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ABSTRACT

This paper focuses on the problem of communication ef-

ficient distributed zeroth order minimization of a sum of

strongly convex loss functions. Specifically, we develop

distributed stochastic optimization methods for zeroth order

strongly convex optimization that are based on an adaptive

probabilistic sparsifying communications protocol. Under

standard assumptions on the cost functions and the noises

corrupting the function evaluations, we establish with the pro-

posed methodO(1/(Ccomm)
2/3−ζ) mean square error (MSE)

convergence rates, for the zeroth order optimization, where

Ccomm is the number of per-node communications and ζ > 0
is arbitrarily small. In the distributed setting considered, the

established rate is the best known rate in terms of the MSE-

communication cost trade off for zeroth order optimization.

Finally, through empirical evaluations we illustrate the pro-

posed algorithm’s theoretical guarantees.

Index Terms— Distributed Optimization, Stochastic Op-

timization, Zeroth Order Optimization, Multi-agent Net-

works.

1. INTRODUCTION

We study zeroth order distributed strongly convex stochas-

tic optimization over networks. There are N interconnected

agents, that aim to collaboratively minimize the sum of their

locally known strongly convex costs. Distributed stochastic

optimization has had increasing interest of late, e.g., [1–4].

These references consider algorithms which have access to a

stochastic first order or a second order oracle. However, in

this paper, we focus on zeroth order distributed stochastic op-

timization methods, where at each time instant (iteration) k,

each node queries a stochastic zeroth order oracle (SZO) to

get unbiased estimates of function values at a queried point.

Such kind of scenarios arise in typical black box settings,
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where only the evaluations of a loss function are known or

can be queried for and there is no access to first order gradi-

ent or second order Hessian information that can be retrieved.

Our focus is on examining the tradeoffs between perfor-

mance and communication cost, measured by the number of

per-node transmissions to neighboring nodes in the network;

and computational cost, measured by the number of per-node

queries made to the SZO.

Contributions. Our main contributions are as follows. We

develop a novel method for communication efficient ze-

roth order distributed stochastic optimization. The method

is based on a communication protocol which probabilisti-

cally sparsifies the message exchanges in the network along

iterations. More precisely, each node, at each iteration k, par-

ticipates in communication (transmits and receives messages

in its neighborhood) with probability pk (independently from

the past and from the others), where the parameter pk decays

to zero at a carefully tuned rate. For the proposed method, we

establish the O(1/(Ccomm)
2/3−ζ) mean square error (MSE)

convergence rate in terms of communication cost1 Ccomm,

where ζ > 0 is arbitrarily small. At the same time, the

method achieves the order-optimal O(1/(Ccomp)
1/2) MSE

rate in terms of computational cost2 Ccomp, that is not

improvable even in the centralized setting. The achieved

O(1/(Ccomm)
2/3−ζ) MSE-communication rate is signifi-

cantly faster than existing zeroth order optimization schemes

in the distributed setting (see, for example [5–8]), that achieve

at best the O(1/(Ccomm)
1/2) rate.

Related Work.In the context of distributed stochastic strongly

convex optimization, first order schemes with static net-

works ( [2, 9]), deterministic time-varying networks [1, 3, 4]

and random time-varying networks albeit with access to ex-

act first order information [10, 11] have been considered.

The aforementioned works explicitly characterize the conver-

gence rates in terms of the iteration counter k, that translates

1The communication cost is measured in terms of per-node number of

transmissions.
2The computation cost is measured in terms of per-node number of

queries made to the SZO.



into computational cost Ccomp, i.e., number of gradient eval-

uations under suitable assumptions. More relevant to the

current context, references [1, 3, 4] consider deterministically

varying networks, assuming that the “union graph” over finite

windows of iterations is connected. In contrast, we consider

randomly time-varying networks connected only in mean

with access to a SZO for our distributed zeroth order opti-

mization scheme. In the context of distributed zeroth order

optimization, [12] considers an algorithm for non-convex

minimization over a static graph, where a random directions-

random smoothing approach was employed. Reference [8]

considers a zeroth order distributed stochastic approximation

method and establishes the method’s O(1/k1/2) convergence

rate in terms of the number of iterations, where the number of

queries to the SZO at each iteration scales with the dimen-

sion of the optimizer. In contrast, the scheme proposed here

utilizes only two calls of the SZO per node, per iteration, in-

dependently from the variable dimension d. However, all the

aforementioned work in the distributed setup is aimed at at-

taining the optimal rate in terms of the iterations or explicitly

in terms of the number of queries made to the stochastic ora-

cle in question. In the context of distributed setups with ran-

dom networks and access to stochastic oracles references [8]

and [13] achieve order-optimal rates for zeroth and first order

distributed strongly convex optimization respectively.3 In

the context of communication efficient distributed inference

and optimization, adaptive communication protocols for first

order schemes without explicit characterization of communi-

cation cost savings (see, for example [14–16]) and constant

proportion of communication savings at the cost of deviat-

ing from the order-optimal rate (see, for example [17]) have

been considered. In contrast to [14–16], we consider a com-

munication efficient distributed zeroth optimization scheme,

where we explicitly characterize the communication savings

while ensuring order-optimal convergence rates as compared

to [17]. In prior work [18, 19], we developed distributed

algorithms with increasingly sparse communications for sta-

tistical estimation problems. This paper demonstrates that the

concept of increasingly sparse communications can be ex-

ploited to develop communication-efficient distributed zeroth

order stochastic optimization algorithms also. Technically,

the setups in [18, 19] and the setup here are very different,

requiring new analyses. Communication efficient distributed

estimation schemes as proposed in [18, 19] involve local cor-

rectness, i.e., the optimizers of the sum of loss functions of

the individual nodes is a subset of the optimizers of each lo-

cal function, while in the current work, the setup is rendered

locally incorrect. We skip the proofs due to space limitations.

The proofs can be found in [20].

2. MODEL AND PROPOSED ALGORITHM

Our setup involves a network of N agents which collaborate
through an iterative message passing scheme so as to solve

3Reference [8] utilizes a non-diminishing amount of communications

across iterations, and hence achieves at best and O(1/(Ccomm)1/2) com-

munication rates.

the following unconstrained problem:

min
x∈Rd

N∑

i=1

fi(x), (1)

where fi : Rd 7→ R is a convex function available to node

i, i = 1, ..., N . We make the following assumption on the

functions fi(·):
Assumption A1. For all i = 1, ..., N , function fi : R

d 7→ R

is twice continuously differentiable with Lipschitz continuous
gradients. In particular, there exist constants L, µ > 0 such

that for all x ∈ R
d, ∀i = 1, 2, · · · , N
µ I � ∇2fi(x) � LI.

From Assumption A1 we have that each fi, i = 1, · · · , N ,
is strongly convex with modulus µ. Using standard properties

of convex functions, we have for any x,y ∈ R
d:

fi(y) ≥ fi(x) +∇fi(x)⊤ (y − x) +
µ

2
‖x− y‖2,

‖∇fi(x)−∇fi(y)‖ ≤ L ‖x− y‖.

The optimization problem in (1) has a unique solution, which

we denote by x∗ ∈ R
d, where the uniqueness is guaranteed by

assumption A1. Throughout the paper, we also use f : Rd →
R, f(x) =

∑N
i=1 fi(x). We employ a distributed zeroth order

optimization scheme to solve (1).

2.1. Zeroth Order Optimization

We employ a distributed random directions stochastic approx-
imation (RDSA) type method to solve (1). Each node i, i =
1, ..., N , in our setup maintains a local copy of its local esti-

mate of the optimizer xi(k) ∈ R
d at all times. In the absence

of first order information, each agent i queries the SZO at
time k, to obtain noisy function values of fi(xi(k)). An un-
biased estimate of fi(·) is obtained from the SZO which is
then given by,

f̂i(xi(k)) = fi(xi(k)) + vi(k), (2)

where vi(k) is the measurement noise. In order to ap-
proximate the gradient, each agent makes queries to the
SZO twice at each iteration. For instance, agent i queries
for fi(xi(k) + ckzi,k) and fi(xi(k)) at time k and obtains

f̂i(xi(k) + ckzi,k) and f̂i(xi(k)) respectively, where ck is a
carefully chosen time-decaying factor (to be specified soon)
and zi,k is a random vector such that E

[
zi,kz

⊤
i,k

]
= Id. Let

Fk denote the history of the proposed algorithm up to time k
which is given by the σ-algebra generated by the collection

of random variables {L(s)4, vi(s), zi,s}, i = 1, ..., N , s =
0, ..., k − 1. Denote by ĝi(xi(k)) the approximated gradient.
By mean value theorem, we then have:

ĝi(xi(k)) =
f̂i (xi(k) + ckzi,k)− f̂i (xi(k))

ck
zi,k

⇒ E [ĝi(xi(k))|Fk] = E

[
zi,kz

⊤
i,k∇fi (xi(k)) |Fk

]

+ ck E
[(

z
⊤
i,k∇2fi (ek) zi,k

)
zi,k

2
|Fk

]

︸ ︷︷ ︸
bi (xi(k))

, (3)

4To be specified soon



where ek = θxi(k) + (1− θ) (xi(k) + ckzi,k) and θ ∈ [0, 1].
Thus, we can write,

ĝi(xi(k)) = ∇fi (xi(k)) +
v̂i(k)zi,k

ck

+ E [ĝi(xi(k))|Fk]−∇fi (xi(k))︸ ︷︷ ︸
ckb(xi(k))

, (4)

where v̂i(k) = (f̂i(xi(k) + ckzi,k) − fi(xi(k) + ckzi,k)) −
(f̂i(xi(k))− fi(xi(k))).

Assumption A2. The zi,k’s are drawn from a distribution P

such that D(P )
.
=
√

E
[
‖zi,k‖6

]
is finite.

We provide two examples of two such distributions. If zi,k’s

are drawn from N (0, Id), then
√

E
[
‖zi,k‖6

]
=
√
d(d+ 2)(d+ 4).

If zi,k’s are drawn uniformly from the l2-ball of radius
√
d,

then we have, ‖zi,k‖ =
√
d and

√
E
[
‖zi,k‖6

]
= d3/2.

2.1.1. Communication Scheme

Let the backbone graph over which we design the increasingly
sparsified communication protocol be given by G = (V,E),
which is an undirected graph with N vertices, i.e. |V | = N
and E represents the edges. For each node i, at every time k,
we introduce a binary random variable ψi,k, where

ψi,k =

{
ρk with probability ζk

0 else,
(5)

where ψi,k’s are independent both across time and the nodes,
i.e., across k and i respectively which abstracts out the partici-
pation of the node i at time k in the neighborhood information
exchange. We specifically take ρk and ζk of the form

ρk =
ρ0

(k + 1)ǫ/2
, ζt =

ζ0
(k + 1)(τ/2−ǫ/2)

, (6)

where 0 < ǫ < τ and 0 < τ ≤ 1. Furthermore, define βk to
be

βk = (ρkζk)
2 =

β0
(k + 1)τ

. (7)

The random time-varying Laplacian L(k) ∈ R
N×N which

abstracts the inter-node information exchange can be repre-
sented as follows:

Li,j(k) =






−ψi,kψj,k {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E∑
l 6=i ψi,kψl,k i = j.

(8)

The above protocol avoids directed graphs by enforcing the
requirement of both nodes being active to be able to commu-
nicate with each other. We have, for {i, j} ∈ E:

E [Li,j(k)] = −βk, E
[
L

2
i,j(k)

]
=

ρ0β0
(k + 1)τ+ǫ

.

Define the mean of the random time-varying Laplacian se-

quence {L(k)} as L(k) = E [L(k)] and L̃(k) = L(k)−L(k),

where E
[
L̃(k)

]
= 0. We also have that, L(k) = βkL, where

Li,j =





−1 {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E

−∑
l 6=i Li,l i = j.

(9)

We make the following assumption on L.

Assumption A3. The inter-agent communication graph is

connected on average, i.e., L is connected. In other words,

λ2(L) > 0, where λ2(L) is the second largest eigenvalue of

L.

Technically speaking, the communication graph need not be
connected at all times. Hence, at any given time, only a
few of the possible links could be active. The connected-
ness in average basically ensures that over time, the infor-
mation from each agent in the graph reaches other agents in
a balanced fashion, thus ensuring information flow. With
the communication protocol in place, we now state the op-
timizer update rule. For arbitrary deterministic initializations

xi(0) ∈ R
d, i = 1, ..., N , the optimizer update rule at node i

and k = 0, 1, ..., of the consensus+innovations form [21] and
is given as follows:

xi(k + 1) = xi(k)−
∑

j∈Ωi

ψi,kψj,k (xi(k)− xj(k))

− αkĝi(xi(k)), (10)

where ĝi(·) is as defined in (4) and Ωi represents the neigh-

borhood of agent i at time k. The weight sequences {αk},

{ck} and {βk} are given by αk = α0/(k + 1), ck = c0/(k +
1)δ and βk = β0/(k+1)τ respectively, where α0, c0, β0 > 0.

We state an assumption on the weight sequences and measure-

ment noises before proceeding further.

Assumption A4. The constants α0, δ > 0 and τ ∈ (0, 1) are

chosen such that,
∑∞

k=1

α2

k

c2
k

<∞.

Assumption A5. For each i = 1, ..., N , the sequence of mea-
surement noises {vi(k)} satisfies for all k = 0, 1, ...:

E[ vi(k) | Fk ] = 0, E[ vi(k)
2 | Fk ] ≤ cf‖xi(k)‖2 + σ2, a.s.,

where cf and σ2 are nonnegative constants.

Communication Cost. Define the communication cost Ct to
be the expected per-node number of transmissions up to iter-
ation t, i.e.,

Ct = E

[
t−1∑

s=0

I{node C transmits at s}

]

, (11)

where IA represents the indicator of event A. Note that the

per-node communication cost in (11) is the same as the net-

work average of communication costs across all nodes, as the

activation probabilities are homogeneous across nodes.



3. CONVERGENCE RATES

In this section, we state the results concerning the conver-

gence rate of the proposed zeroth order optimization algo-

rithm.

Theorem 3.1. 1) Consider the optimizer estimate sequence
{x(k)} generated by the algorithm (10). Let assumptions A1-
A5 hold. Then, for each node i’s optimizer estimate xi(k) and
the solution x⋆ of problem (1), ∀k ≥ k3 there holds:

E

[
‖xi(k)− x

∗‖2
]
≤ 2Mk +

32NL2∆1,∞α
2
0

µ2λ2
2

(
L
)
c20β

2
0(k + 1)2−2τ−2δ

8L2D2(P )c20
µ2(k + 1)2δ

+
4∆1,∞α

2
0

λ2
2

(
L
)
β2
0c

2
0(k + 1)2−2τ−2δ

+
4Nα0

(
dcfq∞(N, d, α0, c0) + dNσ2

1

)

µc20(k + 1)1−2δ
, (12)

where, k3 = max{k0, k1, k2},

k0 = inf
{
k|µ

2
> (L− µ)

√
Ndck +

2cfαk

c2
k

}
,

k1 = inf
{
k|µ

2
>

√
N
2
d(P )Lck +

2dcfαk

c2
k

}
,

k2 = inf{k|βk

2
λ2

(
L
)
> 4|E|βkρk},

∆1,∞ = 6dcfq∞(N, d, α0, c0) + 6dNσ2
1 and q∞(N, d, α0, c0) =

E
[
‖x(k0)− xo‖2

]
+

√
Nd(P )Lα0c0

2δ
+

Nd2(P )L2α2

0
c2
0

4(1+2δ)
+4 ‖∇F (xo)‖2

µ2

+
dα2

0(2cfN‖xo‖2+Nσ2)
c2
0
(1−2δ)

. Mk is a term which decays faster than

the rest of the terms.
2) In particular, the RHS of (12) decays as (k+1)−δ1 , where
δ1 = min {1− 2δ, 2− 2τ − 2δ, 2δ}. By, optimizing over τ
and δ, we obtain that for τ = 1/2 and δ = 1/4,

E

[
‖xi(k)− x

∗‖2
]
= O

(
1

k
1

2

)
, ∀i.

3) The MSE-communication rate is given by,

E

[
‖xi(k)− x

⋆‖2
]
= Θ

(
1

C2/3−ζ
k

)

.

Theorem 3.1 asserts that the MSE-communication rate can

be improved to Θ
(
C−2/3+ζ
k

)
while keeping the MSE decay

rate at O
(
k−

1

2

)
by the proposed zeroth order distributed al-

gorithm. The performance of the zeroth order optimization

scheme depends explicitly on the connectivity of the expected

Laplacian through a 1

λ2

2(L)
scaling. In particular, communica-

tion graphs which are well connected, i.e., have higher values

of λ2
(
L
)

will have lower MSE as compared to a counterpart

with lower values of λ2
(
L
)
. However, the network connec-

tivity quality, i.e., λ2
(
L
)
, does not affect the convergence rate

in k.

4. SIMULATIONS

In this section, we provide evaluations of the proposed al-

gorithm on the Abalone dataset [22]. To be specific, we

consider ℓ2-regularized empirical risk minimization for the

Abalone dataset, where the regularization function is given by

Ψi(x) =
1
2
‖x‖2 and the loss function is the squared loss. We

consider a 10 node network. The Abalone dataset has 4177
data points out of which 577 data points are kept aside as the

test set and the other 3600 is divided equally among the 10
nodes resulting in each node having 360 data points. The vec-

tors zi,k’s are sampled from a normal distribution with unit

covariance. The measurement noises vi,k are sampled from

a standard normal distribution. For the proposed algorithm,

we compare it with a zeroth order scheme employing the

static Laplacian (Benchmark). The data points at each node

are sampled without replacement in a contiguous manner.

Figure 1 compares the test error for the schemes, where it can

be clearly observed that the test error is indistinguishable in

terms of the number of iterations or equivalently in terms of

the number of queries to the stochastic zeroth oracle. Figure

2 demonstrates the superiority of the proposed algorithm in

terms of the test error versus communication cost as com-

pared to the benchmark, as predicted by Theorem 3.1. For

example, at the same relative test error level of 0.3, the pro-

posed algorithm uses up to 3x less number of transmissions

as compared to the benchmark scheme.
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5. CONCLUSION

We have developed a communication efficient distributed

stochastic zeroth order optimization method for smooth

strongly convex optimization, where by employing a random

directions stochastic approximation type consensus+innovations

algorithm. Through the analysis of the considered method,

we have established the order optimal O(k−1/2) MSE con-

vergence rate while improving the MSE-communication rate

to Θ
(
C−2/3+ζ
k

)
. In particular, we have also quantified the

mean square error of the generated optimizer estimate se-

quence in terms of the algorithm parameters. Future work

includes extending the current approach to a broader class of

convex and non-convex functions.
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