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Abstract
In this paper, we derive criteria of global attractivity of a (possibly constant) positive
periodic solution in non-autonomous systems of delay differential equations. Our
approach can be viewed as the extension for non-autonomous systems of the folkloric
connection between discrete dynamics and scalar delay differential equations. It is
worth mentioning that we provide delay-dependent criteria of global attraction that
cover the best delay independent conditions. We apply our results to non-autonomous
variants of several classicalmodels such thatNicholson’s blowfly equation,Goodwin’s
model oscillator, the Mackey–Glass equation and systems with patch structure.

Keywords Delay differential equations · Nicholson’s blowfly equation ·
Mackey–Glass equation · Periodic solutions · Attraction · Discrete dynamics

Mathematics Subject Classification 39B82 · 92B05

1 Introduction

The seasonal fluctuations of the environmental conditions play a central role in the
regulation of populations, the structuring of ecological communities and the func-
tioning of ecosystems (Lou and Zhao 2017; Lou et al. 2019). In epidemiology, the
transmission of most infectious diseases also depends on several temporal variables
(Barrientos et al. 2017; Li et al. 2020). For example, seasonal influenza generally
recurs with a large epidemic in winter and a negligible presence in summer. Given
the importance of the seasonal fluctuations, non-autonomous equations are certainly
useful in any life-system. On the other hand, time delays are rather common in applied
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sciences to model, for instance, age-structure, maturation periods or hatching times
(Lou et al. 2019; Ruiz-Herrera 2019). Taking together both frameworks, we arrive at
non-autonomous delay differential systems. These models have attracted much atten-
tion in the last decades, see Berezansky et al. (2010), Faria (2021, 2017), Faria et al.
(2018), Li et al. (2020), Lou and Zhao (2017) and Lou et al. (2019) and the references
therein. The main reason for this interest is that the interplay between time-delays and
seasonality brings great challenges to the mathematical analysis.

When one faceswith a particularmodel, the natural question is to study the existence
of a globally attracting solution. There are mainly two approaches for this problem:
the construction of Lyapunov functions (McCluskey 2015) and the theory of mono-
tone systems (Smith 2011). In the context of autonomous scalar delay differential
equations, Ivanov and Sharkovsky (1992) and Mallet-Paret and Nussbaum (1986)
proposed an alternative methodology. Specifically, they proved that x̄ is a globally
attracting solution in

x ′(t) = −dx(t) + βh(x(t − τ)) (1)

provided x̄ is a globally attracting fixed point for the difference equation

xn+1 = f (xn)

where f (x) = β
d h(x) is the function that determines the equilibria in (1). The con-

nection between discrete and continuous equations was a considerable step in the
understanding of delay differential equations. The obvious advantage is that we can
handle an equation where the initial conditions belong to an infinite dimensional space
via an equationwith initial conditions in an one-dimensional space.Moreover, the con-
nection typically leads to the best delay independent condition of global attraction. It
is worth mentioning that the direct extension for systems is not possible. In general,
it is necessary to add extra conditions, see Example 3 in Ruiz-Herrera (2020).

In this paper, we propose a connection between non-autonomous delay differential
systems anddiscrete equations similar to that in Ivanov andSharkovsky (1992),Mallet-
Paret and Nussbaum (1986). Our methodology is new and follows the next steps: First,
we prove the existence of a (possibly constant) positive periodic solution x∗(t). Then,
we employ a change of variable and identify a class of “amenable” nonlinearities.
Finally, we construct an adequate function depending on the upper and lower bounds
of the possible positive periodic solutions of the system. A strength of our results is
that we recover the best delay independent conditions of global attraction and some
classical delay dependent criteria (see Gyori and Trofimchuk 1999) when we study
autonomous equations.We stress that the function that “codes” the dynamical behavior
in

x ′(t) = −d(t)x(t) + β(t) f (x(t − τ)),

is not clear. This first difficulty could explain why the analysis in Ivanov and
Sharkovsky (1992) or Mallet-Paret and Nussbaum (1986) has not been extended to
non-autonomous systems yet.
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Another motivation of the paper is to examine critical issues such as the
influence of the seasonal fluctuations of the environment and time-delays on the cre-
ation/suppression of oscillations or the density of population, i.e., whether or not a
population is adversely affected by a periodic environment.Apart from these issues,we
derive sufficient conditions for the existence of a globally attracting periodic solution
in the Mackey–Glass equation and Nicholson’s blowfly model with periodic coeffi-
cients.Despite the variety ofmethods and tools that have been proposed in the literature
for these models, we obtain sharper criteria than the existing ones, see Faria (2017)
and the references therein. We also analyze the Goodwin oscillator model (Ruoff and
Rensing 1996; El-Morshedy and Ruiz-Herrera 2020) and some classical metapopu-
lation models subject to seasonal fluctuations of the environment (El-Morshedy and
Ruiz-Herrera 2017, 2020; Faria 2014).

The structure of the paper is as follows. In Sect. 2, we give some useful lemmas
on discrete dynamics. In Sect. 3, we derive criteria of global attractivity of a (possibly
constant) positive periodic solution in scalar delay differential equations. In Sect. 4,
we extend the results to systems.We finish the paper with a discussion on our findings.
A critical tool in this paper will be the fluctuation lemma. We recall its statement for
the reader’s convenience.

Lemma 1.1 (Lemma A.1 page 154 in Smith 2011) Let ϕ : [a,+∞) −→ R be a
bounded function of class C1. Then, there exist two sequences {tn} and {sn} tending to
+∞ with the following properties:

limn→+∞ ϕ(tn) = lim supx→+∞ ϕ(x) and limn→+∞ ϕ′(tn) = 0.
limn→+∞ ϕ(sn) = lim infx→+∞ ϕ(x) and limn→+∞ ϕ′(sn) = 0.

To conclude this section, we introduce some notation. Given a subset A ⊂ R
N and

two positive constants τ, T > 0 with τ ≥ T , we define

C([−τ, 0], A) = {φ : [−τ, 0] −→ A continuous}.

For φ ∈ C([−τ, 0], A) such that φ(t + T ) = φ(t) for all t, t + T ∈ [−τ, 0], we write
˜φ for the T -periodic function defined in R which coincides with φ on [−τ, 0]. We
denote by CT (A) the set of T -periodic continuous functions φ : R −→ A, which can
be identified as a subset of C([−τ, 0], A) respectively, with the same topology. Given
v = (v1, . . . , vN ) ∈ R

N , we write v 	 0 when vi > 0 for all i = 1, . . . , N .

2 Mathematical Framework and Some Useful Results

Given a function h : [0,+∞) −→ [0,+∞) of class C1 with h((0,+∞)) ⊂ (0,+∞),
we define H : (0,+∞)2 −→ (0,+∞) as

H(t, x) = h(t x)

h(t)
.

The next conditions play a crucial role in our analysis:
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(A) h is bounded.
(B) ∂H

∂t (t, x) ≥ 0 for all (t, x) ∈ (0,+∞) × (0, 1).
(C) ∂H

∂t (t, x) ≤ 0 for all (t, x) ∈ (0,+∞) × (1,+∞).

Lemma 2.1 Fix θ0 ∈ (0,+∞) and consider g(x) = H(θ0, x). Assume (A), (B) and
(C) together with the condition:

(Q) g(x) > x if x ∈ (0, 1) and g(x) < x if x ∈ (1,+∞).

If H(θ, a) ≥ a (resp. H(θ, a) ≤ a) for some (θ, a) ∈ [θ0,+∞)×(0,+∞), then a ≤ 1
(resp. a ≥ 1). In particular, if H(θ, a) = a for some (θ, a) ∈ [θ0,+∞) × (0,+∞),
then a = 1.

Proof Take (θ, a) ∈ [θ0,+∞) × (0,+∞) with H(θ, a) ≥ a. Assume, by
contradiction, that a > 1. Then, by (C),

a ≤ H(θ, a) ≤ g(a). (2)

On the other hand, since a > 1, condition (Q) implies that g(a) < a, a contradiction
with (2). The property regarding H(θ, a) ≤ a is analogous (using condition (B))
and we omit the details. Finally, if H(θ, a) = a, we have that H(θ, a) ≥ a and
H(θ, a) ≤ a. Using the first statement of the lemma, we conclude that a = 1. ��
Lemma 2.2 Fix θ0, θ1 ∈ (0,+∞) with θ0 ≤ θ1 and consider g(x) = H(θ0, x) and
f (x) = H(θ1, x). Assume (A), (B), (C) and (Q). Suppose that there are six positive
constants L1, S1, ˜L,˜S, L, S with the following properties:

• L1, S1 ∈ [θ0, θ1].
• L < S.
• ˜L,˜S ∈ [L, S].
• H(L1, ˜L) ≤ L and H(S1,˜S) ≥ S.

Then, ˜S < 1 < ˜L, f (˜L) ≤ L and f (˜S) ≥ S.

Proof Notice that H(L1, ˜L) ≤ L ≤ ˜L and H(S1,˜S) ≥ S ≥ ˜S. Thus,we automatically
have by the previous lemma that ˜S ≤ 1 and ˜L ≥ 1. Let us prove that ˜S < 1. Assume,
by contradiction, that ˜S = 1. Then,

1 = H(S1, 1) = H(S1,˜S) ≥ S.

Using that 1 = ˜S ≤ S, we obtain that S = 1. Since˜L ≤ S = 1 and˜L ≥ 1,we conclude
that ˜L = 1. Finally, 1 = H(L1, ˜L) = H(L1, 1) ≤ L together with L ≤ ˜L = 1 imply
that L = 1. Collecting the above information, we arrive at L = S = 1. This is a
contradiction with L < S. Arguing in a similar manner, we can deduce that ˜L > 1. At
this moment, we know that ˜S < 1 < ˜L . By conditions (B) and (C), we easily deduce
that f (˜L) ≤ H(L1, ˜L) ≤ L and f (˜S) ≥ H(S1,˜S) ≥ S. ��

The main results of this paper are based on the global attraction of a scalar discrete
equation of the form:

xn+1 = ϕ(xn) (3)
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with ϕ : [0,+∞) −→ [0,+∞) a function of class C1 satisfying that ϕ((0,+∞)) ⊂
(0,+∞). To facilitate understanding, we recall two basic results on discrete dynamics
that we will use in a recurrent manner.

Proposition 2.1 (Lemma 2.5 in El-Morshedy and Lopez 2008) Assume that x̄ ∈
(0,+∞) with ϕ(x̄) = x̄ is a global attractor of (3) in (0,+∞), that is, for all
x0 ∈ (0,+∞),

lim
n−→+∞ ϕn(x0) = x̄ .

Then, there is no interval [L, S] ⊂ (0,+∞) with L < S so that [L, S] ⊂ ϕ([L, S]).
Proposition 2.2 Assume that ϕ is a decreasing or unimodal function of class C3 with
negative Schwarzian derivative, that is,

(Sϕ)(x) = ϕ′′′(x)
ϕ′(x)

− 3

2

(

ϕ′′(x)
ϕ′(x)

)2

< 0, f or all x > 0

provided ϕ′(x) = 0. If (3) has a unique positive equilibrium x̄ > 0 and |ϕ′(x̄)| ≤ 1,
then x̄ is a global attractor of (3) in (0,+∞).

The previous result can be found in Corollary 2.10 of El-Morshedy and Lopez (2008)
for unimodal functions. For decreasing maps, we can deduce the result by a simple
adaptation of the arguments in Singer (1978). It is worth mentioning that ϕ(x) =
xeρ(1−x) with ρ > 0 and ϕ(x) = 1+ργ

1+(ρx)γ x with ρ > 0 and γ > 1 are unimodal
functions with negative Schwarzian derivative.

3 Scalar Equations with Periodic Coefficients

In this section, we derive criteria of global attractivity of a positive T -periodic solution
in

x ′(t) = −d(t)x(t) + β(t)h(x(t − τ)) (4)

where d, β : R −→ (0,+∞) are continuous and T -periodic; τ > 0 and h :
[0,+∞) −→ [0,+∞) is a function of class C1 with h((0,+∞)) ⊂ (0,+∞).
We stress that the term T -periodic function in this paper encompasses the constant
functions. Additionally, we impose that h satisfies conditions (A), (B) and (C).

Our approach has two important ingredients:

• The connection of (4) with a suitable discrete equation.
• An a-priori estimate of upper and lower bounds for the possible positive T -periodic
solutions of (4).

In Sect. 3.3, we will apply our results to the classical Nicholson’s blowfly equation
with periodic coefficients. The reader can consult (Liz and Ruiz-Herrera 2013; Yi and
Zou 2008, 2010) for different approaches relating discrete dynamics and continuous
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equations. We stress that the positive periodic solutions in (4) are generally non-
constant. In Sect. 3.4, we illustrate how to apply our tools when the positive periodic
solution in (4) is a constant function, i.e., d(t) = kβ(t) for some constant k > 0.

3.1 Theoretical Results

For any initial function φ ∈ C([−τ, 0], [0,+∞)), there is a unique (local) solution
x(t, φ) of (4) with x(t, φ) = φ(t) for all t ∈ [−τ, 0]. Based on the variation of the
constant formula, Eq. (4) can be written as:

x(t) = x(0)e− ∫ t
0 d(s)ds + e− ∫ t

0 d(s)ds
∫ t

0
e
∫ s
0 d(r)drβ(s)h(x(s − τ))ds.

This expression implies that x(t, φ) ≥ 0 for all t ≥ 0 on its interval of definition.
Actually, if φ ∈ C([−τ, 0], (0,+∞)), we can guarantee that x(t, φ) > 0 because
h((0,+∞)) ⊂ (0,+∞). Next, we prove that the solutions of (4) cannot blow up.
Take 
2 a constant so that


2 > max

{

β(t)

d(t)
: t ∈ [0, T ]

}

M (5)

withM an upper bound of h, (see (A)). If a solution x(t) of (4) satisfies that x(t0) ≥ 
2
for some t0 > 0, then x(t) is strictly decreasing in a neighborhood of t0. Notice that

x ′(t0)
d(t0)

= −x(t0) + β(t0)

d(t0)
h(x(t0 − τ)) < −x(t0) + 
2. (6)

Thus, the solutions of (4) with initial function in C([−τ, 0], [0,+∞)) are defined for
all t ≥ 0.

In the rest of the section, we always work with solutions with initial function in
C([−τ, 0], (0,+∞)). We refer to them as positive solutions.

Our next goal is to prove that the positive solutions of (4) are uniformly bounded.

Proposition 3.1 Assume (A). Then,

lim sup
t−→+∞

x(t) ≤ 
2

for any positive solution x(t) of (4) with 
2 the constant given in (5).

Proof Take x(t) a positive solution of (4). Asmentioned above, if x(t0) ≥ 
2 for some
t0 > 0, then x(t) is strictly decreasing in a neighborhood of t0. We can also deduce
that if x(t1) ≤ 
2 for some t1 > 0, then x(t) ≤ 
2 for all t ≥ t1. Next we prove that
there is a time t2 > 0 so that x(t2) ≤ 
2. Assume, by contradiction, that x(t) > 
2
for all t > 0. In such a case, x ′(t) < 0 for all t > 0 by (6). Hence, there exists ξ ≥ 
2
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so that limt−→+∞ x(t) = ξ . Moreover, we can take a sequence tn −→ +∞ so that
limn−→+∞ x ′(tn) = 0. Evaluating (4) at tn , we obtain that

x ′(tn)
d(tn)

= −x(tn) + β(tn)

d(tn)
h(x(tn − τ)) ≤ −x(tn) + max

{

β(t)

d(t)
: t ∈ [0, T ]

}

M .

Making n −→ +∞ and using that d(t) is T -periodic and positive, we conclude that

0 ≤ −ξ + max

{

β(t)

d(t)
: t ∈ [0, T ]

}

M .

This implies that ξ < 
2, a contradiction. ��
To guarantee the uniform boundedness away from zero for the positive solutions,

we impose the following condition:

(P) There are two constants c > 0 and η > 1 so that

β(t)

d(t)
h(x) > ηx

for all x ∈ (0, c) and t ∈ [0, T ].
We stress that if h(0) > 0, then (P) automatically holds. On the other hand, if h(x) =
xq(x) with q(x) > 0 for all x ∈ (0,+∞) and β(t)

d(t)q(0) > 1 for all t ∈ [0, T ], then
(P) is satisfied as well.

The next result shows that any constant 
1 > 0 satisfying

min

{

β(t)

d(t)
h(x) : x ∈ [c,
2], t ∈ [0, T ]

}

> 
1 (7)

with 
2 and c the upper bound given in (5) and the constant in property (P),
respectively, is an uniform lower bound for the positive solutions of Eq. (4).

Proposition 3.2 Assume (A) and (P). Then,

0 < 
1 ≤ lim inf
t−→+∞ x(t)

for any positive solution x(t) of (4).

Proof We fix x(t) a positive solution of (4). We split the proof into two steps:
Step 1 lim inf t−→+∞ x(t) > 0.

Assume, by contradiction, that lim inf t−→+∞ x(t) = 0. In this case, we can take a
sequence {sn} −→ +∞ with the following properties:

(S1) x ′(sn) ≤ 0 for all n ∈ N.
(S2) x(sn) = min{x(t) : t ∈ [0, sn]} for all n ∈ N.
(S3) limn→+∞ x(sn) = 0.
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The construction of this sequence is as follows: For m = min{x(t) : t ∈ [−τ, 0]},
define

sn = min
{

t ∈ [0,+∞) : x(t) = m

2n

}

for all n ∈ N.
By (S1) and the expression of Eq. (4), we have that

d(sn)x(sn) ≥ β(sn)h(x(sn − τ))

for all n ∈ N, or equivalently,

x(sn) ≥ β(sn)

d(sn)
h(x(sn − τ)) (8)

for all n ∈ N.
If x(sn−τ) � 0 as n → +∞, then there are ξ1 > 0 and a subsequence x(sσ(n)−τ)

so that x(sσ(n) − τ) → ξ1 as n → +∞, (recall that x(t) is bounded). In light of
(8), x(sσ(n)) cannot tend to 0 as n → +∞. This is a contradiction with (S3). If
x(sn − τ) → 0 as n → +∞, then x(sn − τ) ∈ (0, c) for n large enough where (0, c)
is the interval given in (P). Now by (P), (S2) and (8), we obtain that

x(sn) ≥ ηx(sn − τ) ≥ ηx(sn)

with η > 1. This contradiction completes the proof of the first step.
Step 2 lim inf t−→+∞ x(t) > 
1.

By the previous step, lim inf t−→+∞ x(t) = L > 0 for a suitable constant L .
By Lemma 1.1, there is a sequence {sn} tending to +∞ so that x(sn) −→ L and
x ′(sn) −→ 0. By the expression of Eq. (4), we have that

x ′(sn)
d(sn)

= −x(sn) + β(sn)

d(sn)
h(x(sn − τ)). (9)

It is not restrictive to assume that x(sn − τ) → ˜L with ˜L ∈ [L,
2]; β(sn)
d(sn)

→ θ with

θ ≥ min{β(t)
d(t) : t ∈ [0, T ]} > 0. Making n −→ +∞ in (9) and using that d(t) is

strictly positive and T -periodic, we conclude that

0 = −L + θh(˜L)

or equivalently,

L = θh(˜L).

If ˜L ∈ (0, c), we have that

L > η˜L
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with η > 1, (see condition (P)). This is a contradiction with L ≤ ˜L . Thus,˜L ∈ [c,
2].
As a consequence of (7), we conclude that L > 
1. ��
Next we recall a result on the existence of positive T -periodic solutions for Eq. (4).

Theorem 3.1 (Corollary 3.1 in Faria 2017)Assume conditions (A) and (P). Then, there
exists a T -periodic solution x∗(t) of (4) so that x∗(t) > 0 for all t > 0.

In Faria (2017), the author considered functions satisfying h(0) = 0, h′(0) = 1 and
β(t)
d(t) > 1 for all t ∈ [0, T ]. However, Corollary 3.1 in Faria (2017) also holds under
(A) and (P). Notice that in Theorem 3.1 in Faria (2017), she really used condition (P),
[see second step (page 519 in Faria 2017) and lines above (3.8) in page 521 in Faria
(2017)].

As a direct consequence of Propositions 3.1 and 3.2, the positive T -periodic solu-
tions of (4) are bounded and bounded away from zero in an uniform manner. In the
rest of this subsection, we take θmin > 0 and θmax > 0 so that

θmin ≤ min{x∗(t) : t ∈ [0, T ]} ≤ max{x∗(t) : t ∈ [0, T ]} ≤ θmax

for any positive T -periodic solution x∗(t) of (4). We also define

g(x) = H(θmin, x) = h(θminx)

h(θmin)

and

f (x) = H(θmax, x) = h(θmaxx)

h(θmax)
. (10)

Next, we introduce an extra condition regarding the function g:

(Q) g(x) > x for all x ∈ (0, 1) and g(x) < x for all x ∈ (1,+∞).

As we will see, this last condition is satisfied in most classical models.
Fix x∗(t) a positive T -solution of (4). The critical step in our arguments is to employ

the change of variable y(t) = x(t)
x∗(t) . After some straightforward computations, we

arrive at

y′(t) = β(t)

x∗(t)

(

h(x∗(t − τ)y(t − τ)) − y(t)h(x∗(t − τ))
)

. (11)

Our aim now is to prove that Eq. (11) admits an unique positive equilibrium.

Lemma 3.1 Assume conditions (A), (B), (C), (P) and (Q). Then, y = 1 is the unique
positive constant solution of (11).

Proof Let y = a > 0 be an equilibrium of (11). Then,

h(x∗(t − τ)a) − ah(x∗(t − τ)) = 0
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for all t ∈ R, or equivalently,

H(x∗(t − τ), a) = h(x∗(t − τ)a)

h(x∗(t − τ))
= a

for all t > 0. By Lemma 2.1 with θ0 = θmin, we conclude that a = 1. ��
Proposition 3.3 Assume conditions (A), (B), (C), (P) and (Q). Fix x∗(t) > 0 a T -
periodic solution of (4). Suppose that there exists a positive solution x(t) of (4) so
that x(t) − x∗(t) does not converge to 0 as t → +∞. Then, there are four positive
constants L, S, ˜L and ˜S with the following properties:

(i) 0 < L < S.
(ii) ˜S < 1 < ˜L.
(iii) ˜S, ˜L ∈ [L, S].
(iv) f (˜L) ≤ L and f (˜S) ≥ S (the function given in (10)).

Proof Define

y(t) = x(t)

x∗(t)
.

Since x(t)− x∗(t) does not converge to 0 as t −→ +∞, we deduce that y(t) does not
converge to 1 as t −→ +∞. Note that x(t) − x∗(t) = x∗(t)(y(t) − 1) and x∗(t), x(t)
are bounded and positive. On the other hand, as a direct consequence of Propositions
3.1 and 3.2, we have that y(t) is bounded and lim inf t−→+∞ y(t) > 0. Hence, using
that 1 is the unique positive equilibrium of (11) by Lemma 3.1 and y(t) does not
converge to 1 as t → +∞, we conclude that

0 < lim inf
t−→+∞ y(t) < lim sup

t−→+∞
y(t) < +∞.

Set L = lim inf t−→+∞ y(t) and S = lim supt−→+∞ y(t). By Lemma 1.1, we can
take a sequence {tn} −→ +∞ satisfying:

• limn−→+∞ y′(tn) = 0.
• limn−→+∞ y(tn) = S.

It is not restrictive to assume, after taking sub-sequences if necessary, that

lim
n−→+∞ x∗(tn − τ) = S1 ∈ [θmin, θmax]

and

lim
n−→+∞ y(tn − τ) = ˜S ∈ [L, S].

Now we evaluate Eq. (11) at tn , that is,

y′(tn) = β(tn)

x∗(tn)

(

h(x∗(tn − τ)y(tn − τ)) − y(tn)h(x∗(tn − τ))
)

.
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Making n −→ +∞ and using that

ν1 ≥ β(tn)

x∗(tn)
≥ ν2 > 0

for all n ∈ N with ν1, ν2 > 0 suitable constants, we obtain that

h(˜SS1) = Sh(S1)

or equivalently

H(S1,˜S) = S.

Arguing in an analogous manner with 0 < L = lim inf t−→+∞ y(t), we can find two
constants ˜L ∈ [L, S] and L1 ∈ [θmin, θmax] so that

H(L1, ˜L) = L.

The constants L, S, ˜L and ˜S satisfy (i) and (iii).
Finally, we apply Lemma 2.2 with θ0 = θmin and θ1 = θmax to deduce (ii) and (iv).

��
Now we are ready to give the main delay independent criterion of global attraction

for Eq. (4).

Theorem 3.2 Assume conditions (A), (B), (C), (P) and (Q). If 1 is a global attractor
in (0,+∞) for the difference equations

xn+1 = f (xn),

then there exists a positive T -periodic solution x∗(t) of (4)which is globally attracting,
that is, for all x(t) positive solution of (4),

lim
t−→+∞(x(t) − x∗(t)) = 0.

Proof ByTheorem3.1,we can take x∗(t) a positiveT -periodic solutionof (4).Assume,
by contradiction, that there exists a positive solution x(t) of (4) so that x∗(t) − x(t)
does not converge to 0 as t −→ +∞. Then, by Proposition 3.3, there are four positive
constants ˜S, ˜L, L and S with the following properties:

• 0 < L < S.
• ˜S, ˜L ∈ [L, S].
• f (˜L) ≤ L and f (˜S) ≥ S.

Therefore, [L, S] ⊂ f ([L, S]). The existence of this interval contradicts Proposition
2.1. ��
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Let us refine Proposition 3.3 in order to obtain a delay-dependent criterion of global
attraction. First, we fix a positive constant ω so that

ω ≥ max

{

β(t)

x∗(t)
: t ∈ [0, T ]

}

M (12)

with x∗(t) the positive T -periodic solution of (4) fixed previously and M an upper
bound of h (see (A)). Then, we define

˜f (x) = e−ωτ + (1 − e−ωτ ) f (x)

where τ > 0 is the delay of Eq. (4) and f is given in (10).

Proposition 3.4 Assume (A), (B), (C), (P)and (Q). Fix x∗(t) > 0a T -periodic solution
of (4). Suppose that there exists a positive solution x(t) of (4) so that x(t)− x∗(t) does
not converge to 0 as t −→ +∞. Then, there are four positive constants L, S, ρ1 and
ρ2 with the following properties:

(i) 0 < L < S.
(ii) ρ1, ρ2 ∈ [L, S].
(iii) ˜f (ρ1) > S and ˜f (ρ2) < L.

Proof Arguing in the same manner as in the proof of Proposition 3.3, we have that
y(t) = x(t)

x∗(t) does not converge to 1 as t → +∞. As mentioned there,

y′(t) = β(t)

x∗(t)
(h(x∗(t − τ)y(t − τ)) − y(t)h(x∗(t − τ))). (13)

Let

a(t) = β(t)

x∗(t)
.

With this notation, Eq. (13) now writes as:

y′(t) = a(t)h(x∗(t − τ)y(t − τ)) − a(t)h(x∗(t − τ))y(t).

Using the variation of the constants formula, we know that

y(t) = y(t − τ)e− ∫ t
t−τ a(s)h(x∗(s−τ))ds

+e− ∫ t
0 a(s)h(x∗(s−τ))ds

∫ t

t−τ

e
∫ s
0 a(r)h(x∗(r−τ))dr a(s)h(x∗(s − τ)y(s − τ))ds.

(14)

On the other hand, since 1 is the unique equilibrium of (13), (see Lemma 3.1), we
observe that

0 < L < S
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with L = lim inf t→+∞ y(t) and S = lim supt→+∞ y(t). Again, as mentioned in the
proof of Proposition 3.3, there exists a sequence {tn} → +∞ satisfying the following
conditions:

(C1) limn→+∞ x∗(tn − τ) = S1 ∈ [θmin, θmax].
(C2) limn→+∞ y(tn − τ) = ˜S ∈ [L, S] with ˜S < 1.
(C3) limn→+∞ y(tn) = S.

We evaluate Eq. (14) at tn , that is,

y(tn) = y(tn − τ)e− ∫ tn
tn−τ a(s)h(x∗(s−τ))ds

+ e− ∫ tn
0 a(s)h(x∗(s−τ))ds

∫ tn

tn−τ

e
∫ tn
0 a(r)h(x∗(r−τ))dr a(s)h(x∗(s − τ)y(s − τ))ds

for all n ∈ N. Dividing and multiplying by h(x∗(s − τ)) in the last integral term, we
arrive at

y(tn) = y(tn − τ)e− ∫ tn
tn−τ a(s)h(x∗(s−τ))ds + e− ∫ tn

0 a(s)h(x∗(s−τ))ds

∫ tn

tn−τ

e
∫ tn
0 a(r)h(x∗(r−τ))dr a(s)h(x∗(s − τ))

h(x∗(s − τ)y(s − τ))

h(x∗(s − τ))
ds

for all n ∈ N. Thus,

y(tn) ≤ y(tn − τ)e− ∫ tn
tn−τ a(s)h(x∗(s−τ))ds

+e− ∫ tn
0 a(s)h(x∗(s−τ))ds

∫ tn

tn−τ

d

ds

(

e
∫ tn
0 a(r)h(x∗(r−τ))dr

)

Mnds

for all n ∈ N with

Mn = max

{

h(x∗(s − τ)y(s − τ))

h(x∗(s − τ))
: s ∈ [tn − τ, tn]

}

for all n ∈ N. After simple computations, we obtain that

y(tn) ≤ y(tn − τ)e− ∫ tn
tn−τ a(s)h(x∗(s−τ))ds +

(

1 − e− ∫ tn
tn−τ a(s)h(x∗(s−τ))ds

)

Mn .

(15)

Let ξn ∈ [tn − τ, tn] be a sequence of points so that
h(x∗(ξn − τ)y(ξn − τ))

h(x∗(ξn − τ))
= Mn

for alln ∈ N.We can assume, after passing to sub-sequences if necessary, the following
properties:

• limn→+∞ x∗(ξn − τ) = ˜θ1 ∈ [θmin, θmax].
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• limn→+∞ y(ξn − τ) = ρ1 ∈ [L, S].
• limn→+∞

∫ tn
tn−τ

a(s)h(x∗(s − τ))ds = ω̃ ∈ (0,+∞).

Notice that the function a(s)h(x∗(s − τ)) is periodic, positive and continuous. It is
worth noting that

ω̃ ≤ ωτ, (16)

(see definition of ω in (12)). Making n −→ +∞ in Eq. (15), we deduce that

S ≤ ˜Se−ω̃ + (1 − e−ω̃)
h(˜θ1ρ1)

h(˜θ1)
. (17)

Using that ˜S < 1 < S, we obtain that

H(˜θ1, ρ1) = h(˜θ1ρ1)

h(˜θ1)
> 1. (18)

It is also clear that

S < H(˜θ1, ρ1).

Since ρ1 ∈ [L, S], we have that ρ1 ≤ H(˜θ1, ρ1). By Lemma 2.1, we deduce that
ρ1 ≤ 1. Obviously, ρ1 = 1 by (18). Now, after a simple computation ofG ′(x),G(x) =
e−x + (1 − e−x )H(˜θ1, ρ1) is strictly increasing in (0,+∞) because H(˜θ1, ρ1) > 1.
Hence, using (16), (17) and ˜S < 1, we conclude that

S ≤ e−ωτ + (1 − e−ωτ )
h(˜θ1ρ1)

h(˜θ1)
. (19)

On the other hand, by (B) together with ˜θ1 ∈ [θmin, θmax] and ρ1 < 1, we have that

H(˜θ1, ρ1) = h(˜θ1ρ1)

h(˜θ1)
≤ H(θmax, ρ1) = f (ρ1).

Inserting this inequality in (19), we arrive at

S ≤ e−ωτ + (1 − e−ωτ ) f (ρ1).

Arguing in a similar manner with lim inf t−→+∞ y(t), we can find ρ2 > 1 with ρ2 ∈
[L, S] so that

L ≥ e−ωτ + (1 − e−ωτ ) f (ρ2).

��
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Theorem 3.3 Assume conditions (A), (B), (C), (P) and (Q). If 1 is a global attractor
in (0,+∞) for the difference equations

xn+1 = ˜f (xn),

then there exists a positive T -periodic solution x∗(t) of (4)which is globally attracting,
that is, for all x(t) positive solution of (4),

lim
t→+∞[x(t) − x∗(t)] = 0.

Proof The proof of this result is exactly the same as that in Theorem 3.2 using
Proposition 3.4 instead of Proposition 3.3. ��

3.2 Estimating Upper and Lower Bounds for the Positive T-Periodic Solutions of
Eq. (4)

The main results of the previous subsection are expressed in terms of the global
attraction of a suitable discrete equation. In turn, this equation depends on θmax and
θmin, upper and lower bounds (non-necessarily optimal) of the positive T -periodic
solutions of (4). In this subsection, we provide an estimate of these bounds when h
is strictly decreasing or of the form h(x) = xq(x) with q : [0,+∞) −→ (0,+∞)

strictly decreasing. Recall that we always assume that h is of class C1. We focus on
the second class of functions. The first class can be treated analogously and we omit
the details.

We introduce some notation to simplify the statement of the results:

�1 = q−1
(

min

{

d(t)

β(t)
: t ∈ [0, T ]

})

,

�2 = q−1
(

max

{

d(t)

β(t)
: t ∈ [0, T ]

})

,

˜�1 = max

{

β(t)

d(t)
xq(x) : x ∈ [0,�1], t ∈ [0, T ]

}

and

˜�2 = min

{

β(t)

d(t)
xq(x) : x ∈ [�2, ˜�1], t ∈ [0, T ]

}

.

Proposition 3.5 Assume (A) and (P). Moreover, suppose that h(x) = xq(x) with
q : [0,+∞) −→ (0,+∞) strictly decreasing, limx−→+∞ q(x) = 0 and q(0) >

max{ d(t)
β(t) : t ∈ [0, T ]}. Let x∗(t) be a T -periodic solution of (4) with x∗(t) > 0 for

all t ∈ [0, T ].
(i) If τ = kT with k ∈ N, then �2 ≤ x∗(t) ≤ �1 for all t ∈ [0, T ].
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(ii) If τ = kT with k ∈ N, then ˜�2 ≤ x∗(t) ≤ ˜�1 for all t ∈ [0, T ].
Proof Take t0 ∈ [0, T ] so that x ′∗(t0) = 0 and

x∗(t0) = max{x∗(t) : t ∈ [0, T ]}.

By the expression of (4),

d(t0)x∗(t0) = β(t0)x∗(t0 − τ)q(x∗(t0 − τ)). (20)

If τ = kT with k ∈ N, then x∗(t0) = x∗(t0 − τ). Thus,

d(t0)

β(t0)
= q(x∗(t0))

or equivalently,

x∗(t0) = q−1
(

d(t0)

β(t0)

)

.

Now it is clear that x∗(t) ≤ �1 for all t ∈ [0, T ] provided τ = kT . In an analogous
manner, we can prove that �2 ≤ x∗(t) for all t ∈ [0, T ]. To prove (ii), we observe
that by (20),

d(t0)

β(t0)
x∗(t0) = x∗(t0 − τ)q(x∗(t0 − τ)).

Using that x∗(t0 − τ) ≤ x∗(t0), we conclude that

d(t0)

β(t0)
≤ q(x∗(t0 − τ)).

Hence,

x∗(t0 − τ) ≤ �1.

Using (20) and the previous inequality, it is clear that

x∗(t0) ≤ ˜�1

for all t ∈ [0, T ]. Arguing as above, we can deduce that

˜�2 ≤ x∗(t)

for all t ∈ [0, T ]. ��
Remark 3.1 By the previous proposition,we can take θmax = �1, θmin = �2 if τ = kT
with k ∈ N and θmax = ˜�1, θmin = ˜�2 otherwise.
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For the case h : [0,+∞) −→ (0,+∞) strictly decreasing, we take ϕ(x) = x
h(x) .

Notice that ϕ is strictly increasing. Set

δ1 = ϕ−1
(

max

{

β(t)

d(t)
: t ∈ [0, T ]

})

,

δ2 = ϕ−1
({

β(t)

d(t)
: t ∈ [0, T ]

})

,

˜δ1 = max

{

β(t)

d(t)
h(0) : t ∈ [0, T ]

}

and

˜δ2 = min

{

β(t)

d(t)
h(˜δ1) : t ∈ [0, T ]

}

.

Proposition 3.6 Suppose (A). Moreover, assume that h : [0,+∞) −→ (0,+∞) is
strictly decreasing with limx−→+∞ ϕ(x) > max{β(t)

d(t) : t ∈ [0, T ]}. Let x∗(t) be a
T -periodic solution of (4) with x∗(t) > 0 for all t ∈ [0, T ].
(i) If τ = kT with k ∈ N, then δ2 ≤ x∗(t) ≤ δ1 for all t ∈ [0, T ].
(ii) If τ = kT with k ∈ N, then˜δ2 ≤ x∗(t) ≤ ˜δ1 for all t ∈ [0, T ].
Remark 3.2 As mentioned in Sect. 3.1, if h : [0,+∞) −→ [0,+∞) satisfies that
h((0,+∞)) ⊂ (0,+∞) and h(0) > 0, then (P) automatically holds.

3.3 Example: Nicholson’s Blowfly Equation with Periodic Coefficients

In this subsection, we apply the previous theoretical results to

x ′(t) = −d(t)x(t) + β(t)x(t − τ)e−x(t−τ) (21)

where d, β : [0,+∞) −→ (0,+∞) are continuous and T -periodic and τ > 0. We
assume that

d(t) < β(t) (22)

for all t ∈ [0, T ]. In this framework, it is straightforward to check conditions (A), (B),
(C) and (P). Notice that h(x) = xe−x and

H(t, x) = h(t x)

h(t)
= xet(1−x).

As a consequence of Theorem 3.1, Eq. (21) admits, at least, a T -periodic solution
x∗(t) with x∗(t) > 0 for all t ∈ [0, T ]. Moreover, the positive T -periodic solutions
are uniformly bounded and bounded apart from zero by Propositions 3.1 and 3.2. Let
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θmin and θmax be positive lower and upper bounds for the positive T -periodic solutions
of (21). Since g(x) = xeθmin(1−x) and f (x) = xeθmax(1−x), (Q) clearly holds. Given a
positive constant ω with

ω ≥ max{β(t) : t ∈ [0, T ]}
θmin

e−1, (23)

˜f (x) = e−ωτ + (1 − e−ωτ ) f (x)

is an unimodal function with negative Schwarzian derivative. As a direct consequence
of Proposition 2.2, 1 is a global attractor in (0,+∞) for the difference equation

xn+1 = ˜f (xn) (24)

if | ˜f ′(1)| ≤ 1. This last condition is equivalent to

θmax ≤ 2 − e−ωτ

1 − e−ωτ
.

By this discussion and using Theorem 3.3 (see (23) for the definition of ω) and
Proposition 3.5, we have the following result:

Theorem 3.4 Assume conditions (22), τ = kT with k ∈ N and

− ln

(

min

{

d(t)

β(t)
: t ∈ [0, T ]

})

≤ 2 − e−ωkT

1 − e−ωkT

with

ω = max{β(t) : t ∈ [0, T ]}
− ln(max{ d(t)

β(t) : t ∈ [0, T ]})e
−1.

Then, there exists a T -periodic solution x∗(t) of (21) with x∗(t) > 0 for all t ∈ [0, T ]
which is globally attracting, that is, for any positive solution x(t) of (21),

lim
t−→+∞[x(t) − x∗(t)] = 0.

Notice that 1 is a global attractor in (0,+∞) for the difference Eq. (24) if θmax ≤ 2.
Using this fact, we can obtain the following delay independent criterion of global
attraction.

Corollary 3.1 Assume conditions (22), τ = kT with k ∈ N and

max

{

β(t)

d(t)
: t ∈ [0, T ]

}

≤ e2.
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Then, there exists a T -periodic solution x∗(t) of (21) with x∗(t) > 0 for all t ∈ [0, T ]
which is globally attracting, that is, for any positive solution x(t) of (21),

lim
t−→+∞[x(t) − x∗(t)] = 0.

To assess the potential of our approach,we recall that the best delay independent condi-
tions for global attractivity of the positive equilibrium in the autonomous Nicholson’s
blowfly equation

x ′(t) = −dx(t) + βx(t − τ)e−x(t−τ)

are

1 <
β

d
≤ e2.

Informally speaking, Theorem 3.4 can be viewed as the extension of the results devel-
oped in Gyori and Trofimchuk (1999) for (21). To the best of our knowledge, there are
no results in the literature regarding delay-dependent criteria of global attraction that
cover the best delay independent conditions, see the different comparisons in Faria
(2017).

Next we derive criteria of global attraction when the delay is not a multiple of T .

Theorem 3.5 Assume conditions (22) and

max

{

β(t)

d(t)
: t ∈ [0, T ]

}

e−1 ≤ 2 − e−ωτ

1 − e−ωτ

with

ω = max{β(t) : t ∈ [0, T ]}max{ d(t)
β(t) : t ∈ [0, T ]}

(− ln(max{ d(t)
β(t) : t ∈ [0, T ]})) emax{ β(t)

d(t) :t∈[0,T ]}e−1
e−1.

Then, there exists a T -periodic solution x∗(t) of (21) with x∗(t) > 0 for all t ∈ [0, T ]
which is globally attracting, that is, for any positive solution x(t) of (21),

lim
t−→+∞[x(t) − x∗(t)] = 0.

Proof Observe that the constants of Proposition 3.5 (ii) satisfy

�1 = ln

(

max

{

β(t)

d(t)
: t ∈ [0, T ]

})

�2 = ln

(

min

{

β(t)

d(t)
: t ∈ [0, T ]

})

˜�1 ≤ max

{

β(t)

d(t)
: t ∈ [0, T ]

}

e−1
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˜�2≥min

{

β(t)

d(t)
: t ∈[0, T ]

}(

− ln

(

max

{

d(t)

β(t)
: t ∈[0, T ]

}))

e
−max

{

β(t)
d(t) :t∈[0,T ]

}

e−1

.

��
As above, we can obtain the following delay independent criterion of global

attraction.

Corollary 3.2 Assume condition (22) and

max

{

β(t)

d(t)
: t ∈ [0, T ]

}

≤ 2e.

Then, there exists a T -periodic solution x∗(t) of (21) with x∗(t) > 0 for all t ∈ [0, T ]
which is globally attracting, that is, for any positive solution x(t) of (21),

lim
t−→+∞[x(t) − x∗(t)] = 0.

3.4 Nicholson’s Blowfly Equation with Periodic Coefficients and a Positive
Constant Solution

In the previous subsections, we always stress that the positive T -periodic solution of
(4) can be in fact a constant function. This happens when the equation is autonomous,
or more generally, when β(t) = rd(t) for some positive constant r . In this subsection,
we show that Theorem 3.4 can be strengthened for this particular case because we
can work with better estimates of the upper and lower bounds of the positive T -
periodic solutions. Generally speaking, better (a-priori) bounds of the positive T -
periodic solutions lead to sharper results.

Consider

x ′(t) = −d(t)x(t) + rd(t)x(t − τ)e−x(t−τ) (25)

where d : [0,+∞) → (0,+∞) is continuous and T -periodic, r > 1 and τ = kT with
k ∈ N. We first observe that x∗(t) = ln r is the unique positive T -periodic solution of
(25). Indeed, fix x∗(t) a T -periodic solution of (25) and take t0, t1 ∈ [0, T ] so that

x∗(t0) = max{x∗(t) : t ∈ [0, T ]}

and

x∗(t1) = min{x∗(t) : t ∈ [0, T ]}.

By Eq. (25) and using that x∗(t − τ) = x∗(t) for all t , we conclude that

x∗(t0) = x∗(t1) = ln(r).
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After this remark, we can take θmax = θmin = ln r and

ω = max{d(t) : t ∈ [0, T ]}re
−1

ln r
.

Repeating the argument made in Theorem 3.4, we obtain the following result:

Theorem 3.6 Assume r > 1, τ = kT with k ∈ N and

ln r ≤ 2 − e−ωkT

1 − e−ωkT

with

ω = max{d(t) : t ∈ [0, T ]}re
−1

ln r
.

Then, for any positive solution x(t) of (25),

lim
t−→+∞ x(t) = ln r .

4 Systems of Delay Differential Equations with Periodic Coefficients

Many ideas developed in the previous section also work in systems of delay differen-
tial equations. We illustrate this fact with two classical examples: Goodwin’s model
oscillator (Ruoff and Rensing 1996) and systems with patch structure (El-Morshedy
and Ruiz-Herrera 2017; Faria 2017). We analyze models with nonlinearities different
from h(x) = xe−x to show the versatility of our results. Throughout this section, we
say that a vector v = (v1, . . . , vN ) is positive is vi > 0 for all i = 1, . . . , N . As
mentioned above, the constant functions are trivially T -periodic.

4.1 Goodwin’s Model Oscillator

Consider
{

x ′(t) = a(t)y(t − σ1) − b(t)x(t)
y′(t) = β(t)h(x(t − σ2)) − d(t)y(t)

(26)

where σ1, σ2 > 0 and a, b, β, d : R −→ (0,+∞) are continuous and T -periodic.
The function h : [0,+∞) −→ [0,+∞) is of class C1 with h((0,+∞)) ⊂ (0,+∞)

and satisfies (A), (B), (C). We additionally assume the following conditions:

(G1) a(t)
b(t) ≥ 1 for all t ∈ [0, T ].

(G2) There are c > 0 and η > 1 so that

β(t)

d(t)
h(x) > ηx
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for all t ∈ [0, T ] and x ∈ (0, c).

For any initial function (φ1, φ2) ∈ C([−σ, 0], [0,+∞)2) with σ = max{σ1, σ2},
there is a unique (local) solution (x(t, (φ1, φ2), y(t, (φ1, φ2)) of (26) with
x(t, (φ1, φ2)) = φ1(t) and y(t, (φ1, φ2)) = φ2(t) for all t ∈ [−σ, 0]. The variation of
the constant formula allows us to write system (26) as:

x(t) = x(0)e− ∫ t
0 b(s)ds + e− ∫ t

0 b(s)ds
∫ t

0
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

y(t) = y(0)e− ∫ t
0 d(s)ds + e− ∫ t

0 d(s)ds
∫ t

0
e
∫ s
0 d(r)drβ(s)h(x(s − σ2))ds.

This expression implies that x(t, (φ1, φ2)) ≥ 0 and y(t, (φ1, φ2)) ≥ 0 for all t ≥ 0 on
its interval of definition. In fact, if (φ1, φ2) ∈ C([−σ, 0], (0,+∞)2), we can guarantee
that x(t, (φ1, φ2)) > 0 and y(t, (φ1, φ2)) > 0 because h((0,+∞)) ⊂ (0,+∞). Next,
we prove that the solutions of (26) cannot blow up. Take ˜ϒ2 a constant so that

˜ϒ2 > max

{

β(t)

d(t)
: t ∈ [0, T ]

}

M (27)

with M an upper bound of h, (see (A)). If (x(t), y(t)) is a solution of (26) with initial
function in C([−σ, 0], [0,+∞)2), then y′(t) < 0 provided that y(t) ≥ ˜ϒ2 and t > 0.
Notice that, by the second equation of (26), we have that

y′(t)
d(t)

= −y(t) + β(t)

d(t)
h(x(t − σ2)) < −y(t) + ˜ϒ2.

Thus, y(t) cannot blow up. It is clear that x(t) cannot blow up either because we can
see the first equation of (26) as an ordinary linear differential equation with bounded
coefficients. Collecting the above information, we conclude that the solutions of (26)
with initial function in C([−σ, 0], [0,+∞)2) are defined for all t ≥ 0.

In the rest of the subsection, we always work with solutions with initial function in
C([−σ, 0], (0,+∞)2). We refer to them as positive solutions.

Our next goal is to prove that the positive solutions of (26) are uniformly bounded.

Proposition 4.1 Assume (A) and (G1). Take a constant ϒ2 so that

ϒ2 > max

{

a(t)

b(t)
: t ∈ [0, T ]

}

˜ϒ2 (28)

with ˜ϒ2 defined in (27). Then,

max

{

lim sup
t−→+∞

x(t), lim sup
t−→+∞

y(t)

}

< ϒ2

for any positive solution (x(t), y(t)) of (26).
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Proof Take (x(t), y(t)) a positive solution of (26). As mentioned above, if y(t0) > ˜ϒ2
for some t0 > 0, then y(t) is strictly decreasing in a neighborhood of t0. This implies
that if y(t1) ≤ ˜ϒ2, then y(t) ≤ ˜ϒ2 for all t ≥ t1. Arguing as in the proof of Proposition
3.1, we deduce that there is˜t > 0 so that y(t) < ˜ϒ2 for all t ≥ ˜t . Now, by the first
equation of (26), we have that

x ′(t) < a(t)˜ϒ2 − b(t)x(t)

for all t ≥˜t +σ1. Repeating the argument of the proof of Proposition 3.1, we can find
t∗ >˜t so that

x(t) ≤ max

{

a(t)

b(t)
: t ∈ [0, T ]

}

˜ϒ2

for all t > t∗. By (G1), ˜ϒ2 ≤ ϒ2. ��
Next we prove that these solutions are bounded away from 0 in an uniform manner.

Proposition 4.2 Assume (A), (G1) and (G2). Take a positive constant ϒ1 so that

min

{

β(t)

d(t)
h(x) : t ∈ [0, T ], x ∈ [c, ϒ2]

}

> ϒ1 (29)

with ϒ2 and c the constants given in (28) and (G2), respectively. Then,

min

{

lim inf
t−→+∞ x(t), lim inf

t−→+∞ y(t)

}

≥ ϒ1

for any positive solution (x(t), y(t)) of (26).

Proof We divide the proof into two steps.
Step 1 min{lim inf t−→+∞ x(t), lim inf t−→+∞ y(t)} > 0 for all (x(t), y(t)) positive
solution of (26).

Assume, by contradiction, that there exists a positive solution (x(t), y(t)) so that

min

{

lim inf
t−→+∞ x(t), lim inf

t−→+∞ y(t)

}

= 0.

Then, we can take {tn} −→ +∞ so that one of the following sets of conditions is
satisfied:

(X1) x ′(tn) ≤ 0 for all n ∈ N,
(X2) x(tn) = min{x(t), y(t) : t ∈ [0, tn]} for all n ∈ N,
(X3) limn−→+∞ x(tn) = 0,

or

(Y1) y′(tn) ≤ 0 for all n ∈ N,
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(Y2) y(tn) = min{x(t), y(t) : t ∈ [0, tn]} for all n ∈ N,
(Y3) limn−→+∞ y(tn) = 0.

We refer to the proof of Proposition 3.1 for the construction of the previous sequence
{tn}.

Assume that the first block of conditions (i.e., (X1)–(X3)) holds. By the first
equation of (26) and (G1), we deduce that

x(tn) ≥ a(tn)

b(tn)
y(tn − σ1) ≥ y(tn − σ1)

for all n ∈ N. Thus, it is not restrictive to assume that the second block (i.e., (Y1)–(Y3))
holds. Notice that by Proposition 4.1, we can take t0 > 0 large enough so that

max{x(t), y(t)} ≤ ϒ2

for all t ≥ t0. This implies that there exists n0 ∈ N so that x(tn − σ2) ≤ ϒ2 and
y(tn) ≤ ϒ2 for all n ≥ n0. By the second equation of (26) and (Y1), we have that

y(tn) ≥ β(tn)

d(tn)
h(x(tn − σ2)) (30)

for all n ∈ N. If x(tn − σ2) ≥ c for all n ≥ n0, we deduce by (30) that

y(tn) ≥ ϒ1

for all n ≥ n0. This is a contradiction with (Y3). If there exists n with n ≥ n0 so that
x(tn − σ2) < c, we also have a contradiction. Indeed, notice that using (G2) in (30),
we have that

y(tn) ≥ ηx(tn − σ2)

with η > 1. Thus, y(tn) > x(tn − σ2). On the other hand, we know by (Y2) that
x(tn − σ2) ≥ y(tn).
Step 2: Conclusion.

Take (x(t), y(t)) a positive solution of (26). Let

0 < L = min

{

lim inf
t→+∞ x(t), lim inf

t−→+∞ y(t)

}

.

Assume that L = lim inf t→+∞ y(t). By the fluctuation lemma (see Lemma 1.1), we
can take a sequence {tn} → +∞ so that

lim
n→+∞ y′(tn) = 0

123



Journal of Nonlinear Science (2022) 32 :47 Page 25 of 43 47

and limn→+∞ y(tn) = lim inf t→+∞ y(t). Evaluating the second equation of (26) at
tn , we obtain that

y′(tn)
d(tn)

= −y(tn) + β(tn)

d(tn)
h(x(tn − σ2)).

It is not restrictive, after passing to subsequences if necessary, to assume that

lim
n−→+∞

β(tn)

d(tn)
= θ

with θ ≥ min
{

β(t)
d(t) : t ∈ [0, T ]

}

and

lim
n−→+∞ x(tn − σ2) = ˜L ∈ [L, ϒ2],

with ϒ2 the constant given in (28). Making n −→ +∞ and using that d(t) is positive
and T -periodic, we conclude that

L = θh(˜L). (31)

If ˜L ∈ (0, c), we deduce by (G2) that

L ≥ η˜L

with η > 1, a contradiction with the fact ˜L ∈ [L, ϒ2]. Therefore, ˜L ∈ [c, ϒ2]. In this
case, L ≥ ϒ1 as a direct consequence of (31) and (29). If L = lim inf t→+∞ x(t),
then, by the fluctuation lemma (see Lemma 1.1), we can take a sequence {tn} → +∞
so that

lim
n→+∞ x ′(tn) = 0

and limn→+∞ x(tn) = lim inf t→+∞ x(t). Then, evaluating the first equation of (26)
at tn , we obtain that

x ′(tn)
b(tn)

= a(tn)

b(tn)
y(tn − σ1) − x(tn).

Using (G1), we have that

a(tn)

b(tn)
y(tn − σ1) − x(tn) ≥ y(tn − σ1) − x(tn).

In this case, the limit of a subsequence of y(tn − σ1) is less or equal than L . Thus, it
is not restrictive to assume that L = lim inf t→+∞ y(t). ��
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The next result guarantees the existence of a positive T -periodic solution for (26).
The method of proof is basically the adaptation of the ideas developed in Theorem 3.1
in Faria (2017).

Theorem 4.1 Assume (A), (G1) and (G2). Then, system (26) admits a T -periodic
solution (x∗(t), y∗(t)) with x∗(t) > 0 and y∗(t) > 0 for all t ∈ [0, T ].
Proof It is not restrictive to assume that σ = max{σ1, σ2} ≥ T (otherwise we choose
some σ̄ > σ and insert C+ := C([−σ, 0], (0,+∞)2) into C([−σ̄ , 0], (0,+∞)2)). By
the variation of the constant formula, we have that the solutions of (26) with initial
condition (x(t), y(t)) ∈ C+ are given by

⎧

⎨

⎩

x(t) = x(t0)e
− ∫ t

t0
b(s)ds + e− ∫ t

0 b(s)ds
∫ t
t0
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

y(t) = y(t0)e
− ∫ t

t0
d(s)ds + e− ∫ t

0 d(s)ds
∫ t
t0
e
∫ s
0 d(r)drβ(s)h(x(s − σ2))ds

(32)

with t0 ∈ [0,+∞) and t ≥ 0. It is clear that we have a T -periodic solution of system
(26) if x(t + T ) = x(t) and y(t + T ) = y(t) for all t ∈ [−σ, 0]. We deduce by (32)
that if

{

x(t) = x(t)e− ∫ t+T
t b(s)ds + e− ∫ t+T

0 b(s)ds
∫ t+T
t e

∫ s
0 b(r)dr a(s)y(s − σ1)ds

y(t) = y(t)e− ∫ t+T
t d(s)ds + e− ∫ t+T

0 d(s)ds
∫ t+T
t e

∫ s
0 d(r)drβ(s)h(x(s − σ2))ds

(33)

for all t ∈ [−σ, 0], (recall that σ ≥ T ), then (x(t), y(t)) is a T -periodic solution. Let

ζ1 = (1 − e− ∫ t+T
t b(s)ds)−1 and ζ2 = (1 − e− ∫ t+T

t d(s)ds)−1.

In light of (33), the fixed points of the operator

P : CT ((0,+∞)2) −→ C+

given by

P(x, y)(t) = (P1(x, y)(t), P2(x, y)(t))

P1(x, y)(t) = ζ1e
− ∫ t+T

0 b(s)ds
∫ t+T

t
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

P2(x, y)(t) = ζ2e
− ∫ t+T

0 d(s)ds
∫ t+T

t
e
∫ s
0 d(r)drβ(s)h(x(s − σ2))ds

are T -periodic solutions of (26). After several steps, we will prove that the operator
P satisfies the assumptions of the classical Schauder’s theorem.
Step 1 P(x, y)(t) is a T -periodic function provided (x(t), y(t)) is a T -periodic
function.
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Notice that

P1(x, y)(t + T ) = ζ1e
− ∫ t+2T

0 b(s)ds
∫ t+2T

t+T
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

= ζ1

∫ t+2T

t+T
e
∫ s
t+2T b(r)dr a(s)y(s − σ1)ds

= ζ1

∫ t+T

t
e
∫ s̃+T
t+2T b(r)dr a(̃s + T )y(̃s + T − σ1)d̃s.

In the last equality, we have employed the change of variable s = s̃ + T . Using that
a, y, and b are T -periodic, we conclude that

ζ1

∫ t+T

t
e
∫ s+T
t+2T b(r)dr a(s + T )y(s + T − σ1)ds = ζ1

∫ t+T

t
e
∫ s
t+T b(r)dr a(s)y(s − σ1)ds

= P1(x, y)(t).

We can reason in an analogous manner with P2(x, y)(t). Thus,

P : CT ((0,+∞)2) −→ CT ((0,+∞)2).

Step 2 Define

B = {(x, y) ∈ CT ((0,+∞)2) : x(t) ≤ Q1, y(t) ≤ Q2}

where

Q1 = max

{

a(t)

b(t)
: t ∈ [0, T ]

}

max

{

β(t)

d(t)
: t ∈ [0, T ]

}

· M

Q2 = max

{

β(t)

d(t)
: t ∈ [0, T ]

}

· M

with M an upper bound of h, (see (A)). Note that by (G1), Q1 ≥ Q2. We prove that
P(B) ⊂ B.

If (x(t), y(t)) ∈ B,

P1(x, y)(t) = ζ1e
− ∫ t+T

0 b(s)ds
∫ t+T

t
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

= ζ1e
− ∫ t+T

0 b(s)ds
∫ t+T

t
e
∫ s
0 b(r)dr b(s)

a(s)

b(s)
y(s − σ1)ds

≤ ζ1e
− ∫ t+T

0 b(s)ds
∫ t+T

t

d

ds
e
∫ s
0 b(r)dr max

{

a(t)

b(t)
: t ∈ [0, T ]

}

Q2ds

= ζ1e
− ∫ t+T

0 b(s)ds
∫ t+T

t

d

ds
e
∫ s
0 b(r)dr Q1ds.
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Observe that

ζ1e
− ∫ t+T

0 b(s)ds
∫ t+T

t

d

ds
e
∫ s
0 b(r)drds = 1.

Analogously we can prove that P2(x, y)(t) ≤ Q2. The proof of this step is completed.
Using (G2), we can take γ > 0 so that

min

{

β(t)

d(t)
h(x) : t ∈ [0, T ], x ∈ [γ, Q1]

}

> γ.

We define

Bγ = {(x, y) ∈ CT ((0,+∞)2) : γ ≤ x(t) ≤ Q1, γ ≤ y(t) ≤ Q2}.

Step 3 P(Bγ ) ⊂ Bγ .
Take (x(t), y(t)) ∈ Bγ . Then,

P1(x, y)(t) = ζ1e
− ∫ t+T

0 b(s)ds
∫ t+T

t
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

= ζ1e
− ∫ t+T

0 b(s)ds
∫ t+T

t
e
∫ s
0 b(r)dr b(s)

a(s)

b(s)
y(s − σ1)ds

≥ ζ1e
− ∫ t+T

0 b(s)ds
∫ t+T

t

d

ds
e
∫ s
0 b(r)drνγ ds = νγ

with ν = min{ a(s)
b(s) : s ∈ [0, T ]} ≥ 1. For the second component of P(x, y)(t),

P2(x, y)(t) = ζ2e
− ∫ t+T

0 d(s)ds
∫ t+T

t
e
∫ s
0 d(r)drβ(s)h(x(s − σ2))ds

= ζ2e
− ∫ t+T

0 d(s)ds
∫ t+T

t
e
∫ s
0 d(r)dr d(s)

β(s)

d(s)
h(x(s − σ2))ds

≥ ζ2e
− ∫ t+T

0 d(s)ds
∫ t+T

t

d

ds
e
∫ s
0 d(r)drγ ds = γ.

Step 4 P is equicontinuous in Bγ .
Take t1, t2 ∈ [−σ, 0] and (x, y) ∈ Bγ . We analyze the first component of P (the

analysis of the second component is analogous).

|P1(x, y)(t1) − P1(x, y)(t2)|
= |ζ1e− ∫ t1+T

0 b(s)ds
∫ t1+T

t1
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

−ζ1e
− ∫ t2+T

0 b(s)ds
∫ t2+T

t2
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds|
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≤ ζ1

∣

∣

∣

∣

e− ∫ t1+T
0 b(s)ds − e− ∫ t2+T

0 b(s)ds
∣

∣

∣

∣

∫ t1+T

t1
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

+ζ1e
− ∫ t2+T

0 b(s)ds
∣

∣

∣

∣

∫ t1+T

t1
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

−
∫ t2+T

t2
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

∣

∣

∣

∣

.

Notice that the last integral term is smaller than

ζ1e
− ∫ t2+T

0 b(s)ds

(

∣

∣

∣

∣

∫ t2

t1
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

∫ t2+T

t1+T
e
∫ s
0 b(r)dr a(s)y(s − σ1)ds

∣

∣

∣

∣

∣

)

.

In light of this type of estimates, we can deduce that P is equicontinuous.
The conclusion follows from the classical Schauder’s theorem. We stress that Bγ

is a convex set. ��

The positive T -periodic solutions of (26) are bounded and bounded away from zero
in an uniform manner (see Propositions 4.1 and 4.2). As in the scalar case, we take
positive constants θmin and θmax so that

0 < θmin ≤ min{x∗(t), y∗(t) : t ∈ [0, T ]}

and

θmax ≥ max{x∗(t), y∗(t) : t ∈ [0, T ]}

for all positive T -periodic solution (x∗(t), y∗(t)) of (26). We define

g(x) = h(θminx)

h(θmin)

and

f (x) = h(θmaxx)

h(θmax)
.

We assume that g : [0,+∞) −→ [0,+∞) satisfies condition (Q) introduced in
Sect. 3. Next we fix a positive T -periodic solution (x∗(t), y∗(t)) of (26) and employ
the change of variable

z1(t) = x(t)

x∗(t)
and z2(t) = y(t)

y∗(t)
.
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After simple manipulations, system (26) is transformed into

{

z′1(t) = a(t)y∗(t−σ1)
x∗(t) (z2(t − σ1) − z1(t))

z′2(t) = β(t)
y∗(t) (h(x∗(t − σ2)z1(t − σ2)) − z2(t)h(x∗(t − σ2))).

(34)

Lemma 4.1 Assume (A), (B), (C), (G1), (G2) and (Q). If (a, b) ∈ (0,+∞)2 is a
constant solution of (34), then a = b = 1.

Proof By the expression of the first equation of (34), a = b. Using the second equation
of the system, we have that

h(x∗(t − σ2)a) = ah(x∗(t − σ2))

for all t > 0 or, equivalently,

H(x∗(t − σ2), a) = a

for all t > 0. We conclude that a = 1 by Lemma 2.1 with θ0 = θmin. ��
Next we give the variant of Proposition 3.3 for system (26).

Proposition 4.3 Assume conditions (A), (B), (C), (G1), (G2) and (Q). Fix
(x∗(t), y∗(t)) a positive T -periodic solution of (26). Suppose that there exists a posi-
tive solution (x(t), y(t)) of (26) so that (x(t), y(t))− (x∗(t), y∗(t)) does not converge
to (0, 0) as t −→ +∞. Then, there are four positive constants L, S, ˜L and˜S with the
following properties:

(i) 0 < L < S.
(ii) ˜S < 1 < ˜L.
(iii) ˜S, ˜L ∈ [L, S].
(iv) f (˜L) ≤ L and f (˜S) ≥ S.

Proof First, we employ the change of variable z1(t) = x(t)
x∗(t) and z2(t) = y(t)

y∗(t) . Let

L = min

{

lim inf
t→+∞ z1(t), lim inf

t→+∞ z2(t)

}

and

S = max

{

lim sup
t→+∞

z1(t), lim sup
t→+∞

z2(t)

}

.

It is not restrictive to assume that

L = lim inf
t→+∞ z2(t) and S = lim sup

t→+∞
z2(t).
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Notice that if, for example, L = lim inf t→+∞ z1(t), then by the fluctuation lemma
(see Lemma 1.1), there would exist a sequence {tn} tending to +∞ satisfying that
limn−→+∞ z′1(tn) = 0 and limn−→+∞ z1(tn) = L . Evaluating the first equation of
(34) at tn , we obtain that

z′1(tn) = a(tn)y∗(tn − σ1)

x∗(tn)
(z2(tn − σ1) − z1(tn)).

Since a(t), y∗(t) and x∗(t) are positive and T -periodic functions, we have that
limn−→+∞ z2(tn −σ1) = limn−→+∞ z1(tn) = L . On the other hand, if (x(t), y(t))−
(x∗(t), y∗(t)) does not converge to (0, 0) as t −→ +∞, then (z1(t), z2(t)) does not
converge to (1, 1) as t −→ +∞. Note that

x∗(t)(z1(t) − 1) = x(t) − x∗(t) and y∗(t)(z2(t) − 1) = y(t) − y∗(t).

Observe that if L = S, then limt→+∞ z2(t) = L = S = limt→+∞ z1(t). This
is a contradiction because (1, 1) is the unique positive equilibrium of (34). Hence,
L < S. Moreover, the solutions of (34) are bounded and bounded away from zero by
Propositions 4.1 and 4.2. Hence, L > 0 and S < +∞. The rest of the proof is exactly
the same as that in Proposition 3.3. Specifically, we take a sequence {tn} tending to
+∞ so that z′2(tn) −→ 0 and z2(tn) −→ S. Then, we arrive at

S = H(S1,˜S)

with S1 ∈ [θmin, θmax] and˜S ∈ [L, S]. Repeating the argument with L , we obtain that

L = H(L1, ˜L)

with L1 ∈ [θmin, θmax] and ˜L ∈ [L, S]. The proof follows from Lemma 2.2. ��

Repeating the argument of the proof of Theorem 3.2, we obtain the following result.

Theorem 4.2 Assume (A), (B), (C), (G1), (G2) and (Q). If 1 is a global attractor in
(0,+∞) for the difference equation

xn+1 = f (xn),

then there exists a positive T -periodic solution (x∗(t), y∗(t)) of (26) which is globally
attracting, that is, for any (x(t), y(t)) positive solution of (26),

lim
t−→+∞[(x(t), y(t)) − (x∗(t), y∗(t))] = 0.

To complete this section, we apply the previous theorem when h is decreasing.
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Theorem 4.3 Assume that h : [0,+∞) −→ (0,+∞) is of class C3 with S(h)(x) < 0
(the Schwarzian derivative) and h′(x) < 0 for all x ∈ (0,+∞). In addition, we
assume that (B), (C) and (G1) hold. If

h′(θmax)θmax

h(θmax)
≥ −1

with

θmax = max

{

a(t)

b(t)
: t ∈ [0, T ]

}

· max

{

β(t)

d(t)
: t ∈ [0, T ]

}

h(0),

then there is a T -periodic solution (x∗(t), y∗(t)) of (26) with x∗(t) > 0 and y∗(t) > 0
for all t ∈ [0, T ] that is a global attractor for all positive solutions of (26).
Proof We notice that (A) and (G2) are automatically satisfied. Then, by Theorem 4.1,
there exists a T -periodic solution (x∗(t), y∗(t)) of (26) with x∗(t) > 0 and y∗(t) > 0
for all t ∈ [0, T ]. We also realize that h′(x) < 0 for all x ∈ (0,+∞) implies that (Q)
holds for any θmin > 0. Next, we prove that

θmax = max

{

a(t)

b(t)
: t ∈ [0, T ]

}

· max

{

β(t)

d(t)
: t ∈ [0, T ]

}

h(0)

is an (uniform) upper bound for the positive T -periodic solutions of (26). Let
(x∗(t), y∗(t)) be a positive T -periodic solution of (26). Take t0 ∈ [0, T ] so that
y∗(t0) = max{y∗(t) : t ∈ [0, T ]}. Then, y′∗(t0) = 0. By the second equation of
(26), we deduce that

y(t0) ≤ max

{

β(t)

d(t)
: t ∈ [0, T ]

}

h(0).

Analogously, take s0 ∈ [0, T ] so that x∗(s0) = max{x∗(t) : t ∈ [0, T ]}. Then,
x ′∗(s0) = 0. By the first equation of (26), we obtain that

x∗(s0) ≤ max

{

a(t)

b(t)
: t ∈ [0, T ]

}

· max{y(t) : t ∈ [0, T ]}.

The conclusion follows from Theorem 4.2 and Proposition 2.2. Notice that

f ′(1) = h′(θmax)θmax

h(θmax)
.

��
Examples of functions satisfying the conditions of the previous theorem are h(x) =

e−x or h(x) = 1
1+x . Specifically, consider

{

x ′(t) = a(t)y(t − σ1) − b(t)x(t)
y′(t) = β(t)e−x(t−σ2) − d(t)y(t),

(35)
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withσ1, σ2 > 0 and a, b, β, d : R −→ (0,+∞) continuous and T -periodic functions.
In this case, H(t, x) = et(1−x),

θmax = max

{

a(t)

b(t)
: t ∈ [0, T ]

}

· max

{

β(t)

d(t)
: t ∈ [0, T ]

}

,

and

h′(θmax)θmax

h(θmax)
= −θmax.

Therefore, if a(t) ≥ b(t) for all t ∈ [0, T ] and

max

{

a(t)

b(t)
: t ∈ [0, T ]

}

· max

{

β(t)

d(t)
: t ∈ [0, T ]

}

≤ 1,

then the assumptions of Theorem 4.3 are satisfied in system (35). On the other hand,
for system

{

x ′(t) = a(t)y(t − σ1) − b(t)x(t)
y′(t) = β(t)

1+x(t−σ2)
− d(t)y(t),

H(t, x) = 1+t
1+t x . It is clear that the assumptions of Theorem 4.3 are satisfied if a(t) ≥

b(t) for all t ∈ [0, T ]. Notice that for h(x) = 1
1+x ,

h′(θmax)θmax
h(θmax)

≥ −1 always holds.

4.2 Models for Populations with Patch Structure

Consider the system

x ′
i (t) = −di (t)xi (t) +

N
∑

j=1, j =i

ai j (t)x j (t) +
m

∑

k=1

βik(t)h(xi (t − τik)) (36)

for i = 1, . . . , N where di , ai j , βik : R −→ [0,+∞) are continuous and T -
periodic, τik ≥ 0 and h : [0,+∞) −→ [0,+∞) is a function of class C1 with
h((0,+∞)) ⊂ (0,+∞). As in the previous section, we assume that h is bounded,
(condition (A) according to the notation of the previous sections). We additionally
suppose the following conditions:

(P1) di (t) > 0 for all t ∈ R and i = 1, . . . , N .
(P2) There exists a vector u = (u1, . . . , uN ) 	 0 such that

di (t)ui ≥
N

∑

j=1, j =i

ai j (t)u j
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for t ∈ R with

di (t0)ui >

N
∑

j=1, j =i

ai j (t0)u j

i = 1, . . . , N for some t0 ∈ R.
(P3) βi (t) = ∑m

k=1 βik(t) > 0 for all t ∈ R, i = 1, . . . , N .
(P4) h(0) = 0 and h′(0) = 1.

We define by A(t), B(t), D(t), M(t) the T -periodic square matrices of order N given
by

D(t) = diag(d1(t), . . . , dN (t)),

A(t) = (ai j (t)),

B(t) = diag(β1(t), . . . , βN (t)),

M(t) = B(t) + A(t) − D(t),

where aii (t) = 0 for 1 ≤ i ≤ N . We also need the following condition:

(P5) There exists v = (v1, . . . , vN ) 	 0 such that M(t)v 	 0 for all t ∈ [0, T ].
The previous assumptions guarantee the existence and uniqueness of solutions for (36)
with initial condition inC([−σ, 0], [0,+∞)N )withσ = max{τik : i = 1, . . . , N , k =
1, . . . ,m}. Motivated by its biological meaning, we focus on initial conditions taken
in C([−σ, 0], (0,+∞)N ). We refer to them as positive solutions.

The following two results are taken directly from Faria (2017). It is worth noting
that under (A) and (P1)–(P5), conditions (H0)–(H5) in Faria (2017) are satisfied. To
check (H4) in Faria (2017), we simply take h−

i (x) = h(x) for all i = 1, . . . ,m.
Actually, (H0)–(H5) are much more general than our conditions.

Theorem 4.4 (Theorem 2.1 in Faria 2017) Assume conditions (A) and (P1)–(P5).
Then, there are two positive constants κ1, κ2 such that given any initial condition
φ ∈ C([−σ, 0], (0,+∞)N ), there exists t0 (depending on φ) for which the solution
x(t) = (x1(t), . . . , xN (t)) which initial condition φ satisfies that

κ1 ≤ xi (t) ≤ κ2

for all t ≥ t0 and i = 1, . . . , N.

Theorem 4.5 (Theorem 3.1 in Faria 2017) Assume conditions (A) and (P1)–(P5).
Then, system (36)has aT-periodic solution x∗(t) = (p1(t), . . . , pN (t))with pi (t) > 0
for all t ∈ [0, T ] and i = 1, . . . , N.

Our aim is to prove the existence of a globally attracting positive T -periodic solution
for system (36). As in previous sections, we assume that h also satisfies (B) and (C).
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Fix x∗(t) = (p1(t), . . . , pN (t)) a positive T -periodic solution of (36). The change
of variable

yi (t) = xi (t)

pi (t)

for i = 1, . . . , N transforms system (36) into

y′
i (t) =

N
∑

j=1, j =i

ai j (t)
p j (t)

pi (t)
(y j (t) − yi (t))

+
m

∑

k=1

βik(t)

pi (t)
(h(pi (t − τik)yi (t − τik)) − yi (t)h(pi (t − τik))) (37)

for i = 1, . . . , N . Since the positive T -periodic solutions of (36) are bounded and
bounded away from zero in an uniform manner, we can take two positive constants
θmin and θmax so that

θmax ≥ max{pi (t) : t ∈ [0, T ], i = 1, . . . , N }
θmin ≤ min{pi (t) : t ∈ [0, T ], i = 1, . . . , N }

for any x∗(t) = (p1(t), . . . , pN (t)) positive T -periodic solution of system (36). We
also define

f (x) = H(θmax, x) and g(x) = H(θmin, x).

As in previous sections, we impose condition (Q), that is,

(Q) g(x) > x for all x ∈ (0, 1) and g(x) < x for all x ∈ (1,+∞).

Our first aim is to prove that (37) has a unique positive equilibrium.

Lemma 4.2 Assume conditions (A), (B), (C), (P1)–(P5) and (Q). If ζ =
(ζ1, . . . , ζN ) 	 0 is an equilibrium of (37) then ζi = 1 for all i = 1, . . . , N.

Proof First we prove that if ζ = (a, . . . , a) is an equilibrium of (37) with a > 0, then
a = 1. Observe that

m
∑

k=1

βik(t)

pi (t)
(h(pi (t − τik)a) − ah(pi (t − τik))) = 0

for all i = 1, . . . , N and for all t ∈ [0, T ]. Since βik (t)
pi (t)

> 0 for all t ∈ [0, T ], we can
find two times t0, t1 and two indices i, k so that

h(pi (t0 − τik)a) − ah(pi (t0 − τik)) ≤ 0
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and

h(pi (t1 − τik)a) − ah(pi (t1 − τik)) ≥ 0.

As a consequence of Lemma 2.1, we conclude that a = 1.
Next we take ζ = (ζ1, . . . , ζN ) 	 0 an arbitrary equilibrium of (37). Let u =

min{ζi : i = 1, . . . , N } > 0 and U = max{ζi : i = 1, . . . , N }. We prove that u = U .
Assume, by contradiction, that u < U . Take an index i0 so that u = ζi0 . We focus on
the i0-th equation of (37). Observe that

N
∑

j=1, j =i0

ai0 j (t)
p j (t)

pi0(t)
(ζ j − ζi0) > 0

for all t ∈ [0, T ]. Thus,
m

∑

k=1

βi0k(t)

pi0(t)

(

h(pi0(t − τi0k)ζi0) − ζi0h(pi0(t − τi0k))
)

< 0

for all t ∈ [0, T ]. In particular, there are k ∈ {1, . . . ,m} and t0 so that

h(pi0(t0 − τi0k)ζi0) − ζi0h(pi0(t0 − τi0k)) < 0

or equivalently,

H(pi0(t0 − τi0k), ζi0) < ζi0 .

By Lemma 2.1, we deduce that u = ζi0 ≥ 1. Arguing in a similar manner with U , we
conclude that U ≤ 1. This is a contradiction because u < U .

Next we develop a delay independent criterion of global attraction for system (36).

Proposition 4.4 Assume conditions (A), (B), (C), (P1)–(P5) and (Q). Fix x∗(t) =
(p1(t), . . . , pN (t)) a positive T -periodic solution of (36). Suppose that there exists
a positive solution x(t) = (x1(t), . . . , xN (t)) of (36) so that x(t) − x∗(t) does not
converge to 0 as t −→ +∞. Then, there are four positive constants L, S, ˜L and ˜S
with the following properties:

(i) 0 < L < S.
(ii) ˜S < 1 < ˜L.
(iii) ˜S, ˜L ∈ [L, S].
(iv) f (˜L) ≤ L and f (˜S) ≥ S.

Proof We employ the change of variable

yi (t) = xi (t)

pi (t)
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for i = 1, . . . , N . Let

S = max

{

lim sup
t→+∞

yi (t) : i = 1, . . . , N

}

L = min

{

lim inf
t→+∞ yi (t) : i = 1, . . . , N

}

.

By Theorem 4.4, 0 < L and S ∈ R. We know that

xi (t) − pi (t) = pi (t)(yi (t) − 1)

for i = 1, . . . , N . Using that x(t) − x∗(t) does not converge to 0 as t −→ +∞, we
deduce that (y1(t), . . . , yN (t)) does not converge to (1, . . . , 1). Notice that L < S.
To see this claim, we observe that if L = S, then limt→+∞ yi (t) = L = S for all
i = 1, . . . , N . However, this is not possible because (1, . . . , 1) is the unique non-
trivial equilibrium of (37) by Lemma 4.2 and we know that (y1(t), . . . , yN (t)) does
not converge to (1, .., 1).

Take i0 ∈ {1, . . . , N } so that

S = lim sup
t→+∞

yi0(t).

ByLemma 1.1, we can take {tn} a sequence tending to+∞ so that limn→+∞ y′
i0
(tn) =

0 and limn→+∞ yi0(tn) = S. It is not restrictive to assume that there exists n0 ∈ N

large enough so that

y j (tn) − yi0(tn) ≤ 0

for all n ≥ n0 and j ∈ {1, . . . , N }. We can also suppose that pi0(tn), βi0k(tn), pi0(tn −
τi0k), yi0(tn − τi0k) are convergent as n −→ +∞ with

yi0(tn − τi0k) −→ ˜Sk ∈ [L, S]
pi0(tn − τi0k) −→ Sk ∈ [θmin, θmax]

for all k ∈ {1, . . . ,m}. Evaluating the i0-th equation of (37) at tn , we obtain that

y′
i0(tn) =

N
∑

j=1, j =i0

ai0 j (tn)
p j (tn)

pi0(tn)
(y j (tn) − yi0(tn))

+
m

∑

k=1

βi0k(tn)

pi0(tn)

(

h(pi0(tn − τi0k)yi0(tn − τi0k)) − yi0(tn)h(pi0(tn − τi0k))
)

.
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Using that y j (tn) − yi0(tn) ≤ 0 and ai0 j (tn) > 0 for all n ≥ n0 and j ∈ {1, . . . , N },
we conclude that

m
∑

k=1

βi0k(tn)

pi0(tn)

(

h(pi0(tn − τi0k)yi0(tn − τi0k)) − yi0(tn)h(pi0(tn − τi0k))
) ≥ 0.

Making n → +∞ in the previous expressions and using (P3), we conclude that there
exists k0 ∈ {1, . . . ,m} so that

h(Sk0˜Sk0) − Sh(Sk0) ≥ 0.

That is, S ≤ H(Sk0 ,˜Sk0). Repeating the analogous argument with L , we deduce
the existence of an index j0 ∈ {1, . . . ,m}, and two constants ˜L j0 ∈ [L, S] and
L j0 ∈ [θmin, θmax] so that L ≥ H(L j0 ,

˜L j0). The conclusion follows from Lemma
2.2. ��
Theorem 4.6 Assume conditions (A), (B), (C), (P1)-(P5) and (Q). If 1 is a global
attractor in (0,+∞) for the difference equations

xn+1 = f (xn),

then there exists a positive T -periodic solution x∗(t) = (p1(t), . . . , pN (t)) of (36)
which is globally attracting, that is, for any x(t) = (x1(t), . . . , xN (t)) positive solution
of (36)

lim
t−→+∞(x(t) − x∗(t)) = 0.

4.3 Estimating an Upper Bound for the Positive T-Periodic Solutions of (36) and
Applications

In this subsection, we translate the abstract criterion developed in Theorem 4.6 into a
more applied one. We suppose that h(x) is a bounded function of class C1. We also
impose that di , ai j , βik : R −→ [0,+∞) are continuous and T -periodic and τik ≥ 0.
For simplicity, in this subsection we work with functions of the form h(x) = xq(x)
where q : [0,+∞) −→ (0,+∞) is strictly decreasing and q(0) = 1. Since h is
bounded, it is clear that limx−→+∞ q(x) = 0. In this framework, (P4) holds and
the rest of conditions, when u = v = (1, . . . , 1), can be re-written in the following
manner:

(A1) di (t) > 0 for all t ∈ R and i ∈ {1, . . . , N }.
(A2) di (t) − ∑N

j=1, j =i ai j (t) > 0 for all t ∈ R and i ∈ {1, . . . , N }.
(A3) βi (t) = ∑m

k=1 βik(t) > 0 for all t ∈ R and i ∈ {1, . . . , N }.
(A4) βi (t) − di (t) + ∑N

j=1, j =i ai j (t) > 0 for all t ∈ R and i ∈ {1, . . . , N }.
As discussed in Faria (2017), it is easy to manage the general case from the choice
u = v = (1, . . . , 1).
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Next, we take

�1 = min

{

di (t) − ∑N
j=1, j =i ai j (t)

βi (t)
: i = 1, . . . , N , t ∈ [0, T ]

}

.

and M an upper bound of h(x).
First, we estimate an uniform upper bound for the positive T -periodic solutions of

(36).

Proposition 4.5 Assume that h(x) = xq(x) is a bounded map of class C1 with q :
[0,+∞) −→ (0,+∞) is strictly decreasing and q(0) = 1. In addition, suppose that
(A1)–(A4) hold. We have the following:

(i) If τik = nikT with nik ∈ N for i = 1, . . . , N and k = 1, . . . ,m, then, for
all positive T -periodic solution (p1(t), . . . , pN (t)) of (36), (p1(t), . . . , pN (t))
pi (t) ≤ q−1(�1) for i = 1, . . . , N and t ∈ [0, T ].

(ii) If τik = nikT with nik ∈ N for some i = 1, . . . , N, k = 1, . . . ,m, then,
for all positive T -periodic solution (p1(t), . . . , pN (t)) of (36), pi (t) ≤ M

�1
for

i = 1, . . . , N and t ∈ [0, T ].
Proof (i) Take t0 ∈ [0, T ] and i0 ∈ {1, . . . , N } with

pi0(t0) = max{pi (t) : t ∈ [0, T ], i ∈ {1, . . . , N }} (38)

and p′
i0
(t0) = 0. Notice that pi0(t0 − τi0k) = pi0(t0) because pi0(t) is T -periodic and

τi0k = ni0kT for all k = 1, . . . ,m. Using the expression of the i0-th equation of (36)
and (38), we have that

di0(t0)pi0(t0) ≤ pi0(t0)

⎛

⎝

N
∑

j=1, j =i0

ai0 j (t0)) + βi0(t0)pi0(t0)q(pi0(t0)

⎞

⎠ .

Thus,

q(pi0(t0)) ≥ di0(t0) − ∑N
j=1, j =i0 ai0 j (t0)

βi0(t0)
.

Now, the conclusion of (i) is clear. To prove (ii), we take t0 and i0 as above.We observe
that

0 ≤ −di0(t0)pi0(t0) +
N

∑

j=1, j =i0

ai0 j (t0)pi0(t0) +
m

∑

k=1

βi0k(t0)M,

or equivalently,
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pi0(t0) ≤ M

�1
.

��
Remark 4.1 Informally speaking, Proposition 4.5 says that we can take θmax =
q−1(�1) in (i) and θmax = M

�1
in (ii).

To conclude this section, we apply Theorem 4.6 in system (36) with h(x) = x
1+x2

.
In this case,

H(t, x) = 1 + t2

1 + (t x)2
x .

It is clear that (A), (B) and (C) hold.Moreover, condition (Q) is satisfied for any θ > 0.
On the other hand, for each t > 0, we have that

∣

∣

∣

∣

∂

∂x
H(t, 1)

∣

∣

∣

∣

< 1.

Thus, for each θmax > 0, f (x) = H(θmax, x) is a function with negative Schwarzian
derivative and | f ′(1)| < 1. By Proposition 2.2, we conclude that 1 is a global attractor
in (0,+∞) for the difference equation

xn+1 = f (xn).

In conclusion, if we consider system (36) with h(x) = x
1+x2

and (A1)–(A4) are
satisfied, then there is a positive T -periodic solution that is globally attracting for all
positive solutions of (36).

In general, for h(x) = x
1+xγ with γ ≥ 2, the global attraction of a T - periodic

solution in system (36) is guaranteed if

2 ≥ (γ − 2)θγ
max

with θmax the upper bound given in Remark 4.1.
In Section 4 in Faria (2017), Faria analyzed the existence of a global attracting

positive T -periodic solution in (36) when h(x) = xe−x and all delays are multiple of
the period. Following our strategy with this nonlinearity, we recover exactly the same
results as those in Faria (2017). Our contribution in comparison with Faria (2017) is
that our approach is not restricted to h(x) = xe−x . We stress that the main result in
Faria (2017) on the existence of a positive T -periodic solution, the key contribution
of that paper, is not restricted to Nicholson’s system.

5 Discussion

Amajor challenge in theoretical biology is to understand the influence of the seasonal
fluctuations of the environment on the evolution of the species (Lou and Zhao 2017;
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Fig. 1 Representation of two
different solutions of Eq. (21)
with parameters d(t) = 1,
β(t) = 5 + (e2 − 5) cos2(t) and
τ = 8. Notice that Theorem 3.5
cannot be applied in this
situation but there exists a
globally attracting periodic
solution
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Lou et al. 2019). To approach this problem,weoffer newcriteria of global attractivity of
a positive periodic solution in non-autonomous systems of delay differential equations.
Generally speaking, our approach can be viewed as the extension for non-autonomous
systems of the popular connection between scalar delay differential equations and
discrete equations developed in Ivanov and Sharkovsky (1992) and Mallet-Paret and
Nussbaum (1986). As particular examples, we have studied non-autonomous variants
of some classical models that include Nicholson’s blowfly equation or Mackey–Glass
model (Berezansky et al. 2010), the Goodwin oscillator for chemical reactions (Ruoff
and Rensing 1996) andmodels with patch structure (Faria 2017). Themain advantages
of our results in comparison with those in Faria (2021), Faria et al. (2018), Li et al.
(2020), Lou and Zhao (2017) are:

(1) We cover the common nonlinearities employed in mathematical biology.
(2) We provide delay-dependent criteria of global attraction that include the best

delay independent results.
(3) We can apply our results in non-monotone models.

To apply our results, it is critical to determine an (uniform) upper bound for the positive
T -periodic solutions of themodel.Moreover, a better estimate leads to a sharper result.
In light of some numerical simulations (see Fig. 1), it seems that the estimates given
in Proposition 3.5 when the delays are not multiple of the period can be improved. We
will study this issue in future works.

A controversial result in ecology deduced from equation

x ′(t) = r x(t)

(

1 − x(t)

K (t)

)

is that seasonality has a deleterious influence on the overall population size (Henson
and Cushing 1997). That is, the average of the population size is always less than the
average of the carrying capacity. When we analyze a similar question with Nichol-
son’s blowfly equation, we have observed that the delay can promote or reverse that
deleterious influence, see Fig. 2. Particularly, time delays in (21) can stimulate a more
efficient use of the resources.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
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Fig. 2 Representation of
∫ 200
200−2π x(t)d(t) with x(t) a positive solution of x ′(t) = −x(t) + (1.4 +

h sin(t))x(t − τ)e−x(t−τ). We measure the intensity of the seasonality by h. Observe that
∫ 2π
0 1.4 +

h sin(t)dt = 1.4 for all h. That is, the average of the resource of the medium is the same for all values of
h; (lower curve) τ = 2. (upper curve) τ = 6
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