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S U M M A R Y  
Ultrasonic guided waves in a composite cylinder have been studied by using a 
Rayleigh-Ritz-type finite-element representation. Although the method can be 
applied to general anisotropic cylinders, the analysis has been confined here to the 
case of a narrow transversely isotropic solid cylindrical core surrounded by a thick 
coaxial isotropic cylinder. Numerical results are presented for the dispersion of the 
first two modes when the circumferential wavenumber n = 1 and 3. It is found that, 
for the particular case of a graphite core in a magnesium cylinder, the two modal 
branches approach very closely (pinch) at the Rayleigh wave speed of magnesium. 
In the presence of a soft interface material, the pinch frequency is found to shift 
downwards. The effect of this interface material on the dispersion is also discussed. 

Key words: composite cylinder, guided wave, interface dispersion, transversely 
isotropic. 

1 INTRODUCTION 

Fibre-reinforced composite materials are widely used in 
aerospace and mechanical engineering. Clad rods or wires 
have been investigated for use as acoustic delay lines and 
fibre acoustic waveguides. In recent years, there have been 
several investigations dealing with guided waves in isotropic 
clad rods (fibres). A survey of the early literature was given 
by Thurston (1978). More recently, fibre acoustic wave- 
guides have been investigated by Safaai-Jazi, Jen & Farnell 
(1986) under the assumption of weak guidance. The 
equation governing the dispersion of guided waves in a 
cladded cylinder is complicated, even when both materials 
are isotropic. They are much more complicated if the 
materials are anisotropic. Previously, several studies have 
dealt with acoustic propagation in uncladded transversely 
isotropic rods. For references the reader is referred to  Xu & 
Datta (1991) and Dai et al. (1992a,b). Because of the 
algebraic complexity of anisotropic wave propagation, Xu 
& Datta (1991) used a hybrid method t o  study acoustic 
waves in a composite waveguide having a thin hexagonal 
core surrounded by a thick isotropic coaxial cylinder. Their 
study was limited to  the case of axisymmetry. Dai et al. 

* Permanent address: Department of Mechanical Engineering 
University of Colorado, Boulder, CO 80309-0427, USA. 

(1992a,b) presented an analytical solution for the case of 
non-axisymmetric wave propagation in single-crystal cladded 
fibres having a hexagonal core and a hexagonal cladding. 
They presented numerical results, however, only for the 
weak guidance case and when the cladding is infinitely thick. 

In this paper we consider non-axisymmetric waves in a 
cladded rod having a transversely isotropic core and an 
isotropic cladding. The method of analysis is based upon a 
Rayleigh-Ritz-type finite-element representation. Discreti- 
zation in the radial direction is used to model the radial 
variation of the constitutive properties. The advantage of 
the method is that arbitrary anisotropy and many layers can 
be considered. This allows us to  examine the effect of a soft 
interface material on the changes in the dispersion 
characteristics. The objective here is to  assess the feasibility 
of an ultrasonic technique to characterize interface material 
properties. 

2 T H E O R Y  

Consider a layered cylinder, as shown in Fig. 1. Fig. l(a) 
shows the coordinate system ( r ,  8 ,  z ) .  The materials are 
assumed to  be linearly elastic, anisotropic in the core and 
isotropic in the interface and matrix regions. The layer 
parameters are (inner radius), r, (outer radius), p' 
(density) and Cf, (elastic constants in the contracted 
notation) where i, j = 1, . . . , 6. The superscript 1 = I,  11,111 
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Figure 1. Geometry of the problem 

and subscript 1 = 1, 2, 3 ,  are associated with the core, 
interface layer and outer matrix layer, respectively. 

As discussed in Xu & Datta (1991), the wave equations 
that govern the displacement in the layers can be solved for 
wave propagation in the axial (z-) direction in the form 

u,. = C U:(r ,  z ,  t )  cos no,  
I 

, , = ( I  

z 

U, = C Uy(r ,  z, t )  cos no,  

where u,, u H ,  u; are the components of displacement in the 
r - ,  8-, t-directions, respectively. The equations governing 
U:, U';, U'' are coupled in general. For the isotropic case, 
they can be obtained from the potentials which are governed 
by equations that are uncoupled. For a generally anisotropic 
material, such a simplification can not be accomplished. If 
the material is transversely isotropic, having the z-axis as 
the axis of symmetry, one can also represent UF, U;, Uz  in 
terms of potentials that satisfy uncoupled equations. 
However, in the latter case, the solutions are rather 
complicated. For this reason and for reasons of general 
applicability, we have adopted a finite-element technique to  

,, =o 

solve the free guided wave problem for the composite 
cylinder. 

2.1 Finite-element representation 

In the finite-element representation, we divide the 
composite cylinder into concentric shells. Within each shell 
the displacement variation in the radial direction is 
approximated by a quadratic polynomial with coefficients 
that are  the generalized displacements. Thus, for circum- 
ferential wavenumber n,  we assume that 

{U} = "Hq), (2) 

where the components of {U} are U:,  U s ,  U z ,  as defined in 
eqs (1). Furthermore, 

(4)  = (u:, 4,4, c, G, U l r ,  U L 4 ,  4)T, 
n ,  0 0 n2 O 0 n3 :I1 (3) [ 0 O n ,  0 O n , O  O n ,  

[N]= 0 n ,  0 0 n,  0 0 n3 

where the superscripts b,  m ,  f represent the values at the 
nodes of the kth element which are  at r, -, , $(r, + r, ,), r,, 
( r k - ,  < r < r,) .  The interpolation polynomials n, ,  i = 1, 2, 3, 
are given by 

n , ( l ; ) =  1-31;+2C2, n2(C)=45-4C2, 

n3(5) = -5  + 2C2, 

In eq. (2) we have dropped the superscript n for 
convenience. Substituting eq. (2) into the strain-- 
displacement relations, it is found that (see Xu & Datta 
1991) 

(4) 5 = ( r  - r k - , ) / ( r k  - r k P l ) .  

(€1 = [bl(d/dz){q} + [al{q>, ( 5 )  

where [a] and [b] are  real matrices, defined in the 
Appendix, and 

( 6 )  T 
{.) = ( E r r ,  E m  E z z ,  Yem Y m  Y r e )  ' 

The equation governing the nodal displacement is 
obtained by using Hamilton's principle. For this purpose, 
consider the Lagrangian for each element: 

where p is the mass density and [ C ]  the 6 x 6 symmetric 
elastic stiffness matrix. The asterisk denotes a complex 
con jugate. 

Substituting eqs (2) and (5) into eq. (7) and integrating 
over the circumferential and radial coordinates, we obtain 

where prime and dot denote differentiation with respect to z 
and t ,  respectively. The mass matrix [ml and the 
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Table 1. Material properties: densities in gm cm - .3,  elastic constants 
in GPa. 

Property Graphitc Interphase Magnesium 

stiffness-related matrices [k,] .  [k2], [k,] are defined as 

The integrations specified in eqs (9) can be computed 
exactly if  the density p and stiffness [C] are constants within 
each shell. Otherwise, they can be obtained by numerical 
integration. It is observed that [k,]  and [k,] are symmetric, 
whereas [k.] is not. 

Assembling the Lagrangians for all the elements, we can 
find the total Lagrangian for the composite cylinder. Setting 
the first variation of the Lagrangian to zero gives the 
second-order partial differential equations 

In the above, { Q }  is the global nodal displacement vector, 
[MI is the global mass matrix and [K,], [KJ,  [K,] are global 
stiffness-related matrices. It has been assumed that there are 
no external forces acting on the cylinder. 

If we now assume the t and z dependence of the 
displacement components in the form Q = Qo exp [i(Ez - 
wr)],  then 

d l d z  = iE ,  d ld t  = -iw = -icE, (11) 

(E2[K,1 + iE(K1."-  1K.1) + [K31 - w2[MI){Q0) = 0. (12) 

and we obtain from eq. (10) 

For a non-trivial solution, the determinant of the coefficient 
matrix of {oO} must be zero. This leads to  the eigenvalue 
problem for the determination of the wavenumber 6 for a 
given frequency w. 

In Xu & Datta (1991), a somewhat different hybrid 
technique was used to  study the guided waves in the 
composite cylinder. In this alternative method, the 
finite-element formulation was used only for the core. The 
resulting equations were coupled to  the analytical solution 
for the isotropic interface and outer matrix materials. This 
has the advantage that the outer radius of the matrix region 
can extend to infinity. Results of the two methods were 
shown to agree quite well for the composite cylinder having 
a finite outer radius. Here, we have used the finite-element 
representation to  study the non-axisymmetric waves. 

3 N U M E R I C A L  R E S U L T S  A N D  
D I S C U S S I O N  

The present study is focused on the dispersion of graphite 
fibre in a magnesium matrix. The material properties of the 
fibre (core), interface and matrix regions are given in Table 
1. The radius of the core is taken to  be 1 mm and the outer 
radius of the matrix (magnesium) cylinder is fixed at 11 mm. 
The thickness of the interface region between the core and 
the matrix is varied: 0, 0.1 and 0.2 mm. 

For the numerical computations, the finite-element 
Rayleigh-Ritz procedure was used. For this purpose, the 

2.269 1,738 1.738 
20.02 10.94 109.4 

234.77 10.94 10Y.4 
9.9h 5.70 57.0 
6.45 5.70 57.0 

24.00 2.62 26.2 
5.02 2.62 26.2 

core was divided into five concentric cylinders with radius 
increments of 0.20 mm. The interface region was divided 
into two or four concentric cylinders of equal thickness 
(0.05 mm). The magnesium annular region was divided into 
60, 58 or 56 concentric annuli, respectively, for the three 
interface thicknesses (0, 0.1 and 0.2mm). Thus, for the 
maximum frequency considered (10 MHz), the wavelength 
of the shear wave in magnesium is about four times the 
distance between two adjacent nodes. The results were 
verified by comparison with those reported in Xu & Datta 
(1991) for n = 0. 

Equation (12) provides a set of roots for 8 for a given 
frequency w.  Not all of these roots are real. The real roots 
correspond to  the propagating modes. For n 5 1, there is 
one propagating mode for all w.  This is the lowest mode and 
is called the longitudinal mode when n = 0 and the flexural 
mode for n = 1. All higher modes have cut-off frequencies 
below which they become evanescent (6 complex) or 
non-propagating ( E  imaginary). In this paper we have 
focused our attention on the two lowest modes for n = 1 and 
3. Our  interest is to  delineate the characteristics of these two 
modes as they depend on the anisotropic core and isotropic 
interface properties. 

The material properties of graphite and magnesium are 
such that the longitudinal ( P )  wave speed of the former in 
the z-direction (V: , )  is higher than that of the latter, 
whereas the axial-shear ( S H )  wave speed of graphite (V&) 
is lower than that in magnesium. Also, graphite is strongly 
anisotropic (V:, is more than three times larger than V i s ) .  
For reference, these speeds are noted as V & =  
3.25 mm ps - '  (= 3250 m s-I),  V:, = 10.17 mm p s C ' ,  V G  = 
6.94mm psC1,  V G  = 3.88 mm p s C i .  Fig. 2 shows the 
dispersion curves for the first two branches of the flexural 
( n  = 1) mode. This figure shows speed in mm ps-' (vertical 
axis) uersus frequency in MHz (horizontal axis). It is seen 
that the speed of the lowest branch increases rapidly with 
frequency and reaches a plateau at  the Rayleigh wave speed 
of magnesium, Vy = 3.63 mm ps-.'. The speed of the next 
higher branch, which has a cut-off frequency of 0.11 MHz, 
decreases rapidly and approaches gradually a short plateau 
at the shear-wave speed of magnesium, Vl;,= 
3.88 m m p s C i .  Then it drops gradually to V y  when this 
branch almost touches the flexural branch at about 
1.39MHz. The speed of the lowest (flexural) branch then 
drops gradually to  the axial-shear-wave speed of graphite, 
3.25 mm ps-' .  O n  the other hand, the speed of the second 
mode reaches a plateau after the pinch frequency at V ;  and 
then, a t  about 2.7 MHz, it too drops gradually to  V:s. 

To understand the mode interchange that occurs at the 
pinch frequency of the first two modes, Fig. 3 shows the 
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Figure 2. Dispersion curves for a graphite fibre in a magnesium rod. Circumferential wavenumber n = 1. 

mode shapes associated with these two branches. Figs 3(b) whereas above it the motion is in the graphite core. The 
and (d) show the shapes associated with the first branch second branch shows just the opposite behaviour. 
before and after the pinch frequency and Figs 3(c) and (e) Figures 4 and 5 show the effect of a soft interface layer of 
show those for the second branch. It is seen that below this thickness 0.1 and 0.2 mm, respectively. Now it is found that 
frequency the motion associated with the first branch is the pinch frequency is about 0.9 MHz for the 0.1 mm 
confined to the outer surface of the magnesium cylinder, interface and 0.7 MHz for the 0.2 mm interface. Also, it is 

(a) 
Phase speed (mmlps) 
4.0[ 

3.75 

3.50 

3.25 I 

1.15 1.40 1.05 1.90 

Frequency (MHz) 

Figure 3. (a) Close-up view of the first two branches of the curves shown in Fig. 2 near the pinch frequency; ( h )  and (d) mode shapes 
associated with the first branch before and after this frequency; (c) and (e) mode shapes associated with the sccond branch. ~ radial 
component, --- axial component, --- transverse component. 
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-1 0 1 
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Figure 3. (Continued) 

I 

-1 0 1 

Displacement 

noted that the speed of the second branch starts dropping at 
about 2.0 and 1.6 MHz in the two cases, respectively. Thus, 
the presence of the interface decreases these transition 
frequencies measurably. The other distinct feature is that 
the soft interface material causes the speeds of these 
branches to  drop gradually below V i s .  Fig. 5 shows that 
they asymptotically approach the shear-wave speed of the 
interface material, V ,  = 1.23 mm p s - ' .  

Figures 6--8 show the first two branches for n =3. They 
show very similar behaviour as for n = 1. In this case there is 
a cut-off frequency below which there are no propagating 
modes. Above this frequency, the speed of the first branch 
drops rapidly and plateaus to  V y  first (Fig. 6). On the other 
hand, the speed of the second branch drops first to V G  and 
then this branch pinches the first at speed V y  at  about 
3.3 MHz. Following this, the two branches behave like the 
n = 1 modes. Figs 7 and 8 show the effect of the interface 
layer. Again, the transition frequencies are lower in the 
presence of this layer. 

The pinching and transition behaviour is characteristic of 
a bilayer cylinder when the material properties are 
significantly different. The presence of the strongly 

-1 0 I 

Displacement 

I 

0 
-1  0 1 

Displacement 

anisotropic core makes the transition rather sharp. These 
features could be exploited to  determine the material 
properties of the constituents as well as those of an interface 
layer. 

4 CONCLUSIONS 

Guided waves in cladded fibres have been studied in this 
paper. The fibre is assumed to  have transverse isotropy with 
the axis of symmetry aligned with its axis. A Rayleigh-Ritz- 
type finite-element procedure had been used to analyse the 
dispersive behaviour of non-axisymmetric waves. Numerical 
results are presented for the case of a graphite fibre 
surrounded by a coaxial isotropic magnesium cylinder. 
Attention has been focused on the first two branches for the 
circumferential wavenumber, n = 1 and 3. It has been shown 
that there exist certain transition frequencies at which sharp 
changes occur. These frequencies are found to depend on 
the properties of the interface layer. For a soft interface, 
these frequencies shift downwards. The distinctive features 
of the guided waves could be used for ultrasonic 
characterization of the constituent and interface properties. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/118/2/317/575616 by guest on 20 August 2022



322 N .  Rattanawangcharoen, S .  K .  Datta and A .  H .  Shah 

15 

10 - 

pLrn = 3.63'- 

0 7  

5:: 

0 2 4 B 8 10 

Frequency (MHz) 

10 - 

5 -  

Figure 4. Dispersion curves for n = 1 when there is an interface layer between the fibre and the cladding. The interface layer thickness is 
0. I mm.  

I 
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0 2 4 0 8 10 

Frequency (MHz) 

Figure 5. Same a s  Fig. 4 when the interface layer thickness is 0.2 mm. 
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Figure 6. Same as Fig. 2 for n = 3. 

Phase speed (mmlps) 
15 

Figure 7. 
0.1 rnm. 

Dispersion curves 

0 

for 

2 

n = 3 when there is an 

4 

interface layer 

6 

between the fibre 

V5y = 3.88 

8 10 

Frequency (MHz) 

and the cladding. The interface layer thickness is 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/118/2/317/575616 by guest on 20 August 2022



324 N .  Ruttanawangcharoen, S .  K .  Datta and A .  H .  Shah 

ACKNOWLEDGMENT 

The work reported here was supported in part by a grant 
(No. OGP-0007988) from the Natural Science and Engin- 
eering Research Council. 

REFERENCES 

Dai, J .D..  Winkel. V., Oliviera, J.E.B. & Jen, C.K., 1992a. 
Analysis of weakly guided cladded acoustic fibers of hexagonal 
crystal symmetry, IEEE Trans. (Jltrason. Ferroelectr. Freq. 

Contrib., 39, 722-729. 
Dai, J .D.,  Winkel, V.,  Oliviera, J.E.B. & Jen, C.K., 1992h. 

Analysis of cladded acoustic fibres of hexagonal symmetry, 
IEEE Tram. Ultrason. Ferroelectr. Freq. Contrib., 39, 730-736. 

Safaai-Jazi, A , ,  Jen, C.K. & Farnell, G.W.,  1986. Analysis of 
weakly guiding fiber acoustic waveguide, IEEE Trans. 
Ultrason. Ferroelecir. Freq. Conirib., 33, 59-73. 

Thurston, R . N . ,  1978. Elastic waves in rods and clad rods, J .  
acousi. SOC. A m . ,  64, 1-37. 

Xu, P.C. & Datta, S.K., 1991. Characterization of fiber-matrix 
interface by guided waves: axisymmetric case, J. acoust. SOC. 
Am. ,  89, 2573-2583. 

A P P E N D I X :  DEFINITION OF MATRICES [a]  A N D  [b]  

The matrices [a] and [b] in eq. (5) are  defined as 

- 0 
dn  
d r  

0 0 

nn2 dn, n2 
r d r  r 

0 _-  nn l  ( In ,  n ,  

0 

0 

0 

nn 
r 

_-  

dn  
d r  
- 

0 

d r  

n3 

r 

0 

- 

0 

0 

r 

0 

0 

0 -  

0 

dn3 n 3  

dr r 

0 n ,  0 0 n2 0 0 n ,  
PI = 
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