Supporting Information

Non-amphiphilic pyrene cored poly(aryl ether) dendron based gels: tunable morphology, unusual solvent effects on the emission and fluoride ion detection by the self-assembled superstructures

P. Rajamalli and Edamana Prasad*

Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600 036, India

Email: pre@iitm.ac.in

Contents		Page Number
1.	Synthetic procedure and characterizations of dendrons	02
	1.1. Synthetic procedure for compound II	02
	1.2. Synthetic procedure for compound III	03
	1.3. Synthetic procedure for compound IV	03
2.	Plots of solvent parameters vs CGC value	04
3.	FT-IR spectrum of gel	05
4.	Powder X-ray diffraction patterns of compound I to IV	06
5.	Plot of phase transition temperature vs concentration	05
6.	SEM images of xerogel and spherical aggregates	07
7.	Dynamic light scattering data	08
8.	AFM images of xerogel and spherical aggregates	08
9.	AFM images of spiral and helical structure	09
10	. CD spectrum	09
11	. TEM images of vesicles and gels	10
12	. Steady state fluorescence spectra	12

13. Fluorescence decay trace
14. UV-vis absorption spectra of **I, II** and **III** in presence of various anions
13
15. ¹HNMR spectra in the presence of and absence of fluoride ion
13
16. Reference
14

1. Synthetic procedure and characterizations of dendrons

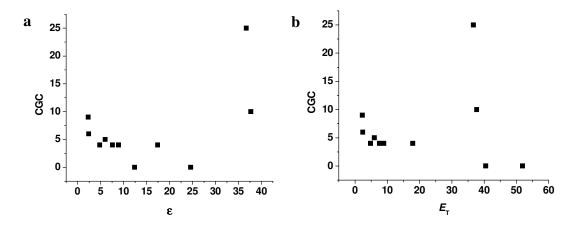
All compounds were synthesized according to reported procedures. 1, 2

1.1. Synthesis of compound II

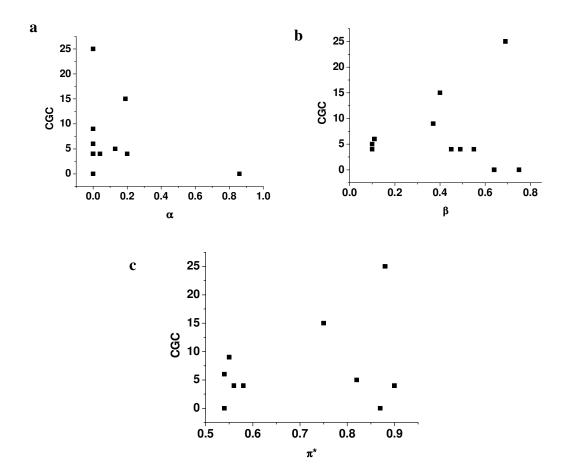
A solution of 1-pyrenecarboxaldehyde (0.16 g, 0.00071 mole) in methanol was added drop wise to a CHCl₃ solution of compound **b** (1 g, 0.00071 mole). The mixture was stirred for 3 hours. The resulting precipitate was filtered off by suction and dried under vacuum to yield **II** (1.05 g, 90.5 %); ¹**H NMR (400 MHz, CDCl₃)** δ : 4.84-5.05 (m, ArC H_2 O, 24H), 6.74-6.79 (m, ArH, 6H), 7.21-7.36 (m, ArH & PhH, 47H), 7.99 (s, PyH, 3H), 8.09-8.14 (m, PyH, 3H), 8.12-8.19(d, J = 8 Hz, PyH, 1H), 8.71(s, PyH, 2H), 9.05 (s, CH=N, 1H), 9.15 (s, CONH, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 70.61, 70.82, 71.16, 74.88, 74.98, 106.98, 107.57,107. 61, 108. 74, 127.15, 127.55, 127.74, 128.13, 128.31, 128.46, 128.63,128.88, 128.95, 128.98, 130.24, 130.78, 131.12, 131.30, 131.77, 131.89, 133.84, 133.98, 134.80, 134.93, 137.25, 137.41, 148.36, 151.90, 152.54, 168.29; MS (MALDI-TOF): m/z Calcd for C₁₀₈H₈₈N₂O₁₃: 1620.62, found: 1660.14[M+K]⁺.

1.2 Synthesis of compound III

A solution of 1-pyrenecarboxaldehyde (0.66 g, 0.0029 mole) in methanol was added drop wise to a CHCl₃ solution of compound \mathbf{c} (1 g, 0.0029 mole) under nitrogen atmosphere. The mixture was stirred for 3 hours. The resulting precipitate was filtered off by suction and dried under vacuum to yield **III** (1.56 g, 93.9 %); ¹**H NMR (400 MHz, DMSO-d₆)** δ : 5.19 (s, ArC H_2 O, 4H), 6.95 (s, ArH, 1H), 7.26-7.49 (m, ArH & PhH, 12H), 8.11 (t, PyH, J = 7.6 Hz, 1H), 8.24 (m, PyH, 2H), 8.35 (t, PyH, J = 8.0 Hz, 4H), 8.57 (d, PyH, J = 8.0 Hz, 1H), 8.79 (d, PyH, J = 9.2 Hz, 1H), 9.51 (s, CH=N, 1H), 11.95(s, CONH, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ : 69.99, 103.29, 107.72, 124.24, 124.86, 125.08, 125.21, 125.56, 125.73, 126.90, 128.17, 128.31, 128.41, 128.07, 131.13, 131.75, 138.09,144.58, 159.58, 168.4; HRMS (ES+): m/z Calcd for C₃₈H₂₈N₂O₃: 560.2100, found: 561.2189[M+H]⁺.


1.3 Synthesis of compound IV

$$\begin{array}{c} \text{NH}_2 \\ \text{HN} \\ \text{O} \\ \text{CHCl}_3 + \text{CH}_3 \text{OH} \\ \text{rt}, 3 \text{ h} \\ \end{array}$$


A solution of 1-pyrenecarboxaldehyde (0.298 g, 0.0013 mole) in methanol was added drop wise to a CHCl₃ solution of compound **d** (1 g, 0.0013 mole). The mixture was stirred for 3 hours. The

resulting precipitate was filtered off by suction and dried under vacuum to yield **IV** (1.2 g, 92.4 %); 1 **H NMR** (**400 MHz, DMSO-d₆**) δ : 5.06 (s, ArC H_2 O, 8H), 5.11 (s, ArC H_2 O, 4H), 6.63 (s, ArH, 2H), 6.73 (s, ArH, 4H), 6.92 (s, ArH, 1H), 7.23-7.42 (m, ArH & PhH, 22H), 8.19 (t, PyH, J = 6.0 Hz, 1H), 8.22 (m, PyH, 2H), 8.34 (t, PyH, J = 6.0 Hz, 4H), 8.57 (d, PyH, J = 8.0 Hz, 2H), 8.78 (d, PyH, J = 6.0 Hz, 2H), 9.50 (s, CH=N, 1H) 11.98 (s, CONH, 1H). 13 C **NMR** (**100 MHz, DMSO-d₆**) δ : 70.28, 101.80, 106.56, 125.51, 126.20, 127.30, 127.70, 127.77, 127.96, 128.17, 128.37, 128.58, 128.73, 128.74, 129.09, 130.49, 131.39, 136.86, 139.00, 160.29, 160.35, 168. **MS** (MALDI-TOF): m/z Calcd for C₆₆H₅₂N₂O₇: 984.37, found: 1008.2[M+Na] ${}^{+}$, 1024.4[M+K] ${}^{+}$.

2. Plots of solvent parameters Vs CGC value

Fig. S1 Effect of solvent polarity parameters a) Dielectric constant (E), and b) Reichart's parameter (E_T) on the CGC value for the compound **IV**.

Fig. S2 Effect of individual Kamlet–Taft parameter on the CGC value for the compound **IV** CGC values a) α vs CGC, b) β vs CGC, and c) π^* vs CGC.

3. FT-IR spectrum of gel

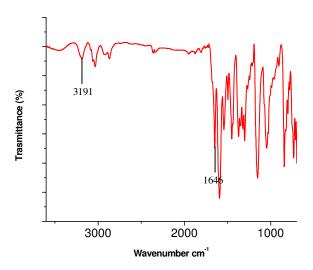
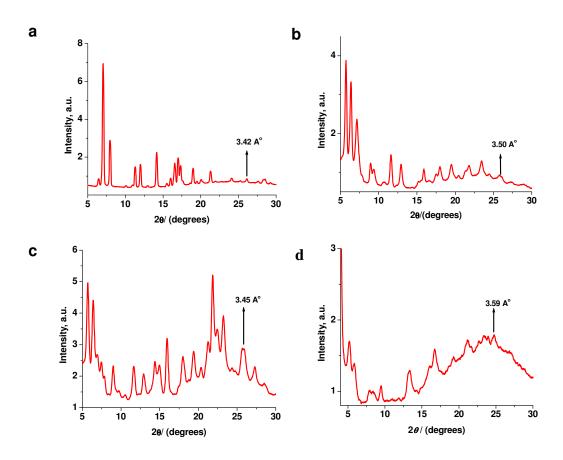



Fig. S3 FT-IR spectrum of the xerogel formed from compound IV in CHCl₃.

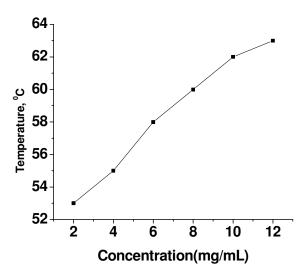
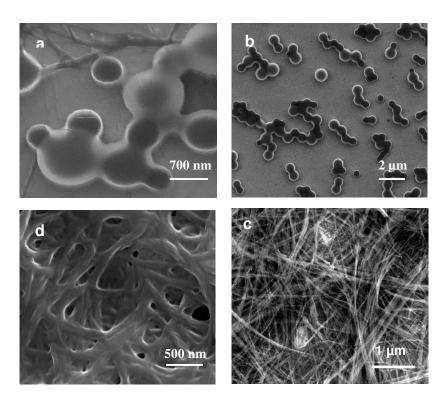
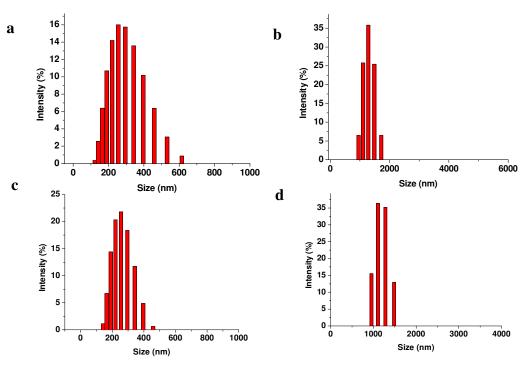

4. Powder-XRD Patterns

Fig. S4 Powder XRD pattern of xerogel formed from a) compound **I**, b) compound **II**, c) compound **III**, and d) compound **IV** in CHCl₃.


5. Plot of phase transition temperature vs concentration

The gel-sol phase transition temperature ($T_{\rm gel}$) was estimated to be in between 53-63 °C in THF–water mixture (0.2-1.2 wt%). The gel transition temperature increases as the concentration of the gel increases. Plot shows the linear relation between the gel transition temperature and the gel concentration for the first generation AB_2 type dendron derivatives in THF–water mixture (1:1)


Fig. S5 Effect of concentration on the gel–sol phase-transition temperature ($T_{\rm gel}$) of compound **III** in THF: water mixture, measured by ball droping method.

6. SEM images of xerogel and spherical aggregate

Fig. S6 SEM images of compound **IV**; a) larger vesicle formation from smaller vesicles in CHCl₃-MeOH, b) fibre formation from vesicles, c) finer formation in CHCl₃-hexane (above CGC), and d) fibre formation from compound **I** in THF-water.

7. Dynamic light scattering data

Fig. S7 Dynamic light scattering histograms of compounds **II** and **IV** in CHCl₃-MeOH (1: 1; v/v): [**II**] =[**IV**]= $1x10^{-5}$ M for (a) and (c), and [**II**] =[**IV**]= $1x10^{-4}$ M for (b) and (d).

7. AFM images of xerogel and spherical aggregates

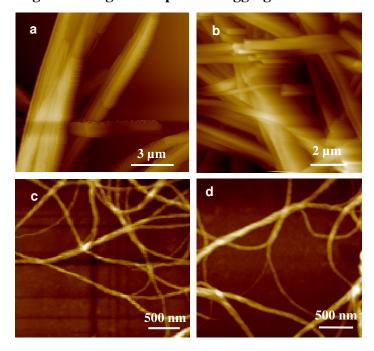
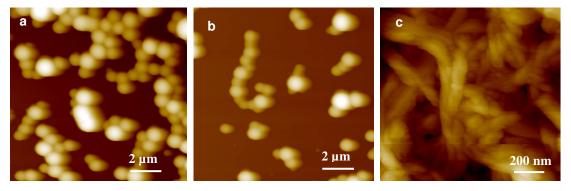



Fig. S8 AFM images of xerogel formed from a) compound II, b) compound III, c) compound III and d) compound III in CHCl₃.

Fig. S9 AFM images of a) compound **II** in CHCl₃-MeOH (below CGC), b) vesicle to fibre conversion for compound **II**, and c) xerogel formed from compound **IV** in CHCl₃-hexane (above CGC).

8. AFM images of spiral and helical structure

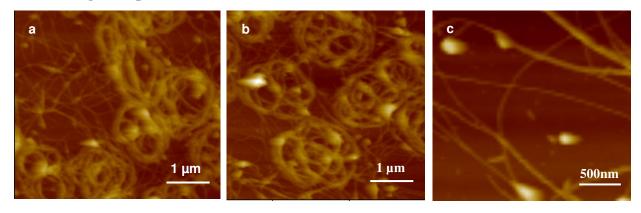


Fig. S10 AFM images of gel formed from toluene: a) compound II, b) compound III, and c) compound II.

9. CD spectrum

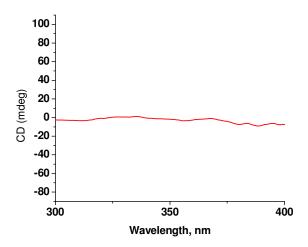


Fig. S11 CD spectrum of compound \boldsymbol{I} in toluene.

10. TEM images of vesicles and gels

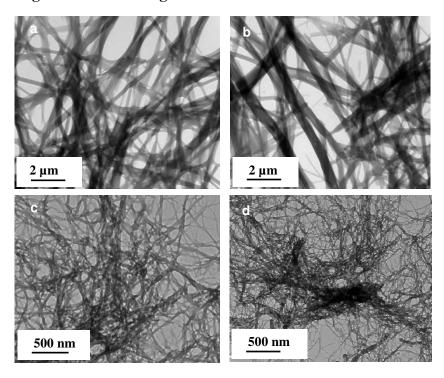
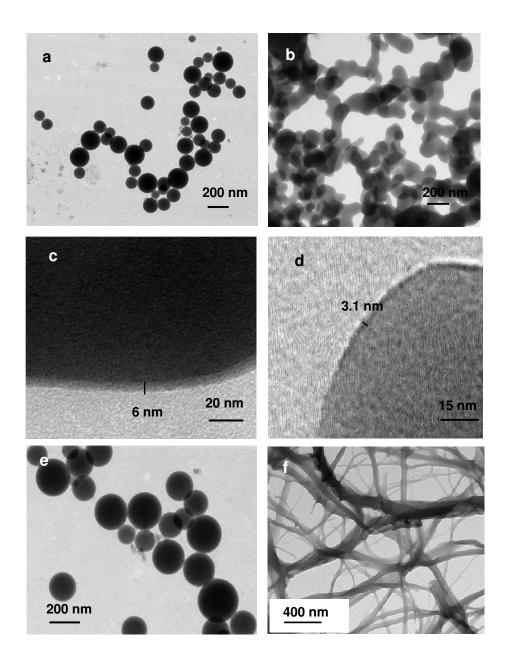
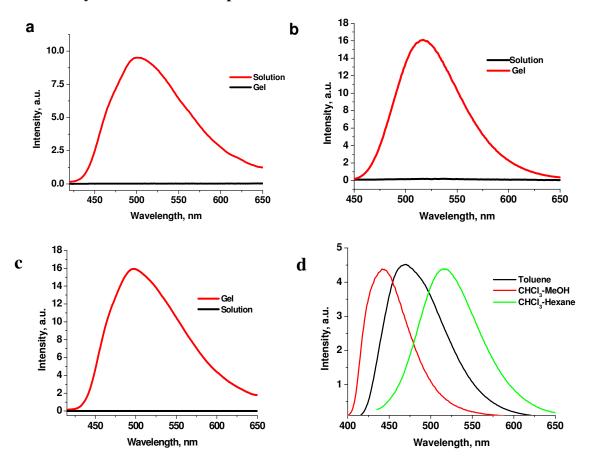




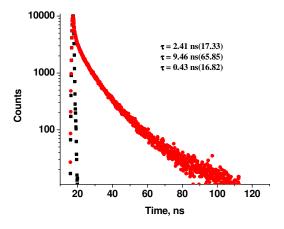
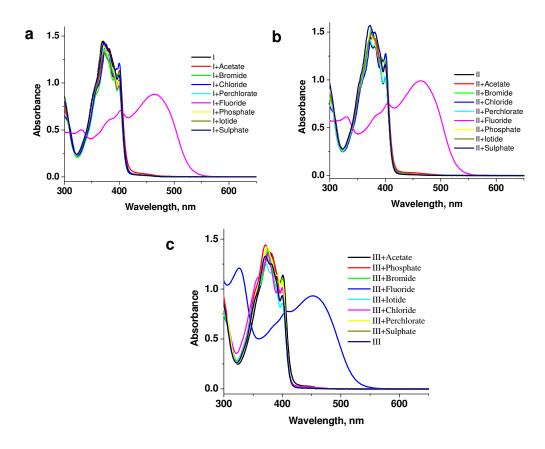
Fig. S12 TEM images of xerogel formed from a) compound II, b) compound III, c) compound III and d) compound III in CHCl₃.

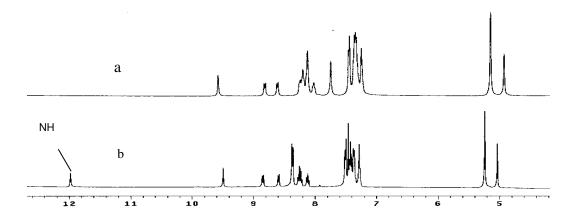
Fig. S13 TEM images of a) compound **IV** in CHCl₃-hexane $(1x10^{-5}M)$, b) compound **IV** in CHCl₃-hexane $(1x10^{-4})$, c) compound **IV** in CHCl₃-hexane $(1x10^{-5}M)$ with higher magnification, d) compound **IV** in CHCl₃-MeOH $(1x10^{-5}M)$ with higher magnification, e) compound **II** from CHCl₃-MeOH $(1x10^{-5}M)$, and f) xerogel formed from compound **II** in CHCl₃-MeOH.

11. Steady state fluorescence spectra

Fig. S14 Emission spectra of compounds **I**, **II**, and **III** in the gel phase (formed from CHCl₃) (red traces in a, b and c, respectively), and in CHCl₃ solution $(1x10^{-4} \text{ M})$ (black traces in a, b and c, respectively). (d) Emission spectra of compound **II** (gel) formed from toluene (black), CHCl₃-MeOH (red) and CHCl₃-Hexane mixtures.

12. Fluorescence decay trace


Fig. S15 Fluorescence decay of gel formed from compound IV in CHCl₃

13. UV-vis absorption spectra of compounds I, II and III in presence of various anions

Fig. S16 UV-vis absorption spectra of a) compound **I** (5×10^{-5} M), b) compound **II** (5×10^{-5} M), and c) compound **III** (5×10^{-5} M) in the presence of 1 equiv of various anions in THF.

14. ¹HNMR spectra in the presence of and absence of fluoride ion

Fig. S17 ¹H NMR spectra of compound **I** in DMSO-d₆: (a) in the presence and (b) in the absence of 1 equiv. of F⁻ ion

16. Reference:

- 1. P. Rajamalli, E. Prasad, New J. Chem. 2011, 35, 1541-1548.
- 2. P. Rajamalli, E. Prasad, Org. Lett. 2011. 13, 3714-3717.