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We study the properties of an ultracold Fermi gas loaded in an optical square lattice and subjected to an

external and classical non-Abelian gauge field. We show that this system can be exploited as an optical

analogue of relativistic quantum electrodynamics, offering a remarkable route to access the exotic

properties of massless Dirac fermions with cold atoms experiments. In particular, we show that the

underlying Minkowski space-time can also be modified, reaching anisotropic regimes where a remarkable

anomalous quantum Hall effect and a squeezed Landau vacuum could be observed.
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Low-energy excitations of fermionic lattice systems are

usually governed by the nonrelativistic Schrödinger equa-

tion. However, this description must be profoundly altered

in the vicinity of Dirac points, where the energy bands

display conical singularities and quasiparticles become

massless relativistic fermions. Such a remarkable behavior

can be induced by a honeycomb geometry [1–5], or by

additional uniform [6] or staggered [7,8] magnetic fields.

Here, we show that the natural playground for emerging

Dirac fermions is provided by multicomponent fermionic

atoms subjected to artificial non-Abelian gauge fields. We

emphasize that these external fields can be produced by

generalizing the recent experiment [9], as proposed in

[10,11]. Such gauge fields give rise to intriguing phe-

nomena such as the non-Abelian Aharonov-Bohm effect

[10], generation of magnetic monopoles [12], non-Abelian

atom optics [13], quasirelativistic effects [14], or even the

modification of the metal-insulator transition [15]. In this

Letter, we show that the physical properties of massless

relativistic fermions are completely characterized by the

non-Abelian features of the external gauge fields.

Furthermore, the anisotropy of the underlying Minkowski

space-time can be controlled externally, producing an

anomalous quantum Hall effect characterized by a

squeezed Landau vacuum.

We consider a system of two-component (two-color)

fermionic atoms trapped in an optical square lattice with

sites at r ¼ ðn;mÞa, where a is the lattice spacing and n,
m 2 Z. In the noninteracting limit, which can be obtained

by means of Feshbach resonances [16], fermions freely

hop between neighboring sites. The addition of an external

gauge potential A modifies the hopping Hamiltonian ac-

cording to the Peierls substitution

H ¼ �t
X

hr;r0i

X

��0
cy
�0ðr0Þe

�i
R

r0
r
A�dlc�ðrÞ þ H:c:; (1)

where t is the hopping amplitude, c�ðrÞ is the fermionic

field operator in color component � ¼ 1, 2, and we set @ ¼
e ¼ 1. Our setup features an external gauge potential with

both commutative and noncommutative components A ¼
B0

2
ð�y; xÞ þ aðB��y; B��xÞ, where B0, B�, B� are con-

trollable parameters and �x;y are Pauli matrices.

Accordingly, the hoppings are accompanied by nontrivial

unitary operators, UxðmÞ ¼ e�i��mei���y and UyðnÞ ¼
ei��nei���x , where � ¼ B0a

2 is the Abelian magnetic

flux and ��;� ¼ B�;�a
2 are the non-Abelian fluxes [see

Fig. 1(a)].

Let us point out that the gauge fields considered in this

work can be realized following the proposals [10,11,17],

along the lines of the recent experiment [9], and provide

non-Abelian analogues of homogeneous magnetic fields

since they are characterized by constant Wilson loops.

Indeed, atoms hopping around an elementary plaquette

undergo a unitary transformation U ¼ UxðmÞUyðnþ
1ÞUy

x ðmþ 1ÞUy
y ðnÞ, explicitly given by
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FIG. 1 (color online). (a) Square lattice subjected to a non-

Abelian gauge potential. This external field induces state-

dependent hoppings described by the U(2) operators Ux and

Uy. (b) Energy bands close to the �-flux regime (�� ¼ �=2þ
0:1, �� ¼ �=2� 0:1), with vanishing Abelian flux � ¼ 0. The

bands touch at four Dirac points inside the first Brillouin zone

(BZ), where the energy scales linearly with momenta E� k.
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U ¼ ei2��ðc1Iþ c2�z þ c3�y þ c4�xÞ; (2)

where the constants fcjg are listed in [18]. For specific

values of ��;�, the loop matrix reduces to a phase factor

and reproduces the Abelian �-flux (�� ¼ �� ¼ �
2
) or

Hofstadter (�� ¼ �� ¼ 0) models [6,19]. However, in

general cases, it is a nontrivial U(2) operator exhibiting

non-Abelian properties such as the non-Abelian Aharonov-

Bohm effect. The gauge-invariant Wilson loop W ¼ trU
provides a clear distinction between the Abelian (jWj ¼ 2)
and non-Abelian (jWj< 2) regimes. We stress that the

Wilson loop is homogeneous and that the corresponding

spectrum exhibits well developed gaps [17].

In order to isolate non-Abelian effects, we first study the

regime of vanishing Abelian flux� ¼ 0. The Hamiltonian

is diagonalized in momentum space, and the fermion gas

becomes a collection of noninteracting quasiparticles with

energies shown in Fig. 1(b). Close to the marginally

Abelian regime (��, �� � �=2), the spectrum develops

four independent conical singularities kD 2
fð0; 0Þ; ð�

a
; 0Þ; ð0; �

a
Þ; ð�

a
; �
a
Þg 2 BZ, which correspond to

massless relativistic excitations at half filling. Around

these points p ¼ k� kD, the low-energy properties are

accurately described by a Dirac Hamiltonian

Heff ¼
X

p

�y
pHD�p; HD ¼ cx�xpx þ cy�ypy; (3)

where �p ¼ ðc1p; c2pÞt is the relativistic spinor, the Dirac
matrices �x, �y fulfill f�j; �kg ¼ 2�jk [e.g., around kD ¼
ð0; �=aÞ, �x ¼ �y, and �y ¼ �x], and cx ¼ 2at sin��,

cy ¼ 2at sin�� represent the effective speed of light. We

stress here that the control over the non-Abelian fluxes

��;� offers the exotic opportunity to modify the structure

of the underlying Minkowski space-time, reaching aniso-

tropic situations where cx � cy. Hence, non-Abelian opti-

cal lattices provide a quantum optical analogue of

relativistic QED, where the emerging fermions and the

properties of the corresponding space-time rely on the

non-Abelian features of the external fields. Furthermore,

it is also possible to observe a transition between relativ-

istic and nonrelativistic dispersion relations as the energy is

increased. This abrupt change of the quasiparticle nature is

revealed by Van Hove singularities (VHS) in the density of

states, as displayed in Figs. 2(a) and 2(c).

The transport properties of 2D Fermi gases subjected to

external gauge fields are characterized by the optical-

lattice analogue of the well-known quantum Hall effect

(QHE) [20]. In this context, the transverse Hall conductiv-

ity measures the response of the system to a static force,

e.g., a lattice acceleration, and takes on quantized values

�xy ¼ �
h
with � 2 Z, when the Fermi energy EF lies in a

gap [17]. Surprisingly, the quantized conductivity of cold

gases can be directly observed through density measure-

ments thanks to the Streda formula [21]. Here, we show

that non-Abelian effects have dramatic consequences on

the QHE which occurs when an additional Abelian flux �

is applied to our system. The quantized values of the

transverse conductivity are calculated as the sum of topo-

logical invariants associated to each energy band, the so-

called Chern numbers [22],

�xy ¼ �
X

En<EF

i

2�h

Z

BZ
trF ðc nÞdk; (4)

where F ðc nÞ ¼ h@kxc nj@kyc ni � h@kyc nj@kxc ni is the

Berry’s curvature of the band En. Here, the Chern numbers

are computed numerically by discretizing the Brillouin

zone [23]. A lattice gauge theory method allows to deter-

mine the Berry’s curvature

F xyðklÞ ¼ lnTxðklÞTyðkl þ x̂ÞTxðkl þ ŷÞ�1TyðklÞ�1;

T�ðklÞ ¼ hc nðklÞjc nðkl þ �̂Þi; (5)

and subsequently the Chern number C ¼ i
2�

P

lF xyðklÞ.
Remarkably, the sequence of Hall plateaus is extremely

sensitive to the values of the non-Abelian fluxes. In the

Abelian regime �� ¼ �� ¼ 0, we observe that the Hall

conductivity follows the usual integer QHE �xy ¼ 2�
h
,

where the factor 2 is due to color-degeneracy.

Conversely, in the �-flux regime (�� ¼ �� ¼ �=2) illus-

trated in Fig. 2(b), we obtain a completely different se-

quence of Hall plateaus where �xy ¼ 4
h
ð�þ 1

2
Þ around

EF ¼ 0, as recently observed in graphene [4]. This se-

quence is characterized by sudden changes of sign across

the VHS situated at E ¼ �2, and by unusual double steps
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FIG. 2 (color online). (a) Density of states (DOS) in the �-flux
regime �� ¼ �� ¼ �=2 when � ¼ 0. (b) Hall conductivity in

units of h�1 as a function of the Fermi energy in the same regime

for � ¼ 1=41. Black arrows designate the VHS. (c) DOS close

to the �-flux regime �� ¼ �=2þ 0:1 and �� ¼ �=2� 0:1

when � ¼ 0. (d) Hall conductivity h�xy ¼ h�xyðEFÞ in the

same regime as (c) for � ¼ 1=41. Dark red and light green

arrows, respectively, designate the VHS EVHS
red and EVHS

green [cf.

Eq. (6)].
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which can be traced back to the underlying low-energy

relativistic excitations. As the gauge fluxes vary in the

vicinity of the �-flux point (�� ¼ �=2þ 	 and �� ¼
�=2� 	), the system enters the non-Abelian regime and

the Hall plateaus are modified [see Fig. 2(d)]. Indeed, most

of the degeneracies induced by the Dirac points are lifted,

and the anomalous double steps around EF ¼ 0 are pro-

gressively destroyed. However, a striking behavior occurs:

as the non-Abelian fluxes are varied, the two VHS origi-

nally situated at E ¼ �2 in the �-flux point are split into

four

EVHS
red ¼�2ð1þcos��Þ; EVHD

green¼�2ð1þcos��Þ; (6)

as illustrated in Fig. 2(c) for 	 ¼ 0:1. Surprisingly enough,
anomalous double steps in the plateau sequence reappear

at higher energies outside the two red VHS, while the

green VHS induce a sudden change of sign [see

Figs. 2(c) and 2(d)]. It is interesting to note that the

anomalous behavior persists in the high-energy regime

and that this effect can be probed by varying the parameter

��. The temperature required to observe these plateaus

should be smaller than the spectral gaps, namely T �
10 nK.

To identify the non-Abelian features in this QHE, we

introduce the Abelian flux � in the Dirac Hamiltonian (3)

by minimal coupling p ! pþ B0

2
ð�y; xÞ, and obtain

HD¼ðg��þaþg��
�ayÞþðgþ�þayþgþ�

�aÞ; (7)

where �þ ¼ j
1ih
2j, �� ¼ j
2ih
1j are color-flip opera-
tors, g� ¼ ðcy � cxÞðB0=2Þ1=2, and ay, a are bosonic chiral

operators listed in [24]. In the isotropic limit g� ¼ 0, the
Hamiltonian consists of an anti-Jaynes-Cummings term, a

well-known interaction in quantum optics [25] that leads to

the usual relativistic Landau levels (LL) recently observed

in graphene [2]. Conversely, in the non-Abelian regime

g� � 0, the Hamiltonian becomes a simultaneous combi-

nation of Jaynes-Cummings and anti-Jaynes-Cummings

terms, producing a new type of Landau levels. These novel

LL are obtained by means of a Bogoliubov squeezing

transformation Sð�Þ ¼ e�=2½a
2�ðayÞ2� with � ¼

�tanh�1ðg�=gþÞ, leading to the energy spectrum

ELLL ¼ 0; E�
n ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2B0cxcyÞn
q

; n¼ 1;2 . . . (8)

and corresponding eigenstates

jLLLi ¼ j
2iSyð�Þjvaci;

jE�
n i ¼

1
ffiffiffi

2
p j
1iSyð�Þjn� 1i � 1

ffiffiffi

2
p j
2iSyð�Þjni;

(9)

with jni ¼ ðn!Þ�1=2ðayÞnjvaci being the usual Fock states.

Accordingly, the effect of non-Abelian fields is to squeeze

the usual LL. In particular, the lowest Landau level (LLL)

is a zero-energy mode characterized by a colored squeezed

vacuum, which is in clear contrast with its Abelian counter-

part, the latter being simply the vacuum. Besides, this LLL

presents half the degeneracy of the remaining excited states

n � 1 [26], and leads to the so-called anomalous half-

integer QHE

�xy ¼ � g

h

�

�þ 1

2

�

; (10)

where the filling factor � is defined as the integer part of

½E2
F=2B0cxcy�, and g is the Dirac points degeneracy. Let us

stress that the non-Abelian fluxes modify the Hall plateaus

in a nontrivial manner as already emphasized through the

numerical results. In particular, the Hall conductivity in

Eq. (10) predicts the anomalous half-integer plateaus rep-

resented in Fig. 2(b), where the conical singularities are

four-fold degenerate g ¼ 4. Conversely, in the non-

Abelian case shown in Fig. 2(d), the degeneracy is lifted

to g ¼ 1, and thus the size of the steps is modified in

accordance.

As discussed above, the anomalous QHE is essentially a

single-particle phenomenon that relies on the peculiar

properties of the LLL. Additionally, further non-Abelian

anomalies can also be found at the many-particle level,

where an exotic Laughlin wave function [27] can be ob-

tained by filling the single-particle vortex wave functions

�m
LLLðx; yÞ ¼

� ffiffiffiffiffi
cy

cx

s

x� i

ffiffiffiffiffi
cx
cy

s

y

�
m
e�ðx2=2�2xþy2=2�2yÞ: (11)

Here, �x ¼ lB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2cx=cy
q

, �y ¼ lB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2cy=cx
q

, describe the an-

isotropic extent of the wave function in units of the mag-

netic length lB ¼
ffiffiffiffiffiffiffiffiffiffiffi
1=B0

p

, and m ¼ 0; 1 . . . represents the

number of left-handed quanta [24]. Note how the loss of

rotational invariance caused by the non-Abelian induced

anisotropy cx � cy, leads to the squeezing of the vortex

levels [Figs. 3(a)–3(d)]. Filling these squeezed degenerate

states (11) according to Fermi statistics, we obtain the

Laughlin wave function

(a) Nonsqueezed wave function
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FIG. 3 (color online). Vortex-like single-particle wave func-

tions of the LLL �m
LLLðx; yÞ for m ¼ 4. (a), (b) Isotropic limit

cx ¼ cy. (c), (d) Anisotropic regime cy ¼ 2cx. Note that dis-

tances are measured in units of the magnetic length lB.
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�½z� ¼
Y

j<k

ðuzjk � v �zjkÞe
�
P

j

fðu;vÞjzjj2�gðu;vÞðz2jþ�z2j Þ
; (12)

where u ¼ cosh � , v ¼ sinh � , fðu; vÞ ¼ 1
4
ðu2 þ v2Þ, and

gðu; vÞ ¼ 1
4
uv depend on the anisotropy through the

squeezing parameter � , and zjk ¼ zj � zk represents the

complex two-fermion distance. In the Abelian limit � ¼ 0,
one recovers the standard integer Laughlin wave function

�½z� ¼ Q

j<kfðzj; zkÞe�
P

j
jzjj2=4l2B , where fðzj; zkÞ ¼ zj �

zk belongs to the space of holomorphic functions

(Bargman-Fock space [28]). Strikingly, in the non-

Abelian scenario � � 0, the wave function (12) does not

belong to such space due to the interference between

holomorphic fðzÞ and antiholomorphic fð�zÞ components,

and thus represents an instance of a nonchiral QHE. As

shown below, this new anomaly modifies the classical

analogy with the one-component plasma (OCP), the build-

ing block that characterizes the peculiar properties of

quasiparticles in the fractional QHE [20]. The Laughlin

state can be interpreted as the partition function of a OCP

j�½z�j2 / Zc ¼
RQ

jdzjd�zje
�Uc=kT with kT ¼ 1=2, a

classical gas of particles interacting with a charged back-

ground through the potential

Uc ¼ �
X

jk

log juzjk � v�zjkj þ
1

4

X

j

½fjzjj2 � gðz2j þ �z2j Þ�:

(13)

The last term corresponds to the charged background

jellium 
j ¼ � 1
4�l2B

ðcx
cy
þ cy

cx
Þ, whereas the first describes a

collection of positively charged particles q ¼ 1 surrounded
by a charge cloud �
ðzÞ, with z ¼ jzje�i�, and

�
ðjzj; �Þ ¼ tanh �

jzj2
ð1þ tanh2�Þ cos2�� 4 tanh �

ð1þ tanh2�Þ � 4 tanh � cos2�
: (14)

Notice how the surrounding charge cloud is absent

�
ðzÞ ¼ 0 in the Abelian limit � ¼ 0, and we recover the

usual OCP analogy. Conversely, for non-Abelian regimes,

the collection of interacting positively charged particles

becomes locally surrounded by an anisotropic charge cloud


 ¼ P

jq�ðz� zjÞ þ �
ðzjÞ with
R
d2z�
ðzÞ ¼ 0. In ac-

cordance, the paradigmatic plasma analogy is altered due

to the squeezed nature of the LLL, a fact that may find

profound consequences in the fractional QHE.

We have shown that non-Abelian optical lattices offer an

intriguing route to probe the striking properties of emerg-

ing Dirac fermions in anisotropic Minkowski space-times.

In particular, the versatility offered by such experimental

setups leads to the unique possibility of tuning the anisot-

ropy of the underlying space-time, leading to remarkable

effects such as nonchiral quantum Hall effects with several

types of anomalies.
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Öhberg, Phys. Rev. Lett. 100, 200405 (2008).

[14] G. Juzeliünas, J. Ruseckas, M. Lindberg, L. Santos, and P.
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