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Abstract: We show that non-abelian quantum statistics can be studied using certain
topological invariants which are the homology groups of configuration spaces. In par-
ticular, we formulate a general framework for describing quantum statistics of particles
constrained to move in a topological space X . The framework involves a study of isomor-
phism classes of flat complex vector bundles over the configuration space of X which
can be achieved by determining its homology groups. We apply this methodology for
configuration spaces of graphs. As a conclusion, we provide families of graphs which
are good candidates for studying simple effective models of anyon dynamics as well as
models of non-abelian anyons on networks that are used in quantum computing. These
conclusions are based on our solution of the so-called universal presentation problem
for homology groups of graph configuration spaces for certain families of graphs.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
3. Vector Bundles and Their Classification . . . . . . . . . . . . . . . . . . . 932
4. Configuration Spaces of Graphs . . . . . . . . . . . . . . . . . . . . . . . 940
5. Calculation of Homology Groups of Graph Configuration Spaces . . . . . 947
6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969

1. Introduction

The main conceptual difference in the description of classical and quantum particles is
the indistinguishability of the latter. Mathematically, indistinguishability of particles can
be imposed already on the level of many particle configuration space. For n particles that
live in a topological space X this is done by considering some particular tuples of length
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n that consist of points from X , i.e. elements of X×n . Namely, these are the unordered
tuples of distinct points from X . In other words, we consider space Cn(X) defined as
follows.

Cn(X) := (X×n − Δn)/Sn,

where Δn := {(x1, . . . , xn) ∈ X×n : ∃i �= j xi = x j } and Sn is the permutation group that
acts on X×n by permuting coordinates [1]. It is easy to see that exchanges of particles
on X correspond to closed loops in Cn(X) [1–3]. Under this identification all possible
quantum statistics (QS) are classified by unitary representations of the fundamental group
π1(Cn(X)). When X = R2 this group is known to be the braid group and when X = Rk ,
where k ≥ 3, it is the permutation group Sn . QS corresponding to a one-dimensional
unitary representation of π1(Cn(X)) is called abelian whereas QS corresponding to a
higher dimensional non-abelian unitary representation is called non-abelian. Quantum
statistics can be also viewed as a flat connection on the configuration space Cn(X) that
modifies definition of the momentum operator according to minimal coupling principle.
The flatness of the connection ensures that there are no classical forces associated with
it and the resulting physical phenomena are purely quantum [4,5] (cf. Aharonov-Bohm
effect [6])

The first part of this paper (Sects. 1–3) contains a meta analysis of literature concern-
ing connections between topology of configuration spaces and the existence of different
types of quantum statistics. Because the relevant literature is rather scarce, it was a non-
trivial task to make such a meta analysis and we consider it an essential step in describing
our results. This is because we see the need of introducing in a systematic and concise
way the framework for studying quantum statistics which is designed specifically for
graphs. The most challenging part in formulating such a framework is to avoid the lan-
guage of differential geometry, as graph configuration spaces are not manifolds, whereas
the great majority of results in the field concerns quantum statistics on manifolds. As a
result, we obtain a universal framework whose many features can be utilised for a very
wide class of topological spaces. The framework relies on the following mains steps:
(i) defining flat bundles as quotients of the trivial bundle over the universal cover of
the configuration space (Theorem 5), (ii) defining Chern characteristic classes solely by
pullbacks of the universal bundle (Sect. 3.1), (iii) pointing out the role of the moduli
space of flat U (n)-bundles as an algebraic variety in U (n)×r , r being the rank of the
fundamental group of the respective configuration space (Sect. 3.3).

We particularly emphasise the important role of nontrivial flat vector bundles that
can lead to spontaneously occurring non-abelian quantum statistics. This is motivated
by the fact that in R3 fermions and bosons correspond to two non-isomorphic vector
bundles that admit flat connections. Our approach to classification of quantum statistics
is connected to classification of possible quantum kinematics, i.e. defining the space of
wave functions and deriving momentum operators that satisfy the canonical commutation
rules. Then our classification scheme for quantum kinematics of rank k on a topological
space X is divided into two steps

1. Topological classification of wave functions. Classify isomorphism classes of flat
hermitian vector bundles of rank k over Cn(X). Here we also point out that in fact
physically meaningful is the classification of vector bundles with respect to the so-
called stable equivalence, as nonisomorphic but stable equivalent vector bundles
have identical Chern numbers. An important role is played by the reduced K -theory
and (co)homology groups of Cn(X). Calculation of those groups for various graph
configuration spaces is the main problem we solve in Sect. 5.
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2. Classification of statistical properties. If X is a manifold, for each flat hermitian
vector bundle, classify the flat connections. The parallel transport around loops in
Cn(X) determines the statistical properties. For general paracompact X , this point
can be phrased as classification of the U (k) - representations of the corresponding
braid group, i.e. the fundamental group of Cn(X).

The above two-step distinction is relevant, as on a bundle which is isomorphic to the
trivial bundle, one can define such a connection that the resulting representation of the
braid group is trivial. However, one cannot obtain a trivial braiding for wavefunctions
which are sections of a non-trivial bundle. Therefore, the very fact that the considered
wavefunction lives on a non-trivial bundle excludes the possibility of having trivial
braiding. This may be relevant in situations where changing the braiding properties is
possible by tuning some parameters of the considered quantum system.

General methods that we describe in the first three sections of this paper, are applied
to a special class of configuration spaces of particles on graphs (treated as 1-dimensional
CW complexes). Graph configuration spaces serve as simple models for studying quan-
tum statistical phenomena in the context of abelian anyons [7,8] or multi-particle dynam-
ics of fermions and bosons on networks [9–11]. Quantum graphs already proved to be
useful in other branches of physics such as quantum chaos and scattering theory [12–14].
Of particular relevance to this paper are explicit physical models of non-abelian anyons
on networks. One of the most notable directions of studies in this area is constructing
models for Majorana fermions which can be braided thanks to coupling together a num-
ber of Kitaev chains [15,16]. Such models lead to new robust proposals of architectures
for topological quantum computers that are based on networks. Another general way of
constructing models for anyons is via an effective Chern–Simons interaction [17,18].
Such models can also be adapted to the setting of graphs as self-adjoint extensions of a
certain Chern–Simons hamiltonian which is defined locally on cells of the graph con-
figuration space [19]. All such physical models realise some unitary representations of
a graph braid group.

In Sect. 5 we compute homology groups of graph configuration spaces to determine
a coarse grained picture of isomorphism classes of flat U (n) bundles over the graph
configuration space. The core result of our paper concerns solving the so-called universal

presentation problem of homology groups. This problem relies on constructing

– a set of universal generators which generate all homology groups of graph config-
uration spaces

– a set of universal relations which generate all relations between universal generators.

From the physical point of view, this is the most relevant direction of studying the
homology groups of graph configuration spaces. This is because our goal is to produce
universal and general statements concerning quantum statistics on graphs without the
need of performing complicated calculations for every graph which would be of interest.
The only way to accomplish such a general understanding is to tackle the problem
of universal presentation of homology groups. We solved the above problem for (i)
wheel graphs (Sect. 5.3), (ii) graph K3,3 (Sect. 5.5), (iii) graphs K2,p (Sect. 5.6). The
universal generators were so-called product cycles (Sect. 5.1) and triple tori (Sect 5.6).
We also solved the universal presentation problem for the second homology group of
graph configuration spaces of a large class of graphs that have at most one essential
vertex of degree greater than three. Solving the universal presentation problem for the
above families of graphs allows us to predict the coarse-grained structure of quantum
statistics independently of the number of particles. In particular, the vanishing of torsion
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in the homology of wheel graphs tells us that in the asymptotic limit of bundles with a
sufficiently high rank, there is just one isomorphism class of flat U (n) bundles.

While solving the universal presentation problem we used not only the state-of-the-
art methods that have been used previously in a different context by us and other authors,
but also developed new computational tools. The already existing methods were in par-
ticular (i) discrete models of graph configuration spaces by Abrams and Świątkowski
[20,21], (ii) the product-cycle ansatz introduced in our previous paper concerning tree
graphs [22], (iii) the vertex blow-up method introduced by Knudsen et. al. [23], (iv)
discrete Morse theory for graph configuration spaces introduced by Farley and Sabalka
[24]. However, these methods have not been used before to tackle the universal pre-
sentation problem. New computational tools we used mainly relied on (i) introducing
explicit techniques for calculating homology groups appearing in the homological exact
sequence stemming from the vertex blow-up, (ii) demonstrating a new strategy of decom-
posing a given graph by a sequence of vertex blow-ups and using inductive arguments
to compute the homology groups, (iii) further formalising and developing the product-
cycle ansatz so that it can be adapted for more general graphs than just tree graphs (iv)
new ansatz for non-product universal generators which are homeomorphic to triple tori,
(v) implementing discrete Morse theory for graph configuration spaces in a computer
code. A non-trivial combination of the above methods that we have applied has proved
to be very effective in tackling the universal presentation problem. Nevertheless, while
formulating our general framework for studying quantum statistics we already arrive at
a number of new very general corollaries. This in particular concerns the structure of
abelian statistics on spaces with a finitely-generated fundamental group and pointing out
the role of K -theory in studying non-abelian statistics of a high rank.

1.1. Quantum kinematics on smooth manifolds. A quantisation procedure for configura-
tion spaces, where X is a smooth manifold, known under the name of Borel quantisation,
has been formulated by H.D. Doebner et. al. and formalised in a series of papers [25–29].
Borel quantisation on smooth manifolds can be also viewed as a version of the geometric
quantisation [30]. The main point of Borel quantisation is the fact that the possible quan-
tum kinematics on Cn(X) are in a one-to-one correspondence with conjugacy classes of
unitary representations of the fundamental group of the configuration space. We denote
this fact by

QK ink(Cn(X)) ∼= Hom(π1(Cn (X)), U (k))/U (k),

where QK ink are the quantum kinematics of rank k. i.e. kinematics, where wave func-
tions have values in Ck and π1 is the fundamental group. Let us next briefly describe the
main ideas standing behind the Borel quantisation which will be the starting point for
building an analogous theory for indistinguishable particles on graphs.

In Borel quantisation on smooth manifolds, wave functions are viewed as square-
integrable sections of hermitian vector bundles. For a fixed hermitian vector bundle, the
momentum operators are constructed by assigning a self-adjoint operator p̂A acting on
sections of E to a vector field A that is tangent to Cn(X) in the way that respects the Lie
algebra structure of tangent vector fields. Namely, we require the standard commutation
rule for momenta, i.e.

[ p̂A, p̂B] = ι p̂[A,B], A, B ∈ T Cn(X). (1)
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Moreover, for the position operator that acts on sections as multiplication by smooth
functions

q̂ f (σ ) := f σ, f ∈ C∞(Cn(X)), σ ∈ Sec(E),

we require the remaining standard commutation rules, i.e.

[ p̂A, q̂ f ] = q̂A f . (2)

It turns out that such a requirement implies the form of the momentum operator which
is well-known form the minimal coupling principle, namely

p̂A = ι∇A +
ι

2
c(A), (3)

where ∇A is a covariant derivative in the direction of A that is compatible with the
hermitian structure. Moreover, commutation rule (1) implies that ∇A is necessarily the
covariant derivative stemming from a flat connection. The component proportional to
div(A) in formula (3) comes from the fact that map A → p̂A must be valid for an
arbitrary complete vector field. Usually, one considers momentum operators coming
from some specific vector fields that form an orthonormal basis of local sections of
T Cn(X). The divergence of such a basis sections usually vanishes and formula (3)
describes the standard minimal coupling principle, see example 1 below. Flat hermitian
connections of rank k are classified by conjugacy classes of U (k) representations of
π1(Cn(X)) (see [31]). Representatives of these classes can be picked by specifying the
holonomy on a fixed set of loops generating the fundamental group. In order to illustrate
these concepts, consider the following example of one particle restricted to move on the
plane and its scalar wave functions.

Example 1. Quantum kinematics of rank 1 for a single particle on the plane. The momen-
tum has two components that are given by (3) for A = ∂x =: ∂1 and A = ∂y =: ∂2.

p̂1 := p̂∂x =
1

ι
∂x − α1, p̂2 := p̂∂y =

1

ι
∂y − α2.

By a straightforward calculation, one can check that commutation rule (2) is satisfied.

∀Ψ [ p̂i , q̂ f ]Ψ = −ιΨ ∂i f = q̂−ι∂i f Ψ.

However, commutation rule (1) requires [ p̂1, p̂2] = 0. The commutator reads

∀Ψ [ p̂1, p̂2]Ψ = ιΨ (∂1α2 − ∂2α1).

Therefore, in order to satisfy the momentum commutation rule, we need ∂1α2−∂2α1 = 0.
This is precisely the condition for the connection form Γ := α1dx + α2dy to have zero
curvature, i.e. dΓ = 0. The plane is a contractible space, hence the problem of classifying
flat connections is trivial and there are no topological effects in the quantum kinematics.
However, we can make the problem nontrivial by considering the situation, where a
particle is moving on a plane without a point, i.e. X = R2 − {∗}. Then, π1(X) = Z

generated by a circle around {∗} travelled clockwise. Let us denote such a loop by γ .
The parallel transport of Ψ around γ gives

T̂γ Ψ = e
ι
∫

γ Γ
Ψ.
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The phase factor e
ι
∫

γ Γ does not depend on the choice of the circle. In order to see this,
choose a different circle γ ′ that contains γ . Denote by D the area between the circles.
We have ∂ D = γ ′ − γ . Hence, by the Stokes theorem

0 =

∫

D

dxdy(dΓ ) =

∫

∂ D

Γ =

∫

γ ′
Γ −

∫

γ

Γ.

Hence, all U (1) representations of π1(X) are the representations that assign a phase
factor eiφ to a chosen non-contractible loop. Physically, these representations can be
realised as the Aharonov-Bohm effect and phase φ is the magnetic flux through point ∗
that is perpendicular to the plane.

Let us next review two scenarios that originally appeared in the paper by Leinaas
and Myrheim [1] and that led to a topological explanation of the existence of bosons,
fermions and anyons [18]. These are the scenarios of two particles in R2 and R3. In both
cases, the configuration space can be parametrised by the centre of mass coordinate R

and the relative position r . In terms of the positions of particles, we have

R =
1

2
(x1 + x2), r = x2 − x1, xi ∈ Rm .

Then, C2(R
m) = {(R, r) : R ∈ Rm, r ∈ Rm − 0}/S2. Permutation of particles results

with changing r to −r , while R remains unchanged, hence

C2(R
m) = Rm ×

((

Rm − 0
)

/ ∼
)

∼= Rm × RPm−1.

In the above formula, RPm−1 := Sm−1/ ∼ is the real projective space that is constructed
by identifying pairs of opposite points of the sphere. Space (Rm − 0) / ∼ can be defor-
mation retracted to RPm−1 by contracting all vectors so that they have length 1. In the
case when m = 2, RP1 is topologically a circle. Equivalently,

(

R2 − 0
)

/ ∼ is a cone.
Hence, we have

π1(C2(R
2)) = Z,

so similarly to Example 1, there is a continuum of U (1)-representations of the funda-
mental group that assign an arbitrary phase factor to the wave function when transported
around a non-contractible loop. Note that a loop in the configuration space corresponds
to an exchange of particles (see Fig. 1).

The case of two particles moving in R3 has an important difference when compared
to the other cases analysed in this paper so far. Namely, there are two non-isomorphic
hermitian vector bundles of rank 1 that admit a flat connection. In all previous cases
there was only one such vector bundle which was isomorphic to the trivial vector bundle
E0 ∼= Cn(X) × C. For m = 3, there is one more flat hermitian vector bundle which we
denote by E ′. Neglecting the R3—component of C2(R

3) which is contractible, bundles
E0 and E ′ can be constructed from a trivial vector bundle on S2 in the following way.

E0 =
(

S2 × C

)

/ ∼, (r, z) ∼ (−r, z) ∼= RP2 × C,

E ′ =
(

S2 × C

)

/ ∼′, (r, z) ∼′ (−r,−z).

Intuitively, nontrivial bundle E ′ is constructed from the trivial vector bundle on S2

by twisting fibres over antipodal points. In order to determine the statistical properties
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Fig. 1. Exchange of two particles on the plane and the resulting loop in C2(R2)

Fig. 2. Two types of loops in RP2 pictured as a half-sphere with the opposite points on the circumference
of the base identified. Black loop and red loop are contractible, while blue loop is non-cntractible. Blue loop
becomes homotopy equivalent to the red loop when crossed twice

corresponding to each bundle, we consider U (1) representations of the fundamental
group for each vector bundle. The choice of statistical properties for each vector bundle
is a consequence of a general construction of flat vector bundles which we describe in
more detail in section 3.3. The fundamental group reads

π1(C2(R
3)) ∼= π1(RP2) ∼= Z2.

There are two types of loops, the contractible ones and the non-contractible ones which
become contractible when composed twice (see Fig. 2).
Bundle E0 corresponds to the trivial representation of π1, while E ′ corresponds to the
alternating representation that acts with multiplication by a phase factor eiπ . Conse-
quently, the holonomy group changes the sign of the wave function from E ′ when
transported along a non-contractible loop, while the transport of a wave function from
the trivial bundle results with the identity transformation. Therefore, bundle E0 is called
bosonic bundle, whereas bundle E ′ is called the fermionic bundle.

As we have seen in the above examples, there is a fundamental difference between
anyons in R2 and bosons and fermions in R3. Anyons emerge as different flat connec-
tions on the trivial line bundle over C2(R

2), while fermions and bosons emerge as flat
connections on non isomorphic line bundles over C2(R

3). As we explain in section 3,
these results generalise to arbitrary numbers of particles.
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In this paper, we approach the problem of classifying complex vector bundles by
computing the cohomology groups of configuration spaces over integers. Such strategy
has also been used used in [25] to partially classify vector bundles over configuration
spaces of distinguishable particles in Rm . To this end, we combine the following meth-
ods concerning the structure of VectC(B), the set of complex vector bundles over a
paracompact base space B.

1. Classification of complex vector bundles by maps f : B → Grk(C
∞) and Chern

classes (Sects. 3.1 and 3.3).
2. Classification of vector bundles of rank 1 by the second cohomology group (Sect. 3.1).
3. Classification of stable equivalence classes of vector bundles using K -theory

(Sects. 3.2 and 3.3).

A possible source of new signatures of topology in quantum mechanics would be the
existence of non-trivial vector bundles that admit a flat connection. These bundles can
be detected by the Chern classes which for flat bundles belong to torsion components of
H2i (B, Z). We explain this fact and its relation with quantum statistics in Sect. 3.3.

1.2. Quantum kinematics on graphs. Configuration spaces of indistinguishable particles
on graphs are defined as

Cn(Γ ) := (Γ ×n − Δn)/Sn,

where Δn = {(x1, . . . , xn) ∈ Γ ×n : ∃i �= j xi = x j } and graph Γ is regarded as a
1-dimensional cell complex.

Example 2. Configuration space of two particles on graph Y . In Y ×Y there are 9 two-
cells. Six of them are products of distinct (but not disjoint) edges of Y . Their intersect
with Δ2 is a single point which we denote by (2, 2). The three remaining two-cells are
of the form e × e. They have the form of squares which intersect Δ2 along the diagonal.
Graph Y and space C2(Y ) are shown on Fig. 3.

The fact that Cn(Γ ) is composed of pieces that are locally isomorphic to Rn is the
key property that allows one to define quantum kinematics as gluing the local quantum
kinematics on Rn . Namely, the momentum operator on (e1 × e2 × · · · × en − Δn)/Sn

has n components that are defined as

p̂i = −ι∂i − αi , i = 1, . . . , n.

Fig. 3. Graph Y and its two-particle configuration space. White dots and dashed lined denote the diagonal Δ2
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We may define orthonormal coordinates and connection coefficients on each n-cell sep-
arately. For each n-cell we require that the connection 1-form Γ =

∑n
i=1 αi is closed,

hence locally the connection is flat. In order to impose global flatness of the consid-
ered bundle, we require that the parallel transport does not depend on the homotopic
deformations of curves that cross different pieces of Cn(Γ ). This requirement imposes
conditions on the parallel transport operators along certain edges (1-dimensional cells)
of Cn(Γ ). To see this, we need the following theorem by Abrams [21].

Theorem 1. Fix n—the number of particles. If Γ has the following properties: (i) each

path between distinct vertices of degree not equal to 2 passes through at least n−1 edges,

(ii) each nontrivial loop passes through at least n + 1 edges, then Cn(Γ ) deformation

retracts to a CW -complex Dn(Γ ) which is a subspace of Cn(Γ ) and consists of the

n-fold products of disjoint cells of Γ .

Complex Dn(Γ ) is called Abram’s discrete configuration space and we elaborate on its
construction in Sect. 4. For the construction of quantum kinematics, we only need the
existence of the deformation retraction. This is because under this deformation, every
loop in Cn(Γ ) can be deformed to a loop in Dn(Γ ) ⊂ Cn(Γ ) which has a nicer structure
of a CW -complex. Therefore, we only need to consider the parallel transport along loops
in Dn(Γ ). Furthermore, every loop in Dn(Γ ) can be deformed homotopically to a loop
contained in the one-skeleton of Dn(Γ ). The problem of gluing connections between
different pieces of Cn(Γ ) becomes now discretised. Namely, we require that the unitary
operators that describe parallel transport along the edges of Dn(Γ ) compose to the
identity operator whenever the corresponding edges form a contractible loop. In other
words,

Uσ1Uσ2 . . . Uσl
= 1 if σ1 → σ2 → · · · → σl is a contractible loop in Dn(Γ ).

By σ1 → σ2 → · · · → σl we denote the path constructed by travelling along 1-cells σi

in Dn(Γ ). This is a closed path whenever σl ∩ σ1 �= ∅.
More formally, we classify all homomorphisms ρ ∈ Hom(π1(Cn(Γ )), U (k)) and

consider the vector bundles that are induced by the action of ρ on the trivial principal
U (k)-bundle over the universal cover of Cn(Γ ). For more details, see Sect. 3.

Therefore, the classification quantum kinematics of rank k on Cn(Γ ) is equivalent
to the classification of the U (k) representations of π1(Dn(Γ )). The described method
of classification of quantum kinematics in the case of rank 1 becomes equivalent to the
classification of discrete gauge potentials on Cn(Γ ) that were described in [7].

Example 3. Quantum kinematics of rank 1 of two particles on graph Y . The two-
particle discrete configuration space of graph Y consists of 6 edges that form a circle
(Fig. 4). Therefore, any non-contractible loop in C2(Y ) is homotopic with D2(Y ).

Fig. 4. Deformation of a loop from C2(Y ) to D2(Y )
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The classification of kinematics of rank 1 boils down to writing down the consistency
relation for U (1) operators arising from the parallel transport along the edges in D2(Y ).
These operators are just phase factors

Uσ = e−iφσ , φσ =

∫

σ

α1.

The parallel transport of a wave function results with

T̂γ Ψ = e−iφ0Ψ, φ0 = φ1 + φ′
1 + φ2 + φ′

2 + φ3 + φ′
3.

This is reflected in the fact that π1(C2(Y )) = Z.

2. Methodology

All topological spaces that are considered in this paper have the homotopy type of finite
CW complexes. This is due to the following two theorems.

Theorem 2. [20,21] The configuration space of any graph Γ can be deformation

retracted to a finite CW complex which is a cube cumplex.

Theorem 3. [32,33] The configuration space of n particles in Rk has the homotopy type

of a finite CW -complex.

Using the structure of a CW -complex makes some computational problems more
tractable. This is especially useful, while computing the homology groups of graph
configuration spaces, because the corresponding CW -complexes have a simple, explicit
form.

One of the central notions in the description of quantum statistics is the notion of
the fundamental group. Importantly, the fundamental group of a finite CW complex is
finitely generated [34]. This means that in all scenarios that are relevant in this paper, the
fundamental group can be described by choosing a finite set of generators a1, . . . , ar and
considering all combinations of generators and their inverses, subject to certain relations

π1(X) = 〈a1, a2, . . . , ar : W1(a1, . . . , ar ) = e, . . . , WR(a1, . . . , ar ) = e〉.

Relations {Wi } have the form of words in a1, . . . , ar . The fundamental group of the
n-particle configuration space of some topological space X will be referred to as the
n-strand braid group of X and denoted by Brn(X). Notably, there is a wide variety of
braid groups when the underlying topological space X is changed. Let us next briefly
review some of the flag examples.

1. The n-strand braid group of R3 is the permutation group, Brn(R3) = Sn .
2. The n-strand braid group of R2 is often simply called braid group and denoted by Brn .

It has n − 1 generators denoted by σ1, . . . , σn−1. One can illustrate the generators by
arranging particles on a line. In such a setting, σi corresponds to exchanging particles
i and i + 1 in a clockwise manner. By composing such exchanges, one arrives at the
following presentation of Brn(R2)

Brn(R2) = 〈σ1, . . . , σn−1 : σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n − 2,

σiσ j = σ jσi for |i − j | ≥ 2〉.
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3. The n-strand braid group of a sphere S2 has the same set of generators and relations
as Brn(R2), but with one additional relation: σ1σ2 . . . σn−1σn−1 . . . σ2σ1 = e.

4. The n-strand braid group of a torus T 2. Group Brn(T 2) is generated by (i) generators
σ1, . . . , σn−1 where the relations are the same as in the case of R2 and (ii) generators
τi , ρi , i = 1, . . . , n that transport particle i around one of the two fundamental loops
on T 2 respectively. As the full set of relations defining Brn(T

2) is quite long, we
refer the reader to [35].

5. Fundamental groups of n-particle configuration spaces of graphs, also called graph
braid groups [24,36]. The study of integral homology of graph braid groups is a
central point of this paper.

Graph configuration spaces and Cn(R2) are Eilenberg–MacLane spaces of type K (G, 1),
i.e. the fundamental group is their only non-trivial homotopy group. Such spaces are also
called aspherical. In the following example we aim to provide some intuitive understand-
ing of complications and difficulties that are met while dealing with graph braid groups.

Example 4. (Braid groups for two or three particles on Θ-graphs) Consider graph Θ

that consists of two vertices and three parallel edges that connect the vertices. As we
show schematically in Fig. 5, group Br2(ΓΘ) is a free group that has three genera-
tors, Br2(ΓΘ) = 〈αD, αU , γL〉. Generators αU and αD correspond to a single particle
travelling around a simple cycle in ΓΘ while generator γL denotes a pair of particles
exchanging on the left junction. Clearly, it is possible to have an analogous exchange on
the right junction, γR . Such an exchange can be expressed by the above generators as

γR ∼ (αDαU )−1 γL (αDαU ) (4)

A physical model for a U (2) representation of Br2(ΓΘ) can be constructed using
general theory of exchanging Majorana fermions on networks of quantum wires pre-
sented in [16]. Here we only briefly sketch the main ideas of this construction. The
role of particles is played by two Majorana fermions placed on the spots of black dots
from Fig. 5. The two fermions are at the endpoints of the so-called topological region

Fig. 5. Group Br2(ΓΘ ) is a free group with three generators: αU , αD, γL
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in a network of superconducting quantum wires. Majorana fermions are braided by
adiabatically changing physical parameters of the quantum wire.

An example of a graph whose braid group has a more complicated structure is graph
Θ4 which has four parallel edges that connect two vertices. Space C3(ΓΘ4) has the homo-
topy type of a closed two-dimensional surface of genus 3 [37]. Hence, the corresponding
graph braid group has six generators subject to one relation

Br3(ΓΘ4) =

〈

α1, γ1, . . . , α3, γ3 :

3
∏

i=1

αiγiα
−1
i γ −1

i = e

〉

.

In this paper we focus on calculating cellular homology of graph configuration spaces.
It is done by assigning to Cn(Γ ) a finite chain complex C in the way which is described
in Sect. 4. Homology groups of complex C are finitely generated abelian groups, i.e.
have the following form

Hd(C, Z) = ZK ⊕

L
⊕

i=1

Zpi
,

where K , L ∈ N, and {pi }
L
i=1 are natural numbers such that pi divides pi+1 for all

i . Number K is called the rank of Hd(C, Z), and is equal to the dth Betti number of
complex X .

K = rk(Hd(C, Z)) = βd(X).

The cyclic part of Hd(C, Z) is called the torsion part and denoted by T (Hd(C, Z)) or
Td(C, Z). An important theorem that we will often use reads [38]:

Theorem 4. If X has the homotopy type of a finite CW complex, then ranks of H k(X, Z)

and Hk(X, Z) are equal and the torsion of H k(X, Z) is equal to the torsion of

Hk−1(X, Z).

3. Vector Bundles and Their Classification

The main motivation for studying (co)homology groups of configuration spaces comes
from the fact that they give information about the isomorphism classes of vector bun-
dles over configuration spaces. In the following section, we review the main strategies of
classifying vector bundles and make the role of homology groups more precise. Through-
out, we do not assume that the configuration space is a differentiable manifold, as the
configuration spaces of graphs are not differentiable manifolds. We only assume that
Cn(X) has the homotopy type of a finite CW -complex. This means that Cn(X) can be
deformation retracted to a finite CW -complex. As we explain in Sect. 4, configuration
spaces of graphs are such spaces. The lack of differentiable structure means that the flat
vector bundles have to be defined without referring the notion of a connection and all
the methods that are used have to be purely algebraic. We provide such an algebraic
definition of flat bundles in Sect. 3.3.

In this paper, we consider only complex vector bundles π : E → B, where E is
a total space and B is the base. Two vector bundles are isomorphic iff there exists a
homeomorphism between their total spaces which preserves the fibres. If two vector
bundles belong to different isomorphism classes, there is no continuous function which
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transforms the total spaces to each other, while preserving the fibres. Hence, the wave
functions stemming from sections of such bundles must describe particles with different
topological properties. The classification of vector bundles is the task of classifying
isomorphism classes of vector bundles. The set of isomorphism classes of vector bundles
of rank k will be denoted by EK

k (B).
Before we proceed to the specific methods of classification of vector bundles, we

introduce an equivalent way of describing vector bundles which involves principal bun-

dles (principal G-bundles). A principal G-bundle ξ : P → B is a generalisation of
the concept of vector bundle, where the total space is equipped with a free action of
group G1 and the base space has the structure of the orbit space B ∼= P/G. Fibre
π−1(p) is isomorphic to G is the sense that map π : P → B is G-invariant, i.e.
π(ge) = π(e). Moreover, all relevant morphisms are required to be G-equivariant. The
set of isomorphism classes of principal G-bundles over base space B will be denoted by
PG(B).

While interpreting sections of vector bundles as wave functions, we need the notion
of a hermitian product on E . This means that we consider hermitian vector bundles, i.e.
bundles with hermitian product 〈·, ·〉p on fibres π−1(p), p ∈ B that depends on the
base point and varies between the fibres in a continuous way. Choosing sets of unitary
frames, we obtain a correspondence between hermitian vector bundles and principal
U (k)-bundles. If the base space is paracompact, any complex vector bundle can be
given a hermitian metric [39]. Using the fact that principal U (k)-bundles corresponding
to different choices of the hermitian structure are isomorphic [39], we have the following
bijection

PU (k)(B) ∼= EC

k (B).

From now on, we will focus only on the problem of classification of principal U (k)-
bundles.

3.1. Universal bundles and Chern classes. Recall that all vector bundles of rank k over
a paracompact topological space can be obtained from a vector bundle which is universal
for all base spaces. This is done in the following way. Any continuous map f : B ′ → B

between base spaces induces a pullback map of vector bundles over B to vector bundles
over B ′. The pullback bundle is defined as f ∗E = {(p, e) ∈ B ′ × E : f (p) = π(e)}.
Similarly, one defines the pullback of principal G-bundles. For a fixed principal G-
bundle ξ : P → B, the pullback map induces a map from [A, B], i.e. from the space of
homotopy classes of continuous maps from A to B, to the set of isomorphism classes of
principal G-bundles over A by f �→ f ∗ξ . A space B for which such a map is bijective
regardless the choice of space A, is called a classifying space for G and is denoted by
BG. If this is the case, bundle ξ is called a universal bundle. For principal U (k)-bundles,
the classifying space is the infinite Grassmannian [39]

BU (k) = Grk(C
∞),

and the corresponding universal bundle is denoted by γ k
C

. Therefore, any principal U (k)-
bundle over a paracompact Hausdorff space B can be written as f ∗(γ k

C
) for f : B →

Grk(C
∞). The isomorphism class of f ∗(γ k

C
) is determined uniquely by the homotopy

1 The action of G on P can be left or right. In this work we pick up the convention of right action. This
means that g(h(p)) = (gh)(p) for g, h ∈ G, p ∈ P . Group action is free iff for all g ∈ G and p ∈ P , gp �= p.
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class of f and vice versa. However, the classification of such homotopy classes of maps,
as well as differentiating between different classes are difficult tasks. A more computable
criterion for comparing isomorphism classes of vector bundles are invariants called
Chern characteristic classes. Let us next briefly introduce this notion. A characteristic
class is a map that assigns to each principal G-bundle ξ : P → B an element of
the cohomology ring of B with some coefficients. Characteristic classes are invariant
under isomorphisms of principal bundles, and those that describe principal U (k)-bundles
have values in H∗(B, Z). Such characteristic classes are called integral Chern classes.
They are evaluated as follows. Let a ∈ Hq(BU (k), Z). We assign to this element a
characteristic class ca which is defined defined by its values on an arbitrary principal
bundle ξ : P → B. By the classification theorem, we have ξ = f ∗

ξ (γ k
C
) for some

continuous map fξ : B → BU (k). Hence, ca is evaluated as ca(ξ) := f ∗
ξ (a), where

f ∗
ξ : Hq(BU (k), Z) → Hq(B, Z) is the pullback of cohomology rings via map fξ .

Map f ∗
ξ is often called the characteristic homomorphism. It turns out that the only

nonzero Chern classes are of even degree.
Chern classes are especially useful in classifying line bundles, as the set of homotopy

classes of maps [B, BU (1)] is in a bijective correspondence with H2(B, Z). Hence, we
arrive at the first direct application of the knowledge of cohomology ring of space B,
namely

EC

1 (B) ∼= H2(B, Z).

More applications of Chern classes and cohomology ring H∗(B, Z) follow in the remain-
ing parts of this section. In particular, they appear in K -theory and while studying char-
acteristic classes of flat vector bundles.

3.2. Reduced K -theory. We start with recalling the definition of stable equivalence of
vector bundles.

Definition 1. Vector bundles ξ and ξ ′ are stably equivalent ξ ∼s ξ ′ iff

∃k1,k2∈Z [ξ ⊕ τk1 ] = [ξ ′ ⊕ τk2 ].

The set of stable equivalence classes of vector bundles over a compact Hausdorff space
has the structure of an abelian group which is called the reduced Grothendieck group
K̃ (B). If the base space has the homotopy type of a finite CW -complex, group K̃ (B)

fully describes isomorphism classes of vector bundles that have a sufficiently high rank
[40]. This concerns vector bundles, whose rank is in the stable range, i.e. is greater than
or equal to

ks :=

⌈

1

2
dim B

⌉

,

where ⌈x⌉ denotes the smallest integer that is greater than or equal to x . The set of stable
equivalence classes of V ectC(B) is equal to EC

ks
(B). Moreover, EC

k (B) is the same for

all k ≥ ks and equal to EC

ks
(B). Therefore,

EC

k (B) ∼= K̃ (B) for k ≥ ks .
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The relation between reduced K -theory and cohomology is phrased via the Chern

character which induces isomorphism from K̃ (B) to H∗(B, Q) when B has the homo-
topy type of a finite CW -complex.

As a consequence, the classification of vector bundles in the stable range asserts that

EC

k
∼=

⊕

i=1

H2i (B, Q), for k ≥
1

2
dim B,

on condition that the even integral cohomology groups of B are torsion-free. In the
case when there is non-trivial torsion in H∗(B, Z), torsion of K̃ (B) is determined by
the Atiyah-Hirzebruch spectral sequence [41]. However, the correspondence between
torsion of even cohomology and K̃ (B) is not an isomorphism. In particular, torsion in
K̃ (B) can vanish, despite the existence of nonzero torsion in H2i (B, Z). Finally, we note
that stable equivalence of vector bundles is physically important in situations when one
has access only to Chern classes or other topological invariants stemming from Chern
classes, e.g. the Chern numbers. This is because Chern classes of stably equivalent vector
bundles are equal.

3.3. Flat bundles and quantum statistics. In this section, we describe the structure of
the set of flat principal G-bundles over base space B. More precisely, we consider the
set of pairs (ξ,A), where ξ is a principal G-bundle, and A is a connection 1-form on ξ .
We divide the set of such pairs into equivalence classes [(ξ,A)] that consist of vector
bundles isomorphic to ξ and the set of flat connections that are congruent to A under the
action of the gauge group. The quotient space with respect to this equivalence relation is
called the moduli space of flat connections and is denoted by M(B, G). The culminating
point of this section is to introduce the fundamental relation which says that M(B, G)

is in a bijective correspondence with the set of conjugacy classes of homomorphisms of
the fundamental group of B.

M(B, G) ∼= Hom(π1(B), G)/G. (5)

We use this relation to explain some key properties of quantum statistics that were
sketched in the introduction of this paper.

Recall the description of the moduli space of flat connections in the case when B is
a smooth manifold. Having fixed a principal connection H on P , we consider parallel
transport of elements of P around loops in B. Parallel transport around loop γ ⊂ B

is a morphism of fibres Γγ : π−1(b) → π−1(b) which assigns the end point of the
horizontal lift of γ (denote it by γ̃ ) to its initial point

Γγ : γ̃ (0) �→ γ̃ (1).

Because fibres are homogeneous spaces for the action of G, for every choice of the initial
point p = γ̃ (0) there is a unique group element g ∈ G such that γ̃ (1) = gp. We denote
this element by holp(H, γ ) and call the holonomy of connection H around loop γ at
point p. Moreover, by the G-equivariance of the connection, we get that

Γγ (gp) = gΓγ (p), p ∈ P.

This means that holgp(H, γ ) = g−1holp(H, γ )g. If connection H is flat, the parallel
transport depends only on the topology of the base space [42], i.e. (i) Γγ depends only
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on the homotopy class of γ , (ii) parallel transport around a contractible loop is trivial,
(iii) parallel transport around two loops that have the same base point is the composition
of parallel transports along the two loops Γγ1◦γ2 = Γγ1 ◦Γγ2 . These facts show that if H

is flat, map π1(B) ∋ [γ ] �→ holp(H, γ ) ∈ G is a homomorphism of groups. Because
holonomies at different points from the same fibre differ only by conjugation in G, it is
not necessary to specify the choice of the initial point. Instead, we consider map

SH : π1(B) ∋ [γ ] �→ Hol(H, γ ) ∈ Conj (G),

where Hol(H, γ ) = {holp(H, γ ) : p ∈ π−1(γ (0))} is a conjugacy class of group G.
There is one more symmetry of this map that we have not discussed so far, namely the
gauge symmetry. A gauge transformation is a map f : P → G which is G-equivariant,
i.e. f (gp) = g−1 f (p)g. A gauge transformation induces an automorphism of P which
acts as p → f (p)p. Consequently, transformation f induces a pullback of connection
forms. It can be shown that map SH is gauge invariant [42], i.e. depends only on the
gauge equivalence class of connection H .

An important conclusion regarding flat bundles on spaces that do not have a differen-
tial structure comes from the second part of correspondence (5). This is the reconstruction
of a flat principal bundle from a given homomorphism Hom(π1(B), G). It turns out that
any flat bundle over B can be realised as a particular quotient bundle of the trivial bundle
over the universal cover of B. In order to formulate the correspondence, we first intro-
duce the notion of a covering space and a universal cover.2 The following theorem is
also a definition of a flat principal bundle for spaces that are not differential manifolds.

Theorem 5. Any flat principal G-bundle P → B can be constructed as the following

quotient bundle of the trivial bundle over the universal cover of B.

P = (B̃ × G)/π1(B).

In the above formula, group π1(B) acts on B̃ via deck transformations. Action on G is

defined by picking a homomorphism ρ : π1(B) → G. Then the action reads ag := ρ(a)g

for a ∈ π1(B), g ∈ G.

Summing up, in order to describe the moduli space of flat G-bundles, one has to clas-
sify conjugacy classes of homomorphisms π1(B) → G. All spaces that are considered
in this paper have finitely generated fundamental group. This fact makes the classifica-
tion procedure easier. Namely, one can fix a set of generators a1, . . . , ar of π1(B) and
represent them as group elements g1, . . . , gr . Matrices g1, . . . , gr realise π1(B) in G

in a homomorphic way iff they satisfy the relations between the generators of π1(B).
This way, the moduli space of flat connections can be given the structure of an algebraic
variety. In other words, we consider map

Q : G×r → G×nR ,

which returns the values of words describing the relations between generators of π1(B).
Then,

M(B, G) = Q−1(e, . . . , e)/G.

We view Q−1(e, . . . , e) as the zero locus of a set of multivariate polynomials. In general,
such a zero locus has many path connected components. This reflects the topological

2 Universal covers of graph configuration spaces have a particularly nice structure, as they have the homo-
topy type of a C AT (0) cube complex [21] which is contractible.
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structure of M(B, G). Namely, one can decompose the moduli space of flat connections
into a number of disjoint components that are enumerated by the isomorphism classes
of bundles

M(B, G) =
⊔

[ξ ]∈PG (B)

M[ξ ](B, G).

M[ξ ](B, G) is the space of flat connections on principal bundles from the isomorphism
class [ξ ] modulo the gauge group. The following fact gives a necessary condition for
two flat structures to be non-isomorphic.

Fact 3.1. Two points in M(B, G) that correspond to two non-isomorphic flat bundles,

belong to different path-connected components of M(B, G).

Equivalently, if two flat structures, i.e. points in M(B, G), belong to the same path-
connected component of M(B, G), then the corresponding vector bundles are isomor-
phic. A path connecting the two points in M(B, G) gives a homotopy between the
corresponding flat structures.

Example 5. The moduli space of flat U (1) bundles over spaces with finitely generated

fundamental group. As conjugation in U (1) is trivial, we have

M(B, U (1)) ∼= Hom(π1(B), U (1)).

Moreover, Hom(π1(B), U (1)) is the same as the space of homomorphisms from the
abelianization of π1(B) to U (1). A standard result from algebraic topology says that

π1(B)/[π1(B), π1(B)] ∼= H1(B, Z),

where [·, ·] is the group commutator. H1(B, Z) as any finitely generated abelian group
decomposes as the sum of a free component and a cyclic (torsion) part

H1(B, Z) = Zp ⊕

q
⊕

i=1

Zpi
.

Therefore, we can generate H1(B, Z) as

H1(B, Z) = 〈a1, . . . , ap, b1, . . . , bq : b
pi

i = e〉.

We represent ai as eιφi , φi ∈ [0, 2π [ and the cyclic generators as roots of unity eι2ki π/pi ,
where ki = 0, 1, 2, . . . , pi − 1. This way, we get

∏q
i=1 pi connected components in

the space of homomorphisms Hom(H1(B, Z), U (1)) that are enumerated by different
choices of numbers ki . Each connected component is homeomorphic to a p-torus, whose
points correspond to phases φi . In fact, the connected components are in a one-to-one
correspondence with isomorphism classes of flat bundles. To see this, recall the fact
that set of U (1)-bundles has the structure of a group which is isomorphic to H2(B, Z).
Moreover, as we explain in Remark 3.1, Chern classes of flat bundles are torsion. This
means that flat U (1)-bundles form a subgroup of the group of all U (1)-bundles which
is isomorphic to the torsion of H2(B, Z). By the universal coefficient theorem [43],
torsion of H2(B, Z) is the same as torsion of H1(B, Z). Note that there is exactly the
same number of connected components in Hom(H1(B, Z), U (1)) as the number of
group elements in the torsion component of H1(B, Z). In this case, fact 3.1 implies that
each connected component represents one isomorphism class of flat bundles.
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(a) (b)

Fig. 6. The moduli space of flat U (1) bundles a) for n particles on a plane, b) n particles in R3. Homomorphisms
from Z to U (1) are parametrised by points from S1 via the map φ �→ eιφ . The corresponding homomorphism
reads n �→ eιnφ . There is only one path-connected component in Hom(Z, U (1)) which reflects the fact
that there is only one flat U (1) bundle over Cn(R2) (the trivial one) and points form the circle parametrise
different flat connections. For particles in R3, there are two homomorphisms of Z2 = {1,−1}—the trivial
one and 1 �→ e2πι, −1 �→ eιπ . They correspond to two isolated points on the torus T 2 = U (1) × U (1). The
trivial homomorphism corresponds to the bosonic bundle, while the other homomorphism corresponds to the
fermionic bundle. The fundamental difference between these two types of quantum statistics is that anyons
arise as different flat connections on the trivial bundle, whereas bosons and fermions arise as canonical flat
connections on two non-isomorphic flat bundles

Recall that for particles in R2 and R3, we had

H1(Cn(R2), Z) = Z, H1(Cn(R3), Z) = Z2.

Hence, the moduli spaces read (see also Fig. 6)

M(Cn(R2), U (1)) ∼= Hom(Z, U (1)) ∼= S1,

M(Cn(R3), U (1)) ∼= Hom(Z2, U (1)) ∼= {∗, ∗′} ⊂ T 2.

Characteristic classes of flat bundles. From this point, we can move away from con-
sidering connections and use the wider definition of flat G-bundles which makes sense
for bundles over spaces that have a universal covering space. As stated in theorem 5,
such flat bundles have the form

P = (B̃ × G)/π1(B),

where we implicitly use a group homomorphism ρ : π1(B) → G in the definition of
the quotient. For such flat U (n)-bundles over connected CW -complexes we have the
following general result about the triviality of rational Chern classes [44].

Theorem 6. Let G be a compact Lie group, B a connected CW -complex and ξ : P → B

a flat G-bundle over B. Then, the characteristic homomorphism

f ∗
ξ : H∗(BG, Q) → H∗(B, Q)

is trivial.

Remark 3.1. Theorem 6 in particular means that if B is a finite CW -complex, then
by the universal coefficient theorem for cohomology (see e.g. [43]), the image of the
characteristic map f ∗

ξ : H∗(BG, Z) → H∗(B, Z) consists only of torsion elements of
H∗(B, Z).
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Specifying the above results for U (n)-bundles, we get that the lack of nontrivial torsion
in H2i (B, Z) has the following implications for the stable equivalence classes of flat
vector bundles.

Proposition 7. Let B be a finite CW complex. If the integral homology groups of B are

torsion-free, then every flat complex vector bundle over B is stably equivalent to a trivial

bundle.

Proof. If the integral cohomology of B is torsion-free, then by the Chern character
we get that the reduced Grothendieck group is isomorphic to the direct sum of even
cohomology of B. Thus, if all Chern classes of a given bundle vanish, this means that
this bundle represents the trivial element of the reduced Grothendieck group, i.e. is stably
equivalent to a trivial bundle. ⊓⊔

Interestingly, in the following standard examples of configuration spaces, there is torsion
in cohomology.

1. Configuration space of n particles on a plane. Space Cn(R2) is aspherical, i.e. is an
Eilenberg–Maclane space of type K (π1, 1), where the fundamental group is the braid
group on n strands Brn . Cohomology ring H∗(Cn(R2), Z) = H∗(Brn, Z) is known
[45,46]. Its key properties are (i) finiteness—H i (Brn, Z) are cyclic groups, except
H0(Brn, Z) = H1(Brn, Z) = Z, (ii) repetition—H i (Br2n+1, Z) = H i (Br2n, Z),
(iii) stability—H i (Brn, Z) = H i (Br2i−2) for n ≥ 2i − 2. Description of nontrivial
flat U (n) bundles over Cn(R

2) for n > 2 is an open problem.
2. Configuration space of n particles in R3. Much less is known about H∗(Cn(R3)).

Some computational techniques are presented in [47,48], but little explicit results are
given. Ring H∗(C3(R

3) is equal to Z, 0, Z2, 0, Z3 [49] and Hq(C3(R
3)) = 0 for

q > 4. However, it has been shown that there are no nontrivial flat SU (n) bundles
over C3(R

3).
3. Configuration space of n particles on a graph (a 1-dimensional CW -complex Γ ).

Spaces Cn(Γ ) are Eilenberg–Maclane spaces of type K (π1, 1). The calculation of
their homology groups is a subject of this paper. Group H1(Cn(Γ ), Z) is known
[8,37] for an arbitrary graph. We review the structure of H1(Cn(Γ )) in Sect. 4.1. By
the universal coefficient theorem, the torsion of H2(Cn(Γ )) is equal to the torsion
of H1(Cn(Γ )) which is known to be equal to a number of copies of Z2, depending
on the structure of Γ . We interpret this result as the existence of different bosonic
or fermionic statistics in different parts of Γ . The existence of torsion in higher
(co)homology groups of Cn(Γ ) which is different than Z2, is an open problem. In
this paper, we compute homology groups for certain canonical families of graphs.
However, the computed homology groups are either torsion-free, or have Z2-torsion.

As we have seen while studying the example of anyons, the parametrisation of different
path-connected components of the moduli space of flat bundles corresponds physically
to changing some fields. On the other hand, while studying the example of particles in
R3, we learned that on each path-connected component of M(B, G) there may exist
points that correspond to nontrivial action of the holonomy without the requirement of
introducing any additional fields in the physical model. Such points are for example the
isolated points of M(B, G). It is worthwhile to pursue the search of such canonical
points in M(B, G), as they may lead to some new spontaneously occurring quantum
statistical phenomena.
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4. Configuration Spaces of Graphs

The general structure of configuration spaces of graphs has been introduced in Sect. 1.2.
For computational purposes, we use discrete models of graph configuration spaces. By a
discrete model we understand a CW -complex which is a deformation retract of Cn(Γ ).
The existence of discrete models for graph configuration spaces enables us to use stan-
dard tools from algebraic topology to compute homology groups of graph configuration
spaces. In particular, we use different kinds of homological exact sequences. There are
two discrete models that we use.

1. Abram’s discrete configuration space [21]. The Abram’s deformation retract of
Cn(Γ ) is denoted by Dn(Γ ). We use Abram’s discrete model mainly in the first part
of this paper, where we apply discrete Morse theory to the computation of homology
groups of some small canonical graphs (Sect. 5.2).

2. The discrete model by Świątkowski [20] that we denote by Sn(Γ ). We use this
model in Sects. 5.3–5.6 to compute homology groups of configuration spaces of
wheel graphs and some families of complete bipartite graphs.

Świątkowski model has an advantage over Abram’s model in the sense that its dimension
agrees with the homological dimension of Cn(Γ ), and as such, stabilises for sufficiently
large n. The dimension of Abram’s model is equal to n for sufficiently large n. Hence,
the Świątkowski model is more suitable for rigorous calculations. However, sometimes
it is more convenient to use Abram’s model with the help of discrete Morse theory. The
computational complexity of numerically calculating the homology groups of Cn(Γ )

for a generic graph is comparable in both approaches.

Abrams discrete model. Let us next describe in detail the discrete configuration spaces
Dn(Γ ) by Abrams. For the deformation retraction from Cn(Γ ) to Dn(Γ ) to be valid,
the graph must be simple and sufficiently subdivided which means that

– each path between distinct vertices of degree not equal to 2 passes through at least
n − 1 edges,

– each nontrivial loop passes through at least n + 1 edges.

The discrete configuration space Dn(Γ ) is a cubic complex. The n-dimensional cells in
Dn(Γ ) are of the following form.

Σn(Dn(Γ )) = {{e1, . . . , en} : ei ∈ E(Γ ), ei ∩ e j = ∅ for i �= j}.

We denote cells of Dn(Γ ) by the set notation using curly brackets. Lower dimensional
cells are described by sets of edges and vertices from Γ that are mutually disjoint. A
d-dimensional cell consists of d edges and n − d vertices. In other words, cells from
Σd(Dn(Γ )) are of the form

Σd(Dn(Γ )) = {σ ⊂ E(Γ ) ∪ V (Γ ) : |σ | = n, |σ ∩ E(Γ )| = d, ǫ ∩ ǫ′ = ∅ ∀ǫ,ǫ′∈σ }.

In particular when there are not enough pairwise disjoint edges in the sufficiently sub-
divided Γ , the dimension of the discrete configuration space can be smaller than n.

In order to define the boundary map, we introduce a suitable order on vertices of
Γ , following [24,37]. To this end, we choose a spanning tree T ⊂ Γ and fix its planar
embedding. We also fix the root ∗ of T by picking a vertex of degree 1 in T . For every
v ∈ V (Γ ) there is the unique path in T that joins v and ∗, called the geodesic gv,∗.
For every vertex with d(v) ≥ 2 we enumerate the edges adjacent to v with numbers
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0, 1, . . . , d(v) − 1. The edge contained in gv,∗ has label 0. The remaining edges are
labelled increasingly, according to their clockwise order starting from edge 0. The enu-
meration procedure for vertices goes in an inductive manner. The root has number 1. If
vertex v has label k and d(v) = 2, the vertex adjacent to v is given label k +1. Otherwise,
if d(v) ≥ 2, the vertex adjacent to v in the lowest direction with vertices that have not
been yet labelled is given label kmax + 1, where kmax is the maximal label among all of
the already labelled vertices. If d(v) = 1, we look for essential vertices in gv,∗ and go
back to the closest essential vertex that contains a direction with unlabelled vertices. In
other words, the vertices are labelled in the clockwise direction. This way every edge
is given an initial and terminal vertex that we denote by ι(e) and τ(e) respectively. The
terminal vertex is the vertex with the lower index, i.e. τ(e) < ι(e). We can unambigu-
ously specify an edge by calling its initial and terminal vertices, hence we denote the
edges by eι

τ . Given a cell from Dn(Γ )

σ = {e1, . . . , ed , v1, . . . , vn−d},

we order the edges from σ according to their terminal vertices, i.e. τ(e1) < τ(e2) <

· · · < τ(ed). The i th pair of faces from the boundary of σ reads
(

∂ ισ
)

i
:= {e1, . . . , ei−1, ei+1, . . . , ed , v1, . . . , vn−d , ι(ei )},

(

∂τσ
)

i
:= {e1, . . . , ei−1, ei+1, . . . , ed , v1, . . . , vn−d , τ (ei )}.

The full boundary of σ is given by the following alternating sum of faces.

∂σ =

k
∑

i=1

(−1)i
((

∂ ισ
)

i
−

(

∂τσ
)

i

)

. (6)

For examples, see Sects. 4.1 and 5.

Świątkowski discrete model. Świątkowski complex is denoted by Sn(Γ ). In order
to define it, we regard graph Γ as a set of edges E , vertices V and half-edges H . A
half-edge of e ∈ E(Γ ) assigned to vertex v, h(v) ⊂ e, is the part e which is an open
neighbourhood of vertex v. Intuitively, the half-edges are places, where the particles are
allowed to ‘slide’. By e(h) we will denote the unique edge, for which e∩h �= ∅. Similarly,
we have vertex v(h) as the vertex, for which h is a neighbourhood. By H(v) we will
denote all half edges that are incident to vertex v. Chain complex S(Γ ) =

⊕

n Sn(Γ )

reads

S(Γ ) = Z[E] ⊗
⊗

v∈V

Sv,

where Sv = Z〈v, h ∈ H(v),∅〉. This is a bigraded module with respect to the multipli-
cation by E(Γ ) (a bigraded Z[E] module). The degrees of the components are

|v| = (0, 1), |e| = (0, 1), |h| = (1, 1).

The boundary map reads

∂v = ∂e = 0, ∂h = e(h) − v(h).
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The boundary map for elements of a higher degree is determined by the Eilenberg–Zilber
theorem:

∂(χ ⊗ η) = (∂χ) ⊗ η + (−1)dχ∂η

for d-chain χ . There is a canonical basis for S(Γ ), whose elements of degree (d, n) are
of the form

h1 . . . hdv1 . . . vke
n1
1 . . . e

nl

l , {v1 . . . vk} ∩ {h1, . . . hd} = ∅,

d + k + n1 + · · · + nl = n. (7)

The basis elements form a cube complex. In calculations we use the notion of support
of a given cell or a chain.

Definition 2. The support of d-cell c = h1 . . . hdv1 . . . vke
n1
1 . . . e

nl

l ∈ Sn(Γ ) is the set
of the corresponding edges and vertices of Γ

Supp(c) :=

(

d
⋃

i=1

{e(hi ), v(hi )}

)

∪ {v1, . . . , vk} ∪ {e1, . . . , el} ⊂ E(Γ ) ∪ V (Γ ).

The support of a chain b =
∑

i pi ci , pi ∈ Z is given by

Supp(b) :=

d
⋃

i=1

Supp(ci ).

In this paper we will also use a variation of S(Γ ) which we will call the reduced
Świątkowski complex with respect to a subset of vertices U ⊂ V (Γ ) and denote by
S̃U (Γ ). In most cases, the reduced complexes lack a canonical basis, however they
have a smaller number of generators than S(Γ ). The reduction is done by changing
the generators at vertex v to differences of half edges hi j := hi − h j , hi , h j ∈ H(v),
S̃v := Z〈∅, hi j 〉.

S̃U (Γ ) = Z[E] ⊗
⊗

v∈V \U

Sv ⊗
⊗

v∈U

S̃v.

Intuitively, this means that effectively, the particles always slide from one half-edge
to another without staying at the central vertex. Both reduced and the non-reduced
Świątkowski complexes have the same homology groups [23]. From now on, the default
complex we will work with is the complex which is reduced with respect to all vertices
of degree one. Intuitively, this means that we do not consider redundant cells, where
particles move from an edge to some vertex of valency one. Such complexes have the
canonical basis which corresponds to cells of a cube complex of the form (7). By a slight
abusion of notation, we will denote such a default reduced complex by S(Γ ). In other
words, from now on

S(Γ ) := Z[E] ⊗
⊗

v∈V :d(v)>1

Sv.

For examples, see Fig. 7. As a direct consequence of the dimension of Sn(Γ ), we get
the following fact.

Fact 4.1. Let Γ be a graph. Then, the following homology groups of Cn(Γ ) vanish.

Hd(Cn(Γ )) = 0 if d < n or d > NΓ ,

where NΓ = |{v ∈ V (Γ ) : d(v) ≥ 3}|.
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(a) (b)

Fig. 7. Świątkowski complex of the Y -graph and of the lasso graph, where vertices of degree 1 have been
reduced. a Świątkowski complex of C2(Y ). Only vertices of S2(Γ ) are captioned. The Y -cycle reads e1(h2 −
h3) + e2(h3 − h1) + e3(h1 − h2). b Świątkowski complex of C2(Γ ) for the lasso graph. Vertices and some
chosen edges of S2(Γ ) are captioned. The O-cycles are e1(h2 − h3) and e2(h2 − h3). The Y -cycle is their
sum, hence can be written as (e1 − e2)(h2 − h3)

Fig. 8. Vertex blow up at vertex v in Γ

Vertex blowup. In the following, we will explore relations on homology groups that
stem from blowing up a vertex of Γ : Γ → Γv (Fig. 8).

We borrow this nomenclature and the methodology of this subsection from [23]. We
start with the reduced complex with respect to vertex v, S̃v(Γ ). Any chain b ∈ S̃v(Γ )

can be decomposed in a unique way by extracting the part that involves generators from
S̃v . In order to do it, we fix a half-edge h0 ∈ H(v) and write b as

b = b0 +
∑

h∈H(v)\h0

(h0 − h)bh .

Note that chains b0 and bh belong to S(Γv). We associate two chain maps to the above
decomposition. The first map φ is the embedding of any chain b0 from S(Γv) to S̃v(Γ ).
Clearly, this map is injective and commutes with the boundary operator.

φn : Sn(Γv) → S̃v
n (Γ ), φ(b0) = b0 ∈ S̃v(Γ ).

The other map ψ is the projection of b ∈ S̃v(Γ ) to its h-components. It assigns a number
of n − 1-particle d − 1-chains to a n-particle d-chain in the following way

ψn : S̃v
n (Γ ) →

⊕

h∈H(v)\h0

Sn−1(Γv), ψ(b) =
⊕

h∈H(v)\h0

bh .
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Map ψ is surjective, because any chain b′ ∈ Sn−1(Γv) can be obtained by ψ for exmaple
from chain (h0 − h)b′ ∈ S̃v

n (Γ ). In order to see that ψ is a chain map, consider a cycle
c ∈ S̃v

n (Γ ). We have

0 = ∂c = ∂c0 +
∑

h∈H(v)\h0

((e(h0) − e(h))ch − (h0 − h)∂ch) .

Grouping the summands that entirely belong to Sn−1(Γv), we get

∂c0 +
∑

h∈H(v)\h0

(e(h0) − e(h))ch = 0,

∑

h∈H(v)\h0

(h0 − h)∂ch = 0.

By the same argument, the second equation implies that ∂ch = 0 for all h ∈ H(v)\h0.
We can write down the two maps as a short exact sequence

0 → Sn(Γv)
φn
−→ S̃v

n (Γ )
ψn
−→

⊕

h∈H(v)\h0

Sn−1(Γv) → 0. (8)

Short exact sequence (8) of chain maps implies the long exact sequence of homology
groups

. . .
Ψn,d+1
−−−→

⊕

h∈H(v)\h0

Hd (Sn−1(Γv))
δn,d
−−→ Hd (Sn(Γv))

Φn,d
−−→ Hd

(

S̃v
n (Γ )

)

Ψn,d
−−→

Ψn,d
−−→

⊕

h∈H(v)\h0

Hd−1 (Sn−1(Γv))
δn,d−1
−−−→ Hd−1 (Sn(Γv))

Φn,d−1
−−−−→ . . . , (9)

where the connecting homomorphism reads

δ[bh] = [∂ ((h0 − h)bh)] = e(h0)[bh] − e(h)[bh].

Long exact sequence (9) implies a collection of short exact sequences

0 → coker
(

δn,d

)

−→ Hd

(

S̃v
n (Γ )

)

−→ ker
(

δn,d−1
)

→ 0.

Intuitively, the coker
(

δn,d

)

identifies different distributions of free particles in Sn(Γv)

on the two sides of the junction h0 − h and ker
(

δn,d−1
)

is responsible for creating new
cycles at vertex v (for example, the cY cycles).

4.1. O-cycles and Y -cycles. There are some particular types of cycles that play an
important role in this work. These are O-cycles and Y -cycles. We specify them for the
Abram’s model. The construction for Sn(Γ ) is fully analogous.
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Definition 3. Let O ⊂ Γ be a simple cycle (an embedding of S1 in Γ ). Choose sign
coefficients se ∈ {−1, 1}, e ∈ O such that ∂

∑

e∈O see = 0 in D1(Γ ). An O-cycle in
Dn(Γ ) is a 1-chain of the form

cO :=
∑

e∈O

se{e, v1, . . . , vn−1},

where {v1, . . . , vn−1} ∩ O = ∅ is some choice of vertices. In order to define an O-cycle
in Sn(Γ ), note that for all v ∈ V (Γ )∩ O , set H(v)∩ O contains exactly two half-edges.
We denote these half-edges by hv, h′

v , where the labels are such that ∂
∑

v∈V (Γ )∩O(h′
v −

hv) = 0. Then,

cO =

⎛

⎝

∑

v∈V (Γ )∩O

(h′
v − hv)

⎞

⎠ ⊗

(

⊗

w∈W

w

)

⊗

⎛

⎝

⊗

e∈E(Γ )

ene

⎞

⎠ ,

W ⊂ (V (Γ ) − V (Γ ) ∩ O), #W +
∑

e∈E(Γ )

ne = n − 1.

Definition 4. Let Y ⊂ Γ be a Y -subgraph of Γ spanned on vertices u0, uh, u1, u2 such
that u0, u1, u2 are adjacent to uh and u0 < uh < u1 < u2. The Y -cycle in D2(Γ )

associated to subgraph Y is of the following form

cY := {eu1
uh

, u0} + {euh
u0

, u1} + {eu2
uh

, u1} − {eu1
uh

, u2} − {euh
u0

, u2} − {eu2
uh

, u0}.

A Y -cycle in Dn(Γ ) is formed by distributing the free particles outside of subgraph Y ,
i.e.

c
(n)
Y :=

∑

σ∈cY

sσ (σ ∪ {v1, . . . , vn−2}) ,

where {v1, . . . , vn−2} ∩ Y = ∅ and sσ is the sign of cell σ in cycle cY . In order to define
the Y -cycle in Sn(Γ ), denote the half edges of subgraph Y as {hi }

2
i=0, where hi ∈ H(uh)

are such that e(h0) = e
uh
u0 , e(h1) = e

u1
uh

, e(h2) = e
u2
uh

. Then,

cY = euh
u0

(h2 − h3) + eu1
uh

(h3 − h1) + eu2
uh

(h1 − h2).

Cycle c
(n)
Y ∈ Sn(Γ ) is formed by multiplying cY by a suitable polynomial in V (Γ ) and

E(Γ ).

c
(n)
Y = cY ⊗

(

⊗

w∈W

w

)

⊗

⎛

⎝

⊗

e∈E(Γ )

ene

⎞

⎠ , W ⊂ (V (Γ ) − {uh}),

#W +
∑

e∈E(Γ )

ne = n − 2.

It has been shown in [8] that subject to certain relations, cycles cO and c
(n)
Y generate

H1(Dn(Γ )) (see also [23] for the proof of an analogous fact for H1(Sn(Γ ))). The
fundamental relation between Y -cycles is shown on Figs. 10 and 11.
Cycle c

(1)
AB is the cycle, where one particle goes around the cycle in the lasso graph and

the other particle occupies vertex 1.

c
(1)
AB = cO × {1} = {e3

2, 1} + {e4
3, 1} − {e4

2, 1}.
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(a) (b)

Fig. 9. A Y -graph, its configuration space (b) and its discrete configuration space D2(Γ ) (a)

Fig. 10. The fundamental relation between the two-particle cycle on a Y -graph and the AB-cycle and a
two-particle cycle c2 in the lasso graph

Cycle c2 is the cycle, where two particles go around the cycle in lasso.

c2 = {e4
2, 3} − {e3

2, 4} − {e4
3, 2}.

It is straightforward to check that

c
(1)
AB + c2 − cY = ∂S, (10)

where S = {e2
1, e4

3}. Consider next a situation, where two disjoint Y -graphs share one
cycle cO and their free ends are connected by a path pv1,v2 which is disjoint with cO

(Fig. 11). In other words, consider an embedding of a graph which is isomorphic to the
Θ- graph.3

Then,

c
(v1)
AB + c2 − cY1 = ∂S1,

c
(v2)
AB + c2 − cY2 = ∂S2.

Subtracting both equations, we get

cY1 − cY2 = ∂(S2 − S1) + c
(v1)
AB − c

(v2)
AB . (11)

But the existence of pv1,v2 gives us that c
(v1)
AB − c

(v2)
AB = ∂

(

cO × pv1,v2

)

. This in turn
means that cY1 and cY2 are homologically equivalent. Relation

cY1 − cY2 = ∂
(

S2 − S1 + cO × pv1,v2

)

(12)

3 The Θ graph consists of two vertices which are connected by three edges. It can be also viewed as
complete bipartite graph K2,3.
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Fig. 11. Cycles cY1 and cY2 are homologically equivalent

will be called a Θ-relation. It turns out that considering all Θ-relations stemming from
different Θ-subgraphs and relations (11) that express different distributions of particles
in the O-cycles as differences of Y -cycles, one can compute the first homology group
of Dn(Γ ). Let us next summarise the results concerning the structure of the first homol-
ogy group of graph configuration spaces. We formulate the results assuming that the
considered graphs are simple. The general form of the first homology group reads

H1(Dn(Γ ), Z) = (Z)N ⊕ (Z2)
L , (13)

where N and L are the numbers of copies of Z and Z2 respectively. Numbers N and L

depend on the planarity and some combinatorial properties of the given graph [8,37].
The Z2-components appear when Γ is non-planar and have the interpretation of different
fermionic/bosonic statistics that may appear locally in different parts of a given graph
(see [8]).

5. Calculation of Homology Groups of Graph Configuration Spaces

This section contains the techniques that we use for computing homology groups of graph
configuration spaces. We tackle this problem from the ‘numerical’ and the ‘analytical’
perspective. The numerical approach means using a computer code for creating the
boundary matrices and then employing the standard numerical libraries for computing the
kernel and the elementary divisors of given matrices. The procedures for calculating the
boundary matrices of Dn(Γ ), Sn(Γ ) and the Morse complex (see Sect. 5.2) were written
by the authors of this paper, based on papers [24,37]. The analytical approach means
computing the homology groups for certain families of graphs by suitably decomposing
a given graph into simpler components and using various homological exact sequences.
Recently in the mathematical community, there has been a growing interest in computing
the homology groups of graph configuration spaces. A significant part of the recent work
has been devoted to explaining certain regularity properties of the homology groups of
Cn(Γ ) [50–55].

5.1. Product cycles. Considering simultaneous exchanges of pairs of particles on dis-
joint Y -subgraphs of Γ and the O-type cycles with the remaining particles distributed on
the free vertices of Γ , one can construct some generators of H∗(Dn(Γ )) or H∗(Sn(Γ )).
Such cycles are products of 1-cycles, hence are isomorphic to tori embedded in the
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discrete configuration space. To construct a product d cycle in Dn(Γ ), we choose Y -
subgraphs of Γ {Yi }

dY

i=1 and cycles in Γ (O-subgraphs of Γ ) {Oi }
dO

i=1, where dY +dO = d.
All the chosen subgraphs must be mutually disjoint.

Yi ∩ Y j = Oi ∩ O j = ∅ for i �= j, Yi ∩ O j = ∅ for all i, j.

Moreover, we choose vertices {v1, . . . , vn−2dY −dO
} ⊂ V (Γ ), so that vi ∩O j = vi ∩Y j =

∅ for all i, j . Product cycle on Y1 × · · · × YdY
× O1 × · · · × OdO

with the free particles
distributed on {v1, . . . , vn−2dY −dO

} is the following chain.

cY1 ⊗ · · · ⊗ cYdY
⊗ cO1 ⊗ · · · ⊗ cOdO

⊗ {v1, . . . , vn−2dY −dO
}.

In an analogous way, we form product cycles in Sn(Γ ).
We study such product cycles for configuration spaces of different graphs and describe

relations between them. So far, it has been known that product cycles generate the
second homology of the two particle configuration space of a simple graph [56] and all
homology groups for an arbitrary number of particles on tree graphs [22] (see also [57]).
In this section, we find new families of graphs, for which product cycles generate some
homology groups of their configuration spaces. These cases are

– all homology groups of the configuration spaces of wheel graphs (Sect. 5.3),
– all homology groups of the configuration space of graph K3,3, except the third

homology group (Sect. 5.5),
– the second homology group of a simple graph which has at most one vertex of

degree greater than 3.

In Sects. 5.5 and 5.6 we also discuss examples of cycles that are different than tori.
In particular, we compute all homology groups of configuration spaces of complete
bipartite graphs K2,p that are often pointed out in the literature as an unsolved example,
where the simple use of product cycles is not sufficient to generate the homology groups.
We show that some of the generators of H∗(Sn(K2,p)) are cycles of a new type that have
the homotopy type of triple tori.

5.2. Discrete Morse theory for Abrams model. In this subsection, we apply a version of
Forman’s discrete Morse theory [58] for Abram’s discrete model that was formulated in
[24] (see also [59]). The results are listed in Tables 1 and 2.

The discrete Morse theory relies on constructing a discrete gradient flow F which is a
linear map mapping d-chains to d-chains. Moreover, map F has the property that for any
chain c, we have Fr+1(c) = Fr (c) for some r . The Morse complex is the chain complex
of chains invariant under F . The basis of such invariant chains consists of critical cells.
There are a priori different ways to explicitly realise the discrete gradient flow for graph
configuration spaces. We have chosen the realisation introduced in [24]. Here, we do
not review the details of this construction, but only present a pseudocode which shows
schematically how to compute Hd(Dn(Γ )) using the knowledge of the boundary map
in Dn(Γ ) and the list of critical cells of F as cells in Dn(Γ ). We also direct the reader
to public repository [60] where we uploaded a Python implementation of the discrete
Morse theory that we used in our work. The results of running the code for different
graphs are collected in Tables 1 and 2.

Table 2 presents the results for the second and third homology groups for graphs from
the Petersen family (Fig. 12). These graphs serve as examples, where torsion in higher
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Algorithm 1 Main steps of the algorithm for computing Hd(Dn(Γ )) via discrete Morse
theory
1: Input: Sufficiently subdivided graph Γ , number of particles n.
2: Output: βd (Dn(Γ )), Td (Dn(Γ ))

3: F ← flow of the discrete gradient vector field
4: ∂ ← the boundary map in C(Dn(Γ ))

5: procedure MorseBoundaryMap(d)
6: critcellsd ← list of critical d-cells
7: critcellsdminus ← list of critical d − 1-cells
8: DM ← integer matrix of size Length(critcellsd)×Length(critcellsdminus)

9: for i = 0 to Length(critcellsd) do

10: b ← ∂(cri tcellsd[i])
11: repeat
12: b ← F(b)

13: until F(b) == b

14: for σ ′ in b do
15: DM[i][Index(σ ′, cri tcellsdminus)] ← Coefficent(σ ′, b)

16: return DM

17: Dd ← MorseBoundaryMap(d)

18: dimker ← Length(Dd [0]) − MatrixRank(MorseBoundaryMap(d))

19: Dd+1 ← MorseBoundaryMap(d + 1)

20: divisors ← ElementaryDivisors(Dd+1)

21: nonzerodivisors ← number of nonzero elements of divisors

22: torsion ← list of elements of divisors that are greater than 1
23: return (dimker − nonzerodivisors), torsion

Table 1. Betti numbers for chosen graphs computed using the discrete Morse theory [24]

Γ n β2(Cn(Γ )) β3(Cn(Γ )) β4(Cn(Γ ))

K4 3 3 0 –
4 9 0 0
5 15 0 0
6 21 4 0
7 27 16 0
8 33 40 1
9 39 80 6

K3,3 2 0 – –
3 8 0 –
4 19 1 0
5 28 10 0
6 37 39 0
7 46 88 0
8 55 157 15

K5 2 0 – –
3 30 0 –
4 76 1 0
5 116 77 0
6 156 381 0
7 196 961 0

The calculated groups were torsion-free

Table 2. The first regular homology groups of order 2 and 3 for the Petersen family

K6 P7 K3,3,1 K4,4 P8 P9 P10

β2(C4(Γ )) 264 177 172 144 114 70 40
T2(C4(Γ )) Z2 Z2 Z2 (Z2)2 Z2 Z2 Z2
β3(C6(Γ )) 4137 2058 1919 1460 986 452 191
T3(C6(Γ )) 0 0 0 (Z2)73 0 0 0
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Fig. 12. Graphs that form the Petersen family

homology groups appears. Interestingly, the torsion subgroups are always equal to a
number of copies of Z2. This phenomenon can be explained by embedding a nonplanar
graph in Γ and considering suitable product cycles. The question about the existence of
torsion different than Z2 in higher homologies remains open.

5.3. Wheel graphs. In this section, we deal with the class of wheel graphs. A wheel
graph of order m is a simple graph that consists of a cycle on m − 1 vertices, whose
every vertex is connected by an edge (called a spoke) to one central vertex (called the
hub). We provide a complete description of the homology groups of configuration spaces
for wheel graphs. In particular, we show that all homology groups are free. Therefore, in
addition to tree graphs, wheel graphs provide another family of configuration spaces with
a simplified structure of the set of flat complex vector bundles. The general methodology
of computing homology groups for configuration spaces of wheel graphs is to consider
only the product cycles and describe the relations between them. We justify this approach
in Sect. 5.4.

The simplest example of a wheel graph is graph K4 which is the wheel graph of order
4. Let us next calculate all homology groups of graph K4 and then present the general
method for any wheel graph.

5.3.1. Graph K4 Graph K4 is shown on Fig. 13. It is the 3-connected, complete graph
on 4 vertices.

Second homology group. There are three independent cycles in K4 graph. These are the
cycles that contain the hub and two neighbouring vertices from the perimeter. However,
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Fig. 13. Graph K4 and the relevant Y -subgraphs and cycles. We omit the subdivision of edges in the picture

Fig. 14. Graph K4 subdivided for n = 4. Differences cu
AB

−cv
AB

and cu
AB

−cw
AB

are homologically equivalent
to combinations of Y × Y -cycles. cY1 ⊗ cYh

− cY1 ⊗ cY2 and cY1 ⊗ cYh
− cY1 ⊗ cY3 respectively

any two such cycles always share some vertices. Hence, there are no tori that come from
the products of cO cycles. Hence, the product 2-cycles are either cY ⊗ cO or cY ⊗ cY ′ .
There are four cycles of the first kind: cY1 ⊗ cO1 , cY2 ⊗ cO2 , cY3 ⊗ cO3 and cYh

⊗ cO ,
where cO is the outermost cycle. However, cycle cYh

⊗ cO can be expressed as a linear
combination of cycles cY1 ⊗ cO1 , cY2 ⊗ cO2 , cY3 ⊗ cO3 . Therefore, the second homology
of the three-particle configuration space is

H2(D3(K4)) = Z3.

If n > 3, there are still three independent O × Y -cycles, as the differences between
distributions of free particles in such cycles can always be expressed as combinations
of Y × Y -cycles. To see this, consider the following example. For n = 4, consider the
O ×Y -cycles that involve cycle cO1 , subgraph Y1 and one of three possible free vertices
(Fig. 14). The cycles are cY1 ⊗ cu

AB , cY1 ⊗ cv
AB , cY1 ⊗ cw

AB , where cv
AB := cO1 ×v. From

(10) we have

cY2 ∼ c2 + cv
AB, cY3 ∼ c2 + cw

AB, cYh
∼ c2 + cu

AB .

Subtracting the above equations and multiplying the results by cY1 , we get

cY1 ⊗ cYh
− cY1 ⊗ cY2 ∼ cY1 ⊗ cu

AB − cY1 ⊗ cv
AB,

cY1 ⊗ cYh
− cY1 ⊗ cY3 ∼ cY1 ⊗ cu

AB − cY1 ⊗ cw
AB .

This means that the differences between distribution of particles in AB-cycles can be
expressed as combinations of Y × Y cycles. This fact generalises to n > 4 in a straight-
forward way.
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Fig. 15. Graph K4 after removing two Y -subgraphs

Consider next all possible ways of choosing two Y -subgraphs. There are six Y × Y -
cycles modulo the distribution of free particles. Hence, if there are no free particles, i.e.
when n = 4, we have

H2(D4(K4)) = Z3 ⊕ Z6.

If n > 4, we have to take into account the distribution of free particles in Γ − (Y ∪ Y ′).
For a sufficiently subdivided graph one always ends up with two connected components
(Fig. 15). A Y × Y -cycle involves 4 particles, hence one has to calculate the number of
all possible distributions of n −4 particles on those two components times the number of
possible choices of the two Y -subgraphs. The number of all choices of the Y -subgraphs
is

(4
2

)

, while the number of possible distributions of n − 4 particles on 2 components is
(

n−4+2−1
2−1

)

= n − 3. Hence, the contribution from Y × Y cycles reads

(

4

2

)

(n − 3) = 6(n − 3), n ≥ 4.

Adding the contribution from O × Y -cycles, the rank of the second homology group is
then given by

β2(Cn(K4)) = 3 + 6(n − 3) = 6n − 15, n ≥ 3.

Higher homology groups. The product generators of higher homologies are even
simpler than in the case of the second homology. There are only basis cycles of
Y × Y × · · · × Y -type. After removing three and four Y -graphs, K4 graph always
disintegrates into 4 and 6 parts respectively. Taking into account the distributions of free
particles, we get the following formulae for the Betti numbers.

β3(Cn(K4)) =

(

4

3

)(

n − 6 + 4 − 1

4 − 1

)

= 4

(

n − 3

3

)

, n ≥ 6

β4(Cn(K4)) =

(

4

4

)(

n − 8 + 6 − 1

6 − 1

)

=

(

n − 3

5

)

, n ≥ 8.

Because there are maximally four Y -graphs, group H5(Cn(K4), Z) is zero.

5.3.2. General wheel graphs In Table 3 we list Betti numbers of configuration spaces
of wheel graphs of order 5, 6 and 7 that were calculated using the discrete Morse theory.
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Table 3. Betti numbers of configuration spaces for chosen wheel graphs computed using the discrete Morse
theory

Γ n β2(Dn(Γ )) β3(Dn(Γ )) β4(Dn(Γ ))

W5 3 8 0 –
4 22 0 0
5 34 4 0
6 46 30 0
7 58 90 0
8 70 196 13

W6 3 15 0 –
4 40 0 0
5 60 15 0
6 80 90 0
7 100 250 5

W7 3 24 0 –
4 63 0 0
5 93 36 0
6 123 197 0
7 153 527 24

In all cases the calculated groups were torsion-free

Second homology. Since there are no pairs of disjoint O-cycles in wheel graphs, we
have

β2(D2(Wm)) = 0.

When n = 3, all product cycles are the O × Y -cycles. Their number is (m − 1)(m − 3),
because there are m − 1 choices of Y -subgraphs and m − 3 cycles that are disjoint with
a fixed Y -subgraph. Hence,

β2(D3(Wm)) = (m − 1)(m − 3).

When n = 4, we have to count the Y × Y cycles in. Let us divide the Y × Y cycles
into two groups: (i) cycles, where one of the subgraphs is Yh and (ii) cycles, where
both subgraphs lie on the perimeter. There are no relations between the cycles within
group (i) and no relations between the cycles within group (ii). However, there are some
relations between the cycles of type (i) and type (ii). The relations occur between cycles
Yh × Y and Y ′ × Y when subgraphs Yh and Y do not share any edges of the graph (like
on Fig. 16b)). Then, as on Fig. 11, cycles cYh

and cY ′ are in the same homology class in
D2(Wm − Y ), because they share the same O-cycle and they are connected by a path
that is disjoint with Y . Therefore, by multiplying the relation by cY we get that

cYh
× cY ∼ cY ′ × cY .

If m > 4, then for every pair Y × Yh that does not share an edge, one can find
subgraph Y ′ on the perimeter which gives rise to such a relation. There are

(

m−1
2

)

tori
coming from Y -subgraphs from the perimeter. For a fixed Y -subgraph, the contribution
from Y × Yh-cycles turns out to be equal to the number of independent cycles in the fan
graph which is formed by removing subgraph Y from the wheel graph [8]. This number
is equal to m − 3. Hence,

β2(D4(Wm)) = 2(m − 1)(m − 3) +

(

m − 1

2

)

=
(m − 1)(5m − 14)

2
.



954 T. Maciążek, A. Sawicki

(a) (b)

Fig. 16. Relations between different pairs of Yh × Y -cycles in a wheel graph. a Cycles, where Yh and Y share
an edge of the graph are independent. b Cycle, where Yh and Y do not share any edges is in the same homology
class as cycle Y ′ × Y

For numbers of particles greater than 4, we have to take into account the distribution
of free particles. Removing two Y -subgraphs from the perimeter may result with the
decomposition of the wheel graph into at most two components. This happens iff two
neighbouring Y -subgraphs have been removed. The number of nonequivalent ways of
distributing the particles is n −3. The number of ways one can choose two neighbouring
Y -subgraphs from the perimeter is m−1. This gives us the contribution of (n−3)(m−1).
Furthermore, removing a Y -subgraph from the hub and a subgraph from the perimeter
always yields two nonequivalent ways of distributing the free particles. The first one
being the edge e joining the hub and the central vertex of Y , the second one being the
remaining part of the graph, i.e. Wm − (Y ⊔ Yh ⊔ e). The contribution is (n − 3)(m −
1)(m − 3). Adding the contribution from O × Y -cycles and from non-neighbouring
Yp × Yp-cycles, we get that the final formula for the second Betti number reads

β2(Dn(Wm)) = (n − 2)(m − 1)(m − 3) + (m − 1)(n − 4) +

(

m − 1

2

)

, n ≥ 4.

Higher homologies. In computing the higher homology groups, we proceed in a similar
fashion as in the previous section. However, the combinatorics becomes more compli-
cated and in most cases it is difficult to write a single formula that works for all wheel
graphs. Let us start with an example of H3(Dn(W5)). The possible types of product
cycles are O × Y × Y ′ and Y × Y ′ × Y ′′. Cycles of the first type arise in W5 only
when graphs Y and Y ′ are neighbouring subgraphs from the perimeter. There are four
possibilities for such a choice of Y -subgraphs, hence

β3(D5(W5)) = 4.

When n > 5, the free particles can be placed either on the edge joining the Y -subgraphs
or on the connected part of W5 that is created by removing subgraphs Y and Y ′. By
arguments analogous to the ones presented in Sect. 5.3.1, the distribution of free parti-
cles on the connected component containing cycle O does not play a role. Hence, the
contribution to β3 is equal to the number of different distributions of free particles on the
edge connecting Y and Y ′ and on the connected component. In other words, there are
two bins and n − 5 free particles. Hence, the total contribution from O × Y × Y ′-cycles
is 4(n − 4). We split the contribution from Y × Y ′ × Y ′′-cycles into two groups. The
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(a) (b)

Fig. 17. The fan graph that is created after removing two neighbouring Y -subgraphs from the perimeter of
W5. It has μ = 3 leaves. There are two types of Y -cycles at the hub: a cycles, where the Y -graph is spanned

in three different leaves—the number of such cycles for k + 2 particles is β
(k+2)
1 (S3), b cycles, where the

Y -graph is spanned in two different leaves—the number of such cycles for k + 2 particles is
(k+3
k+1

)

− 1, see [8]

first group consists of cycles only from perimeter (Yp × Y ′
p × Y ′′

p ), for whom the combi-
natorial description is straightforward. The number of possible choices of Y -subgraphs
is

(4
3

)

and it always results with the decomposition of W5 into 3 components. Hence,

with n − 6 free particles the number of independent Yp × Y ′
p × Y ′′

p -cycles is 4
(

n−4
2

)

.
In order to determine the number of independent cycles Yp × Y ′

p × Yh (two subgraphs
from the perimeter and one from the hub), one has to consider different graphs that arise
after removing two Y -subgraphs from the perimeter of W5. The number of independent
Yh-cycles for a fixed choice of Yp and Y ′

p is the same as in a certain fan graph which
is determined by the choice of the Yp-subgraphs. Choosing Yp and Y ′

p to lie on the
opposite sides of the diagonal of W5, the resulting fan graph is the star graph S4. The
free particles outside Yp and Y ′

p can always be moved to the S4-subgraph. Hence, the
contribution from such cycles is given by the number of independent Y -cycles in S4 for
n − 4 particles. We denote this number by β

(n−4)
1 (S4). The last group of cycles that we

have to take into account are Yp ×Y ′
p ×Yh , where Yp and Y ′

p are neighbouring subgraphs.
The resulting fan graph is shown on Fig. 17. The n − 4 particles that do not exchange
on the perimeter subgraphs are distributed between the fan graph and the edge joining
Yp and Y ′

p. There have to be at least 2 particles exchanging on a Yh-subgraph of the
fan graph. The number of independent Yh-cycles for k + 2 particles on the fan graph is
given in the caption under Fig. 17. After summing all the above contributions, the final
formula for the third Betti number reads

β3(Dn(W5)) = 4(n − 4) + 4

(

n − 4

2

)

+ 2β
(n−4)
1 (S4)

+4
n−6
∑

k=0

(

β
(k+2)
1 (S3) +

(

k + 3

k + 1

)

− 1

)

.

The fourth Betti number is easier to compute, because removing three Yp-subgraphs
always results with the same type of fan graph. This fan graph has no cycles, hence there
are no O × Y × Y × Y -cycles. Moreover, there is only one possible choice of four Y -
subgraphs from the perimeter. This always results with the decomposition of W5 into 5
components. Choosing three Y -subgraphs from perimeter results with the decomposition



956 T. Maciążek, A. Sawicki

of W5 into 3 components: a fan graph and 2 edges. The number of independent Yh cycles
in the fan graph is the same as in S4. Taking into account the distribution of n−6 particles
between the two edges and the fan graph, we have

β4(Dn(W5)) =

(

n − 4

4

)

+ 4
n−8
∑

k=0

(n − k − 7)β
(k+2)
1 (S4), n ≥ 8.

The top homology for Dn(W5) is H5. Distributing k + 2 particles on the central S4 graph
and the remaining particles on four free edges joining Yp-subgraphs, we get

β5(Dn(W5)) =

n−10
∑

k=0

(

n − k − 7

3

)

β
(k+2)
1 (S4), n ≥ 10.

Let us next generalise the above procedure to an arbitrary wheel graph Wm . The dth
Betti number is zero whenever the number of particles is less than 2(d −1)+1 = 2d −1.
If n = 2d − 1 the only possible tori come from the products of d − 1 Y -cycles and one
O-cycle. The graph also cannot be too small, i.e. the condition m − 3 ≥ d − 1 must be
satisfied. Otherwise, there is no cycle that is disjoint with d − 1 Y -subgraphs. Hence,

βd(Dn(Wm)) = 0 if n < 2d − 1

and

βd(D2d−1(Wm)) = 0 if m < d + 2.

Otherwise, for n = 2d − 1, if the graph is large enough, one has to look at all the pos-
sibilities of removing Y -subgraphs from the perimeter and what fan graphs are created.
We are interested in the number of leaves (μ) of the resulting fan graph. The number
of cycles in such a fan graph with μ leaves is m − 1 − μ. It is a difficult task to list all
possible fan graphs for any Wm in a single formula. The results for graphs up to W7 are
shown in Table 4. Using the notation from Table 4, the general formula for βd reads

βd(D2d−1(Wm)) =
∑

n:|n|=d−1

Nn(m − 1 − μn),

where |n| :=
∑l

i=1 ni .
For higher numbers of particles, one has to take into account the Y ×Y ×· · ·×Y cycles

and distribution of free particles. If n = 2d, the free particles are only in O × Y × Y ×
· · · × Y -cycles, where they are distributed between the edges that come from removing
a group of Y -subgraphs. Group ni gives ni − 1 edges. Hence, groups (n1, . . . , nl) give
|n| − l edges. The final formula reads

βd(D2d(Wm)) =

(

m − 1

d

)

+
∑

n:|n|=d−1

Nn

(

(m − 1 − μn)(d − 1 − #n) + β
(2)
1

(

Sμn

)

+(μn − 1)(m − 1 − μn)
)

,
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Table 4. The possibilities of choosing a number of Y -subgraphs from the perimeter of a wheel graph

Γ Groups of Y -subgraphs—n Number of possible choices—Nn Number of leaves—μn

W5 (1) 4 1
(1,1) 2 4
(2) 4 3
(3) 4 4
(4) 1 4

W6 (1) 5 2
(1,1) 5 4
(2) 5 3
(2,1) 5 5
(3) 5 4
(4) 5 5
(5) 1 5

W7 (1) 6 2
(1,1) 9 4
(2) 6 3
(1,1,1) 2 6
(2,1) 12 5
(3) 6 4
(2,2) 3 6
(3,1) 6 6
(4) 6 5
(5) 6 6
(6) 1 6

The groups of Y -subgraphs are denoted by sequences (n1, n2, . . . , nl ), where l +
∑l

i=1 ni ≤ m − 1. A group
ni means that ni neighbouring Y -subgraphs were chosen. The groups have to be separated by at least one
spoke. For a fixed set of groups there are many possibilities for distributing the remaining Y -subgraphs. The
number of possibilities is written in the third column. The number of leaves of the resulting fan graph is
written in the fourth column. It is independent on the distribution of the remaining Y -subgraphs and is given

by μn = min
(

m − 1, l +
∑l

i=1 ni

)

where #n is the number of groups in n (the length of vector n). The contribution
β

(2)
1

(

Sμn

)

+ (μn − 1)(m − 1 − μn) comes from the number of independent Yh-cycles
in the relevant fan graph. The general formula when n > 2d reads as follows.

βd(Dn(Wm)) =
∑

n:|n|=d−1

Nn(m − 1 − μn)

(

n − d − #n

d − #n − 1

)

+
∑

n:|n|=d

Nn

(

n − d − #n

d − #n

)

+
∑

n:|n|=d−1

Nn

n−2d
∑

l=0

(

β
(l+2)
1

(

Sμn

)

+

((

l + μn

l + 1

)

− 1

)

(m − 1 − μn)

)

×

(

n − d − #n − l − 2

d − #n − 2

)

. (14)

The first sum describes the O × Y × Y × · · · × Y -cycles and the distribution of the free
n − 2d + 1 particles. Second sum is the number of Y × Y × · · · × Y -cycles, where all
Y -subgraphs lie on the perimeter—there are n−2d free particles. The last sum describes
the number of independent Yh × Yp × · · · × Yp-cycles. Here we used the formula for
the number of Yh-cycles for n particles on a fan graph with μ leaves and m − 1 spokes
[8]
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n
(n)
Y (μ, m − 1) = β

(n)
1

(

Sμn

)

+

((

n + μ − 2

n − 1

)

− 1

)

(m − 1 − μ).

Sometimes, in formula (14), we get to evaluate
(0

0

)

= 1,
( 0
−1

)

= 0,
(−1
−1

)

= 1.
The highest non-vanishing Betti number is βm and its value is the number of the

possible distributions of n − 2m free particles between the central Sm graph and the free
m − 2 edges on the perimeter.

βm(Dn(Wm)) =

n−2m
∑

k=0

(

n − m − k − 2

m − 2

)

β
(k+2)
1 (Sm−1), n ≥ 2m.

5.4. Wheel graphs via Świątkowski discrete model. In this section we show that the
homology of configuration spaces of wheel graphs is generated by product cycles. The
strategy is to consider two consecutive vertex cuts that bring any wheel graph to the form
of a linear tree.

Throughout, we use the knowledge of generators of the homology groups for tree
graphs to construct a set of generators for net graphs and wheel graphs. Translating
the results of paper [22] to the Świątkowski complex, we have that the generators of
Hd(S(Tm)) are of the form

cd = cY1 . . . cYd
v1 . . . vke

n1
1 . . . e

nl

l ,

subject to relations

cde ∼ cdv, if e ∩ v �= ∅. (15)

This means that computing the rank od Hd(S(Tm)) boils down to considering all
possible distributions of n − 2d free particles among the connected components of
Tm − (vh(Y1) ∪ · · · ∪ vh(Yd)). By vh(Y1) we denote the hub vertex of the Y -subgraph
Yi . Hence, Hd(S(Tm)) is freely generated by generators of the form

[Y1, . . . , Yd , n1, . . . , n2d+1], n1 + · · · + n2d+1 = n − 2d, (16)

where ni is the number of particles on i th connected component of Tm − (vh(Y1)∪· · ·∪
vh(Yd)). In the first step, we connect two endpoints of Tm to obtain net graph Nm (Fig.
19).

Lemma 1. The homology groups of Cn(Nm) are freely generated by the product Y -cycles

and the distributions of free particles on the connected components Nm −(vh(Y1)∪· · ·∪
vh(Yd)) which we denote by

[Y1, . . . , Yd , n1, . . . , n2d ], n1 + · · · + n2d = n − 2d. (17)

The Betti numbers read

βd(Cn(Nm)) =

(

m

d

)(

n − 1

2d − 1

)

.
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Proof. Long exact sequence corresponding to vertex blow-up from Fig. 19 reads

. . .
Ψn,d+1
−−−→ Hd (Sn−1(Tm))

δn,d
−−→ Hd (Sn(Tm))

Φn,d
−−→ Hd

(

S̃v
n (Nm)

)

Ψn,d
−−→

Ψn,d
−−→ Hd−1 (Sn−1(Tm))

δn,d−1
−−−→ Hd−1 (Sn(Tm))

Φn,d−1
−−−−→ . . . .

Let us next show that the connecting homomorphism δ is in this case injective. Map δn,d

acts on generators (16) as

δn,d([Y1, . . . , Yd , n1, . . . , n2d+1]) = [Y1, . . . , Yd , n1 + 1, . . . , n2d+1] +

−[Y1, . . . , Yd , n1, . . . , n2d+1 + 1],

where n1 and nd+1 are respectively the numbers of particles on the leftmost and on
the rightmost connected component of Tm − (vh(Y1) ∪ · · · ∪ vh(Yd)). One can check
that vectors {[Y1, . . . , Yd , n1 + 1, . . . , n2d+1] − [Y1, . . . , Yd , n1, . . . , n2d+1 + 1]} corre-
sponding to different choices of Y -subgraphs of Tm are linearly independent. Hence, any
vector from imδn,d can be uniquely decomposed in this basis and its preimage can be
unambiguously determined by subtracting the particles from n1 and nd+1. By injectivity
of δ,

Hd

(

S̃v
n (Nm)

)

∼= coker(δn,d).

Hence, the rank of Hd (Sn(Nm)) is equal to rk(cokern,d) = βd (Sn(Tm))−βd (Sn−1(Tm)).
The Betti numbers of Sn(Tm) can be computed by counting the distributions of n − 2d

particles on 2d + 1 connected components multiplied by the number of d-subsets of
Y -subgraphs of Tm . The result is

βd (Sn(Tm)) =

(

m

d

)(

n

2d

)

.

The claim of the lemma follows directly from the above formula. The result is the same
as the number of distributions of n − 2d particles on 2d connected components of
Nm − (vh(Y1) ∪ · · · ∪ vh(Yd)). ⊓⊔

Let us next consider the homology sequence associated with the vertex blow-up from
Wm+1 to Nm (Fig. 18).

. . .
Ψn,d+1
−−−→

⊕

h∈H(v)−{h0}

Hd (Sn−1(Nm))
δn,d
−−→ Hd (Sn(Nm))

Φn,d
−−→ Hd

(

S̃v
n (Wm+1)

)

Ψn,d
−−→

Ψn,d
−−→

⊕

h∈H(v)−{h0}

Hd−1 (Sn−1(Nm))
δn,d−1
−−−→ Hd−1 (Sn(Nm))

Φn,d−1
−−−−→ . . . .

Fig. 18. Vertex blowup at the hub of wheel Wm+1 resulting with net graph Nm
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Fig. 19. Blowup of a vertex in net graph Nm resulting with linear tree graph Tm

We next describe the kernel of map δ. Our aim is to show that it is free abelian
which in turn gives us that the short exact sequences for Hd(Sn(Wm+1)) split and yield
Hd(Sn(Wm+1)) ∼= coker(δn,d) ⊕ ker(δn−1,d). Map δn,d assigns to generators (17) of
Hd(Sn(Wm+1)) the differences of generators derived from a given generator by adding
one particle to a connected component of Nm −(vh(Y1)∪· · ·∪vh(Yd)). In order to write
down the action of map δ, let us first establish some notation. The connected components
of Nm − (vh(Y1) ∪ · · · ∪ vh(Yd)) are either isomorphic to edges or to linear tree graphs.
The number of connected components that are edges which have one vertex of degree
one in Nm is equal to d. The number of the remaining connected components is always
equal to d, but their type depends on the distribution of subgraphs Y1, . . . , Yd in Nm . The
situations that are relevant for the description of ker δ are those, where a particle is added
by map δ to two connected components which contain an edge which before the blow-up
was adjacent to the hub of Wm+1. There are at most 2d such components, as removing
the hub-vertices of two neighbouring Y -subgraphs of Nm yields a connected component
of the edge type which is not adjacent to the hub of Wm+1. We label these components
by numbers 1, . . . , l (we always have d ≤ l ≤ 2d) and the occupation numbers of these
components are n1, . . . , nl . We choose component 1 to be the component adjacent to
edge e(h0) and increase the labels in the clockwise direction from the component with
label 1. The remaining components are labelled by numbers l + 1, . . . , 2d. Map δ acts
on basis elements of

⊕

h∈H(v)−{h0}
Hd (Sn−1(Nm)) as follows.

δn,d

(

[Y1, . . . , Yd , n1, . . . , n pi
, . . . , n2d ]i

)

=

= [Y1, . . . , Yd , n1 + 1, . . . , n pi
, . . . , n2d ] − [Y1, . . . , Yd , n1, . . . , n pi

+ 1, . . . , n2d ],

where [Y1, . . . , Yd , n1, . . . , n pi
, . . . , n2d ]i is a generator corresponding to the hi -

component of
⊕

h∈H(v)−{h0}
Hd (Sn−1(Nm)) and pi is the label of the connected compo-

nent which contains edge e(hi ). One easily observes that if pi = 1, i.e. edges e(h0) and
e(hi ) belong to the same connected component of Nm − (vh(Y1) ∪ · · · ∪ vh(Yd)), gen-
erator [Y1, . . . , Yd , n1, . . . , n pi

, . . . , n2d ]i ∈ ker δn,d . Such an element is represented in
Sn(Wm+1) as cycle cY1 . . . cYd

cO , where O is the cycle in Wm+1 which contains edges
e(h0), e(hi ) and the hub of Wm+1. Similarly, element

[Y1, . . . , Yd , n1, . . . , n pi
, . . . , n2d ]i − [Y1, . . . , Yd , n1, . . . , n p j

, . . . , n2d ] j

is in the kernel of δn,d whenever edges e(hi ) and e(h j ) belong to the same connected
component of Nm − (vh(Y1) ∪ · · · ∪ vh(Yd)). The last type of elements of ker δn,d are
combinations of generators that when acted upon by δn,d , compose to the boundary
of a Y -cycle centred at the hub of Wm+1. Such kernel elements correspond to cycles
cY1 . . . cYd

cYh
in Sn(Wm+1), where Yh is a Y -cycle, whose hub-vertex is the hub-vertex

of Wm+1. The precise form of such kernel elements is the following.
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(a) (b)

Fig. 20. Graph K3,3

[Y1, . . . , Yd , n1, . . . , n pi
, . . . , n p j

+ 1, . . . ]i

−[Y1, . . . , Yd , n1 + 1, . . . , n pi
, . . . , n p j

, . . . ]i

+[Y1, . . . , Yd , n1 + 1, . . . , n pi
, . . . , n p j

, . . . ] j

−[Y1, . . . , Yd , n1, . . . , n pi
+ 1, . . . , n p j

, . . . ] j ,

where i < j . In order to manage the relations between the above kernel elements,
we use the already mentioned fact that they are in a one-to-one correspondence with
1-cycles (O-cycles and Y -cycles) in a configuration space of the disconnected graph
Wm+1 − (vh(Y1) ∪ · · · ∪ vh(Yd)). More specifically, the disconnected graph Wm+1 −
(vh(Y1)∪· · ·∪vh(Yd))4 is a disjoint sum of a number of edges and of one fan graph. We
regard the 1-cycles (O-cycles or Y -cycles) at the hub as generators of the first homology
group of the configuration space of the fan graph multiplied by different distributions of
particles on the disjoint edge-components of Wm+1 −(vh(Y1)∪· · ·∪vh(Yd)). Fan graphs
are planar, hence by equation (13) there is no torsion in ker δn,d . Hence, Hd(Sn(Wm+1))

is torsion-free and short exact sequence for Hd(Sn(Wm+1)) gives in this case

βd(Sn(Wm+1)) ∼= βd(Sn(Nm)) − mβd(Sn−1(Nm)) + rk(ker δn,d) + rk(ker δn,d−1).

The computation of ranks of kernels of maps δn,d is a combinatorial task which has
been accomplished using the correspondence with cycles in configuration spaces of fan
graphs in Sect. 5.3.2.

5.5. Graph K3,3. Graph K3,3 is shown on Fig. 20. We will draw graph K3,3 in two
ways: (1) immersion in R2, Fig. 20a, (2) embedding in R3, Fig. 20b.

Graph K3,3 has the property that all its vertices are of degree three. High homology
groups of graphs with such a property have been studied in [23]. In particular, we have
the following result.

Theorem 8. Let Γ be a simple graph, whose all vertices have degree 3. Denote by N

the number of vertices of graph Γ and label the vertices by labels 1, . . . , N. Moreover,

denote by Y = {Y1, . . . YN } the set of Y -subgraphs of Γ such that the hub of Yk is vertex

k. Group HN (Sn(Γ )) is freely generated by product cycles

e
n1
1 . . . e

nK

K

⊗

Y∈Y

cY , n1 + · · · + eK = n − 2N .

4 Wm+1 − (vh(Y1) ∪ · · · ∪ vh(Yd )) is a disconnected topological space. We give this space the structure of
a graph by adding a vertex to the open end of each open edge.
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Group HN−1(Sn(Γ )) is generated by product cycles of the form

e
n1
1 . . . e

nK

K v
⊗

Y∈Ỹ

cY , n1 + · · · + eK = n − 2(N − 1),

where Ỹ ⊂ Y is such that |Ỹ| = N −1, and v ∈ V (Γ ) is the unique vertex that satisfies

v ∩ (∪
Y∈Ỹ

Y ) = ∅. The above generators are subject to relations

e
n1
1 . . . e

n j

j . . . e
nK

K v
⊗

Y∈Ỹ

cY ∼ e
n1
1 . . . e

n j +1
j . . . e

nK

K

⊗

Y∈Ỹ

cY ,

whenever e j ∩ v �= ∅.

As we show in Sect. 5.7, the second homology group of configuration spaces of such
graphs is also generated by product cycles. Later in this section, by comparing the ranks of
homology groups computed via the discrete Morse theory, we argue that H4(Cn(K3,3))

is also generated by product cycles. Interestingly, in H3(Cn(K3,3)) there is a new non-
product generator. Using this knowledge, we explain the relations between the product
and non-product cycles that give the correct rank of H3(Cn(K3,3)).

Second homology group. There are no pairs of disjoint cycles in K3,3, hence the product
part for n = 2 is empty. When n = 3, there are 12 O × Y -cycles. This can be seen
by choosing the Y -graph centered at vertex 1 on Fig. 20b)—there are 2 cycles disjoint
with such a Y -subgraph. There are 6 Y -subgraphs in K3,3, hence we get the number of
O×Y -cycles. One checks by a straightforward calculation that 8 of them are independent.
Hence,

β2(D3(K3,3)) = 8.

When n = 4, there are new product cycles of the Y × Y -type. There are
(6

2

)

= 15
cycles of this type, however there are relations between them. Such relations between
the Y ×Y -cycles arise when one of the cycles is in relation with a different Y -cycle. This
happens only when we have a situation as on Fig. 11. Therefore, cycles of the Y × Y -
type, where the hubs of the Y -subgraphs, are connected by an edge, are all independent
(Fig. 21a)). The number of such cycles is 9. The relations occur between Y × Y -cycles,
where the hubs of the subgraphs are not connected by an edge (Fig. 21b)). There are
6 such cycles. The number of relations is 4. To see this, consider Y -subgraph, whose
hub is vertex 1 (Fig. 20). Denote this subgraph by Y1. It is straightforward to see that in
graph K3,3 − Y1 we have cY3 ∼ cY6 . Hence,

(cY1 ⊗ cY3) ∼ (cY1 ⊗ cY6).

Analogous relations for Y -subgrphs that lie on the same side of the K3,3 graph as Y1
(see Fig. 20a)) read

(cY3 ⊗ cY1) ∼ (cY3 ⊗ cY6), (cY6 ⊗ cY3) ∼ (cY6 ⊗ cY1).

From the above equations only two are independent. Similar situation happens for rela-
tions between pairs of graphs from the other side. The complete set of relations reads

(cY1 ⊗ cY3) ∼ (cY1 ⊗ cY6) ∼ (cY3 ⊗ cY6), (cY2 ⊗ cY4) ∼ (cY2 ⊗ cY5) ∼ (cY4 ⊗ cY5).
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(a) (b)

Fig. 21. Graph K3,3 after removing two Y -subgraphs

Fig. 22. Graph K3,3 sufficiently subdivided for n = 4. The deleted edges are marked with dashed lines

Therefore,

β2(D4(K3,3)) = 8 + 9 + 2 = 19.

For n > 4, we have to take into account the distribution of free particles. Whenever
two non-neighbouring Y -subgraphs are considered, all distributions of free particles are
equivalent (Fig. 21b)). When the subgraphs are adjacent, there are two different parts of
K3,3, where the particles can be distributed, see Fig. 21a). This gives the formula

β2(Dn(K3,3)) = 8 + 2 + 9(n − 3) = 9n − 17, n ≥ 4.

Higher homology groups. Let us first look at the third homology group. The are no
product cycles for n = 4 however, from the Morse theory for the subdivided graph from
Fig. 22 we have

β3(D4(K3,3)) = 1.

The Morse complex has dimension 3. The generator of H3(D4(K3,3)) is isomorphic
to a closed 3-manifold with Euler characteristic χ = 11. The cycle on the level of the
Morse complex has the form

c =
{

e12
1 , e24

4 , e22
10, 2

}

−
{

e17
1 , e24

4 , e22
10, 2

}

−
{

e12
1 , e22

10, e18
15, 16

}

+
{

e17
1 , e24

4 , e22
10, 11

}

+
{

e17
1 , e13

7 , e22
10, 8

}

+
{

e12
1 , e24

4 , e18
15, 16

}

−
{

e24
4 , e13

7 , e22
10, 8

}

−
{

e12
1 , e24

4 , e22
10, 5

}

.

For n = 5, we have the Y × Y × O-cycles. These are the cycles, where the Y -subgraphs
are adjacent. For every pair of adjacent Y subgraphs there is an unique O-cycle. An
example of such a cycle is

cY1 × cY2 ×
(

{e4
3} + {e6

4} − {e6
5} − {e5

3}
)

.
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(a) (b)

Fig. 23. Graph K3,3 after removing three Y -subgraphs

The number of all such cycles is equal to the number of pairs of adjacent Y -subgraphs
which is 9. Adding the properly embedded generator of H3(D4(K3,3)), we get

β3(D5(K3,3)) = 10.

For n ≥ 6, all Y × Y × Y -cycles are independent. Consider two ways of choosing
three Y -subgraphs. The first way is to remove two Y -graphs from the same side and
one from the opposite side. This results with the partition of K3,3 into three components
(Fig. 23a)). Removing three Y -graphs from the same side splits K3,3 into three parts
(Fig. 23b)). Therefore,

β3(Dn(K3,3)) = 1 + 9(n − 4) +

(

6

3

)(

n − 4

2

)

, n ≥ 6.

The product contribution to higher homology groups requires considering different
choices of Y -subraphs. There are no Y × Y × · · · × Y × O-cycles in Hp(Dn(K3,3))

for p ≥ 4. As direct computations using discrete Morse theory show, there are also no
non-product generators (see Table 1). Therefore, only Y ×Y ×· · ·×Y -cycles contribute
to Hp(Dn(K3,3)) for p ≥ 4. Removing four Y -graphs from K3,3 always results with the
splitting into 5 parts, removing five Y -graphs gives 7 parts and removing all six Y -graphs
gives 9 parts. Summing up,

β4(Dn(K3,3)) =

(

6

4

)(

n − 4

4

)

, β5(Cn(K3,3)) =

(

6

5

)(

n − 4

6

)

,

β6(Cn(K3,3)) =

(

n − 4

8

)

.

All homology groups higher than H6 are zero for any number of particles.

5.6. Triple tori in Cn(K2,p). In this section we study a family of graphs, where some
cycles generating the homology groups of the n-particle configuration space are not
product. This is the family of complete bipartite graphs K2,p (see Fig. 24a). The first
interesting graph from this family is K2,4. As we show below, its 3-particle configuration
space gives rise to a 2-cycle which is a triple torus. It turns out that such triple tori
together with products of Y cycles generate the homology groups of Cn(K2,p). The most
convenient discrete model for studying Cn(K2,p) is the Świątkowski model. In fact, we
study the Świątkowski configuration space of graph Θp (see 24b) which is topologically
equivalent to K2,p, but it has the advantage that its discrete configuration space is of the
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(a) (b)

Fig. 24. a Graph K2,p . b Graph Θp

optimal dimension. Because there are no 3-cells in Sn(Θp), hence automatically we get
that

Hi (Cn(K2,p)) = 0 for i ≥ 3.

This in turn means that H2(Cn(K2,p)) as the top homology group is a free group. The
first homology group can be computed using the methods of papers [8,37].

Lemma 2. The first homology group of Cn(K2,p) is equal to Zp(p−1) for n ≥ 2 and

p − 1 for n = 1.

By counting the number of 0-, 1- and 2-cells in Sn(K2,p), we compute the Euler char-
acteristic (see also [61]).

Lemma 3. The Euler characteristic of Sn(K2,p) for n ≥ 3 and p ≥ 3 is

χ = (p − 1)2
(

n − 3 + p

p − 1

)

− 2(p − 1)

(

n − 2 + p

p − 1

)

+

(

n − 1 + p

p − 1

)

.

On the other hand, χ(Sn(K2,p)) = 1 − β1(Sn(K2,p)) + β2(Sn(K2,p)). Therefore, we
compute the second Betti number of Cn(K2,p) as

β2(Cn(K2,p)) = (p − 1)2
(

n − 3 + p

p − 1

)

− 2(p − 1)

(

n − 2 + p

p − 1

)

+

(

n − 1 + p

p − 1

)

+
p(p − 1)

2
− 1 for n ≥ 3 and p ≥ 3. (18)

In the remaining part of this section we describe the generators of H2(Cn(K2,p)) and
the relations that lead to the above formula. We represent them in terms of 2-cycles in
Sn(Θp).

Example 6. Generators of H2(Sn(Θ3)). Group H2(Sn(Θ3)) is generated by products
of Y -cycles at vertices v and v′. More precisely, consider the following two Y -cycles

c123 = e1(h2 − h3) + e2(h3 − h1) + e3(h1 − h2),

c′
123 = e1(h

′
2 − h′

3) + e2(h
′
3 − h′

1) + e3(h
′
1 − h′

2).

Group H2(Sn(Θ3)) is freely generated by cycles

c123c′
123e

n1
1 e

n2
2 e

n3
3 .
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Fig. 25. A triple torus

This can be seen by comparing the number of cycles of the above form with β2(Sn(Θ3))

from formula 18. In both cases the answer is the number of distributions of n−2 particles
among edges e1, e2, e3 (the problem of distributing n − 2 indistinguishable balls into
3 distinguishable bins) which is

(

n−2
2

)

= 1
2 (n − 2)(n − 3).

From now on, we denote the Y -cycles as

ci jk = ei (h j − hk) + e j (hk − hi ) + ek(hi − h j ), i < j < k,

c′
i jk = ei (h

′
j − h′

k) + e j (h
′
k − h′

i ) + ek(h
′
i − h′

j ), i < j < k. (19)

Cycle ci jk is the Y -cycle of the Y -subgraph, whose hub vertex is v and which is spanned
on edges ei , e j , ek . Cycle c′

i jk corresponds to an analogous Y -subgraph, whose hub is
v′.

Example 7. The generator of H2(S3(Θ4)). Formula (18) tells us that β2(C3(K2,4)) = 1.
The corresponding generator in S3(Θ4) has the following form.

cΘ = −(h1 − h2)c
′
134 + (h1 − h3)c

′
124 − (h1 − h4)c

′
123.

By expanding the Y -cycles, one can see that the above chain is a combination of all
2-cells of S3(Θ4), hence, Cn(K2,4) has the homotopy type of a closed 2-dimensional
surface. Its Euler characteristic is equal to −4, hence this is a surface of genus 3. By the
classification theorem of surfaces [62], we identify Cn(K2,4) to have the homotopy type
of a triple torus (fig. 25).

From now on, we denote the Θ-cycles as

ci jkl = −(hi − h j )c
′
ikl + (hi − hk)c

′
i jl − (hi − hl)c

′
i jk, i < j < k < l. (20)

Cycle ci jkl involves cells from S3(Θ4) for Θ4 being the subgraph of Θp spanned on
edges ei , e j , ek, el . Using the notation set in equations (20) and (19), we propose the
following generators of H2(Sn(Θp)).

ci jkc′
rst e

n1
1 . . . e

n p
p , i < j < k, r < s < t, n1 + · · · + n p = n − 4,

ci jkle
n1
1 . . . e

n p
p , i < j < k < l, n1 + · · · + n p = n − 3.

Let us start with n = 3. The key to describe the relations between the Θ-cycles spanned
on different Θ4 subgraphs is to consider graph Θ5.

Proposition 9. The Θ-cycles in graph Θ5 satisfy the following relation

c1234 − c1235 + c1245 − c1345 + c2345 = 0. (21)
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In graph Θp, many relations of the form (21) can be written down by choosing different
Θ5 subgraphs. The linearly independent ones are picked by choosing the corresponding
Θ5-subgraphs that are spanned on edge e1 and some other four edges of Θp. Such
a choice can be made in

(

p−1
4

)

ways. Subtracting the number of linearly independent
relations from the number of all Θ4 subgraphs, we get

β2(C3(K2,p)) =

(

p

4

)

−

(

p − 1

4

)

=

(

p − 1

3

)

.

Increasing the number of particles to n = 4 introduces products of Y -cycles and new
relations. First of all, by proposition 10 different distributions of additional particles in
the Θ-cycle can be realised are combinations of different products of Y -cycles.

Proposition 10. In graph Θ4, we have the following relations

(e1 − e2)c1234 = c124c′
123′ − c123c′

124,

(e1 − e3)c1234 = c123c′
134′ − c134c′

123,

(e1 − e4)c1234 = c124c′
134′ − c134c′

124.

Hence, all Θ-cycles generate a subgroup of H2(Sn(Θp)) which is isomorphic to Z(p−1
3 ).

The last type of relations we have to account for5 are the new relations between products
of Y -cycles.

Proposition 11. In graph Θ5, products of Y -cycles satisfy

c123c′
145 + c145c′

123 + c125c′
134 + c134c′

125 − (c124c′
135 + c135c′

124) = 0.

Again, many relations of type 11 can be written by picking different Θ5 subgraphs.
Similarly as in the case of relations 21, the linearly independent ones are chosen by
fixing e1 to be the common edge of the Θ5 subgraphs. Hence, the number of linearly
independent relations is

(

p−1
4

)

. In particular, we have

β2(C4(K2,p)) =

(

p − 1

3

)

+
(

β1(C2(Sp))
)2

−

(

p − 1

4

)

,

where
(

β1(C2(Sp))
)2

is the number of independent product cycles after taking into the
account the relations within the two opposite star subgraphs. All the above relations are
inherited by the cycles in Sn(Θp) after multiplying them by a suitable polynomial in the
edges of Θp. In this way, they yield equation (18).

5.7. When is H2(Cn(Γ )) generated only by product cycles?. In this section we prove
the following theorem.

Theorem 12. Let Γ be a simple graph, for which |{v ∈ V (Γ ) : d(v) > 3}| = 1. Then

group H2(Cn(Γ )) is generated by product cycles.

5 We do not mention here the typical relations between different Y -cycles on Y -subgraphs of the Sp graphs
which are met while computing the first homology group of the configuration spaces of star graphs (see [8]).
Such relations are also inherited by the products of Y -cycles.
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In the proof we use the Świątkowski discrete model. The strategy of the proof is to
first consider the blowup of the vertex of degree greater than 3 and prove theorem 12
for graphs, whose all vertices have degree at most 3. For such a graph, we choose a
spanning tree T ⊂ Γ . Next, we subdivide once each edge from E(Γ ) − E(T ). We
prove the theorem inductively by showing in lemma 4 that the blowup at an extra vertex
of degree 2 does not create any non-product generators. The base case of induction is
obtained by doing the blowup at every vertex of degree 2 in Γ − T . This way, we obtain
graph which is isomorphic to tree T and we use the fact that for tree graphs the homology
groups of Sn(T ) are generated by products of Y -cycles.

Lemma 4. Let Γ be a simple graph, whose all vertices have degree at most 3. Let T be

a spanning tree of Γ . Let v ∈ V (Γ ) be a vertex of degree 2 and Γv the graph obtained

from Γ by the vertex blowup at v. If H2(Sn(Γv)) is generated by product cycles, then

H2(Sn(Γ )) is also generated by product cycles.

Proof. Long exact sequence corresponding to the vertex blow-up reads

. . .
Ψn,3
−−→ H2 (Sn−1(Γv))

δn,2
−−→ H2 (Sn(Γv))

Φn,2
−−→ H2

(

S̃v
n (Γ )

)

Ψn,2
−−→

Ψn,2
−−→ H1 (Sn−1(Γv))

δn,1
−−→ H1 (Sn(Γv))

Φn,1
−−→ . . . .

We aim to show that the corresponding long exact sequence

0 → coker
(

δn,2
)

−→ H2

(

S̃v
n (Γ )

)

−→ ker
(

δn,1
)

→ 0

splits. To this end, we construct a homomorphism f : ker
(

δn,1
)

→ H2

(

S̃v
n (Γ )

)

such that Ψn,2 ◦ f = idker(δn,1). In the construction we use the explicit knowledge
of elements of ker

(

δn,1
)

. Such a knowledge is accessible, as we know the generating
set of H1 (Sn−1(Γv))—because all vertices of Γv have degree at most 3, it consists of
Y -cycles and O-cycles, subject to the Θ-relations (equations (12) and (11)) and the
distribution of free particles which say that [ce] = [cv] whenever v is a vertex of e.
Recall that cycle c represents element of ker

(

δn,1
)

whenever [ce] = [ce′], where e

and e′ are the edges incident to vertex v. This happens if and only if cycles ce and
ce′ are related by a Θ-relation or a particle-distribution relation. However, because all
vertices of Γ have degree at most 3, it is not possible to write the Θ relations in the
form ce − ce′ = ∂(b) for any c. Hence, cycles ce and ce′ must be related by the particle
distribution, i.e. there exists a path in Γv which is disjoint with Supp(c) and which joins
edges e and e′. The desired homomorphism f is constructed as follows. For a generator
c of H1 (Sn−1(Γv)), find path p(c) which joins e and e′ and is disjoint with Supp(c).
Having found such a path, we complete it to a cycle Op(c) in a unique way by adding to p

vertex v and edges e, e′. From cycle Op(c) we form the O-cycle cOp(c)
(see definition 3).

Homomorphism f is established after choosing the set of independent generating cycles
and paths that are disjoint with them. It acts as f : [c] �→ [c ⊗ cOp(c)

]. Clearly, we have
Ψn,2([c ⊗ cOp(c)

]) = [c] by extracting from cOp(c)
the part which contains half-edges

incident to v.
This way, we obtained that H2

(

S̃v
n (Γ )

)

∼= ker
(

δn,1
)

⊕coker
(

δn,2
)

and that elements

of ker
(

δn,1
)

are represented by product cO ⊗ cY cycles. By the inductive hypopaper,
elements of coker

(

δn,2
)

are the product cycles that generate H2 (Sn−1(Γv)) subject to
relations ce ∼ ce′. ⊓⊔
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The last step needed for the proof of theorem 12 is showing that the blowup of Γ

at the unique vertex of degree greater than 3 does not create any non-product cycles.
Here we only sketch the proof of this fact which is analogous to the proof of lemma 4.
Namely, using the knowledge of relations between the generators of H1 (Sn−1(Γv)),
one can show that the elements of ker

(

δn,1
)

are of two types: i) the ones that are
of the form ∂(c ⊗ bp(c)), where [c] ∈ H1 (Sn−1(Γv)) and bp(c) is the 1-cycle corre-
sponding to path p(c) ⊂ Γv which is disjoint with Supp(c) and whose boundary are
edges incident to v, ii) pairs of cycles of the form (c(e j − e0), c(e0 − e j )), where
e0, ei , e j are edges incident to v and [c] ∈ H1 (Sn−2(Γv)). Such pairs are mapped
by δn,1 to c ⊗

(

(e j − e0)(e0 − ei ) + (e0 − ei )(e0 − e j )
)

which is equal to ∂(c ⊗ c0i j ),
where c0i j is the Y -cycle corresponding to the Y -graph in Γ centred at v and spanned
by edges e0, ei , e j . Next, in order to show splitting of the homological short exact

sequences, we consider a homomorphism f : ker
(

δn,1
)

→ H2

(

S̃v
n (Γ )

)

, for which

Ψn,2 ◦ f = idker(δn,1). Such a homomorphism maps [c] to [c ⊗ cOp(c)
], where Op(c) is

the cycle which contains path p(c) and vertex v. Pairs ([c(e j − e0)], [c(e0 − e j )]) are

mapped by f to cycles c⊗c0i j . We obtain that H2

(

S̃v
n (Γ )

)

∼= ker
(

δn,1
)

⊕coker
(

δn,2
)

,

where the generators of ker
(

δn,1
)

are in a one-to-one correspondence with the product

homology classes of H2

(

S̃v
n (Γ )

)

described above. Elements of coker
(

δn,2
)

are also

represented by product cycles. These cycles are the generators of H2 (Sn(Γv)) subject
to relations ce0 ∼ cei , i = 1, . . . , d(v), where e0, e1, . . . , ed(v) are edges incident to v.

The task of characterising all graphs, for which H2(Sn(Γ )) is generated by prod-
uct cycles requires taking into account the existence of non-product generators from
Sect. 5.6. As we show in Sect. 5.6 the existence of pairs of vertices of degree greater
than 3 in the graph implies that there may appear some multiple tori in the generating set
of H2(Cn(Γ )) stemming from subgraphs isomorphic to graph K2,4. Furthermore, the
class of graphs, for which higher homologies of Cn(Γ ) are generated by product cycles
is even smaller. Recall graph K3,3 whose all vertices have degree 3, but H3(Cn(K3,3))

has one generator which is not a product of 1-cycles (see Sect. 5.5).

6. Summary

In the first part of this paper, we explained that quantum statistics on a topological space
X are classified by conjugacy classes of unitary representations of the fundamental group
of the configuration space Cn(X). Conversely, every unitary representation of the graph
braid group gives rise to a flat complex vector bundle over space Cn(X). We interpret
different isomorphism classes of flat complex vector bundles over Cn(X) as fundamen-
tally different families of particles. Among these families we find for example bosons,
corresponding to the trivial flat bundle, and fermions that may correspond to a non-trivial
flat bundle. Interestingly, there also exist intermediate possibilities called anyons who
can live on a trivial as well as on a non-trivial bundle. The existence of more than two
isomorphism classes is a priori possible. However interesting and desirable, an explicit
construction of non trivial flat bundles for configuration spaces of X = R2 or X = R3

is difficult, hence some simplified mathematical models are needed. This motivates the
study of configuration spaces of particles on graphs which are computationally more
tractable. Topological invariants that give a coarse grained picture of the structure of the
set of isomorphism classes of flat complex vector bundles over Cn(X) are the homol-
ogy groups of configuration spaces. In particular, we point out the important role of
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Chern characteristic classes that map the flat vector bundles to torsion components of
the homology groups of Cn(X) with coefficients in Z. In the second part of this paper,
we compute homology groups of configuration spaces of certain families of graphs. We
summarise the computational results as follows.

– Configuration spaces of tree graphs, wheel graphs and complete bipartite graphs
K2,p have no torsion in their homology. This means that the set of flat bundles over
configuration spaces of such graphs has a simplified structure, namely every flat
vector bundle is stably equivalent to a trivial vector bundle. Hence, these families
of graphs are good first candidates for a class of simplified models for studying the
properties of non-abelian statistics.

– Computation of the homology groups of configuration spaces of some small canoni-
cal graphs via the discrete Morse theory shows that in some cases there is a Z2-torsion
in the homology. However, we were not able to provide an example of a graph which
has a torsion component different than Z2 in the homology of its configuration space.

– It is a difficult task to accomplish a full description of the homology groups of graph
configuration spaces using methods presented in this work. One fundamental obstacle
is that such a task requires the knowledge of possible embeddings of d-dimensional
surfaces in Cn(Γ ) which generate the homology. However, cycles generating the
homology in dimension 2 of graph configuration spaces have the homotopy type of
tori or multiple tori. This fact allowed us to find all generators of the second homology
group of configuration spaces of a large family of graphs in Sect. 5.7.
Let us next summarise the relevance of distinguishing between trivial and non-trivial

bundles.
– Trivial bundles. They are relevant in the context of quantum computing where one

is interested mainly in universality of unitary representations of braid groups and the
dimension of the representations grow exponentially with the number of particles.
In that context, the fact that one can have different isomorphism classes of vector
bundles does not seem to play a significant role. In fact, it is even better not to have
many isomorphism classes. If we know that there is just one isomorphism class (all
bundles are isomorphic to the trivial bundle) then all representations of the braid
group are related to each other via the isomorphism of the corresponding bundles
and the problem of classifying them should become more tractable. As we show in
this paper, this happens when one considers high-dimensional representations (stable
range) of graph braid groups where there is no torsion in the homology of Cn(Γ ).

– Non-trivial bundles. They become relevant in situations where the rank of the
bundle is not too high, i.e. if the considered bundles are not in the stable range. The
corresponding representations of braid groups appear in the effective models of non-
abelian Chern-Simons particles which are point-like sources mutually interacting
via a topological non-Abelian Aharonov–Bohm effect. A model of such particles
constrained to move on graphs would be constructed by defining a separate Chern–
Simons hamiltonian for each cell of the closure of Cn(Γ ) viewed as a subset of
Γ ×n . The non-abelian braiding would show up as proper gluing conditions for the
wave-functions on the boundaries of cells from Cn(Γ ) while studying self-adjoint
extensions of such a hamiltonian. The moduli space of flat U (n) bundles over Cn(Γ )

is the space of possible parameters that appear as the gluing conditions (see e.g. [19]).
This area is still quite unexplored and some more progress has to be made to see how
this theory works explicitly for concrete graphs.
Finally, the a priori large number of possible unitary representations of braid groups

can be cut down by taking into account the anyonic fusion rules [63], i.e. by applying
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Fig. 26. A graph that consists of three 3-connected components (depicted as boxes). The schematically pictured
abelian representation of Br2(Γ ) is such that exchange of particles in each of the components results with a
fermionic (F) or bosonic (B) phase factor. The situation is more complicated for non-abelian representations,
but the general characteristic survives—one can choose different R-matrices for each of the components

the framework of modular tensor categories. Unitary representations of the braid group
that are described by modular tensor categories, are defined by specifying the fusion
rules, the so-called F-matrix that ensures associativity of fusion and the R-matrix that
describes braiding of pairs of particles [63]. Ocneanu rigidity [64] asserts that for anyons
on the plane, there is only a finite number of representations of the braid group that arise
from the above construction. However, graphs in principle provide more freedom, as
pairs of particles may braid differently in different parts of the graph.There are two main
differences between braiding particles on the plane and braiding particles on a graph: i)
the generating braids are more complicated than just the ones that correspond to braiding
of pairs of neighbouring particles, ii) the variety of relations is much bigger than in the
case of particles on the plane. In other words, one can have more than just one R-
matrix for particles on a graph. This property of graph braid groups can be seen already
on the level of its abelian representations [8]. Namely, consider a 2-connected graph
which consists of a number of 3-connected components that are connected to each other
(Fig. 26). The theory of abelian representations of graph braid groups [8] tells us that
a pair of particles can exchange as bosons or fermions, depending in which component
of the graph the exchange takes place. An analogous situation will take place in the
case of non-abelian representations—one can assign different R-matrices to different
components of the graph.

One expects that the fusion rules will nevertheless significantly restrict the number
of admissible representations of graph braid groups.
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