
7

4 -34
1
2 −3

4 0 −1
4

1
2 −1

4 0 0 0 0 0 IIA

γ 0 −2 0 2 0 1 −1 1 −1 0 0 0 0 0 0 IIB

δ 8
7 0 − 4√

7
0 0 2 2 2 2 4 4

7 −4
7 −4

7
4
7 8 IIB

Table 4: The scaling weights of the 9 dimensional supergravity fields, the supersymmetry parameter

ε and the lagrangian L.

We observe the following pattern. Using (5.2) to eliminate one of the scaling-symmetries

we are left with three independent scaling-symmetries. Each of the three gauge fields

Aµ, A
(1)
µ , A

(2)
µ has weight zero under two (linear combinations) of these three symmetries:

one is a symmetry of the action, the other is a symmetry of the equations of motion only.

The D = 9 SL(2,R) symmetry acts in the following way:

τ → aτ + b

cτ + d
, ~A→ Ω ~A , ~B → Ω ~B , with Ω =

(

a b

c d

)

∈ SL(2,R) ,

ψµ →
(

c τ∗ + d

c τ + d

)1/4

ψµ , λ→
(

c τ∗ + d

c τ + d

)3/4

λ ,

λ̃→
(

c τ∗ + d

c τ + d

)−1/4

λ̃ , ε→
(

c τ∗ + d

c τ + d

)1/4

ε , (5.3)

while ϕ and C are invariant. We have used a vector notation for the two vectors and

two antisymmetric tensors, like in D = 10. Again one can combine SL(2,R) with an R+

symmetry to form GL(2,R) with parameter Ω̃ = ΩΛR+ .

In addition to the global symmetries there is a number of local symmetries. In partic-

ular, the gauge transformations of the vectors read

A(1) → A(1) − dλ(1) , A(2) → A(2) − dλ(2) ,

A→ A− dλ , ~B → ~B − ~Adλ . (5.4)

We now turn to massive deformations of the 9D theory. Applying a SS dimensional

reduction of the higher-dimensional supergravities we obtain a number of massive defor-

mations in nine dimensions, as illustrated in figure 1. By employing the different global

symmetries of 11D, IIA and IIB supergravity we obtain seven deformations of the unique

D = 9 supergravity.

Note that the different massive deformations can be related. Symmetries of the mass-

less theory become field redefinitions in the massive theory that only act on the massive

deformations. This means that the mass parameters transform under such transformations:

they have a scaling weight under the different scaling symmetries and fall in multiplets of

SL(2,R). In table 5 the multiplet structure of the massive deformations under SL(2,R)

is given. The mass parameter m̃4 is defined as the S-dual partner of m4 and can not be

obtained by a SS reduction of IIA supergravity.
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SS−reduction

No action

SUGRA

IIA IIB

D=11
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D=9

Gauge Group

Gauge Vector

Gauged Symmetry
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Figure 1: Overview of all reductions performed in this paper. These cases can all be interpreted

as gauged supergravities, with gauged symmetry and corresponding gauge field as given in the

figure. Mass parameters in the same box, such as m11,mIIA or m1,m2,m3, form a multiplet under

SL(2,R). Further details of these cases will be given below. Note that the two ways of obtaining

the R-gauging give rise to the massive T-duality of [6].

All these deformations correspond to a gauging of
mass parameters SL(2,R)

(m1,m2,m3) triplet

(m4, m̃4) doublet

(m11,mIIA) doublet

mIIB singlet

Table 5: This table indicates

the different multiplets that the

D = 9 mass parameters form un-

der SL(2,R).

a 9D global symmetry. In particular, it is always the

symmetry that is employed in the SS reduction Ansatz

that becomes gauged upon reduction. The correspond-

ing gauge vector is always provided by the metric, i.e.

is the Kaluza-Klein vector of the dimensional reduction.

In all but one case this is the complete story and one

finds an abelian gauged supergravity. It turns out that

there is one exception where we find a non-abelian gauge

symmetry. This can be understood from the following

general rule.10 As we noted, the Kaluza-Klein vector

gauges the symmetry employed in the SS reduction Ansatz. The fate of either of the

remaining two gauge vectors is restricted to three possibilities:

• The vector is a singlet under the gauge symmetry and its field strength acquires no

modification, e.g. A(1) in the mIIA deformation.

• The vector transforms under the gauge symmetry and its field strength acquires

a massive deformation proportional to a two-form. The degrees of freedom of the

vector are eaten up by the two-form via the Stückelberg mechanism, e.g. A in the

mIIA deformation.
10We thank Sergio Ferrara for clarifying discussions on this issue.
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• The vector transforms under the gauge symmetry and its field strength acquires no

massive deformation proportional to a two-form. In this case we must have gauge

enhancement to preserve covariance, e.g. A(1) in the m4 deformation.

All cases we find in D = 9 are consistent with this rule of thumb. We will discuss the

different massive deformations one by one below.

5.1 Deformation mIIA: SS reduction of IIA using α̂

We first perform a Scherk-Schwarz reduction of (massless) IIA supergravity based on the

α̂-symmetry of table 2. We use the reduction Ansätze (C.9) with m4 = 0. This leads to a

gauged supergravity with mass parameter mIIA. The explicit massive deformations in this

case appear in the variation of the gravitino and one of the dilatinos:

mIIA :







δmIIA
ψµ = − 9

14 imIIAe
φ/2−3ϕ/2

√
7γµε

∗ ,

δmIIA
λ̃ = 6√

7
mIIAe

φ/2−3ϕ/2
√

7ε .
(5.5)

The implicit massive deformations are given by

Dφ = e−φdeφ , Dϕ = e−ϕDeϕ , G1 = dχ , G4 = DC + ~BT η ~F ,

F = DA− 3mIIAB
(2) , F (1) = dA(1) , F (2) = dA(2) ,

H(1) = DB(1) −AF (1) + 3mIIAC , H(2) = DB(2) −AF (2) . (5.6)

The R+-covariant derivative is defined by D = d + wαmIIAA
(2) with wα the α scaling-

weight of the field it acts on, as given in the table 4, and DD = wαmIIAF
(2). The covariant

derivative of the supersymmetry parameter is given by

Dµε =

(

∂µ + ωµ +
i

4
eφ∂µχ+

9

14
mIIAΓµ /A

(2)
)

ε . (5.7)

The 9D fermionic field equations have the following explicit massive deformations:

mIIA :















XmIIA
(ψµ) = imIIAe

φ/2−3ϕ/2
√

7γµν [92ψ
∗
ν − i 9

32γνλ+ i 3
4
√

7
γν λ̃] ,

XmIIA
(λ) = −mIIAe

φ/2−3ϕ/2
√

7γν [−i
√

7
6 γν λ̃

∗] ,

XmIIA
(λ̃) = −mIIAe

φ/2−3ϕ/2
√

7γν [ 6√
7
ψν − 11

6
√

7
iγνλ

∗ + 1
7 iγν λ̃

∗] .

This massive deformation is a gauging of the R+ symmetry α:

α : Λ = ewαmIIAλ
(2)

with A(2) → A(2) − dλ(2) , (5.9)

where wα are the weights under α.

5.2 Deformation m4: SS reduction of IIA using β̂

We next perform a generalized Scherk-Schwarz reduction of D = 10 IIA supergravity using

the R+ β̂ symmetry of table 2. We use the reduction Ansätze given in eq. (C.9), taken
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with mIIA = 0. This leads to a massive deformation with mass parameter m4. Only the

supersymmetry variations of the dilatinos receive explicit massive deformations:

m4 :

{

δm4λ = 3
4m4e

φ/2−3ϕ/2
√

7ε ,

δm4 λ̃ =
√

7
4 m4e

φ/2−3ϕ/2
√

7ε .
(5.10)

The implicit massive deformations read:

Dφ = e−φDeφ , Dϕ = e−ϕDeϕ , G1 = Dχ+
3

4
m4A

(1) , G4 = DC + ~BT η ~F ,

F = DA− 1

2
m4B

(2) , F (1) = DA(1) , F (2) = dA(2) ,

H(1) = DB(1) −AF (1) − 1

4
m4(C − 3A(1)B(2)) , H(2) = DB(2) −AF (2) . (5.11)

The R+-covariant derivative is defined by D = d+wβm4A
(2) with wβ the β scaling-weight

of the field it acts on, as given in the table 4, and DD = wβm4F
(2). The covariant derivative

of the supersymmetry parameter has no massive deformation. The explicit deformations

of the fermionic field equations read

m4 :















Xm4(ψ
µ) = im4e

φ/2−3ϕ/2
√

7γµν [−i 3
256γνλ− i

√
7

256γν λ̃] ,

Xm4(λ) = −m4e
φ/2−3ϕ/2

√
7γν [34ψν +

2
9
√

7
iγν λ̃

∗] ,

Xm4(λ̃) = −m4e
φ/2−3ϕ/2

√
7γν [

√
7

4 ψν − 2
9
√

7
iγνλ

∗] .

These massive deformations can be seen as a gauging of the R+ symmetry β with gauge

parameter β and gauge field transformation

β : Λ = ewβm4β with A(2) → A(2) − dβ . (5.13)

In addition, we find that the parabolic subgroup of SL(2,R), with parameter ζ, is gauged:

ζ :
χ → χ+ 3

4m4ζ ,

B(1) → B(1) + 3
4m4ζB

(2) ,
with A(1) → A(1) − dζ + 3

4
m4ζA

(2) . (5.14)

These two scaling symmetries do not commute but rather form the two-dimensional non-

abelian Lie group A(1), consisting of collinear transformations [25, 26] (scalings and trans-

lations) in one dimension. The algebra reads

[Tζ , Tβ ] = Tζ , (5.15)

which is non-semi-simple.

5.3 Deformations m1,m2,m3: SS reduction of IIB using SL(2,R)

We next perform a Scherk-Schwarz reduction of D = 10 IIB supergravity using an abelian

subgroup of the SL(2,R) symmetry. This case has been treated in [6, 9, 29, 20, 24, 18, 21].
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We use the reduction Ansätze given in eq. (C.14) with mIIB = 0. This yields massive defor-

mations in D = 9 with mass parameters ~m = (m1,m2,m3). Both the explicit and implicit

deformations of the supersymmetry rules can be written in terms of the superpotential

W (φ, χ, ϕ) =
1

4
e2ϕ/

√
7

(

m2 sinh(φ) +m3 cosh(φ) +m1e
φχ− 1

2
(m2 −m3)e

φχ2

)

(5.16)

and the mass matrix employed in the Scherk-Schwarz reduction

M =
1

2

(

m1 m2 +m3

m2 −m3 −m1

)

. (5.17)

The explicit deformations are

~m :















δ~mψµ = 1
7γµWε ,

δ~mλ = 4i( δWδφ + ie−φ δWδχ )ε∗ ,

δ~mλ̃ = 4i δWδϕ ε
∗ ,

(5.18)

while the implicit massive deformations read

Dτ = dτ + 4e−2ϕ/
√

7−φ
(

δW

δφ
+ ie−φ

δW

δχ

)

A

=

(

d +
1

2
[(m2 +m3)τ

−1 + 2m1 + (m3 −m2)τ ]A

)

τ ,

F = dA , ~F = d ~A−M ~B , ~H = d ~B −A~F ,

G4 = dC + ~BT η ~F +
1

2
~BTηM ~B , (5.19)

for the bosons and

Dµε =

(

∂µ + ωµ +
i

4
eφ∂µχ− ie−2ϕ/

√
7WAµ

)

ε (5.20)

for the supersymmetry parameter. The field equations of the 9D fermions receive the

following explicit massive corrections:

~m :



















X~m(ψ
µ) = −γµν

[

Wψν − 1
16 i
(

δW
δφ + ie−φ δWδχ

)

γνλ
∗ − 1

16 i
δW
δϕ γν λ̃

∗
]

,

X~m(λ) = −iγµ
[

4
(

δW
δφ + ie−φ δWδχ

)

ψ∗µ − 1
3 iWγµλ− 8

9
√

7
i
(

δW
δφ + ie−φ δWδχ

)

γµλ̃
]

,

X~m(λ̃) = −iγν
[

4 δWδϕ ψ
∗
ν − 8

9
√

7
i
(

δW
δφ − ie−φ δWδχ

)

γνλ− 1
7 iWγν λ̃

]

.

The massive deformations with parameters ~m = (m1,m2,m3) gauge a subgroup of the

global SL(2,R) symmetry (5.3) with parameter and gauge field transformation:

SL(2,R) : Ω = eMλ , with A→ A− dλ , ~B → Ω( ~B − ~Adλ) . (5.21)

Thus these massive deformations correspond to the gauging of the subgroup of SL(2,R)

with generator M, the mass matrix employed in the reduction. Note that the trans-

formations of this subgroup have special properties: for example, the superpotential W

is invariant under it. We can distinguish three distinct cases depending on the value of

~m2 = 1
4(m1

2 +m2
2 −m3

2) [23, 24]:
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• ~m2 = 0. We gauge an R subgroup of SL(2,R) with parameter ζ and invariant metric

diag(0, 1).

• ~m2 > 0. We gauge an SO(1, 1)+ subgroup of SL(2,R) with parameter γ and invariant

metric diag(1,−1).

• ~m2 < 0. We gauge an SO(2) subgroup of SL(2,R) with parameter θ and invariant

metric diag(1, 1).

All these three cases are one-parameter massive deformations.

5.4 Deformation mIIB: SS reduction of IIB using δ̂

Next, we perform a Scherk-Schwarz reduction of D = 10 IIB supergravity using the R+

symmetry δ̂ of table 3. We use the reduction Ansätze given in eq. (C.14) with m1 = m2 =

m3 = 0. This yields a massive deformation with parametermIIB. The explicit deformations

of the supersymmetry rules read

mIIB :







δmIIB
ψµ = −4

7 imIIBe
2ϕ/
√

7γµε ,

δmIIB
λ̃ = − 4√

7
mIIBe

2ϕ/
√

7ε∗ .
(5.22)

The implicit deformations read

F = dA , ~F = d ~A− 2mIIB
~B , ~H = d ~B −A~F ,

G4 = dC + ~BT η ~F +mIIB
~BTη ~B , Dϕ = dϕ− 4√

7
mIIBA , (5.23)

for the bosons and

Dµε =

(

∂µ + ωµ +
i

4
eφ∂µχ+

4

7
mIIBΓµ /A

)

ε (5.24)

for the supersymmetry parameter. The explicit deformations of the fermionic field equa-

tions read

mIIB :















XmIIB
(ψµ) = imIIBe

2ϕ/
√

7γµν
[

4ψν − 15
16
√

7
iγν λ̃

∗
]

,

XmIIB
(λ) = mIIBe

2ϕ/
√

7γν
[

4
9 iγνλ

]

,

XmIIB
(λ̃) = mIIBe

2ϕ/
√

7γν
[

4√
7
ψ∗ν − i47γν λ̃

]

.

(5.25)

This is a supergravity where the R+-symmetry δ has been gauged:

δ : Λ = ewδmIIBλ with A→ A− dλ , ~B → e2mIIBλ( ~B − ~Adλ) . (5.26)

5.5 Deformation m11: KK reduction of IIA with m11-deformation

Finally, one can also consider the Kaluza-Klein reduction of theD = 10 gauged supergravity

discussed in subsection 3.1 (see also figure 1). This leads to a D = 9 gauged supergravity

with the following explicit deformations

m11 :







δm11ψµ = 9
14 im11e

φ/2−3ϕ/2
√

7τγµε
∗ ,

δm11 λ̃ = − 6√
7
m11e

φ/2−3ϕ/2
√

7τ∗ε .
(5.27)
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The bosonic implicit deformations read

Dϕ = dϕ− 6√
7
m11A

(1) , F = DA+ 3m11B
(1) , G4 = DC + ~BTη ~F ,

H(1) = DB(1) −AF (1) , H(2) = DB(2) −AF (2) + 3m11C , (5.28)

with the R+-covariant derivative of a field with weight w defined by D = d− wαm11A
(1).

For the supersymmetry parameter we find

Dµε =

(

∂µ + ωµ +
i

4
eφ∂µχ+

9

14
m11Γµ /A

(1)
)

ε . (5.29)

The fermionic field equations are deformed by the massive contributions

m11 :



















Xm11(ψ
µ) = −im11e

φ/2−3ϕ/2
√

7γµν
[

9
2τψ

∗
ν − i 9

32τ
∗γνλ+ i 3

4
√

7
τγν λ̃

]

,

Xm11(λ) = m11e
φ/2−3ϕ/2

√
7γν

[

−iτ
√

7
6 γν λ̃

∗
]

,

Xm11(λ̃) = m11e
φ/2−3ϕ/2

√
7γν

[

6√
7
τ∗ψν − 11

6
√

7
iτγνλ

∗ + 1
7 iτ
∗γν λ̃∗

]

.

(5.30)

This massive deformation is a gauging of the R+ symmetry α:

α : Λ = e−wαm11λ(1)
with A(1) → A(1) − dλ(1) . (5.31)

This reduction does not lead to a new gauged supergravity. It differs from the mIIA

case in the order of the reductions from D = 11. In case 1 one first performs an ordinary

KK reduction and next a SS reduction on α̂ while in the present case the order of these

reductions is reversed: one first performs a SS reduction on ˆ̂α and next an ordinary KK

reduction. Indeed, the difference is just a field redefinition via S-duality plus a relabelling

of the mass parameters: m11 = mIIA. The two mass parameters (m11,mIIA) form a doublet

under more general SL(2,R) field redefinitions.

6. Combining massive deformations

In the previous section we have constructed seven gauged supergravities, each containing

a single mass parameter. In this section we would like to consider combining the massive

deformations discussed in the previous section. The resulting theories will have more mass

parameters characterizing the different deformations. However, not all combinations will

turn out to be consistent with supersymmetry. This inconsistency only appears when

turning to the bosonic field equations: the supersymmetry algebra with a combination of

massive deformations always closes, as can be seen from the following argument.

Suppose one has a supergravity with one massive deformation m and supersymmetry

transformations δ0 + δm. In all cases discussed in this paper the massive deformation

of the supersymmetry rules satisfies the following property: δm(boson) = 0. In other

words, only the supersymmetry variations of the fermions receive massive corrections. This

implies that the issue of the closure of the supersymmetry algebra is a calculation with
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m-independent parts and parts linear in m but no parts of higher order in m.11 On the one

hand [δ(ε1), δ(ε2)] has no terms quadratic in m since one of the two δ’s acts on a boson.

On the other hand the supersymmetry algebra closes modulo fermionic field equations

which also have only terms independent of and linear in m. Therefore, given the closure of

the massless algebra, the closure of the massive supersymmetry algebra only requires the

cancellation of terms linear in m.

In the previous sections we have not checked the closure of the massive supersymmetry

algebras since this was guaranteed by the higher-dimensional origin, i.e. Scherk-Schwarz

reduction of supergravity leads to a gauged supergravity. However, the argument of lin-

earity allows us to combine different massive deformations. Suppose one has two massive

supersymmetry algebras with transformations δ0 + δma and δ0 + δmb
. Both supersymme-

try algebras close modulo fermionic field equations with (different) massive deformations.

Then the combined massive algebra with transformation δ0 + δma + δmb
also closes modulo

fermionic field equations whose massive deformations are given by the sum of the separate

massive deformations linear in ma and mb. The closure of the combined algebra is guaran-

teed by the closure of the two massive algebras since it requires a cancellation at the linear

level.

Under supersymmetry variation of the fermionic field equations, one in general finds

linear and quadratic deformations of the bosonic equations of motion. In addition to these

corrections, we find that there are also ’non-dynamical’ equations posing constraints on the

mass parameters. Solving these equations generically excludes the possibility of combining

massive deformations by requiring mass parameters to vanish. At first sight, one might

seem surprised that the supersymmetry variation of the fermionic equations of motion leads

to constraints other than the bosonic field equations. However, one should keep in mind

that the multiplets involved cannot be linearized around a Minkowski vacuum solution.

Therefore, the usual rules for linearized (Minkowski) multiplets do not apply here.

We find that generically adding massive deformations is possible whenever the D = 10

symmetries, giving rise to the separate massive deformations, can be combined in D = 10

as symmetries of IIA or IIB supergravity only. The combined D = 9 supergravity is then

a gauged supergravity which just follows by performing a SS reduction on the combined

D = 10 symmetry.

As a warming-up exercise we will in the first subsection discuss the situation in D = 10.

In the next subsection we will review the D = 9 situation.

6.1 Combining massive deformations in 10D

The 10D IIA supergravity theory has two massive deformations parameterized by mR and

m11. Can we combine these two massive deformations? Based on the linearity argument

presented above one would expect a closed supersymmetry algebra. The bosonic field equa-

tions (with up to quadratic deformations) can be derived by applying the supersymmetry

transformations (with only linear deformations) to the fermionic field equations (containing

11That is, up to cubic order in fermions. We have not checked the higher-order fermionic terms but, based

upon dimensional arguments, we do not expect that these rule out the possibility of combining massive

deformations.
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only linear deformations). For simplicity, we truncate all bosonic fields to zero except the

metric and the dilaton. We thus find

(δ0 + δmR
+ δm11)(X0 +XmR

+Xm11)(ψ̂
µ̂) =

=
1

2
Γ̂ν̂ ε̂

[

R̂µ̂
ν̂−

1

2
R̂ĝµ̂ν̂−

1

2
(∂µ̂φ̂)(∂ν̂ φ̂)+

1

4
(∂φ̂)2ĝµ̂ν̂+

1

4
m2

Re
5φ̂/2ĝµ̂ν̂+36m2

11e
−3φ̂/2ĝµ̂ν̂

]

+

+ Γ11ε̂

[

3m11e
−3φ̂/4∂µ̂φ̂

]

+ Γ11Γ̂
µ̂ε̂

[

15

4
mRm11e

φ̂/2

]

,

(δ0 + δmR
+ δm11)(X0 +XmR

+Xm11)(λ̂) =

= ε̂

[

¤φ̂− 5

4
m2

Re
5φ̂/2

]

+ Γ̂ν̂Γ11ε̂
[

9m11e
−3φ̂/4∂ν̂ φ̂

]

+ Γ11ε̂

[

33

2
mRm11e

φ̂/2

]

. (6.1)

At the right-hand side we find four different structures. Three of them correspond to the

field equations of the metric, dilaton and RR vector. The vector field equation correspond

to the terms linear in m11 and containing Γ11. They show us that truncating the RR

vector to zero forces us to further truncate the dilaton to φ = c. More interesting is the

fourth structure which is bilinear in mRm11. It leads to the constraint mRm11 = 0. This

constraint cannot be a remnant of a higher-rank form field equation due to its lack of

Lorentz indices. It could only fit in the scalar field equation but the Γ11 factor prevents

this. It is an extra constraint which does not restrict degrees of freedom but rather restricts

mass parameters.

We conclude that, even though the closure of the algebra is a linear calculation and

therefore always works for combinations, the bosonic field equations exclude the possibility

of the combination of massive deformations in D = 10 dimensions.

6.2 Combining massive deformations in 9D

We next try to combine massive deformations in nine dimensions. One might hope that,

due to the large amount of mass parameters, the bosonic field equations do not exclude

all possible combinations, like in D = 10. For the present purposes we will focus on

specific terms in the supersymmetry variations of the fermionic field equations. In the

following δm and Xm are understood to mean the supersymmetry variation and fermionic

field equation at linear order containing the sum of all seven possible massive deformations

derived in the previous section. Variation of the fermionic field equations gives, amongst

other γ-structures, the terms

(δ0 + δm)(X0 +Xm)(ψ
µ) ∼ i γµε[. . .] + γµε∗[. . .] + i γµε∗[. . .] ,

(δ0 + δm)(X0 +Xm)(λ) ∼ ε[. . .] + i ε[. . .] ,

(δ0 + δm)(X0 +Xm)(λ̃) ∼ ε[. . .] + i ε[. . .] + ε∗[. . .] , (6.2)

where the [. . .] denote different bosonic real expressions of mass bilinears and scalar factors.

These are the analog of the ten-dimensional expression [mRm11e
φ̂/2] we encountered in the

previous subsection. They are the sources for possible constraints on the mass parameters.

Requiring all expressions [. . .] to vanish one is led to the following possible combinations

(with the other mass parameters vanishing):
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• Case 1 with {mIIA,m4}: this combination can also be obtained by Scherk-Schwarz

reduction of IIA employing a linear combination of the symmetries α̂ and β̂, guaran-

teeing its consistency. It is also a gauging of both this symmetry and (for m4 6= 0)

the parabolic subgroup of SL(2,R) in 9D, giving the non-abelian gauge group A(1).

• Case 2,3,4 with {~m,mIIB}: as in the case withmIIB = 0 and only ~m this combination

contains three different, inequivalent cases depending on ~m2 (depending crucially on

the fact that mIIB is a singlet under SL(2,R)):

– Case 2 with {~m,mIIB} and ~m2 = 0.

– Case 3 with {~m,mIIB} and ~m2 > 0.

– Case 4 with {~m,mIIB} and ~m2 < 0.

All these combinations can also be obtained by Scherk-Schwarz reduction of IIB

employing a linear combination of the symmetries δ̂ and (one of the subgroups of)

SL(2,R), guaranteeing its consistency. All cases (assuming thatmIIB 6= 0) correspond

to the gauging of an abelian non-compact symmetry in 9D. Only the special case

{~m2 < 0,mIIB = 0} corresponds to an SO(2)-gauging.

• Case 5 with {m4 = −12
5 mIIA,m2 = m3}: this case can be understood as the gen-

eralized dimensional reduction of Romans’ massive IIA theory, employing the R+

symmetry that is not broken by the mR deformations: β̂ − 5
12 α̂. It gauges both this

linear combination of R+’s and the parabolic subgroup of SL(2,R) in 9D, giving the

non-abelian gauge group A(1).

Another solution to the quadratic constraints has parameters {mIIA,m11}, but this com-

bination does not represent a new case. It can be obtained from only mIIA (and thus a

truncation of Case 1) via an SL(2,R) field redefinition (since they form a doublet). Thus

the most general deformations are the five cases given above, all containing two mass pa-

rameters. All five of these are gauged theories and have a higher-dimensional origin. Both

case 1 and case 5 have a non-abelian gauge group provided m4 6= 0.

7. Solutions

In the first part of this paper we constructed a variety of gauged supergravities with 32

supersymmetries. They all have in common that there is a scalar potential. Our next goal

is to make a systematic search for solutions that are based on this scalar potential. In the

next subsections we will search for two types of solutions: (i) 1/2 BPS domain-wall (DW)

solutions and (ii) maximally symmetric solutions with constant scalars, i.e. de Sitter (dS),

Minkowski (Mink) or anti-de Sitter (AdS) solutions.

7.1 1/2 BPS DW solutions

In our previous paper [18] we already made a systematic search for half-supersymmetric

DW solutions of the gauged supergravities corresponding to the cases 3, 4 and 5. Due to
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a one-to-one relationship with 7-branes in D = 10 dimensions [29] we could even make a

systematic investigation of the quantization of the mass parameters by using the results

of [31, 32].

The goal of this subsection is to investigate whether the five massively deformed super-

gravities we found in subsection 6.2 allow new half-supersymmetric DW solutions. In other

words, we will derive all 1/2 BPS 7-brane solutions to the 9-dimensional supergravities de-

scribed in the previous sections. This analysis should lead, as a check of our calculations, to

at least all the solutions of [18]. Since we are looking for 1/2 BPS solutions it is convenient

to solve the Killing spinor equations, which are obtained by setting the supersymmetry

variation of the gravitino and dilatinos to zero. In this way we solve first order equations

instead of second order equations which we would encounter if we would solve the field

equations directly. For static configurations a solution to the Killing spinor equation is

also a solution to the field equations, so we don’t have to explicitly check that the field

equations are satisfied. The projector12 for a DW is given by 1
2 (1±γy), where y denotes the

transverse direction. We find that, in order to make a projection operator in the Killing

spinor equations, we are forced to set all mass parameters to zero except for ~m, which

corresponds to cases 3, 4 and 5 of section 6. This is a consistent combination of masses

and we obtain three classes of domain wall solution which were discussed in detail in [18].

As it turns out, there are no more half-supersymmetric DW solutions.

To summarize, we find that there are no new codimension-one 1/2 BPS solutions to

the D = 9 supergravity theories we obtained in the previous sections, as compared to the

three classes of domain wall solutions given in [18].

7.2 Solutions with constant scalars

In this subsection we will consider solutions with all three scalars constant. This is a

consistent truncation in two cases which both have two mass parameters. In this truncation

one is left with the metric only satisfying the Einstein equation with a cosmological term

Rµν −
1

2
gµνR = −Λgµν , (7.1)

with Λ quadratic in the two mass parameters. Depending on the sign of this term one thus

has anti-de Sitter, Minkowski or de Sitter geometry.

We find that solutions with constant scalars are possible in the following massive

supergravities:

• D = 10 with {m11} has Λ = 36m11
2e−3φ̂/2, which gives rise to de Sitter10 [9],

breaking all supersymmetry. The D = 11 origin of this solution is Mink11 written in

a basis where the x-dependence is of the required form [9]:

Mink11 : ds2 = e2m11x
(

−dt2 + e2m11tdx2
9 + dx2

)

. (7.2)

12From a general analysis of the possible projectors in 9 dimensions, i.e. demanding that the projector

squares to itself and that its trace is half of the spinor dimension, in order to yield a 1/2 BPS state, we find

that there is a second projector given by 1
2
(1± iγt). This projector would give a euclidean DW, i.e. a DW

having time as a transverse direction. Note that such a euclidean DW can never be 1/2 BPS since if there

existed a Killing spinor it would square to a Killing vector in the transverse direction, i.e. time, which is

not an isometry of the euclidean DW.
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• D = 9, Case 1 with {mIIA = −2
3m4} has Λ = 63

4 m4
2eφ−3ϕ/

√
7, which gives rise

to De Sitter9, breaking all supersymmetry. This case follows from the reduction

of Mink10 by using a combination of IIA scale symmetries that leave the dilaton

invariant (since Minkowski has vanishing dilaton) so that, after reduction, one is left

with a non-trivial geometry only.

• D = 9, Case 4 with {mIIB,m3} has Λ = 28mIIB
2e4ϕ/

√
7, which gives rise to de

Sitter9 for non-vanishing mIIB. This case follows from the reduction of Mink10 by

using a combination of IIB scale symmetries that leave the dilaton invariant. Note

that for vanishing mIIB this reduces to Mink9, despite the presence of m3 [20]. For

either mIIB or m3 non-zero this solution breaks all supersymmetry.

8. Conclusions

In this paper we have constructed five different D = 9 massive deformations with 32

supersymmetries, each containing two mass parameters. All these five theories have a

higher-dimensional origin via SS reduction from D = 10 dimensions. Furthermore, the

massive deformations gauge a global symmetry of the massless theory. The gauge groups

we have obtained are the abelian groups SO(2), SO(1, 1)+, R, R+ and the unique two-

dimensional non-abelian Lie group A(1) of scalings and translations on the real line.

We have analyzed the possibility of combining massive deformations to obtain more

general massive supergravities that are not gauged or do not have a higher-dimensional

origin. Our analysis shows that the only possible combinations are the five two-parameter

deformations, which are all gauged and can be uplifted. We have not made a systematic

search for massive D = 9 supergravities that are not the combination of gaugings and we

cannot exclude that there are more possibilities. This requires a separate calculation. In

this context, it is of interest to point out that examples of massive supergravities like Ro-

mans have been found in lower dimensions, e.g. [33, 34]. In these cases the compactification

manifolds are such that the candidate gauge fields are truncated away.

It is intriguing that some of the gauged supergravities we have constructed result from

gauging an R+ scale symmetry that does not leave the lagrangian invariant but scales

it with a factor. Apparently, it is possible to gauge such symmetries at the level of the

equations of motion. It would be interesting to work out the general procedure for doing

this.

We now would like to address the question of whether the gauged supergravities we

constructed can be interpreted as the leading terms in a low-energy approximation to

(compactified) superstring theory. Let us first discuss the status of the D = 10 gauged

supergravity. There exist two ways in the literature to construct this theory:

1. In [8] the theory was constructed by pointing out that the Bianchi identities of D =

11 superspace allow a more general solution involving a conformal spin connection.

This more general solution is equivalent to standard D = 11 supergravity for a

topologically trivial spacetime but leads to a new possibility for a nontrivial spacetime
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of the form M10 × S1. The reduction over the circle leads to the D = 10 gauged

supergravity theory.

2. In [9] the same D = 10 gauged supergravity was obtained via SS reduction of the

standard D = 11 supergravity using the R+ scale symmetry of the D = 11 equations

of motion.

In both cases it is not obvious how to extend the reduction procedure beyond the

lowest order approximation. The higher-order derivative terms which arise as corrections

in M-theory seem to break the scale invariance of the D = 11 equations of motion.13 The

symmetry used to reduce is therefore only a symmetry of the lowest order approximation.

Presumably this means that the more general procedure of [8] involving the conformal spin

connection also does not work in the presence of higher-order corrections.

One could try to restore the scale invariance by treating the D = 11 Planck length

`p or, equivalently, the D = 11 Einstein constant κ, as a scalar field `p(x) and giving it

a nontrivial weight under the scale transformations. This can be done by adding to the

D = 11 lagrangian a Lagrange multiplier term of the form

∆L =

∫

d11x `p(x) dΛ
(10) , (8.1)

where `p(x) is the x-dependent D = 11 Planck length and Λ(10) is a 10-form Lagrange

multiplier field.14 The problem of the above approach is that, after SS reduction, one is

left with two Lagrange multiplier fields. The field equation for one of them implies that the

string parameter `s is a constant. The other field equation, however, leads to the constraint

that m11`s = 0. Thus, one should take either m11 = 0 or `s = 0. In the first case there

is no deformation left while in the second case one is forced to consider string theory in

the `s = 0 limit where no higher-order corrections survive. Naturally, the scale symmetry

survives in this limit.

However, the fact that the gauged 10D supergravity with mass parameter m11 does not

seem to have a higher dimensional origin in the presence of higher derivative corrections

does not exclude a possible rôle for it in string theory. In this sense its status is similar

to Romans’ massive theory which also can not be obtained from 11D supergravity plus

corrections. Of course the difference is that Romans’ theory has a well understood string

theory origin which is lacking for the m11 theory.

The same discussion carries over to nine dimensions. The massive deformations split

up in two categories: those where only the theory to lowest order in α′ has a higher-

dimensional origin and those where also the higher-derivative corrections can be obtained

from 10D. The latter category can be derived using symmetries that extend to all orders

in α′. We have two such symmetries:

13We thank Shamit Kachru and Neil Lambert for a discussion on this point.
14A similar procedure can be performed at the level of the Green-Schwarz action of the D = 11 superme-

mbrane [35] where the membrane tension is replaced by a worldvolume 2-form potential. This introduces

a scale symmetry in the Green-Schwarz action. In fact, one can show that in the formulation of [35] the

Green-Schwarz action is invariant under the same scale transformations that leave the equations of motion

of D = 11 supergravity invariant.
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• The SL(2,R) (or rather its SL(2,Z) subgroup) symmetry of IIB. Thus the ~m =

(m1,m2,m3) deformations correspond to the low-energy limits of three different sec-

tors of compactified IIB string theory (depending on ~m2 = 1
4(m1

2 + m2
2 − m3

2)).

In [18] DW solutions were constructed for all three sectors. Of these only the D7-

brane has a well-understood role in IIB string theory.

• The linear combination 1
12α+β of R+-symmetries of IIA. Thus one can define a mas-

sive deformation ms within Case I with {mIIA = 1
12ms,m4 = ms} which corresponds

to the low-energy limit of a sector of compactified IIA string theory. No vacuum

solution has been constructed for this sector. It would be very interesting to try to

find a vacuum solution and understand which role it plays in IIA string theory.

In fact, one can have a better understanding of the ms massive deformation and the
1
12α+β symmetry of IIA from the following point of view. The combination 1

12α+β of IIA

can be understood from its 11D origin as the general coordinate transformation x11 → λx11.

This explains why all α′ corrections transform covariantly under this specific R+: the

higher-order corrections in 11D are invariant under general coordinate transformations

and upon reduction they must transform covariantly under the reduced g.c.t.’s, among

which is the 1
12α+ β scaling-symmetry.

The transformation x11 → λx11 can also be used for a Scherk-Schwarz reduction from

11D to 9D with a different procedure to give internal coordinate dependence to the fields.

Let us call this an SS2 reduction as opposed to the SS1 reduction, which is the method we

have used throughout the paper and which is based on global, internal symmetries of the

higher-dimensional theory. The SS2 procedure [36] instead uses a symmetry of the com-

pactification manifold for the reduction Ansatz.15 The massive deformations resulting from

a SS2 reduction can be expressed in terms of the structure constants of the corresponding

non-abelian gauge group. Using the transformation x11 → λx11 in the SS2 reduction from

11D to 9D we obtain massive deformations which are equal to the ms deformations upon

relating the components of fab
c to ms. Indeed, this explains why the ms deformations

correspond to a gauging of the 2D non-abelian Lie group A(1) rather than only the R+

symmetry 1
12α+ β.

The understanding of the ms deformation in terms of a SS2 reduction employing

x11 → λx11 also explains why m̃4 cannot be obtained from a SS1 reduction. Since S-

duality interchanges x10 and x11, it is the g.c.t. x10 → λx10 that would give rise to a

m11 = 1
12m̃4 deformation. However, this transformation is not an internal symmetry of

10D IIA supergravity and thus cannot be exploited in a SS1 reduction. Since m11 does

have a 10D origin, this implies that m̃4 cannot be obtained from 10D IIA.

The D = 9 gauged supergravities involving m11,mIIB or mIIA 6= 1
12m4 have the same

status as the D = 10 gauged supergravity discussed above, i.e. these theories are based

upon symmetries that are broken by α′-corrections. Note that all the de Sitter space

solutions we found in section 7 involve either m11, mIIB or mIIA 6= 1
12m4. It would be

15It was already noted by Scherk and Schwarz that SS1 reduction with a symmetry that originates from

a higher-dimensional g.c.t. is equivalent to the corresponding SS2 reduction. For an example, see [37].
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interesting to see whether these de Sitter spaces could occur as the `s → 0 limit of an exact

solution of string theory.
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A. Conventions

We use mostly plus signature (− + · · ·+). All metrics are Einstein-frame metrics. Dou-

bly hatted fields and indices are eleven-dimensional, singly hatted fields and indices ten-

dimensional while unhatted ones are nine-dimensional. Greek indices µ̂, ν̂, ρ̂ . . . denote

world coordinates and Latin indices â, b̂, ĉ . . . represent tangent spacetime. They are re-

lated by the Vielbeins êµ̂
â and inverse Vielbeins êâ

µ̂. Explicit indices x, y are underlined

when flat and non-underlined when curved. When indices are omitted we use form nota-

tion.

B. Scherk-Schwarz reduction of dilaton-gravity

In this appendix we will discuss in detail the most general Scherk-Schwarz reduction of the

dilaton-gravity system.

We start with the truncation of 10D IIA and IIB supergravity to the metric and the

dilaton. The lagrangian reads

L̂ =
√

−ĝ
[

R̂− 1

2
(∂φ̂)2

]

, (B.1)

while the corresponding Euler-Lagrange equations are given by

[ĝµ̂ν̂ ] : R̂µ̂ν̂ −
1

2
R̂ĝµ̂ν̂ −

1

2
∂µ̂φ̂∂ν̂ φ̂+

1

4
(∂φ̂)2ĝµ̂ν̂ = 0 ,

[φ̂] : ¤φ̂ = 0 . (B.2)

This system has two global symmetries: one can either scale the metric or one can shift

the dilaton:

ĝµ̂ν̂ → e2mg ĝµ̂ν̂ , φ̂→ φ̂+mφ . (B.3)

The shift of the dilaton is a symmetry of the lagrangian. The scale transformation of the

metric is a symmetry of the field equations only; it scales the lagrangian. This will prove an
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important difference when performing Scherk-Schwarz reductions. We will show that one

has to reduce field equations, rather than the lagrangian, when performing SS reductions

with symmetries of the field equations only.

Using an arbitrary linear combination of the two global symmetries we make the fol-

lowing Ansatz for Scherk-Schwarz reduction over x to nine dimensions:

êµ̂
â = emgx

(

e
√

7ϕ/28eµ
a 0

0 e−
√

7ϕ/4

)

, φ̂ = φ+mφx , (B.4)

where we have omitted the Kaluza-Klein vector Aµ for simplicity. Using this Ansatz the

10D field equations yield the following 9D equations:

[ĝµν ] : Rµν −
1

2
Rgµν −

1

2
∂µφ∂νφ+

1

4
(∂φ)2gµν −

1

2
∂µϕ∂νϕ+

1

4
(∂ϕ)2gµν+

+ e4ϕ/
√

7

(

1

4
mφ

2 + 28mg
2

)

gµν = 0 ,

[φ̂] : ¤φ+ 8mgmφe
4ϕ/
√

7 = 0 ,

[ĝxx] : ¤ϕ− 2√
7
mφ

2e4ϕ/
√

7 = 0 . (B.5)

Note that the field equations of the metric and both scalars get bilinear massive deforma-

tions. In addition one has the reduction of the ĝxµ field equation

[ĝxµ] : 2
√
7mg∂µϕ+

1

2
mφ∂µφ = 0 , (B.6)

which is the equation of motion for the Kaluza-Klein vector Aµ. Since it is not important

for our argument we will not consider this equation and restrict to (B.5). We will discuss

whether this sector of the field equations can be reproduced by a lagrangian.

If one performs the SS reduction on the 10D lagrangian, instead of on the field equa-

tions, the result reads L̂ = e8mgxL with the 9D lagrangian given by

L =
√−g

[

R− 1

2
(∂φ)2 − 1

2
(∂ϕ)2 − V (φ, ϕ)

]

with V (φ, ϕ) = e4ϕ/7
(

1

2
mφ

2 + 72mg
2

)

.

(B.7)

The corresponding Euler-Lagrange equations read

[gµν ] : Rµν −
1

2
Rgµν −

1

2
∂µφ∂νφ+

1

4
(∂φ)2gµν −

1

2
∂µϕ∂νϕ+

1

4
(∂ϕ)2gµν+

+ e4ϕ/
√

7

(

1

4
mφ

2 + 36mg
2

)

gµν = 0 ,

[φ] : ¤φ = 0 ,

[ϕ] : ¤ϕ− 4√
7
e4ϕ/

√
7

(

1

2
mφ

2 + 72mg
2

)

= 0 . (B.8)

These Euler-Lagrange equations only coincide with the reduction of the 10D Euler-La-

grange equations (B.5) provided mg = 0. Thus the application of SS reduction to the

lagrangian does not give the correct answer if the lagrangian scales: the Euler-Lagrange
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equations (B.8) are not equal to the field equations (B.5) for mg 6= 0.16 In fact, the

situation is worse [9]: for mg 6= 0 there is no lagrangian L with potential V (φ, ϕ) whose

Euler-Lagrange equations are the correct field equations (B.5). The metric field equation

would require

V (φ, ϕ) = e4ϕ/
√

7

(

1

2
mφ

2 + 56mg
2

)

, (B.9)

but this is inconsistent with the φ and ϕ field equations for mg 6= 0.

Thus we conclude that Scherk-Schwarz reduction on the lagrangian is only legitimate

when the exploited symmetry leaves the lagrangian invariant rather than covariant. For

symmetries that scale the lagrangian one has to reduce the field equations. Including the

full field content, such as the Kaluza-Klein vector Aµ, does not change this conclusion.

One could hope to improve the situation by first going to a frame in which the metric

is invariant (possible for any mφ,mg with mφ 6= 0) and then do the SS reduction. Since

this is related by a field redefinition it will not change the essential properties: the higher-

dimensional lagrangian still scales and the lower-dimensional field equations do not have a

corresponding lagrangian.

C. Supergravities and their reductions

C.1 D = 11 supergravity

The supersymmetry transformation rules of N = 1 eleven-dimensional supergravity read

δˆ̂e ˆ
µ̂

ˆ
â = ¯̂ε

ˆ̂
Γ

ˆ
â ˆ̂ψ ˆ

µ̂
,

δ
ˆ̂
C ˆ
µ̂

ˆ
ν̂

ˆ
ρ̂
= −3 ¯̂ε ˆ̂Γ

[
ˆ
µ̂

ˆ
ν̂

ˆ̂
ψ ˆ
ρ̂]
,

δ
ˆ̂
ψ ˆ
µ̂
= D ˆ

µ̂
ˆ̂ε+

1

192

(

ˆ̂
Γ(4) ˆ̂Γ ˆ

µ̂
− 1

3
ˆ̂
Γ ˆ
µ̂

ˆ̂
Γ(4)

)

ˆ̂
G(4)

ˆ̂ε , (C.1)

with the field strengths
ˆ̂
G(4) = d

ˆ̂
C and D ˆ

µ̂
ˆ̂ε = (∂ ˆ

µ̂
+ ˆ̂ω ˆ

µ̂
)ˆ̂ε. The 11D fermionic field content

consists solely of a 32-component gravitino, whose field equation reads

X0(
ˆ̂
ψ

ˆ
µ̂) ≡ ˆ̂

Γ
ˆ
µ̂

ˆ
ν̂

ˆ
ρ̂ ˆ̂Dˆ

ν̂

ˆ̂
ψ ˆ
ρ̂
= 0 , (C.2)

with
ˆ̂
Dˆ
ν̂
= ∂ˆ

ν̂
+ ˆ̂ωˆ

ν̂
and where we have set the three-form equal to zero. Under supersym-

metry this fermionic field equations transforms into

δ0X0(
ˆ̂
ψ

ˆ
µ̂) =

1

2
ˆ̂
Γ

ˆ
ν̂ ˆ̂ε

[

ˆ̂
R

ˆ
µ̂

ˆ
ν̂
− 1

2
ˆ̂
Rˆ̂g

ˆ
µ̂

ˆ
ν̂

]

, (C.3)

which implies the bosonic Einstein equation for the metric.

16The difference between substitution in the lagrangian or its field equations, in a slightly different context,

was also discussed in [38].
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We use the following reduction Ansätze

ˆ̂e ˆ
µ̂

ˆ
â = em11x

(

e−φ̂/12êµ̂â −e2φ̂/3Âµ̂
0 e2φ̂/3

)

,

ˆ̂
ψâ = e−m11x/2eφ̂/24

[

ψ̂â −
1

24
Γâλ̂

]

,

ˆ̂
ψx =

1

3
e−m11x/2eφ̂/24Γxλ̂ ,

ˆ̂ε = em11x/2e−φ̂/24ε̂ ,

ˆ̂
C µ̂ν̂ρ̂ = e3m11xĈµ̂ν̂ρ̂ ,

ˆ̂
Cµ̂ν̂x = −e3m11xB̂µ̂ν̂ , (C.4)

to arrive at the IIA susy-rules in ten dimensions.

C.2 D = 10 IIA supergravity

The supersymmetry transformation rules of ten-dimensional IIA supergravity read

δ0êµ̂
â = ε̂Γâψ̂µ̂ ,

δ0ψ̂µ̂ =

(

Dµ̂ +
1

48
e−φ̂/2

(

/̂HΓ̂µ̂ +
1

2
Γ̂µ̂ /̂H

)

Γ11 +
1

16
e3φ̂/4

(

/̂F Γ̂µ̂ −
3

4
Γ̂µ̂ /̂F

)

Γ11+

+
1

192
eφ̂/4

(

/̂GΓ̂µ̂ −
1

4
Γ̂µ̂ /̂G

))

ε̂ ,

δ0B̂µ̂ν̂ =2eφ̂/2ε̂Γ11Γ̂[µ̂

(

ψ̂ν̂] +
1

8
Γ̂ν̂]λ̂

)

,

δ0Âµ̂ = − e−3φ̂/4ε̂Γ11

(

ψ̂µ̂ −
3

8
Γ̂µ̂λ̂

)

,

δ0Ĉµ̂ν̂ρ̂ = − 3e−φ̂/4ε̂Γ̂[µ̂ν̂

(

ψ̂ρ̂] −
1

24
Γ̂ρ̂]λ̂

)

+ 3Â[µ̂δ0B̂ν̂ρ̂] ,

δ0λ̂ =

(

/∂φ̂+
1

12
e−φ̂/2 /̂HΓ11 +

3

8
e3φ̂/4 /̂FΓ11 +

1

96
eφ̂/4 /̂G

)

ε̂ ,

δ0φ̂ =
1

2
ε̂λ̂ , (C.5)

with the following field strengths:

F̂ = dÂ , Ĥ = dB̂ , Ĝ = dĈ + ÂĤ , (C.6)

and Dµ̂ε̂ = (∂µ̂+ ω̂µ̂)ε̂. Upon (massless) reduction with our Ansätze the 11D field equation

splits up in two field equations for the 10D IIA fermionic field content, a gravitino and a

dilatino:

X0(ψ̂
µ̂) ≡ Γ̂µ̂ν̂ρ̂D̂ν̂ ψ̂ρ̂ −

1

8
(/∂φ̂)Γ̂µ̂λ̂ = 0 ,

X0(λ̂) ≡ Γ̂ν̂D̂ν̂ λ̂− Γ̂ν̂(/∂φ̂)ψ̂ν̂ = 0 , (C.7)
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with D̂ν̂ = (∂ν̂ + ω̂ν̂) and where we have set the vector, two- and three-form equal to zero.

Under supersymmetry these fermionic field equations transform into

δ0X0(ψ̂
µ̂) =

1

2
Γ̂ν̂ ε̂

[

R̂µ̂
ν̂ −

1

2
R̂ĝµ̂ν̂ −

1

2
(∂µ̂φ̂)(∂ν̂ φ̂) +

1

4
(∂φ̂)2ĝµ̂ν̂

]

,

δ0X0(λ̂) = ε̂ [¤φ̂] , (C.8)

which imply the usual graviton-dilaton field equations.

We use the following reduction Ansatz with x-dependence implied by the R+-symme-

tries α̂ and β̂, given in table 2:

êµ̂
â = e9mIIAx/8

(

eφ/16−3ϕ/16
√

7eµ
a −e−7φ/16+3

√
7ϕ/16A

(2)
µ

0 e−7φ/16+3
√

7ϕ/16

)

,

ψ̂a = e−9mIIAx/16e−φ/32+3ϕ/32
√

7

[

ψa +
1

32
Γa

(

λ− 3√
7
λ̃

)]

,

ψ̂x = − 7

32
e−9mIIAx/16e−φ/32+3ϕ/32

√
7Γx

(

λ− 3√
7
λ̃

)

,

B̂µν = e3mIIAx+m4x/2(B(2)
µν − 2A

(2)
[µ Aν]) ,

B̂µx = −e3mIIAx+m4x/2Aµ ,

Âµ = −e−3m4x/4(A(1)
µ − χA(2)) ,

Âx = −e−3m4x/4χ ,

Ĉµνρ = e3mIIAx−m4x/4
(

Cµνρ − 3A
(1)
[µ B

(2)
νρ] + 3A

(2)
[µ B

(1)
νρ] + 6A

(1)
[µ A

(2)
ν Aρ]

)

,

Ĉµνx = −e3mIIAx−m4x/4(B(1)
µν − 2A

(1)
[µ Aν]) ,

λ̂ =
1

4
e−9mIIAx/16e−φ/32+3ϕ/32

√
7(3λ+

√
7λ̃) ,

ε̂ = e9mIIAx/16eφ/32−3ϕ/32
√

7ε ,

φ̂ =
1

4
(3φ+

√
7ϕ) +

(

3

2
mIIA +m4

)

x . (C.9)

C.3 D = 10 IIB supergravity

The supersymmetry transformation rules of ten-dimensional IIB supergravity read (in com-

plex notation)

δêµ̂
â =

1

2
ε̂ Γ̂âψ̂µ̂ + h.c. ,

δψ̂µ̂ = Dµ̂ε̂−
i

16 · 5!
/̂G

(5)
Γ̂µ̂ε̂+

i

16 · 3!e
φ̂/2
(

Γ̂µ̂Γ̂
(3) + 2Γ̂(3)Γ̂µ̂

)(

Ĥ(1) − τ̂ Ĥ(2)
)

(3)
ε̂∗ ,

δλ̂ = −eφ̂ /∂τ̂ ε̂∗ − 1

2 · 3!e
φ̂/2Γ̂(3)

(

Ĥ(1) − τ̂ Ĥ(2)
)

(3)
ε̂ ,

δB̂
(1)
µ̂ν̂ = −eφ̂/2τ̂∗

(

ε̂
∗
Γ̂[µ̂ψ̂ν̂] −

i

8
ε̂ Γ̂µ̂ν̂ λ̂

)

+ h.c. ,

δB̂
(2)
µ̂ν̂ = −eφ̂/2

(

ε̂
∗
Γ̂[µ̂ψ̂ν̂] −

i

8
ε̂ Γ̂µ̂ν̂ λ̂

)

+ h.c. ,
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δD̂µ̂ν̂λ̂ρ̂ = 2i ε̂ Γ̂[µ̂ν̂λ̂ψ̂ρ̂] −
3

2
εijB̂

(i)
[µ̂ν̂δB̂

(j)

λ̂ρ̂]
+ h.c. ,

δχ̂ = −1

4
e−φ̂ε̂λ̂∗ + h.c. ,

δφ̂ =
i

4
ε̂λ̂∗ + h.c. , (C.10)

with the complex scalar τ̂ = χ̂+ ie−φ̂ and the field strengths

~̂
H = d

~̂
B , Ĝ = dD̂ +

1

2
~̂
BTη

~̂
H , η =

(

0 1

−1 0

)

. (C.11)

The field strength Ĝ is subject to a self-duality constraint. The covariant derivative of the

IIB Killing spinor reads

Dµ̂ε̂ =

(

∂µ̂ + ω̂µ̂ +
i

4
eφ̂∂µ̂χ̂

)

ε̂ . (C.12)

When truncating to the metric, scalars and fermions, the massless 10D IIB fermionic field

equations read

X0(ψ̂
µ̂) ≡ Γ̂µ̂ν̂ρ̂

(

∂ν̂ + ω̂ν̂ +
1

4
ieφ̂∂ν̂χ̂

)

ψ̂ρ̂ +
1

8
eφ̂(/∂τ̂)Γ̂µ̂λ̂∗ = 0 ,

X0(λ̂) ≡ Γ̂µ̂
(

∂µ̂ + ω̂µ̂ +
3

4
ieφ̂∂µ̂χ̂

)

λ̂+ eφ̂Γ̂µ̂(/∂τ̂)ψ̂∗µ̂ = 0 . (C.13)

The reduction Ansätze we used for reducing the above rules are

êµ̂
â = emIIBx

(

e
√

7ϕ/28eµ
a −e−

√
7ϕ/4Aµ

0 e−
√

7ϕ/4

)

,

ψ̂a = e−mIIBx/2e−
√

7ϕ/56

(

cτ∗ + d

cτ + d

)1/4 (

ψa +
1

8
√
7
Γaλ̃

∗
)

,

ψ̂x = −
√
7

8
e−mIIBx/2e−

√
7ϕ/56

(

cτ∗ + d

cτ + d

)1/4

Γxλ̃
∗ ,

λ̂ = ie−mIIBx/2e−
√

7ϕ/56

(

cτ∗ + d

cτ + d

)3/4

λ ,

ε̂ = emIIBx/2e
√

7ϕ/56

(

cτ∗ + d

cτ + d

)1/4

ε ,

τ̂ =
aτ + b

cτ + d
,

~̂
Bµν = e2mIIBxΩ(x) ~Bµν ,

~̂
Bµx = −e2mIIBxΩ(x) ~Aµ ,

D̂µνλρ = e4mIIBxDµνλρ , D̂µνλx = e4mIIBx

(

−Cµνλ +
3

2
~AT[µη

~Bνρ]

)

, (C.14)

where we take the Ω to be x-dependent:

Ω(x) =

(

cosh(αx) + m1
2α sinh(αx) 1

2α (m2 +m3) sinh(αx)
1
2α (m2 −m3) sinh(αx) cosh(αx)− m1

2α sinh(αx)

)

. (C.15)

Upon reduction to 9D the self-duality constraint relates Cµνλ to Dµνλρ and can be used to

eliminate the latter.
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C.4 D = 9 N = 2 supergravity

The unique nine-dimensional N = 2 supergravity theory has the following supersymmetry

transformations:

δ0eµ
a =

1

2
ε̄γaψµ + h.c. ,

δ0ψµ = Dµε+
i

16
e−2ϕ/

√
7

(

5

7
γµγ

(2) − γ(2)γµ

)

F(2)ε−

− 1

8 · 2!e
3ϕ/2

√
7

(

5

7
γµγ

(2) − γ(2)γµ

)

eφ/2
(

F (1) − τF (2)
)

(2)
ε∗+

+
i

8 · 3!e
−ϕ/2

√
7

(

3

7
γµγ

(3) + γ(3)γµ

)

eφ/2
(

H(1) − τH(2)
)

(3)
ε∗−

− 1

8 · 4!e
ϕ/
√

7

(

1

7
γµγ

(4) − γ(4)γµ

)

G4ε ,

δ0λ̃ = i/∂ϕ ε∗ − 1√
7
e−2ϕ/

√
7 /Fε∗ − 3i

2 · 2!
√
7
e3ϕ/2

√
7eφ/2γ(2)

(

F (1) − τ ∗F (2)
)

(2)
ε

+
1

2 · 3!
√
7
e−ϕ/2

√
7eφ/2γ(3)

(

H(1) − τ ∗H(2)
)

(3)
ε+

+
i

4!
√
7
eϕ/
√

7 /G4ε
∗ ,

δ0λ = i/∂φ ε∗ − eφ/∂χ ε∗ − i

2 · 2!e
3
√

7ϕ/14eφ/2γ(2)
(

F (1) − τF (2)
)

(2)
ε−

− 1

2 · 3!e
−
√

7ϕ/14eφ/2γ(3)
(

H(1) − τH(2)
)

(3)
ε ,

δ0Aµ =
i

2
e2ϕ/

√
7 ε̄(ψµ −

i√
7
γµλ̃

∗) + h.c. ,

δ0A
(1)
µ = − i

2
eφ/2τ∗e−3ϕ/2

√
7

(

ε∗ψµ +
i

4
εγµλ+

3i

4
√
7
ε∗γµλ̃

∗
)

+ h.c. ,

δ0A
(2)
µ = − i

2
eφ/2e−3ϕ/2

√
7

(

ε∗ψµ +
i

4
εγµλ+

3i

4
√
7
ε∗γµλ̃

∗
)

+ h.c. ,

δ0B
(1)
µν = eφ/2τ∗eϕ/2

√
7

(

ε∗γ[µψν] +
i

8
εγµνλ−

i

8
√
7
ε∗γµν λ̃

∗
)

−A[µδ0A
(1)
ν] + h.c. ,

δ0B
(2)
µν = eφ/2eϕ/2

√
7

(

ε∗γ[µψν] +
i

8
εγµνλ−

i

8
√
7
ε∗γµν λ̃

∗
)

−A[µδ0A
(2)
ν] + h.c. ,

δ0Cµνλ =
3

2
e−ϕ/

√
7ε̄γ[µν

(

ψλ] +
i

6
√
7
γλ]λ̃

∗
)

− 3

2
~B T

[µνη δ0
~Aλ] + h.c. ,

δ0ϕ = − i
4
ε̄λ̃∗ + h.c. ,

δ0χ =
1

4
e−φελ∗ + h.c. ,

δ0φ = − i
4
ελ∗ + h.c. , (C.16)
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with the complex scalar τ = χ+ ie−φ. The field strengths read

G1 = dχ , F = dA , ~F = d ~A , ~H = d ~B−A~F , G4 = dC + ~BTη ~F . (C.17)

The covariant derivative of the Killing spinor reads

Dµε = (∂µ + ωµ +
i

4
eφ∂µχ)ε . (C.18)

When truncating to the metric, scalars and fermions, the massless 9D fermionic field equa-

tions read

X0(ψ
µ) ≡ γµνρ

(

∂ν + ων +
1

4
ieφ∂νχ

)

ψρ −
1

8
eφ(/∂τ)γµλ∗ +

1

8
i(/∂ϕ)γµλ̃∗ = 0 ,

X0(λ) ≡ γµ
(

∂µ + ωµ +
3

4
ieφ∂µχ

)

λ+ eφγµ(/∂τ)ψ∗µ = 0 ,

X0(λ̃) ≡ γµ
(

∂µ + ωµ −
1

4
ieφ∂µχ

)

λ̃− iγµ(/∂ϕ)ψ∗µ = 0 . (C.19)

Under supersymmetry these yield the variation

δ0X0(ψ
µ) =

1

2
γνε

[

Rµ
ν −

1

2
Rgµν −

1

2

(

(∂µφ)(∂νφ)−
1

2
(∂φ)2gµν

)

−

− 1

2
e2φ ((∂µχ)(∂νχ)−

1

2
(∂χ)2gµν)−

1

2

(

(∂µϕ)(∂νϕ)−
1

2
(∂ϕ)2gµν

)]

,

δ0X0(λ) = ε∗[−eφ(¤χ+ 2(∂µφ)(∂
µχ))] + iε∗[¤φ− e2φ(∂χ)2] ,

δ0X0(λ̃) = iε∗[¤ϕ] , (C.20)

which are the massless bosonic field equations for the metric and the scalars.

D. Spinors and Γ-matrices in ten and nine dimensions

The Γ-matrices in ten (Γµ̂) and nine (γµ) dimensions can be chosen to satisfy

Γ†µ̂ = ηµ̂µ̂Γµ̂ and γ†µ = ηµµγµ , (D.1)

respectively. In ten dimensions we can also choose the Γ-matrices to be real, while in nine

dimensions they will be purely imaginary, which implies that

ΓTµ̂ = ηµ̂µ̂Γµ̂ and γTµ = −ηµµγµ . (D.2)

In ten dimensions the minimal spinor is a 32 component Majorana-Weyl spinor with 16

(real) degrees of freedom. With the choice

Γ11 ≡ −Γ0···9 , Γ11 =

( �
0

0 − �

)

, (D.3)
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we can write a ten-dimensional Majorana-Weyl spinor as being composed of nine-dimen-

sional, 16 component, Majorana-Weyl spinors according to

ψMW
+ =

(

ψ1

0

)

, ψMW
− =

(

0

ψ2

)

, (D.4)

where ψi are nine-dimensional Majorana-Weyl spinors and + or − denotes the chirality

of the ten-dimensional spinor. The split of an arbitrary ten-dimensional spinor into two

Majorana-Weyl spinors of opposite chirality can of course be done without reference to nine

dimensions (through the specific choice of Γ11), but each ten-dimensional Majorana-Weyl

spinor will then in general have 32 non-zero components even though it only has 16 degrees

of freedom. In order to reduce to nine dimensions we use

Γ11 = σ3 ⊗
�
, Γx = σ1 ⊗

�
, Γa = σ2 ⊗ γa , (D.5)

where x is the reduction coordinate and the Pauli matrices are defined as

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

. (D.6)

As mentioned above the nine dimensional γ-matrices are purely imaginary. If we work

with a reduction of type IIB, where the two spinors have the same chirality, it may be

convenient to introduce complex, nine-dimensional, Weyl spinors according to

ψc = ψ1 + iψ2 , λc = λ2 + iλ1 , (D.7)

εc = ε1 + iε2 , λ̃c = λ̃2 + iλ̃1 , (D.8)

which in ten-dimensional notation can be written as, e.g.,

ψW+ =

(

ψ1

0

)

+ i

(

ψ2

0

)

. (D.9)

If we instead work with a reduction of type IIA the two spinors will have opposite chirality,

and can thus be composed into a ten-dimensional Majorana spinor according to

ψM =

(

ψ1

0

)

+

(

0

ψ2

)

. (D.10)

When working with these non-minimal spinors, which are either just Majorana (ψMµ )

or just Weyl (ψWµ ) [18], the two formulations are (in nine dimensions) related via

1

2
(1 + Γ11)ψ

M
µ = Re(ψWµ ) ,

1

2
(1 + Γ11)λ

M = Im(Γxλ
W ) ,

1

2
(1 + Γ11)λ̃

M = Im(Γxλ̃
W ) ,

1

2
(1 + Γ11)ε

M = Re(εW ) ,

1

2
(1− Γ11)ψ

M
µ = Im(Γxψ

W
µ ) ,

1

2
(1− Γ11)λ

M = Re(λW ) ,

1

2
(1− Γ11)λ̃

M = Re(λ̃W ) ,

1

2
(1− Γ11)ε

M = Im(Γxε
W ) , (D.11)
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Figure 2: Schematic view of how a ten dimensional Dirac spinor can be projected down to a

Majorana-Weyl spinor along two different routes. The number of real or complex degrees of freedom

for each spinor is also indicated. The relation between the spinors at the intermediate stage (in

nine dimensions) is given by D.11.

for positive (ψWµ , ε
W ) and negative (λW , λ̃W ) chirality Weyl fermions. With the above

mentioned decomposition into nine-dimensional Majorana-Weyl spinors we can write

ψMµ =

(

ψ1

ψ2

)

, εM =

(

ε1
ε2

)

, λM =

(

λ1

λ2

)

, λ̃M =

(

λ̃1

λ̃2

)

(D.12)

and

ψWµ =

(

ψ1 + iψ2

0

)

, εWµ =

(

ε1 + iε2
0

)

, (D.13)

λW =

(

0

λ2 + iλ1

)

, λ̃W =

(

0

λ̃2 + iλ̃1

)

, (D.14)

where the spinors without an M or W superscript are Majorana-Weyl spinors.

The two different routes to obtain Majorana-Weyl spinors are illustrated in figure 2.

Note also that it follows from the Clifford algebra and the choice of Γ11 that Γx is off-

diagonal, which is crucial for this construction.
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