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Abstract 

Background: HIV-1 can develop resistance to antiretroviral drugs, mainly through mutations within the target 
regions of the drugs. In HIV-1 protease, a majority of resistance-associated mutations that develop in response to 
therapy with protease inhibitors are found in the protease’s active site that serves also as a binding pocket for the 
protease inhibitors, thus directly impacting the protease-inhibitor interactions. Some resistance-associated mutations, 
however, are found in more distant regions, and the exact mechanisms how these mutations affect protease-inhibitor 
interactions are unclear. Furthermore, some of these mutations, e.g. N88S and L76V, do not only induce resistance to 
the currently administered drugs, but contrarily induce sensitivity towards other drugs. In this study, mutations N88S 
and L76V, along with three other resistance-associated mutations, M46I, I50L, and I84V, are analysed by means of 
molecular dynamics simulations to investigate their role in complexes of the protease with different inhibitors and in 
different background sequence contexts.

Results: Using these simulations for alchemical calculations to estimate the effects of mutations M46I, I50L, I84V, 
N88S, and L76V on binding free energies shows they are in general in line with the mutations’ effect on IC50 values. For 
the primary mutation L76V, however, the presence of a background mutation M46I in our analysis influences whether 
the unfavourable effect of L76V on inhibitor binding is sufficient to outweigh the accompanying reduction in catalytic 
activity of the protease. Finally, we show that L76V and N88S changes the hydrogen bond stability of these residues 
with residues D30/K45 and D30/T31/T74, respectively.

Conclusions: We demonstrate that estimating the effect of both binding pocket and distant mutations on inhibitor 
binding free energy using alchemical calculations can reproduce their effect on the experimentally measured IC50 
values. We show that distant site mutations L76V and N88S affect the hydrogen bond network in the protease’s active 
site, which offers an explanation for the indirect effect of these mutations on inhibitor binding. This work thus pro-
vides valuable insights on interplay between primary and background mutations and mechanisms how they affect 
inhibitor binding.

Keywords: Alchemical binding free energy change calculation, Distant site mutations, HIV-1 protease inhibitors, 
Hydrogen bond network perturbation, Resistance-associated mutations
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Background
With around 36.7 million people already infected and 1.8 

million being newly infected per year, the human immu-

nodeficiency virus type 1 (HIV-1) (further HIV) remains 

a global epidemic [1]. Since more than half of the infected 
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individuals receive antiretroviral therapy (ART) [2], 

acquired immune deficiency syndrome (AIDS)-related 

deaths have dropped to 1 million per year [1]. For those 

under treatment, resistance towards drugs is a major 

cause for the need for switching of the therapy.

HIV protease (Fig.  1), a protein responsible for cleav-

ing HIV polyproteins, is one of the major targets for ART, 

and protease inhibitors (PIs) are currently recommended 

as second- or third-line ART treatments [3]. PIs are com-

petitive binders of the protease, occupying the active site 

of the protein once bound. In line with this, most of the 

major resistance-associated mutations  (RAMs) towards 

PIs appear in the different structural elements compos-

ing the active site pocket, such as in the active site loop 

(residues D30, V32, and L33), the so-called 80s loop 

(residues V82 and I84) which together form the sides of 

the pocket, and the flap region of the protease (residues 

M46, I47, G48, I50, and I54, Fig. 1). Yet several RAMs are 

also found in distant to the binding pocket sites, e.g.  in 

the amino acids N88 and L90 in the protease’s α-helix or 

L76 in the protein’s hydrophobic core. �e effect of these 

mutations on inhibitor binding is likely to be not through 

direct interactions with PIs.

Some mutations exhibit opposite effects on binding of 

some PIs, e.g. L76V is associated with resistance towards 

Amprenavir (APV), Indinavir (IDV), Darunavir (DRV), 

and Lopinavir (LPV), but increases sensitivity towards 

Atazanavir (ATV) and Saquinavir (SQV) [4, 5]. Similarly, 

N88S is a RAM towards IDV and Nelfinavir (NFV), but 

increases susceptibility towards APV [6–8] or its prodrug 

Fosamprenavir (FPV) [9].

Numerous studies have addressed the molecular 

effects of RAMs. Some studies analyse the effects of 

selected major RAMs on binding of different inhibitors 

[10–17] and others the effect of different RAMs on 

binding of the same inhibitor [18–27]. Most of the 

studies are however focused on a single mutation-

inhibitor combination, particularly for major RAMs 

outside of the binding pocket, and thus offer only a 

limited perspective on molecular mechanisms of the 

protease resistance. To the best of our knowledge, the 

mechanism of action of a mutation on binding of dif-

ferent inhibitors has not been investigated in the afore-

mentioned cases, where the same mutation is known 

to cause resistance to certain inhibitors, while making 

the protein sensitive towards other inhibitors [4–9]. In 

clinical practice of HIV treatment, cases like this poten-

tially provide an opportunity for combined treatment: 

a combination of PIs that are associated with opposite 

effects of a particular mutation put the virus in a situa-

tion where either mutation variant in this position will 

render the protease susceptible to one of the drugs [5, 

6, 28]. Understanding the underlying molecular phe-

nomena could potentially provide important insights 

into HIV inhibitor resistance, as well as a possibility to 

transfer this knowledge to treatment of other viruses, 

and for inhibitor design.

In an experimental setting, resistance of mutant pro-

teins towards PIs, such as in the studies above, is typically 

measured in terms of IC50 (concentration required to 

inhibit viral activity by 50%). �us, the ratio between IC50 

in mutant and the same measurement for the wildtype 

protease (typically with the consensus sequence from the 

strain HXB2), also called resistance factor (RF), is a use-

ful descriptor for resistance of different mutated proteins. 

RF is directly related to the free energy of inhibitor bind-

ing, �G , and the protease enzymatic activity, Km [29].

We have previously shown that the effect of mutations 

in the HIV protease on inhibitor binding, ��G , can be 

accurately predicted in silico using alchemical methods 

based on molecular dynamics (MD) simulations [17]. 

Additionally, analysis of the underlying trajectories from 

the MD simulations can also reveal the mechanisms 

underlying the effects of mutations on protein-inhibitor 

interactions, protein structural changes, as well as on 

their altered dynamics.

In this study, we apply alchemical calculations based 

on MD simulations to estimate the effect of RAMs M46I, 

I50L, I84V, N88S, and L76V, both in the binding pocket 

and outside of it, on the binding of PIs APV, IDV, LPV, 

and SQV: in total 19 different PI-mutation combinations. 

We demonstrate that we can faithfully reproduce the pre-

viously reported effects of the first four mutations on the 

resistance, including previously investigated sensitising 

and desensitising effects of the mutation N88S on bind-

ing of APV and IDV [6, 8]. We show that changes of the 

hydrogen bonding network of the protease that involve 

Fig. 1 HIV protease structure. Flap region in cyan, 80s loop in brown, 
active-site proximate loop in olive colours. Mutations analysed in 
this study (red), catalytic site residue (blue) and bound inhibitor 
(magenta) are shown in sticks model
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D30, located in the active site pocket, can explain these 

effects.

�e data on M46I, I50L, I84V, and N88S were acquired 

from the HIVdb database [30]. Measurements can be 

paired such that the protease sequences are identical 

with the exception of the mutated site. Moreover, for all 

of these mutations wildtype and mutant protein back-

ground sequences were identical across the different 

inhibitors, with the exception of N88S, where complexes 

with FPV had a background mutation L77I and com-

plexes with IDV had a R57G background mutation pre-

sent. Both of R57G and L77I mutations are found next to 

each other on two parallel β-strands at a distant site of 

the protease and close to major RAM sites I54 and L76, 

respectively. However, unlike in case of the latter resi-

dues, the side chains of residues 77 and 57 are pointing 

away from the protease binding pocket. Nevertheless, the 

mutation R57G has been suggested to be a protease-inac-

tivating mutation [31]. L77I on the other hand, has been 

reported to be a compensatory mutation for I84V, restor-

ing protein stability [32]. M46I, I84V, and N88S are all 

considered to be major RAMs against the corresponding 

inhibitors as reported in the HIVdb. In addition to that 

N88S has been previously reported to increase suscepti-

bility against APV/FPV [6–9]. I50L on the other hand has 

been reported to induce resistance against ATV while 

increasing sensitivity against remaining PIs [33–36].

For L76V, located in the protease’s hydrophobic core, 

we investigate its effect on binding of ATV, IDV, LPV, 

and SQV in different clinically relevant sequence con-

texts. In the phenotypic assays we consistently observe 

a resensitising effect of this mutation towards ATV and 

SQV as well as its resistance-associated effect for IDV 

and LPV, which was reported previously [4, 5], and we 

generally reproduce these effects computationally. We 

suggest a mechanistic explanation of this effect, dem-

onstrating that these mutations affect the arrangement 

of residues around the binding pocket of the protease, 

which, in turn, similarly to N88S, affects the hydrogen 

bonding network of D30, directly influencing inhibitor 

binding.

Results and discussion
Estimation of resistance factors from the change 

in the inhibitor binding free energy

We aimed to assess whether we can reproduce the 

ratios of experimentally measured resistance factors 

( RFR = RFmutant/RFwildtype ) between the wildtype and 

mutant proteins by estimating the change in free energy 

of inhibitor binding upon mutations in the protease 

using MD simulation with alchemical methods [37]. For 

this purpose we selected a dataset of 20 complexes from 

HIVdb database [30] for which resistance factors towards 

inhibitors FPV, IDV, LPV, and SQV had been measured 

experimentally (Table 1 and Additional file 1: Table S1). 

�ese complexes could be paired amongst each other 

such that the RF has been measured for the same inhibi-

tor and the same protease strain with and without the 

mutation, namely: IDV and FPV with mutation M46I; 

IDV and FPV with mutation I50L; FPV, IDV, LPV, and 

SQV with mutation I84V; FPV and IDV with mutation 

N88S. For all of these pairs, protease with a RAM had a 

Table 1 RF values for di�erent mutant and corresponding wildtype sequences from HIVdb [30]

First column indicates the mutation analysed, while the second column indicates background polymorphisms that are present in both wildtype and mutant 

sequences compared to the reference HIV sequence HXB2. Multiple RF measurements for the same protein are separated by comma. M46I wildtype and mutant 

measurements reported from di�erent studies, but performed using the same susceptibility test method (Phenosense, Monogram, San Francisco, USA)

a  Indicates that the R57G background mutation was found in sequences where RF for IDV was measured and L77I in sequences where RF for FPV was measured

Mutation Background 
polymorphisms

RF

IDV SQV LPV FPV

M46I

 Wildtype [33] V3I, S37N, A71V 0.6, 1.0, 1.2 – – 0.3, 0.6, 0.7

 Mutant [83] 4.4 – – 2.2

I50L

 Wildtype [33] V3I, S37N, A71V 0.6, 1.0, 1.2 – – 0.3, 0.6, 0.7

 Mutant [33] 0.1, 0.3, 0.3 – – 0.2, 0.2, 0.3

I84V

 Wildtype [84] V3I, L10F, S37N 1.5 1.3 1.6 1.8

 Mutant [84] 2.1, 3.2 2.7, 3.7 6.2, 7.7 4.6, 8.4

N88S

 Wildtype [6] V3I, S37N, L63P, 
R57G/L77Ia

1.1 – – 1.0

 Mutant [6] 2.6 – – 0.1
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higher RF than the wildtype, except I50L reducing resist-

ance towards FPV and IDV and N88S reducing resistance 

to FPV (Table 1).

We first estimated the effect of the mutation on the free 

energy of inhibitor binding, ��G . For this purpose, we 

performed MD simulations for the protease mutants and 

wildtype in inhibitor-bound and unbound state, where in 

the bound state the simulations were performed in both 

alternative protonation states of the catalytic residues 

of the active site, D25 and D25′  , to account for asym-

metry of this complex. �is allows us to identify which 

protonation state is more likely for both wildtype and 

mutant complexes, as well as to increase the accuracy 

of the ��G estimation, as we reported previously [17]. 

�e resulting ��G calculations (Table 2 and Additional 

file  1: Table  S2) overall indicated a good agreement in 

discriminating resistant and sensitising effects of muta-

tions on the protein–ligand binding, including the oppo-

site effects of N88S towards IDV and APV. An exception 

to that is M46I, where the mutation had a modest effect 

on �G which was within the estimated error range. �e 

mutation of this flap residue, whose side-chain points 

away from the protease binding pocket, has been associ-

ated with resistance towards different PIs, but it typically 

appears in combination with other RAMs and has been 

suggested to compensate the decreased catalytic activity 

of mutant proteases [38–43].

�e possibility of mutations having an effect on the 

catalytic activity of the enzyme, Km , precludes direct 

comparison of the ��G estimates of mutation effects 

on inhibitor binding and the RFR corresponding to that 

mutation. In previous studies of resistance mutations of 

another enzyme of HIV, reverse transcriptase, ��G was 

considered to approximate changes in IC50 [44–46]. �is 

is at odds with the fact that the majority of the mutations 

for which this approximation was used, such as L100I, 

V106A, and Y188L, although not located directly in the 

active site, have been previously reported to affect the 

catalytic potential of the enzyme [47–51]. Although some 

studies show correlation between predicted relative drug 

binding free energy upon HIV protease mutation and the 

one approximated by IC50 measurements [52], RAMs 

affecting the catalytic activity of protease have also been 

reported [39, 40, 53, 54]. In the present study, similarly 

to the aforementioned computational studies, only the 

experimentally measured IC50 values for mutations are 

available for the enzyme and different inhibitors. To 

account for the changes in the binding free energy and 

Km , we developed a Bayesian method which combines 

multiple experimental RFR measurements and ��G 

estimates to calculate RFR (see “Estimation of resist-

ance factor change from free energy of inhibitor binding 

change”).

We then compared the estimated RFR values to their 

experimental measurements (Table  2, Fig.  2). �e 

increase of resistance towards inhibitors ( RFR > 1 ) was 

correctly predicted for M46I, I84V, and N88S (with IDV) 

mutations, as was the sensitising effect ( RFR < 1 ) of I50L 

towards FPV and IDV as well as N88S towards APV. �e 

Table 2 Change of  the  binding free energy ( ��G ) 

of inhibitors upon mutation

All values in kcal/mol, and ± shows bootstrap error estimate. RF
exp
R  indicates 

value ranges calculated using RFR = RFmutant/RFwildtype from previously reported 

experimental RF measurements, where "a" stands for measurements for FPV, 

the prodrug of APV. RFcalc
R

 indicates average calculated RFR value from the 

distribution described in Eq. 4 with subscript and superscript corresponding to 

lower and upper bound of 95% credible interval, respectively

Inhibitor Mutation ��G RF
exp

R
RF

calc

R

APV M46I −0.35 ± 0.4 3.14–7.33a 13.1377.54
0.3

IDV M46I −0.34 ± 0.72 3.67–7.33 12.6975.84
0.27

APV I50L −0.64 ± 0.41 0.29–1a 0.743.87
0.03

IDV I50L −0.87 ± 0.51 0.08–0.5 0.623.17
0.03

APV I84V 2.06 ± 0.47 2.56–4.67a 33.75169.66
1.25

IDV I84V 1.13 ± 0.57 1.4–2.13 7.2342.3
0.11

LPV I84V 1.25 ± 0.39 3.88–4.81 6.0933.62
0.17

SQV I84V 0.56 ± 0.41 2.08–2.85 1.336.73
0.05

APV N88S −0.97 ± 0.7 0.1a 0.32.14
0.001

IDV N88S 1.41 ± 0.95 2.27 41.12281.92
0.11

Fig. 2 Predicted and experimental RF measurements. Each 
symbol corresponds to a unique sequence background and colour 
corresponds to inhibitor. In case of APV, RFexpR  measurements are for 
its prodrug FPV
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experimental RFR values were within the correspond-

ing calculated distributions based on the ��G estimates 

(Additional file 1: Figure S1).

While the structural effect of N88S mutation has been 

previously analysed for NFV, to the best of our knowl-

edge, the opposite effects of this mutation on suscep-

tibility towards APV and IDV have not been previously 

addressed. It has been suggested that substitution of 

asparagine with serine creates a hydrogen bond with 

the residue D30, which in turn affects the interaction 

between D30 and the inhibitor NFV [55]. A similar 

observation with regard to the N88S effect on the inter-

action with D30 has been previously made for L10F/

N88S mutant with NFV as well as the unliganded N88S 

protease [56, 57]. Another mutation at this site that 

occurs in patients treated with NFV, N88D, has been 

reported to co-occur with mutation D30N, which coin-

cides with losing water molecules that mediate this site’s 

interactions with residues T31 and T74 [58]. Seeking to 

verify whether these effects extend to complexes of N88S 

with APV and IDV, we performed hydrogen bond net-

work analysis of mutant and wildtype complexes, where 

we measured the average number of hydrogen bonds 

over the course of the simulations. Indeed, similar effects 

were confirmed: S88 formed a hydrogen bond with D30 

more frequently than N88, whereas N88 formed a hydro-

gen bond more frequenly to T31 and T74 compared to 

S88 (Additional file 1: Table S3).

Estimating resistance factor for clinical samples 

with the L76V mutation

Among patients in Germany undergoing HIV treatment, 

individuals who underwent multiple therapy failures 

against different PI-regimens were identified. Among 

the group of patients we described in the manuscript of 

Wiesman et  al. [5], there were viral variants which dis-

played different resistance-determining mutations to 

ATV, SQV, IDV, and LPV. �e extraordinary observation 

was that a specific amino acid change L76V increased 

resistance to LPV and IDV, while at the same time giv-

ing a clinically relevant re-sensitisation to SQV and ATV. 

�ose variants were observed in the diagnostic proce-

dure, sequenced, and subsequently tested in a pheno-

typic assay. We analysed variants which showed some 

of the highest changes in RF upon mutation to evaluate 

whether we can computationally estimate RF values as 

measured in the phenotypic assay (Table 3).

Just as for mutations M46I, I50L, I84V, and N88S, for 

the mutation L76V multiple RF measurements for differ-

ent inhibitors in the same sequence context were avail-

able, thus enabling us to computationally predict the 

RFR values. �e sequences of the protease complexes 

analysed had a large number of background mutations 

accumulated compared to the reference sequence HXB2, 

making it difficult to find complexes in the Protein Data 

Bank (PDB) with sequences matching the studied geno-

types. �us in the protein modelling stage between 11 

and 19 mutations had to be introduced to create protein 

models with sequences corresponding to those for which 

RFR was measured (see “System preparation”). Including 

the target mutation L76V as well meant that up to 20% of 

protease residues had to be modelled in silico.

First, we estimated the effect of the mutation L76V 

on inhibitor binding in terms of the change of the bind-

ing free energy ��G (Table  4 and Additional file  1: 

Table  S4). �e increase of the binding free energy, 

Table 3 Protease RF values for L76V mutation

Multiple RF measurements for the same protein separated by comma. For each genotype the �rst row represents the wildtype position as in the original sample and 

the second row represents the mutation introduced at position 76

Genotype RF

ATV SQV IDV LPV

FB15

 L76 63 74 – –

 V76 0.9, 2.3, 4.5 3.6, 4.6, 5.8 – –

GH9

 L76 90 18.6 – –

 V76 1.2, 1.9, 2.4, 3.2, 3.6 1.2, 1.3, 1.5 – –

RU1

 V76 2.7 – – 157

 L76 8.4, 9, 10 – – 27, 46, 47

iZ2

 V76 4.1 – 59 71

 L76 7.8, 12, 30 – 2.2, 7.9, 10 5.5, 11, 12



Page 6 of 14Bastys et al. Retrovirology           (2020) 17:13 

corresponding to the decrease in inhibitor affin-

ity, was predicted for all complexes where mutations 

were observed to increase the protease RF (RU1 with 

LPV, iZ2 with IDV and LPV). �e decrease of RF, on 

the other hand, did not always correspond to a nega-

tive value of ��G : L76V was predicted to increase the 

affinity of inhibitor binding for inhibitors ATV and 

SQV only for the genotype GH9, but not for the geno-

type FB15, nor for inhibitor ATV in the context of the 

genotypes RU1 or iZ2. �e genotypes FB15 and iZ2 

lack the background mutation M46I (the former being 

wildtype at that position and the latter having muta-

tion M46L), which has been suggested to co-occur with 

L76V to compensate for its compromising effect on the 

replication capacity of HIV [41, 42]. �is suggests that 

in this case the dominant effect of the mutation L76V 

might be exerted through decreasing the protease’s 

catalytic activity Km . However for RU1, which has the 

M46I mutation, we cannot explain the positive ��G 

value for complexes with ATV using this argument.

�e ��G estimates were used to calculate RFR in 

the same fashion as for mutations M46I, I50L, I84V, 

and N88S (Table 4, Fig.  3). For most of the complexes 

we correctly predicted whether the mutation made 

the protein more resistant or more sensitive towards 

the inhibitor. �is included the prediction of sensitis-

ing effect of mutation in the genotype FB15 for both 

ATV and SQV for which the inhibitor affinity increased 

based on the ��G estimates. Sensitisation towards 

ATV was, on the other hand, not observed for geno-

types RU1 and iZ2. �e experimental RFR values were 

however within the corresponding calculated distribu-

tions based on the ��G estimates (Additional file  1: 

Figure S2). Overall, just like in the case for M46I, I50L, 

M84I, and N88S mutations, RFR estimates converged 

roughly after half of simulation time (Additional file 1: 

Figure S3).

E�ect of L76V on molecular interactions

Next, we focused on the structural changes in the pro-

tease upon the mutation L76V, for which purpose we 

first analysed the hydrogen bond network of the pro-

tein. It was consistently seen across all of the different 

genotypes that the mutation L76V increases the prob-

ability of observing a hydrogen bond between residues 

D30 and K45 (Table  5). Previous studies found a sig-

nificant correlation between mutations in these sites 

[59, 60], potentially indicating the importance of the 

interaction between these two oppositely charged res-

idues. Seeking whether this was a result of side chain 

rearrangement, we performed functional mode analy-

sis (FMA) based on partial least-squares (PLS) regres-

sion, a supervised machine learning technique which 

builds models that distinguish behaviour in MD trajec-

tories between the wildtype and mutant protease com-

plex based on their Cartesian atoms coordinates. �ese 

models are interpretable in terms of protein conforma-

tional changes associated with the mutation. In analys-

ing FMA models, we could see that the mutation L76V 

caused a tendency of the side chains of residues D30, 

K45, and Q/E58 to shift towards the binding pocket 

(Fig.  4 and Additional file  1: Figure S4). �is shift is 

Table 4 Change of  the  binding free energy ( ��G ) 

of inhibitors upon mutation L76V

All values in kcal/mol, and ± shows bootstrap error estimate. RF
exp
R  indicates 

value ranges calculated using RFR = RFmutant/RFwildtype from experimental 

RF measurements, RFcalc
R

 indicates average calculated RFR value from the 

distribution described in Eq. 4 with subscript and superscript corresponding to 

lower and upper bound of 95% credible interval, respectively

Inhibitor Genotype ��G RF
exp

R
RF

calc

R

ATV FB15 0.78 ± 0.64 0.01–0.07 0.231.41
0.004

SQV FB15 0.69 ± 0.62 0.04–0.08 0.110.71
0.001

ATV GH9 −0.29 ± 0.49 0.01–0.04 0.231.12
0.01

SQV GH9 −0.58 ± 0.47 0.06–0.08 0.030.17
0.001

ATV RU1 0.74 ± 0.73 0.27–0.32 3.5222.7
0.04

LPV RU1 1.52 ± 0.6 3–5 3.9425.08
0.05

ATV iZ2 1.11 ± 0.65 0.14–0.53 35.61243.1
0.17

IDV iZ2 1.76 ± 0.66 5.9–26.82 88.25649.19
0.06

LPV iZ2 0.99 ± 0.88 5.91–12.9 10.9576.68
0.01

Fig. 3 Predicted and experimental RF measurements. Each symbol 
corresponds to a unique sequence background and colours 
correspond to inhibitor
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likely the result of fine rearrangement of residues in the 

region as a consequence of a larger side chain of leu-

cine being replaced by a smaller valine. �e effect of 

L76V on D30–K45 hydrogen bond is thus similar to the 

effect of the other distant site mutation we analysed in 

this study, N88S, on hydrogen bonding of D30. Muta-

tions at site N88 have been reported to be correlated 

to mutations of D30 and K45 [59, 60]. Displacement of 

Q/E58, on the other hand, is in line with the previously 

reported co-occurance of mutations L76V and Q58E 

[61], and both of these mutations were found in the 

patient sample RU1. L76V has recently been reported 

to increase the distance between Cα atoms of residues 

16 and 62 on the surface of the protease when in com-

plex with DRV [62]. �e  same effect on the structure 

was observed in both  the resistance-inducing and 

the sensitising cases in that study, which is in line with 

the consistent observation of side-chain rearrangement 

we report here.

We calculated direct protein-inhibitor interaction 

energies to see whether the L76V mutation impacted 

direct interactions of D30, K45, or other residues with 

the inhibitors (Fig.  5 and Additional file  1: Figure S5). 

Indeed, changes in the interaction of D30/D30 ′  with 

the inhibitors are in general in line with changes of 

RFR : negative, or favourable, interaction energy values 

correspond to RFR < 1 , and positive, or unfavourable, 

interaction energies correspond to RFR > 1 . Exceptions 

to that are the proteases of the iZ2 genotype in com-

plex with IDV, where a favourable effect on the direct 

interaction energy of D30/D30 ′  with the inhibitor is 

observed, and in complex with LPV, where no notable 

effect on this interaction is seen. �e effect of L76V on 

interaction energies between the inhibitors and K45/

K45 ′  was, on the other hand, modest. A number of 

other residues’ direct interactions with inhibitor were 

affected. �ese residues are widely distributed across 

most of the active site pocket, including the active site 

loop (including the D30), flap (including the K45), and 

80s loop regions. �is is in line with our observations 

from a previous study of the effect of mutations I50V, 

G48V, and L90M on protein-inhibitor interactions, 

where interactions of residues in these regions were 

also affected by the mutations [17]. Interestingly, meas-

urable differences were observed for interactions of the 

Table 5 Average number of  hydrogen bonds between  residues D30 and  K45 for  protease wildtype and  mutant 

complexes

± Indicates standard error of bond frequency across independent simulations

Drug Genotype D30–K45 D30′–K45′

L76 V76 L76 V76

ATV FB15 0.068 ± 0.003 0.52 ± 0.04 0.07 ± 0.002 0.58 ± 0.02

SQV FB15 0.12 ± 0.01 0.59 ± 0.02 0.11 ± 0.005 0.62 ± 0.004

ATV GH9 0.07 ± 0.01 0.49 ± 0.12 0.06 ± 0.002 0.66 ± 0.12

SQV GH9 0.07 ± 0.004 0.46 ± 0.04 0.01 ± 4 × 10
−5 0.19 ± 0.04

ATV RU1 0.05 ± 0.001 0.43 ± 0.05 0.04 ± 1 × 10
−4 0.61 ± 0.09

LPV RU1 0.01 ± 3 × 10
−5 0.16 ± 0.03 0.16 ± 0.006 0.56 ± 0.12

ATV iZ2 0.16 ± 0.007 0.57 ± 0.07 0.08 ± 0.002 0.52 ± 0.04

IDV iZ2 0.1 ± 0.01 0.39 ± 0.03 0.06 ± 0.002 0.51 ± 0.07

LPV iZ2 0.04 ± 5 × 10
−4 0.19 ± 0.02 0.24 ± 0.01 0.63 ± 0.02

Fig. 4 Interpolation between the extremes of the FMA models for 
the protease (genotype RU1) in complex with LPV. Blue-to-magenta 
bands correspond to the interpolation along the mode as 
represented as cartoon for backbone and as sticks for residues 30, 
45, and 58, with blue corresponding to L76 state and magenta to 
V76 state. Green dashed line represents a hydrogen bond between 
residues D30 and K45. Mutated residue 76, here semi-transparent in 
yellow, as well as hydrogen atoms, here in gray, were not part of the 
FMA models and are here for representational purposes only
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residue at position 76 with the inhibitor for complexes 

of genotype FB15 with LPV and ATV and genotype iZ2 

with IDV. But given that side chain of residue 76 has 

minimal exposure to the binding pocket, those differ-

ences are negligible.

Overall, these results indicate a pathway for how the 

mutation L76V impacts the inhibitor binding through 

altering the interactions of other residues with the 

inhibitor without actual mutations at these sites. A sim-

ilar observation has been previously made for another 

pair of an active site loop and distant site mutations, 

namely for mutation L90M that alters the interactions 

of the residue at this position with D25, which in turn 

affects the interactions of D25 with the inhibitor as well 

as with other residues in the binding pocket [17, 63, 

64]. Our observations on energetic and structural con-

sequences of the mutation L76V are also in line with 

its previously reported effects on the ligand binding 

affinity for the inhibitor DRV through both changes in 

protein-inhibitor interactions and changes in the inter-

residue distances in the binding pocket [26].

Recently, a study reported experimentally resolved 

structures of the wildtype and the L76V mutant of the 

HIV protease in complex with inhibitors DRV, LPV, 

Tipranavir (TPV), as well as with two experimental 

compounds, GRL-0519 and GRL-5010 [65]. It has been 

observed that mutation does not change the backbone 

structure of the protease, however residue 76 loses con-

tacts with D30 and T74, and, for structures with LPV, 

there is a slight shift of K45 towards the binding pocket in 

the mutant structure. Overall, similar interactions were 

reported between wildtype and mutant proteins with dif-

ferent inhibitors, with the exception of GRL-5010, which 

interacted with D30′  in an altered way. �ese results thus 

partially support the observations made in our study on 

the effects of the L76V mutation on the structure and 

interactions within the HIV protease.

Conclusions
In this work, we analysed a set of mutations in the HIV 

protease associated with resistance towards PIs in com-

plex with different clinically used inhibitors. First, we 

analysed four mutations with resistance factors extracted 

from the literature, where resistance factor measure-

ments for the same sequence and the same inhibitors 

were available from multiple experiments. We showed 

that the effect of the mutation on the resistance factor, 

both increasing resistance and sensitising, was success-

fully reproduced using alchemical free energy calcula-

tions of affinity of inhibitor binding. Second, we modelled 

Fig. 5 Energy differences of non-bonded interaction between protein and inhibitor in wildtype and mutant complexes. Residues, for which the 
difference ( EMUT − EWT  ) between the wildtype and the mutant complexes is higher than the propagated error (SE) and its absolute value higher 
than 0.1 kcal/mol, are represented as a colored circle, where the color represents relative interaction energy and the size of the circle relates 
inversely to the standard error of the estimate. Residues’ 30 and 45 interactions are highlighted in green box
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complexes for sequences based on our own clinical sam-

ples containing the mutation L76V with four PIs. Even 

though the sequences in question had a large number of 

background mutations, we could in most cases reproduce 

the resistant and sensitising effects of L76V. �ese cal-

culations gave us insight into whether change in resist-

ance is predominantly the result of change in inhibitor 

binding affinity or a change in the catalytic activity of 

the protease, for example for sequences which lacked 

the compensatory mutation M46I. Further analysis of 

L76V in different sequence contexts revealed that the 

effect of this mutation on direct protein residue-inhibitor 

interactions, including that of D30, is generally line with 

the changes in the resistance. Potentially causal to the 

observed changes is the favourable effect of the mutation 

on the hydrogen bond stability between residues D30 and 

K45 of the binding pocket. Analysis of another distant 

site mutation, N88S, also revealed changes in hydrogen 

bonding of the mutated residue with D30 as well as with 

T31 and T74, suggesting changes in hydrogen bond-

ing network of the protease as a major pathway for how 

mutations outside of the binding pocket affect inhibitor 

binding.

Methods
Computational studies

System preparation

Crystal structures of protease-inhibitor complexes were 

obtained from the PDB [66] (IDs 1HPV (APV), 1HXB 

(SQV), 1K6C (IDV), 1MUI (LPV), 2BPX (IDV), 3EKV 

(APV), 3EL1 (ATV), 3PWR (SQV)). Modeller [67] ver-

sion 9.12 was used to introduce mutations targeted in 

this study as well as the background mutations. �e fol-

lowing background mutations were introduced in the 

studied protein from HIVdb dataset: K7Q, R14K, R57G, 

T82V, and V84I in 1K6C; K7Q, R14K, K41R, and V77I in 

3EKV; L10F and S37N in 1MUI; L10F and S37N in 1HPV 

(84V); S37N and A71V in 1HPV (46V and 50L); L10F 

and S37N in 2BPX (84V); S37N and A71V in 2BPX (46M 

and 50L). For the phenotypic assay dataset the follow-

ing background mutations were introduced: K7Q, I13V, 

G16E, K20I, I33F, M36L, S37N, I62V, I63H, A67C, A71V, 

G73S, I84V, L90M, and 95C in 3PWR for the genotype 

FB15; K7Q, I13V, G16E, K20I, I33F, M36L, K41R, I62V, 

P63H, V64I, A71V, G73S, I84V, and L90M in 3EL1 for 

the genotype FB15; K7Q, L10V, I13V, G16E, K20R, I33L, 

E35D, M36I, S37N, M46I, I54V, Q58E, I62V, I63H, I64V, 

A67C, V82F, I84V, and A95C in 3PWR for the genotype 

GH9; L10I, I13V, K20M, E35D, M36I, S37N, R41K, M46I, 

I54V, Q58E, H69K, V82M, and L89I in 1MUI for the gen-

otype RU1; K7Q, L10V, I13V, R14K, K20M, E35D, M36I, 

M46I, I54V, Q58E, P63L, V64I, H69K, V82M, and L89I 

in 3EL1 for the genotype RU1; L10I, I13V, K20M, E35D, 

M36I, S37N, R41K, M46I, I54V, Q58E, H69K, V82M, and 

L89I in 1MUI for the genotype RU1; K7Q, L10I, I13V, 

R14K, L24I, L33F, K46L, I62V, A71V, T82A, V84I, and 

Q92K in 1K6C for the genotype iZ2; L10I, I13V, L24I, 

L33F, S37N, M46L, I62V, L63P, A71V, and V82A in 1MUI 

for the genotype iZ2; K7Q, L10I, I13V, R14K, L24I, L33F, 

K41R, M46L, I62V, V64I, A71V, V82A, and Q92K in 

3EL1 for the genotype iZ2.

In the following, preparation for simulations of all the 

structures mentioned above is described in both holo and 

apo states, with the exception of structure 1HXB, 1MUI, 

and 2BPX for the HIVdb dataset, for which simulations 

in apo state were not performed (see "Equilibrium MD 

simulations and free energy calculations" section).

Remaining set up of the system in this study has been 

performed in the manner as described previously [17]. 

In short, the Gromacs simulation software package was 

used to set up (version 4.6.5), carry out, and analyse the 

MD simulations (versions 5.0.2 and 5.1.2) [68, 69]. �e 

pKa of residues was predicted using Propka [70] and pro-

tease was assigned monoprotonated state on either D25/

D25′  , here the prime refers to the second subunit of the 

protein. �e Amber99SB*-ILDN force field was used for 

parametrisation of the protease. �e Chemaxon Calcu-

lator [71] was used to determine inhibitor protonation, 

while Gaussian09 [72] was used to optimise inhibitor 

geometry and calculate electrostatic potential. Partial 

charges were assigned by performing restrained elec-

trostatic potential fit [73]. �e complex was solvated 

in TIP3P water molecules with 1.4  nm buffer in each 

dimension with 0.15 mol/l concentration of Cl− and Na
+ 

ions [74] to neutralise the system.

Equilibrium MD simulations and free energy calculations

�e equilibrium MD simulations and the free energy 

calculations in this study have been performed in the 

manner as described previously [17]. In short, each sys-

tem was subjected to steepest descent energy minimi-

sation. Before equilibrium simulation, in order to avoid 

too close contacts between atoms, simulated anneal-

ing in length of 1  ns was performed for the following 

complexes: 1MUI (76V for the genotype iZ2) in D25 ′  

protonation state, 1MUI (76L for the genotype iZ2) in 

D25 protonation state, 2BPX (46V and 84I variants) 

in D25 protonation state, 3EKV (88S variant) in D25 

protonation state, 3EL1 (76L and 76V for the genotype 

iZ2) in D25 ′  protonation state. Ten replicas of 200  ns 

simulation for each complex were performed at 300 K. 

For all of the analyses that followed, the first 20  ns of 

the simulations were considered to be a part of the 

system equilibration process and thus discarded, with 

the exception of free energy calculations, where first 

10  ns were discarded. �e protocol for free energy 
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calculations was adjusted from the non-equilibrium 

simulation approach used in assessing changes in pro-

tein thermal stabilities and protein–protein interac-

tions upon amino acid mutation [75]. For calculating 

the free energy change upon mutation of apo struc-

tures, �G1 , for inclusion in ��G estimates for differ-

ent inhibitors, in case of mutations M46I and I50L, 

wildtype apo structure 1HPV was used for the simula-

tions as the background sequences for these mutations 

were the same. Similarly, for wildtype I84V as well as 

mutant M46I, I50L, and I84V simulations correspond-

ing apo structure 1HPV variants were used for ��G 

estimates for each mutation.

From each of the equilibrium simulations described 

above, trajectory frames were extracted equidistantly 

in time every 10 ns. After generating hybrid structures 

for every snapshot using the pmx [76] framework, 

short 20  ps simulations were performed to equilibrate 

velocities, after which alchemical transitions were car-

ried out in 50  ps. Identical parameters were used for 

equilibrium simulations, equilibration, and alchemi-

cal transitions with soft-core potential for non-bonded 

interactions [77]. �e Crooks Fluctuation �eorem [78] 

was used to relate the obtained work distributions to 

the free energy values by employing maximum likeli-

hood estimator [79], with the error estimates obtained 

by the bootstrap approach. Simulations in both active 

site protonation states contributed to the free energy 

estimates, while for the rest of analysis reported in this 

study only the lowest free energy protonation state was 

used.

Partial least‑squares regression

Partial least-squares regression was performed with the 

functional mode analysis tool [80] using the heavy atoms 

of protein as predictors. Wildtype and mutant protein 

simulation trajectories were labelled using constants 0 

and 1 as target values, respectively.

For each mutation and inhibitor combination cross-

validation (CV) was performed to verify the models. 

During CV, all trajectories for wildtype and mutant com-

plexes were concatenated, superimposed to minimise the 

variance over the ensemble [81], and divided into five 

equal parts. For every iteration, a model was trained on 

four parts of labelled input in equal proportions from 

wildtype and mutant simulations, after which it was used 

to make prediction for the last part. �e Pearson corre-

lation between the actual and predicted labels was used 

to evaluate the quality of the model. Number of compo-

nents i = 1, . . . , 25 was tested in each iteration. For the 

final model, the number of components was chosen from 

the correlation curve in CV such that choosing a higher 

number of components only marginally improves the 

performance of the model.

Estimation of resistance factor change from free energy 

of inhibitor binding change

Cheng-Prusoff equation [29] relates inhibitor’s IC50 and 

binding affinity Ki , which in turn can be estimated from 

inhibitor binding free energy �G:

where [S] is a fixed substrate concentration, Km is the 

concentration of the substrate at which the enzyme is at 

its half-maximal activity, kB is the Boltzmann constant, 

and T is the absolute temperature. �us, given two RF 

values for two proteases with sequences A and B, RFA and 

RFB , their ratio can be related to ��G:

We are interested in obtaining a distribution of the RFR 

values after calculating the double free energy differences 

��G:

When there are multiple RFR measurements and 

��G calculations available for the wildtype and 

mutant protein complexed with different ligands, C 

can be expressed as a function of the available values 

C = Ci(��Gi,RF
i

R
), i = 1, . . . , n . �is gives the final pos-

terior distribution:

where Ci = RF
i
R
e

−��Gi
kBT  . �e ��G values are sampled 

from a Gaussian distribution with the mean and stand-

ard deviation corresponding to the calculated double free 

energy difference and estimated error, respectively.

Phenotypic assay for resistance factor value estimation

�e experimental data on L76V resistance is based 

on samples of patients who underwent multiple ther-

apy failures with different PIs. �ose variants were 

observed in the diagnostic procedure, sequenced, and 

subsequently tested in a phenotypic assay as described 

by Walter et  al. [82]. �e tests were carried out after 

(1)IC50 = Ki

(

1 +
[S]

Km

)

= e
�G

kBT

(

1 +
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Km

)

,

(2)
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=

e

�GA
kBT

e

�GB
kBT
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m
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KB
m
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kBT C .

(3)p(RFR|��G,C) ∝ p(��G,C|RFR)p(RFR)

(4)
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i
R)

∝ p(��G,��Gi,RF
i
R|RFR)p(RFR),
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the patient’s variant was cloned into a recombinant 

derivate of the HIV NL4-3, called pNL4-3-Delta-PRT5. 

�e L76V mutation was reverted to wildtype by site 

directed mutagenesis. �is allowed to determine the 

effect of the genetic background upon the L76V. �ese 

variants were analysed in cell culture experiments 

where they were exposed to different PIs in different 

concentrations to estimate their RF values (Table  3). 

Based on these variants, the clones were specifically 

modified by site-directed mutagenesis so that differ-

ent variants of L76V could be tested in different genetic 

backgrounds. For simplicity, regardless of the residue at 

position 76 of protease as present in the original clini-

cal samples, in the context of this paper L76 is referred 

to as wildtype residue and V76 as the mutant residue as 

per reference sequence HXB2.
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