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The current proposals for producing non-Abelian anyons and Majorana particles, which are neither
fermions nor bosons, are primarily based on the realization of topological superconductivity in two
dimensions. We show theoretically that the unique Landau level structure of bilayer graphene
provides a new possible avenue for achieving such exotic particles. Specifically, we demonstrate
the feasibility of a “parton” fractional quantum Hall (FQH) state, which supports non-Abelian
particles without the usual topological superconductivity. Furthermore, we advance this state as
the fundamental explanation of the puzzling 1/2 FQH effect observed in bilayer graphene [Kim et
al., Nano Lett. 15, 7445 (2015)], and predict that it will also occur in trilayer graphene. We indicate
experimental signatures that differentiate the parton state from other candidate non-Abelian FQH
states and predict that a transverse electric field can induce a topological quantum phase transition
between two distinct non-Abelian FQH states.

The discovery of quantum Hall effect in the early
1980s1,2 ushered in the era of topological phases in mod-
ern condensed matter physics. One of the exciting devel-
opments it led to was a proposal by Moore and Read3,4

who modeled the 5/2 fractional quantum Hall (FQH)
effect5 as a topological (chiral p-wave) superconductor
of composite fermions6, described by either the so-called
Pfaffian wave function3 or its hole conjugate called the
anti-Pfaffian wave function7,8. They further showed that
the vortices of this superconductor bind Majorana zero
modes exhibiting non-Abelian braid statistics. The pos-
sible application of non-Abelian anyons in topological
quantum computation9,10 has inspired intense experi-
mental effort11–16 toward testing the non-Abelian nature
of the excitations of the 5/2 state. The physics of the
5/2 state also served as a paradigm for proposals of topo-
logical superconductivity and Majorana modes in other
systems17–19.

This article presents the possibility that bilayer
graphene can provide a different route to the realization
of non-Abelian particles. To date, high mobility GaAs
quantum wells have produced the most extensive FQH
states. The atomically thin graphene provides another
invaluable system for studying quantum Hall physics. An
advantage of FQH states in graphene is its accessibility
to direct experimental probes, such as scanning tunnel-
ing microscope, which may enable a manipulation of the
quasiparticles of FQH states to reveal and perhaps uti-
lize their exotic braid properties. These direct probes are
not possible for GaAs quantum wells buried deep below
the sample surface. A plethora of FQH states have al-
ready been observed in monolayer graphene20–23, which
manifest rich patterns due to the SU(4) spin-valley sym-
metry, but all of them have odd denominators and can be
modeled as integer quantum Hall (IQH) states of com-
posite fermions with spin and valley indices24. The ab-
sence of FQH effect at half filling in any Landau level
(LL) of monolayer graphene has been disappointing but
anticipated by theoretical calculations25–27. This situ-
ation recently changed dramatically due to the obser-
vation of FQH states at even-denominator fractions in

bilayer graphene28–31 (in addition to many other FQH
states32–34). The FQH states at ν = −5/2, −1/2, 3/2
and 7/2 most likely corresponds to half-filled N = 1 LL,
and has been proposed35 to originate from the Pfaffian
or anti-Pfaffian pairing of composite fermions by anal-
ogy to the 5/2 state in GaAs. The physical origin of the
ν = 1/2 FQH state29, which nominally corresponds to
half-filled N = 0 LL, has remained a puzzle because one
would a priori expect a compressible composite fermion
(CF) Fermi liquid state36.

We demonstrate in this Letter that bilayer graphene
can support a new kind of FQH state at ν = 1/2 pro-
posed by Jain37,38, called the 221 parton state (the Jain
rst parton states defined generally below are to be distin-
guished from bilayer Halperin mnl states39). This state
also supports fractionally charged excitations with non-
Abelian braid statistics40 but does not represent a chiral
pairing of composite fermions, and is topologically dis-
tinct from the Pfaffian and anti-Pfaffian states. The 221
parton state is not stabilized by any realistic Hamiltoni-
ans relevant to semiconductor systems. However, as we
show below, the existence of nearly degenerate LLs with
different orbital indices in multilayer graphene produces
the ideal conditions for generating this state, which we
propose to identify with the observed 1/2 state. A unique
feature of the 221 parton state, which sets it apart from
all previously observed FQH states, is that it owes its ex-
istence fundamentally to LL mixing, disappearing when
LL mixing vanishes in the limit of large LL splitting. (LL
mixing is believed to break the tie between the Pfaffian
and anti-Pfaffian states41–47, but they occur even without
LL mixing.)

The low-energy physics of Bernel stacked bilayer
graphene (BLG) and ABC stacked trilayer graphene
(TLG) can be approximately described by chiral fermion
models48,49. There are two inequivalent valleys K+ and
K− in the Brillouin zone. The coupling to a magnetic
field results in the Hamiltonian

HK+ = TJ

[
0 (πx + iπy)J

(πx − iπy)J 0

]
(1)
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for the K+ valley and HK− = H∗K+ for the K− valley,
where πi = pi−eAi is the canonical momentum operator,
J = 2 (3) for BLG (TLG) is the chirality, and TJ is a
constant depending on microscopic details. The zeroth
LL of Eq. (1) contains J-fold degenerate states fα0 , · · · ,
and fαJ−1 as illustrated in Fig. 1 (a), where fαN are non-
relativistic LL states (N is the LL index and α labels the
states within each LL). For the disk geometry, we have

fαN (r) ∼ zαLαN (|z|2/2)e−|z|
2/4, where z = (x + iy)/`B is

the holomorphic coordinate and `B =
√
~c/(eB) is the

magnetic length.
Taking into account the spin and valley degrees of free-

dom, the 4J non-relativistic LLs span the filling factor
range −2J≤ ν ≤2J . For neutral BLG and TLG at filling
factor ν = 0, half of these zero energy states are occu-
pied, which we expect to be two subsets with the same
spin and valley indices, because this quantum Hall spin-
valley ferromagnet50,51 can efficiently minimize the ex-
change correlation energy. The FQH states in the interval
0 < ν < J are likely to be spin- and valley-polarized so
we focus on a set of non-relativistic LLs with orbital in-
dices N = 0 · · · , J−1. The degeneracy of these LLs is by
no means perfect, and the splitting between them can be
tuned, e.g. by applying a transverse electric field29,52–54.
We choose below the single-particle Hamiltonian H0 to
describe electrons in N = 0 · · · , J−1 non-relativistic LLs
separated by a cyclotron energy gap ~ωc. In the second
quantized notation,

H0 =

J−1∑
N=0

∑
α

(N + 1/2)~ωcC†NαCNα, (2)

where C†Nα (CNα) is the creation (annihilation) operator
for fαN . The interaction term is

V =

J−1∑
{Ni=0}

∑
{αi}

V
{Ni}
{αi} C

†
N1α1

C†N2α2
CN4α4CN3α3 . (3)

In our calculations below, we use the Coulomb poten-
tial VCoul(rj − rk) = e2/(ε|rj − rk|) (ε is the dielectric
constant of the system) and also a modified interaction
with a stronger short-range part. The latter is motivated
by the fact that the short-range part of the interaction
can be enhanced relatively either due to screening of the
Coulomb interaction by interband excitations35 or by a
dielectric plate on top of the sample55. The coefficients

V
{Ni}
{αi} in these cases are given in the Appendix.

In the studies of FQH states, a vital role is played by
model wave functions, which clarify the physics and can
be tested against exact eigenstates of realistic Hamilto-
nians in finite-size systems. In the parton construction
of FQH states37,38, one divides an electron into fictitious
fractionally charged particles called partons, places each
species of partons in an IQH state, and then reassembles
the partons to obtain an electron state. The number of
parton species must be odd to ensure antisymmetry un-
der electron exchange. If the IQH state at filling factor ν

FIG. 1. (a) The zeroth LL of BLG contains eight non-
relativistic LLs because of two orbital indices (N = 0, 1),
two spins (green arrows), and two valleys K± (blue and red
lines). The degeneracy between these states is found to split
as shown52–54. The orbital ordering in the K+ valley can
be reversed by applying a transverse electric field as shown
by the numbers in parentheses. The zero energy LL of TLG
has a similar structure where each set contains three non-
relativistic LLs with orbital indices N = 0, 1, 2. We note that
for our purposes the question of whether the spin or the valley
symmetry breaking is dominant is not relevant; the 221 par-
ton state only relies on a nearly degenerate doublet of N = 0
and N = 1 orbital levels. (b) Schematic of the construction of
the 221 parton state. One electron is decomposed into three
partons carrying fractional charges, which condense into IQH
states with filling factors ν = 2, 2, and 1.

is denoted as χν , the parton FQH state has the general
form

∏
j χνj . Its filling factor is ν = [

∑
j ν
−1
j ]−1 and the

charge of the parton with filling factor νj is ej = eν/νj .
While all the CF FQH states can be obtained within the
parton construction, not all parton FQH states admit in-
terpretation in terms of composite fermions. The state
relevant to this work is the 221 parton state37,38

Ψpart
221 ({r}) = χ2({r})χ2({r})χ1({r}) (4)

at ν = 1/2 as illustrated in Fig. 1 (b), which lies outside
the CF class. The parton construction also suggests a
topological field theory for this state40, which contains
an SU(2)2 Chern-Simons term and implies that its ele-
mentary excitations are Ising type anyons56.

By inspection, we can construct a Hamiltonian for
which Ψpart

221 ({r}) is the exact zero energy ground state.
The maximal power of the anti-holomorphic coordi-
nate z̄ is two in Ψpart

221 ({r}), so it has non-zero am-
plitudes in the N = 0, 1, 2 non-relativistic LLs. Fur-
thermore, because it vanishes as |r|3 when two elec-
trons are brought close to each another, it has zero en-
ergy with respect to the Trugman-Kivelson interaction57

V1 = 4π`4B
∑
j<k∇2δ(2)(rj−rk) expressed in units of the

first Haldane pseudopotential58 in the lowest LL. (The in-
teraction V1 may seem somewhat strange, but its matrix
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FIG. 2. Numerical results of the ν = 1/2 system with
(Ne, Nφ) = (8, 11) for a range of LL splitting values ωc. The
Hamiltonian is H0 + VCoul and the energy values are quoted
in units of e2/ε`B. The panel (a) shows the energy gap ∆
of BLG and TLG, where the kinks are due to level crossings
of excited states. The panel (b) shows the overlap between
the exact ground states of BLG and TLG with various trial
wave functions: the 221 parton state, the CF Fermi liquid
state, and the Pfaffian state, with symbols indicated in the
panel. The inset of (b) shows the overlaps for the Hamilto-
nian H0 + VCoul + 0.2V1. The L = 0 subspace contains 418
(18212) states in BLG (TLG).

elements are well defined.) Ψpart
221 ({r}) is thus a zero en-

ergy eigenstate for a model in which the N = 0, 1, 2 LLs
are degenerate at zero energy, all other LLs are sent to in-
finity, and electrons interact with the V1 interaction. One
can further show that Ψpart

221 ({r}) is the unique zero en-
ergy state of this model at ν = 1/2, because other states
at the same filling with zero interaction energy necessar-
ily occupy yet higher LLs and are thus disallowed. This
model is accessible to numerical diagonalization studies
in the spherical geometry58, in which Ne electrons move
on the surface of a sphere with Nφ flux quanta passing
through it59,60. The total angular momentum L and its z
component Lz are good quantum numbers. The incom-
pressible state Ψpart

221 ({r}) manifests as a uniform L = 0
state at Nφ = 2Ne−5. For Ne = 6, 8 at Nφ = 2Ne−5, we
have confirmed that there is a unique zero energy state.
If the flux increases to Nφ = 2Ne − 4, one expects the
additional flux to be accommodated by one of the χ2 fac-
tors, which leads to a precise prediction for the number of
zero energy states and their quantum numbers; these are
in agreement with numerical diagonalization results. Be-
cause the addition of one flux to χ2 produces two quasi-
holes, it follows that the local charge of one quasihole of
the 221 parton state is e∗ = e/4. Our model thus ex-

hibits a 1/2 FQH effect with Ψpart
221 ({r}) being the exact

ground state.

The crucial question is the following: Does this FQH
state survive (i.e. the gap does not close) when we vary
the interaction from V1 to Coulomb? If so, when is it
destabilized as we increase the splitting ωc? To address
this, we study the Hamiltonian H0 + VCoul numerically.
It is customary to restrict the Hilbert space to a single
LL when studying FQH states, but we must keep two or
three LLs because the 1/2 state confined to the N = 0 LL
(when ωc is large) is the CF Fermi liquid state36. We have
studied BLG with Ne = 6, 8, 10, 12 and TLG with Ne =
6, 8 at Nφ = 2Ne− 5 as a function of ωc. All energies are
quoted in units of e2/ε`B , which is on the order of several
hundred Kelvin for typical parameters in graphene. Fig.
2 shows for (Ne, Nφ) = (8, 11) the gap ∆ (the energy
difference between the ground and the first excited state)
as well as the overlap between the exact ground state and
Ψpart

221 ({r}) (projected into the first two LLs for BLG) at
various ωc. The high overlaps at small ωc (0.9728 for
BLG and 0.8556 for TLG at ωc = 0) are very significant
in view of the large Hilbert space dimensions (see caption
of Fig. 2). The (Ne, Nφ) = (10, 15) system is gapped but
aliases with the standard 2/3 FQH state and is therefore
not useful for our purpose. For (Ne, Nφ) = (12, 19), we
are not able to compute the two lowest energy states
in the Lz = 0 subspace due to its large Hilbert space
dimension (≈ 2.4×108), but we have computed the lowest
energy states in the Lz = 0 and 1 subspaces at ωc = 0.
The energy of the former state is lower by 0.0265, which
tells us that the ground state has L = 0. If we assume
that 0.0265 is the lowest gap for the Ne = 12 system (i.e.
we assume that the lowest excited state has L6=0, which
is the case for all previously known FQH states) and ∆
has a linear dependence on 1/Ne, the gap at ωc = 0 is
estimated to be ≈0.017 in the thermodynamic limit. Fig.
2 also shows the overlap between the exact ground state
with the lowest-LL CF state at L = 0 (a representation
of the CF Fermi liquid), which suggests a transition to
the CF Fermi liquid at ωc∼0.30. The inset of Fig. 2 (b)
shows the overlap between the exact ground state of the
Hamiltonian H0 + VCoul + 0.2V1 and Ψpart

221 ({r}), which
confirms the expectation that when the short range part
of the interaction is enhanced (e.g. due to screening35),

Ψpart
221 ({r}) becomes a better approximation and remains

valid to larger ωc. These studies make a strong case for
Ψpart

221 ({r}) at ν = 1/2 in BLG and TLG for sufficiently
small ωc. This analysis is also applicable to filling factors
−7/2, −3/2, 5/2 in BLG and −11/2, −5/2, 7/2 in TLG,
where one or more sets of the N = 0, · · · , J − 1 LLs
are expected to form a spin-valley ferromagnet and the
additional 1/2 filled states partially occupy one set of
N = 0, · · · , J − 1 LLs as described by our model. We
note that Ref. 35 found weak but inconclusive features
at ν = −3/2 in their exact diagonalization study of BLG.

Two other candidates for the ν = 1/2 FQH state
are the Moore-Read Pfaffian state and its hole partner
known as the anti-Pfaffian state3,7,8, which have been dis-
cussed extensively in the context of the 5/2 FQH state in
GaAs5. (There is no “anti-221” state at ν = 1/2 because
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Ψpart
221 ({r}) is not confined to a single LL.) The Pfaffian

state

ΨPf({r}) = Pf

(
1

zj − zk

) Ne∏
j>k=1

(zj − zk)
2

(5)

occurs at Nφ = 2Ne − 3 whereas the anti-Pfaffian state
occurs at Nφ = 2Ne + 1. The different “shifts” of Pfaf-
fian, anti-Pfaffian, and 221 parton states indicate their
topological distinction. We have also computed the en-
ergy spectra of H0 + VCoul at ωc = 0 for the Pfaffian
and anti-Pfaffian shifts. The ground states of Ne = 8, 10
in BLG and of Ne = 8 in TLG at Nφ = 2Ne − 3 have
L6=0, which eliminates the Pfaffian state. The ground
states of Ne = 8 in BLG and TLG at Nφ = 2Ne + 1 have
L = 0, but the energy gaps are only 0.0056 and 0.0022
and the overlaps with the anti-Pfaffian state are 0.5820
and 0.4438, which suggests that the anti-Pfaffian state is
less favored than the 221 parton state. The next system
for testing the anti-Pfaffian state at (Ne, Nφ) = (10, 21)
aliases with the 2/5 CF state and is thus not useful.

We next predict the exciting possibility of a topolog-
ical quantum phase transition between two non-Abelian
states, namely the 221 and the (anti-)Pfaffian, at filling
factors ν = −3/2 and 5/2 in BLG. This is because the
N = 1 LL can be pushed below the N = 0 LL when
−2 < ν < 0 and 2 < ν < 4 by applying a transverse
electric field29,52–54 as shown in Fig. 1 (a), which means
that both positive and negative values of ωc are physically
meaningful at ν = −3/2 and 5/2. Fig. 2 shows that the

overlap between Ψpart
221 ({r}) and the exact ground state

goes down sharply as ωc decreases toward the negative
side and remains nearly zero (< 0.01), whereas the en-
ergy gap first decreases and then increases. This can be
understood as a transition from the 221 parton state into
the Pfaffian state, the latter occurring when the electrons
predominantly occupy the N = 1 LL at sufficiently neg-
ative ωc. This physics is confirmed by the fact that the
overlap between the exact ground state and the Pfaffian
state (suitably modified for the N = 1 LL) becomes quite
high as the gap increases in the negative ωc regime. For
completeness, we have also studied TLG in the negative
ωc regime where the N = 2 LL is at the bottom. Here
the 221 parton state transits into a compressible state at
ωc ∼ −0.10, which is consistent with the absence of an
incompressible state in the half filled N = 2 LL.

It is interesting to ask if the 221 parton state could also
be relevant for the ν = −1/2 state in BLG. This system
can be mapped to a filling factor −1/2 − (−2) = 3/2
in the doublet space of N = 0, 1 LLs. If the electrons
almost fully occupy the N = 0 LL, then the N = 1 LL is
nearly half filled and one may expect the physics to be the
same as that of the 5/2 state in GaAs35. However, if one
introduces a negative ωc to attract more electrons into
the N = 1 LL, it is possible for the holes of this system
to form a 221 parton state. We have found that the
(Ne, Nφ) = (18, 11) system has a L = 0 ground state and
a non-zero gap for −0.85. ωc . − 0.20, but the overlap

between the exact ground state and Ψpart
221 ({r}) of holes is

very low (. 0.15), making Ψpart
221 ({r}) of holes an unlikely

candidate for the ν = −1/2 state in BLG.

The Pfaffian, the anti-Pfaffian, and the 221 parton
states can in principle be distinguished experimentally.
The local charge of the elementary excitations is e∗ = e/4
for all three states. A dimensionless interaction parame-
ter g can be extracted from the temperature dependence
of quasiparticle tunneling into the edge states11. Theory
predicts g = 1/4 for the Pfaffian state and g = 1/2 for
the anti-Pfaffian and the 221 parton states11,61,62. For
an ideal edge without reconstruction, the anti-Pfaffian
state is expected to have backward-moving edge modes7,8

whereas the Pfaffian and the 221 parton states are not,
which can be probed in shot noise and local thermom-
etry measurements63,64. A combination of these three
experiments can help to identify the nature of the exper-
imentally observed state.

The ν = 1/2 FQH state was not reported in two re-
cent experiments30,31, so it would be important to ascer-
tain the experimental parameters where this state can
be observed. Fig. 2 suggests that this state occurs when
the N = 1 level lies at a slightly higher energy ωc than
the N = 0 level, i.e. when the LL mixing parameter
(e2/ε`B)/(~ωc) is larger than ∼3 (ωc can be renormal-
ized by many-body effects65). A detailed calculation of
the microscopic parameters and the transverse electric
field for realizing such conditions is outside the scope of
the present work. Interestingly, the optimal parameters
at ν = −3/2 and 5/2 can be determined by studying the
crossing transition between N = 0 and N = 1 levels as
a function of the transverse electric field66. The parton
state is expected to occur close to the transition on the
side where the N = 0 level has a lower energy.

In summary, we have made a convincing case that the
221 parton state should occur for appropriate parame-
ters in BLG and TLG when the ordering of the various
LLs is as shown in Fig. 1. It is natural to associate this
state with the observed ν = 1/2 FQH state in BLG29

and possibly in TLG, where preliminary evidence for a
ν = 1/2 FQH state has been reported67. Further exper-
imental and theoretical works will be needed to confirm
this identification. In particular, a secure determination
of the energy ordering as well as splittings of the vari-
ous LLs is required (see Refs. 66,68 for recent progress
in this direction). Looking ahead, multilayer graphene
has the potential to host other Jain rst parton states
Ψpart
rst ({r}) = χr({r})χs({r})χt({r}), such as the 331 and

222 states at filling factors 3/5 and 2/3. They are dis-
tinct from the standard lowest LL states at these filling
factors, as they occur at different shifts and possess non-
Abelian excitations40. The realization of these states will
open the door to studying topological quantum phase
transitions between various FQH states as a function of
the LL splitting. The unique LL structure of multilayer
graphene thus offers the promise of many new fascinating
states and phenomena.

Acknowledgements — This work was supported by the



5

EU project Simulations and Interfaces with Quantum
Systems at MPQ and by the U. S. National Science Foun-
dation under grant number DMR-1401636 at Penn State.

Exact diagonalization calculations were performed using
the DiagHam package for which we are grateful to all the
authors.

Appendix: Hamiltonian Matrix Elements

We give the Hamiltonian matrix elements for the cases of our interest. To be consistent with most works in the
literature, we define half of the flux through the sphere as Q = Nφ/2. The wave functions on sphere are59

Y Qlα (θ, φ) =

√
2l + 1

4π

(l − α)!(l + α)!

(l −Q)!(l +Q)!

l−α∑
s=0

(−1)l−α+s
(
l −Q
s

)(
l +Q

l − α− s

)
uQ+αvQ−α(u∗u)s(v∗v)l−Q−s (A.1)

where l = Q+N (N is the Landau level index) is the angular momentum, α is the z component of angular momentum,
θ and φ are the azimuthal and radial angles, and u = cos(θ/2)eiφ/2, v = sin(θ/2)e−iφ/2 are the spinor coordinates.
The magnetic length on sphere is given by `B = R/

√
Q. The monopole harmonics have the properties60[

ψQl,α

]∗
= (−1)Q−αψ−Ql,−α ψQ1

l1,α1
ψQ2

l2,α2
=

l1+l2∑
L=max(Q1+Q2,|l1−l2|)

SLψ
Q1+Q2

L,α1+α2
(A.2)

SL = (−1)3l1−l2+L−2Q1−2Q2

√
(2l1 + 1)(2l2 + 1)

4π(2L+ 1)
〈l1,−α1; l2,−α2|L,−α1 − α2〉〈l1, Q1; l2, Q2|L,Q1 +Q2〉 (A.3)

The matrix elements are

V
{Ni}
{αi} = F l1l2l4l3α1α2α4α3

=

∫
dΩ1dΩ2

[
ψQl1α1

(Ω1)
]∗ [

ψQl2α2
(Ω2)

]∗
V (r1 − r2)ψQl4α4

(Ω2)ψQl3α3
(Ω1) (A.4)

where r = R(sin θ cosφ, sin θ sinφ, cos θ) and Ω = r/R. The two identities[
ψQl1α1

(Ω1)
]∗ [

ψ0
LM (Ω1)

]∗
ψQl3α3

(Ω1) =

l1+l3∑
L1=|l1−l3|

(−1)Q−α1S1
L1

[
ψ0
LM (Ω1)

]∗
ψ0
L1,α3−α1

(Ω1) (A.5)

[
ψQl2α2

(Ω2)
]∗
ψ0
LM (Ω2)ψQl4α4

(Ω2) =

l2+l4∑
L2=|l2−l4|

(−1)Q−α4S2
L2

[
ψ0
L2,α2−α4

(Ω2)
]∗
ψ0
LM (Ω2) (A.6)

will be used later for computing F l1l2l4l3α1α2α4α3
. For the short-range interaction V (r1 − r2) = 4π`4B∇2δ (r1 − r2), the

matrix elements are

∞∑
L=0

L∑
M=−L

− 4π

Q2
L(L+ 1)

∫
dΩ1dΩ2

[
ψQl1α1

(Ω1)
]∗ [

ψ0
LM (Ω1)

]∗
ψQl3α3

(Ω1)
[
ψQl2α2

(Ω2)
]∗
ψ0
LM (Ω2)ψQl4α4

(Ω2)

= δα1+α2,α3+α4

min(l1+l3,l2+l4)∑
L=max(|l1−l3|,|l2−l4|)

4π

Q2
L(L+ 1) (−1)2Q−α1−α4+1S1

LS
2
L (A.7)

For the Coulomb interaction V (r1 − r2) = e2/(ε|r1 − r2|), the relation

1

|r1 − r2|
=

4π

R

∞∑
L=0

L∑
M=−L

1

2L+ 1

[
ψ0
LM (Ω1)

]∗
ψ0
LM (Ω2) (A.8)

helps us to obtain the matrix elements [in units of e2/(ε`B)]

∞∑
L=0

L∑
M=−L

4π√
Q(2L+ 1)

∫
dΩ1dΩ2

[
ψQl1α1

(Ω1)
]∗ [

ψ0
LM (Ω1)

]∗
ψQl3α3

(Ω1)
[
ψQl2α2

(Ω2)
]∗
ψ0
LM (Ω2)ψQl4α4

(Ω2)

= δα1+α2,α3+α4

min(l1+l3,l2+l4)∑
L=max(|l1−l3|,|l2−l4|)

4π√
Q(2L+ 1)

(−1)2Q−α1−α4S1
LS

2
L (A.9)
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