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During the past two decades, apoptotic cell death has been the 
subject of an intense wave of investigation, leading to the discovery 
of multiple gene products that govern both its induction and execu-
tion. In parallel, it has progressively become evident that most, if 
not all, proteins that had initially been discovered for their essen-
tial role in apoptosis also mediate a wide range of non-apoptotic 
functions. On the one hand, apoptotic regulators and execution-
ers are involved in non-lethal physiological processes as diverse as 
cell cycle progression, differentiation, metabolism, autophagy and 
inflammation. On the other hand, pro-apoptotic proteins can con-
trol other modalities of programmed cell death, in particular regu-
lated necrosis. In this review, we summarize the unconventional 
roles of the apoptotic core machinery from a functional perspective 
and discuss their pathophysiological implications.
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mitochondrial membrane permeabilization
EMBO reports (2012) 13, 322–330; published online 9 March 2012;  

doi:10.1038/embor.2012.19

See Glossary for abbreviations used in this article.

Introduction
Apoptosis is a tightly regulated cell death modality that manifests with 
specific morphological features [1]. For some time, such a morpho‑
logical uniformity has misled researchers to believe that most, if not 
all, instances of apoptosis would be executed by the same molecular 
mechanisms—with a prominent role for caspases, a peculiar class of 
cysteine proteases—and would have similar consequences at the 
organismal level (and hence fail to elicit inflammation), irrespective of 
the initiating stimulus. During the past two decades, along with an 

increasingly more refined understanding of apoptosis and its patho‑
physiological implications, it has become clear that the apparent mor‑
phological uniformity of this cell death mode conceals a consistent 
degree of biochemical and functional heterogeneity [2].

According to accepted models, apoptotic cell death can result 
from the activation of either of two major molecular cascades. The 
’extrinsic pathway‘ transduces extracellular pro‑apoptotic signals 
through plasma membrane receptors, most often resulting in the 
activation of the caspase cascade. The ’intrinsic pathway‘ monitors 
the intracellular microenvironment and relays this information to 
mitochondria, where the decision between life and death is taken. 
If pro‑apoptotic signals, such as those dispatched by damaged DNA 
or in response to oxidative stress, predominate, mitochondrial mem‑
branes become permeabilized, leading to the execution of apoptosis 
through both caspase‑dependent and caspase‑independent mecha‑
nisms. MMP can be initiated at the OM by the pore‑forming activity 
of pro‑apoptotic members of the BCL‑2 protein family such as BAX 
and BAK, a process that is referred to as MOMP [3]. Alternatively, 
MMP can originate from an abrupt increase in the permeability of 
the IM to small solutes, leading to osmotic swelling of the mitochon‑
drial matrix and the consequent breakdown of the OM [4]. This 
latter phenomenon, which is known as MPT, has been ascribed to 
the activity of the PTPC—a multiprotein complex assembled at the 
junctions between the IM and OM [5]. However, the existence of 
the PTPC as a pre‑assembled complex, its precise molecular iden‑
tity and its true relevance for apoptotic signalling remain a matter of 
debate (see below). Of note, the signalling modules for extrinsic and 
intrinsic apoptosis are not entirely disjointed as, in some instances, 
the activation of extrinsic apoptosis can be relayed to MMP, which 
amplifies and accelerates the process [2].

An exhaustive compendium of the molecules and biochemi‑
cal processes that are involved in the regulation and execution of 
apoptosis goes beyond the scope of this review and can be found 
elsewhere [4,6]. Here, we analyse the unconventional roles of the 
apoptotic core machinery—that is, the functions of pro‑ and anti‑
apoptotic molecules in non‑apoptotic settings—and discuss their 
pathophysiological relevance.

Differentiation
Various components of the apoptotic machinery, in particular cas‑
pases, become activated during, and are required for, the terminal 
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differentiation of cell types as diverse as haematopoietic, epithelial, 
sperm, muscle and trophoblast cells. These functions of the apop‑
totic apparatus are exerted at the cellular level and do not entail the 
induction of cell death, implying that they must be conceptually dis‑
criminated from the roles that apoptotic molecules play as bona fide 
cell death regulators during morphogenesis and tissue homeostasis.

Initially, caspases—in particular, caspase‑3, ‑9  and ‑14—were 
thought to participate only in differentiation programmes that exhibit 
some of the morphological signs of apoptosis, as they involve the 
degradation of entire organelles and portions of the cells (for exam‑
ple, the maturation of erythrocytes, platelets, keratinocytes and the 
lens epithelium; [7]). However, the chemical or genetic inhibition 
of caspase‑3 arrests the differentiation of erythroid precursors at an 
early stage, well before chromatin condensation and subsequent 
nuclear extrusion occur [8]. Moreover, caspase‑8 can mediate the 
maturation of macrophages [9] and the differentiation of the pla‑
cental trophoblast [10], two processes that are not associated with 
morphological features of apoptosis. Along similar lines, caspase‑6 
negatively regulates the differentiation of plasma cells, an effect that 
might be related to its ability to control the cell cycle of B‑cell progen‑
itors [11]. There are at least three distinct, non‑exclusive mechanisms 
that might explain why caspase activation leads to apoptosis in some 
cases and to differentiation in others: (i) spatial restriction, as exem‑
plified by the activation of caspase‑9 during thrombopoiesis, which 
only occurs in perinuclear, granular structures [12]; (ii) temporal 
restriction, as illustrated by the transient wave of caspase‑3 activation 
that occurs during early erythropoiesis [8]; and (iii) substrate speci‑
ficity, as demonstrated in several models of cellular differentiation 
[9,13]. Interestingly, such specificity might result from the presence 
of chaperone proteins, such as HSP70, that protect differentiation‑
relevant proteins, like the transcription factor GATA‑1, from caspase‑
mediated proteolysis during erythropoiesis [13]. Similarly, during 
monocyte differentiation, the protein acinus is cleaved by activated 
caspase‑3, while poly(ADP‑ribose) polymerase is not processed [8].

Other apoptotic proteins that influence cell differentiation 
include APAF‑1 and cytochrome c which underlie the activation of 
caspase‑9 upon spatiotemporally restricted MMP also in non‑apop‑
totic settings [7]. In addition, AIF, a caspase‑independent cell death 
effector, and CRADD, an adaptor protein that transduces DNA‑
damage‑elicited signals, both control the differentiation of adipo‑
cytes [14,15], though the underlying molecular mechanisms remain 
obscure. Of note, transgenic mice engineered for the overexpression 
of a dominant‑negative variant of the TNFR1 functional interactor 
FADD or bearing a T‑cell‑specific Fadd gene knockout (the whole‑
body knockout is lethal, see below) exhibit retarded thymocyte 
development and reduced numbers of peripheral T  cells [16,17]. 
It remains elusive whether such effects on T‑cell differentiation are 
accounted for by the inactivation of the apoptotic or non‑apoptotic 
functions of FADD.

Inflammation and immunity
One of the earliest recognized unconventional functions of the 
apoptotic apparatus is represented by the death‑receptor‑mediated 
activation of NF‑κB‑regulated inflammation [18]. Many other com‑
ponents of the apoptotic machinery, including several caspases, 
might participate in inflammatory and immune responses.

Ligand‑bound death receptors, in particular TNFR1, have the 
potential to trigger a wide range of cellular responses ranging from 
cell death, through extrinsic apoptosis or regulated necrosis, to 

NF‑κB activation. Depending on the cell type and specific context, 
NF‑κB can transactivate genes with anti‑apoptotic functions, such 
as BCL-2, or drive the production of pro‑inflammatory mediators 
including TNFα and IFNγ [19]. Thus, it is not surprising that most, 
if not all, TNFR1 interactors, including caspase‑8  and ‑10 [20], 
cIAP‑1 and ‑2 (first characterized for their ability to bind, and hence 

Glossary

AIF apoptosis-inducing factor
AMPA 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid
ANT adenine nucleotide translocase
APAF-1 apoptotic peptidase activating factor 1
ATR ataxia telangiectasia and Rad3 related
BAK BCL-2 antagonist/killer
BAX BCL-2-associated X protein
BCL B-cell lymphoma
BID BH3 interacting domain death agonist
BIM BCL-2 interacting mediator of cell death
BNIP3 BCL-2/adenovirus E1B 19 kDa interacting protein 3
CDK2 cyclin-dependent kinase 2
CDKN1 cyclin-dependent kinase inhibitor 1
cIAP cellular IAP
CRADD CASP2 and RIPK1 domain containing adaptor with death domain
CrmA cytokine response modifier A
DIABLO direct IAP binding protein with low pI
ENDOG endonuclease G
EPO erythropoietin
ER endoplasmic reticulum
FADD FAS-associated death domain protein
FGF2 fibroblast growth factor 2
HSP70 heat-shock 70 kDa protein
IAP inhibitor of apoptosis protein
Ig immunoglobulin
IFNγ interferon γ
IL interleukin
IM inner mitochondrial membrane
IMS mitochondrial intermembrane space
IRE1α inositol-requiring enzyme 1 α
LATS1 large tumour suppressor, homologue 1
MEF mouse embryonic fibroblast
MMP mitochondrial membrane permeabilization
MOMP mitochondrial outer membrane permeabilization
MPT mitochondrial permeability transition
MW molecular weight
NF-κB nuclear factor-κB
NOD nucleotide-binding oligomerization domain containing
NLRP NLR family, pyrin domain containing 
OM outer mitochondrial membrane
PRR pattern recognition receptor
PTPC permeability transition pore complex
RIG-I retinoic acid-inducible gene 1
RIPK receptor-interacting protein kinase
ROS reactive oxygen species
Smac second mitochondrial activator of caspases
STAT1 signal transducer and activator of transcription 1
TCR T-cell receptor
TLR4 Toll-like receptor 4
TNFα tumour necrosis factor α
TNFR1 TNFα receptor 1
TRADD TNFR1-associated death domain protein
TRAFs TNFR-associated factors
VDAC voltage-dependent anion channel
XIAP X-linked IAP
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inhibit, active caspase‑3; [21]), TRADD, FADD and RIPK1 [22], 
influence inflammatory responses as they are required for optimal 
NF‑κB activation. In addition, TRADD, RIPK1 and FADD partici‑
pate in the intracellular signalling pathways elicited by PRRs such 
as RIG‑I and TLR4 [23–25]. Similarly, XIAP, another member of the 
IAP family, is required for the full‑blown activation of NF‑κB by cyto‑
solic PRRs of the NOD family [26], presumably due to its capaci ty to 
bind directly to RIPK2 [27]. Finally, a nuclear pool of TRADD report‑
edly binds to STAT1, thereby altering its DNA‑binding activity in 
response to IFNγ [28].

Thus, several components of the extrinsic apoptotic pathway are 
involved in inflammation and innate immunity. This also applies to 
some caspases: caspase‑1  and ‑5, which are responsible—within 
the supramolecular complex known as the inflammasome—for the 
proteolytic maturation of the pro‑inflammatory cytokines IL‑1β and 
IL‑18 (Fig 1; [29,30]); caspase‑11, which was originally described as 
an obligate co‑activator of caspase‑1 [31]; and caspase‑12, which 
might be important for the attenuation of septic responses [32], as 
well as to the BH3‑only protein BID, which can interact with cyto‑
solic PRRs of the NOD family to facilitate the production of pro‑
inflammatory cytokines in response to NOD agonists [33]. Recent 
data suggest that the IL‑1β‑deficient phenotype of Casp1–/– mice 
described in 1995 [34,35] might be partly due to the concomitant, 
unwarranted deletion of Casp11 [36]. Accordingly, caspase‑11 
seems to be required for the caspase‑1‑mediated production of IL‑1β 
by macrophages responding to bacterial products, but not to ATP 
and monosodium urate [36].

The regulation of intrinsic apoptosis also impinges on immune 
functions. The BCL‑2 protein family has a key role in both the 
induction (BH3‑only members) and the regulation (pro‑ and anti‑
apoptotic multidomain members) of both MOMP‑ and MPT‑driven 
MMP [37]. Moreover, BCL‑2  and its anti‑apoptotic homologue 
BCL‑X

L
 inhibit the inflammasome by interacting physically with 

NLRP1 [38,39]. The deletion of Endog, which codes for a mito‑
chondrial endonuclease that participates in caspase‑independent 

apoptosis [4], was initially thought to be embryonic‑lethal in 
mice [40], owing to the unwarranted concomitant deletion of an 
adjacent gene. Subsequent studies with proper knockout models 
revealed that Endog–/– mice are viable and develop into adulthood 
with no obvious abnormalities [41]. B cells isolated from Endog–/– 
mice are deficient in Ig class switch, due to an impaired genera‑
tion of double‑strand breaks in the switch regions of Ig genes [42]. 
Although this aspect has not yet been investigated, it is tempting to 
speculate that Endog–/– mice might display increased susceptibility 
to some infectious diseases and a reduced propensity to develop 
autoimmune and allergic diseases.

Cell cycle control
Several constituents of the apoptotic apparatus, including com‑
ponents of both the extrinsic and the intrinsic pathway, have been 
shown to influence cell cycle progression, either by modulating pro‑
liferation in a rather general fashion or by controlling specific cell 
cycle phases (Fig 2).

Executioner caspases including caspase‑3  and ‑6 report‑
edly restrain the proliferation of B cells [11,43], perhaps linked to 
changes in the expression of cell cycle inhibitors such as CDKN1 
or to alterations in the requirements for B cells to trespass the G

0
–G

1 

boundary. In addition, caspase‑3 might cause the release of prosta‑
glandin E2 by tumour cells succumbing to chemotherapy, in turn 
stimulating the proliferation of residual, therapy‑resistant, cancer 
cells [44]. Such a caspase‑3‑mediated autocrine circuit might have 
important therapeutic implications, as demonstrated by the fact 
that caspase‑3 activation inversely correlates with disease‑free and 
overall survival in cohorts of head and neck carcinoma, and breast 
cancer patients, respectively [44]. Intriguingly, the contribution of 
caspases to cell cycle regulation might be phylogenetically ancient, 
as suggested by the critical role of Leishmania major metacaspase in 
the correct segregation of the nucleus and the kinetoplast [45].

FADD and caspase‑8 are required for the proper entry of acti‑
vated lymphocytes into the S phase of the cell cycle [46,47]. T cells 
expressing a dominant‑negative variant of FADD exhibit limited 
proliferation rates in response to TCR stimulation, correlating with 
defects in Ca2+ signalling [47], reduced phosphorylation of the S6 
kinase, impaired expression of cyclin E and activation of CDK2 
[46]. Many mitochondrial components of the apoptotic appara‑
tus can participate in the regulation of the cell cycle. For instance, 
HTRA2—a mitochondrial protease that, upon MMP, promotes 
both caspase‑dependent and ‑independent apoptosis—reportedly 
cleaves LATS1 in non‑apoptotic circumstances, thereby generating 
LATS1 fragments that inhibit the G

1
–S transition [48]. Along similar 

lines, the ectopic overexpression of DIABLO (another mitochon‑
drial activator of caspases that is released after MMP) has been dem‑
onstrated to arrest leukaemic cells at the G

1
–S

 
boundary [49]. This 

contrasts with the observation that mice lacking the murine ortho‑
logue of DIABLO (Smac) are viable and normally develop into fertile 
adults [50], casting some doubts on the actual pathophysiologi‑
cal relevance of the apoptosis‑unrelated roles of DIABLO. Finally, 
ENDOG not only seems to be required for DNA recombination and 
repair in both mammalian and yeast cells [51], but also might be 
necessary for proliferation, as ENDOG‑depleted cells accumulate at 
the G

2
–M transition [52].

Both BCL‑2 and BCL‑X
L 
function as negative regulators of the 

cell cycle, through several mechanisms. BCL‑2 delays the G
1
–S 

transition by (i) inhibiting CDK2 [53]; (ii) upregulating CDKN1 [54]; 
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Fig 1 | Pro-inflammatory functions of caspase-1. Several stress conditions 

can trigger the assembly of the inflammasome, a multiprotein platform for 

the activation of caspase-1 consisting of specific PRRs such as NLRP1 and 

NLRP3 and the adaptor protein ASC. Active caspase-1 catalyses the proteolytic 

processing of pro-IL-1β and pro-IL-18 followed by the secretion of mature 

IL-1β and IL-18 into the extracellular milieu. BCL-2 and BCL-XL inhibit IL-1β 

and IL-18 secretion by binding to NLRP1. ASC, apoptosis-associated speck-like 

protein containing a CARD; BCL, B-cell lymphoma; IL, interleukin; NLRP, 

NLR family, pyrin domain containing; PRR, pattern recognition receptor.
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and/or (iii) interfering with the transcriptional activity of E2F 
[54,55]. Similar cell cycle inhibitory functions have been ascribed 
to BCL‑X

L
 [56,57], while pro‑apoptotic BCL‑2‑like proteins such as 

BAX and BAD stimulate cell cycle progression [53,56]. Of note, the 
cell cycle regulatory functions of anti‑apoptotic BCL‑2 family mem‑
bers seem to be evolutionarily conserved [57,58] and mediated by 
a specific protein domain that does not participate in the regulation 
of apoptosis [59].

The cytosolic adaptor APAF‑1  is involved in the regulation of 
the cell cycle in response to DNA damaging agents, as demon‑
strated by the fact that APAF‑1‑depleted human cancer cells fail to 
accumulate in the S phase upon cisplatin‑ and irradiation‑induced 
DNA damage [60] and that the absence of APAF‑1 facilitates DNA‑
damage‑induced chromosomal instability [61]. Bid–/– murine cells 
have also been ascribed with defects in the DNA damage response 
[62], but these results have been questioned by subsequent stud‑
ies [63]. A nuclear pool of BID might be required for the proper  
activation of ATR in response to replicative stress [64]. Moreover, 
caspase‑2—a DNA‑damage‑responsive caspase that can catalyse 
the proteolytic activation of BID [65]—appears to operate, indepen‑
dently of its catalytic functions and of any of its known interactors, 
as a translational regulator of CDKN1, mediating cytoprotective 
cell cycle arrest following DNA damage [66]. These observations 
suggest that components of the apoptotic machinery regulate the 
cell cycle not only in physiological settings but also in the context 
of stress responses.

Metabolism and autophagy
Some pieces of the molecular apparatus for apoptosis, notably 
those that operate in close connection with mitochondria, have 
been discovered to modulate various aspects of the bioenergetic 
and biosynthetic metabolism of the cell.

Due to its essential role as an electron shuttle between com‑
plexes III and IV of the mitochondrial respiratory chain, cytochrome c, 

which upon MMP drives the apoptosome‑mediated activation of 
caspase‑9 [67], is the most representative metabolism‑relevant com‑
ponent of the apoptotic machinery (Fig 3; [68,69]). AIF, a phylogeneti‑
cally ancient protein of the IMS, exhibits NADH oxidase enzymatic 
activity [70]. Besides its role as a caspase‑independent cell death 
effector [71], mammalian AIF is required for the assembly or stabi‑
lization of respiratory complex I (Fig 3; [70]), and the whole‑body 
knockout of Aif1 results in early embryonic death [72]. Yeast cells 
lacking aif1 proliferate slowly when cultured on non‑fermentable 
energy sources and are characterized by a respiratory defect in com‑
plex III [70]. Similarly, Drosophila melanogaster larvae lacking the fly 
orthologue of AIF manifest respiratory deficits in complexes I and IV, 
resulting in premature death by day 8 after egg laying [73]. In humans, 
distinct loss‑of‑function mutations of AIF either cause prenatal ven‑
triculomegaly linked to decreased activities of respiratory complexes I 
and IV [74] or a severe mitochondrial encephalomyopathy that mani‑
fests postnatally [75]. In mice, the muscle‑ and liver‑specific deletion 
of Aif1 can result in increased glucose tolerance, enhanced insulin 
sensitivity, reduced fat mass and resistance against obesity induced by 
high caloric intake [76]. Altogether, these observations underscore an 
evolutionarily conserved, pathophysiologically relevant role of AIF in 
the regulation of mitochondrial metabolism.

Another point at which apoptotic cell death and metabo‑
lism intersect is represented by the PTPC [4]. By assuming a 
high conductance state, the PTPC mediates MPT (thus initiat‑
ing MMP) in response to selected intracellular stress conditions, 
such as the overgeneration of ROS and cytosolic Ca2+ over‑
loads [4]. In addition, most, if not all, structural components and  
functional interactors of the PTPC mediate important metabolic 
functions. For example, ANT catalyses the exchange of ATP with 
ADP between the mitochondrial matrix and the cytosol [77]. 
VDAC operates as a voltage‑regulated channel for the transport 
of anionic solutes across the outer mitochondrial membrane [78]. 
Cyclophilin D functions as a peptidyl‑prolyl cis–trans isomerase, 
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Fig 2 | Cell cycle control by apoptotic regulators. Several pro- and anti-apoptotic proteins have been shown to influence cell cycle progression. This can occur 

in a rather generalized fashion (as exemplified by the caspase-3-dependent release of prostaglandin E2 by dying cells) or involve specific cell cycle phases (as 

exemplified by the fact that cells overexpressing DIABLO are selectively arrested at the G
1
–S

 
boundary). Moreover, apoptotic regulators can control the cell cycle 

under physiological circumstances (as suggested by the fact that ENDOG-deficient cells accumulate at the G
2
–M transition in the absence of any other stimulus) 

or in response to stress (as exemplified by caspase-2 and APAF-1, the depletion of which affects the cell cycle arrest induced by DNA damage). APAF-1, apoptotic 

peptidase activating factor 1; BAX, BCL-2-associated X protein; BCL, B-cell lymphoma; BID, BH3 interacting domain death agonist; CDK2, cyclin-dependent 

kinase 2; CDKN1, cyclin-dependent kinase inhibitor 1; DIABLO, direct IAP binding protein with low pI; ENDOG, endonuclease G; FADD, FAS-associated death 

domain protein; LATS1, large tumour suppressor, homologue 1. 
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assisting the folding of proteins within the mitochondrial matrix 
[79]. The peripheral benzodiazepine receptor regulates the flux 
of cholesterol across mitochondrial membranes, thus control‑
ling steroidogenesis [80]. Hexokinase converts glucose into 
glucose‑6‑phosphate, the starting block of glucose metabolism 
[81]. Finally, creatine kinase catalyses the ATP‑dependent trans‑
formation of creatine into phosphocreatine, constituting a highly 
diffusible intracellular energy store [82]. Murine hepatocytes lack‑
ing Ant1 and Ant2 respond almost normally to inducers of MPT 
[83]. Similarly, Vdac1–/– Vdac2–/– Vdac3–/– MEFs undergo MPT that 
is indistinguishable from their normal counterparts [84]. These 
observations suggest that the PTPC, or at least some of its constitu‑
ents, might be dispensable for MPT‑driven cell death. However, 
many PTPC components exist in multiple, at least in part, func‑
tionally redundant isoforms, which complicates the generation of 
reliable gene knockout models [7]. One notable exception is pro‑
vided by cyclophilin D, which, unexpectedly, is fully dispensable 
for embryonic and post‑embryonic development but required for 
the induction of necrotic cell death in response to several distinct 
triggers, in vitro and in vivo [85]. Thus, the actual pathophysiologi‑
cal relevance of both the apoptotic and non‑apoptotic functions of 
the PTPC remain to be elucidated.

Both pro‑ (for example, BAX) and anti‑apoptotic (for exam‑
ple, BCL‑2 and BCL‑X

L
) BCL‑2 family members operate at the ER 

to modulate the release of Ca2+ transients [86], which has direct 
implications for mitochondrial bioenergetics and for the function 
of a plethora of cytosolic Ca2+‑regulated enzymes [87]. At the IM 
of neurons, BCL‑X

L
 interacts physically with and stimulates the F

1
F

o 

ATPase, the enzymatic complex that exploits the electrochemical 
gradient generated by respiratory complexes I–IV to synthesize ATP 
(Fig 3; [88]). In addition, anti‑apoptotic proteins from the BCL‑2 
family bind to and inhibit the essential autophagic modulator 

Beclin 1 [89]. Conversely, multiple BH3‑only proteins including 
BAD, BNIP3, BIM, BID and PUMA stimulate autophagy, owing to 
their ability to competitively displace Beclin 1 from inhibitory inter‑
actions with anti‑apoptotic BCL‑2 proteins [89]. Thus, by modulat‑
ing autophagy, BCL‑2 family members influence the maintenance 
of organellar homeostasis as well as the preservation of ATP and 
metabolic substrates during stress responses [90]. In addition, both 
pro‑ and anti‑apoptotic BCL‑2 proteins participate in the regula‑
tion of mitochondrial morphology and dynamics [91]. This intimate 
connection has important implications not only for apoptosis [92], 
but also for the bioenergetic functions of mitochondria in a variety 
of pathophysiological scenarios [93].

Regulation of non-apoptotic cell death
Recently, non‑apoptotic instances of programmed cell death, in 
particular regulated necrosis, have spurred great interest [94]. 
Although the molecular characterization of this cell death sub‑
routine is only in its infancy, it has become increasingly clear that 
the molecular machineries for apoptosis and regulated necrosis 
are interconnected in a complex network of reciprocal control.

One of the best‑characterized pathways of regulated necrosis, 
which has been named necroptosis, is elicited by the ligation of 
TNFR1 in conditions in which caspases, in particular caspase‑8, 
are inhibited [94]. Necroptosis relies on the activation and mutual 
interaction of two homologue kinases, RIPK1 and RIPK3, and is 
executed by a bioenergetic catastrophe that involves, among other 
processes, ROS overgeneration and enhanced glycogenolytic and 
glutaminolytic fluxes [94]. As early as in 1998, when the existence 
of regulated necrosis was first intuited, the inhibition of caspases 
by Z‑VAD‑fmk or by the overexpression of the viral serpin CrmA 
was found to enhance the sensitivity of murine fibrosarcoma cells 
to TNFα‑induced cell death [95]. This discovery ignited an intense 
wave of research that, throughout the following decade, led to the 
discovery of the molecular mechanisms whereby multiple compo‑
nents of the apoptotic apparatus inhibit non‑apoptotic cell death 
modalities, in particular regulated necrosis.

In line with the original observations by Vercammen and col‑
leagues [95], caspase‑8 has been shown to tonically inhibit regulated 
necrosis by mediating the proteolytic cleavage of RIPK1 and RIPK3 
[96,97]. Casp8–/– mice do not survive embryogenesis beyond day 
11.5 [98]. Strikingly, this embryonic lethal phenotype fully depends 
on RIPK3, as Casp8–/– Ripk3–/– mice develop into fertile adults [99]. 
Of note, Casp8–/– Ripk3–/– mice accumulate abnormal T  cells in 
peripheral lymphoid organs, thus far resembling Fas–/– mice [99]. 
These results suggest that caspase‑8 is required for the proper devel‑
opment of the T‑cell compartment by virtue of its apoptotic functions, 
whereas it is indispensable for embryonic development owing to its 
role as an anti‑necrotic factor (Fig 4).

Similarly to their Casp8–/– counterparts, neither Fadd–/– nor Ripk1–

/– mice are viable. Fadd–/– mice die in utero at embryonic day 15.5, 
displaying widespread necrosis and signs of cardiac failure and 
abdominal haemorrhage [100,101]. Ripk1–/– mice appear normal at 
birth but succumb at 1–3 days of age, manifesting extensive apop‑
tosis in the lymphoid and adipose compartments [102]. Notably, 
Fadd–/– Ripk1–/– double knockout mice are born at Mendelian fre‑
quencies, yet fail to survive beyond 3 weeks of age [101]. Moreover, 
lymphocytes isolated from Fadd–/– Ripk1–/– mice maintain some of the 
developmental defects that characterize their Ripk1–/– counterparts 
[101]. Thus, while Fadd seems to be dispensable for the phenotypic 
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manifestations of the Ripk1 knockout, at both the organismal and 
cellular levels, Ripk1 is required for the embryonic lethality induced 
by the absence of Fadd (Fig 4). The intestinal epithelial‑cell‑specific 
knockout of Fadd has also been associated with spontaneous enter‑
itis and colitis in mice, a pathology that failed to develop if Ripk3  

was simultaneously knocked out [103]. Similarly, the absence of 
Fadd in epidermal keratinocytes drives Ripk3‑dependent necrosis 
and skin inflammation in mice [104]. Taken together, these observa‑
tions demonstrate that the anti‑necrotic activities of apoptotic regu‑
lators are particularly relevant in vivo, in both developmental and 
pathological scenarios.

Others 
In addition to the structured functional profiles discussed above, 
some apoptotic regulators and executioners exert highly specific, 
often cell‑type‑dependent and context‑dependent, activities, as 
illustrated here by a few examples.

Caspase‑1 has been shown to mediate the proteolysis‑independent 
secretion of multifunctional proteins including pro‑IL‑1α and FGF2 
[105]. In neurons, excessive but non‑apoptotic caspase‑3 activity 
triggers the calcineurin‑mediated dephosphorylation and subsequent 
removal of AMPA‑type receptors, leading to the degeneration of den‑
dritic spines and alterations in glutamatergic signalling [106]. BCL‑2 
family members including BAK and BAX stimulate the unfolded 
protein response by interacting physically with the ER stress sensor 
IRE1α [107]. FADD participates in the induction of neuroplasticity 
and in the development of the abstinence syndrome [108]. HTRA2 
is important for the maintenance of neuronal homeostasis, and loss‑
of‑function mutations of HTRA2 have been associated with familial 
variants of Parkinson disease [109]. Finally, signals transduced by the 
death receptor FAS have been implicated in the paracrine crosstalk 
between the implanting embryo and endometrial cells [110]. Thus, 
the unconventional functions of the apoptotic apparatus are relevant 
in a plethora of distinct pathophysiological settings.

Concluding remarks
As we have discussed in this review, during the past two decades the 
molecular machinery for apoptosis has been demonstrated to medi‑
ate a wide array of non‑apoptotic effects. These range from general 
bioenergetic functions, such as those mediated by cytochrome c, the 
depletion of which is incompatible with mammalian life, to more 
specific, often cell‑type‑restricted activities. These observations sug‑
gest that the apoptotic machinery has not evolved ’from scratch‘ but 
rather by taking advantage of pre‑existing proteins with non‑lethal 
functions. In this hypothetical scenario, one might wonder which 
proteins would have been selected by evolution to mediate apopto‑
sis. On the basis of our current knowledge of the apoptotic appara‑
tus, it is tempting to speculate that two types of proteins have mainly 
been co‑opted to acquire functions in cell death regulation. First, 
proteins with peculiar structural features and/or that are normally 
segregated in non‑accessible cell compartments. This is the case 
with IMS proteins such as cytochrome c and AIF, which receive their 
prosthetic groups—haem and FAD, respectively—and acquire their 
final conformation only once their precursors have been imported 
into mitochondria. Second, proteins that play a role in the manage‑
ment of stress. These factors—including BCL‑2 family members, 
which regulate autophagy and the unfolded protein response, 
APAF‑1, which controls DNA damage responses, and others (see 
above)—might have initially evolved as stress‑response proteins 

and subsequently acquired the capacity to regulate the demise of 
severely damaged cells.

One particular type of stress that is intimately linked to cell death 
is represented by viral infection. On the one hand, viruses must 
divert the cell metabolism to their own advantage, while avoiding the 
premature death of their hosts. On the other hand, at late stages of 
viral infection, viruses often actively induce cell death, to facilitate 
the dissemination of new infectious particles. Viral genomes encode 
a plethora of apoptotic regulators, including anti‑apoptotic ortho‑
logues of BCL‑2 and inhibitors of caspases that operate similarly to 
IAPs [111]. Moreover, as viral genomes are sometimes very small, 
they might have favoured the selection of proteins with multiple 
functions. Thus, at least some of the proteins that regulate both lethal 
and vital aspects of the cellular metabolism might have evolved in 
viruses and have subsequently been acquired by host cells during 
host–pathogen co‑evolution.

One intriguing question is how apoptotic regulators might get 
activated to mediate non‑apoptotic functions without affecting 
cell death. In addition to what was mentioned above for caspases, 
there are many scenarios that might at least partly explain this. First, 
activation threshold: while generalized MMP—that is, MMP near‑
to‑simultaneously involving most mitochondria within one single 
cell—is lethal, MMP affecting single mitochondria is a relatively 
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common process that entails their autophagic removal [90]. In this 
scenario, IMS proteins might be released in insufficient levels to trig‑
ger cell death, yet in amounts high enough to exert non‑apoptotic 
functions. Second, post‑translational modifications: several apo‑
ptotic regulators, including members of the BCL‑2 protein family, 
are subjected to post‑translation control, for instance being (de)
activated upon (de)acetylation or (de)phosphorylation  (for example, 
BAD and BCL‑2; [112,113]), or as a result of de(oligomerization) 
reactions (for example, BAX; [114]). Thus, distinct sets of post‑ 
translational modifications might activate the same protein to medi‑
ate distinct effects. In cases in which apoptotic and non‑apoptotic 
functions have been mapped to different domains of the same 
protein [39,59], post‑translational modifications might simply 
determine the predominant activity by exposing or concealing 
the corresponding domains. Third, subcellular localization: mul‑
tiple apoptotic regulators are localized, either physiologically or 
upon translocation in response to specific triggers, to distinct sub‑
cellular compartments. For instance, under physiological conditions, 
BCL‑2 can be found to variable extents at the ER, at the OM and  
in the nucleus [115], whereas AIF can be detected in extra‑ 
mitochondrial sites only upon MMP [71]. In this scenario, the same 
protein might exhibit context‑dependent activities, perhaps linked 
to localization‑specific post‑translational changes or interactors.

By identifying and thoroughly characterizing further non‑apoptotic 
functions of apoptosis‑regulatory proteins, future studies will surely 
provide additional insights into these questions (see also Sidebar A).
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