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The theory of zeta functions provides an expression for the generating function of nonbacktracking walk

counts on a directed network. We show how this expression can be used to produce a centrality measure

that eliminates backtracking walks at no cost. We also show that the radius of convergence of the gener-

ating function is related to the spectrum of a three-by-three block matrix involving the original adjacency

matrix. This gives a means to choose appropriate values of the attenuation parameter. We find that three

important additional benefits arise when we use this technique to eliminate traversals around the network

on the grounds that they are unlikely to be of relevance. First, we obtain a larger range of choices for the

attenuation parameter. Second, a natural approach for determining a suitable parameter range is invariant

under the removal of certain types of nodes, so we can gain computational efficiencies through reducing

the dimension of the resulting eigenvalue problem. Third, the dimension of the linear system defining

the centrality measures may be reduced in the same manner. We show that the new centrality measure

may be interpreted as standard Katz on a modified network, where self loops are added, and where non-

reciprocal edges are augmented with negative weights. We also give a multilayer interpretation, where

negatively weighted walks between layers compensate for backtracking walks on the only non-empty

layer. Studying the limit as the attenuation parameter approaches its upper bound also allows us to pro-

pose a generalization of eigenvector-based nonbacktracking centrality measure to this directed network

setting. In this context, we find that the two-by-two block matrix arising in previous studies focused on

undirected networks must be extended to a new three-by-three block structure to allow for directed edges.

We illustrate the centrality measure on a synthetic network, where it is shown to eliminate a localization

effect present in standard Katz centrality. Finally, we give results for real networks.

Keywords: generating function, inverse participation ratio, Katz, localization, loops, multilayer, graph

spectrum, backtracking walks.
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1. Motivation

The tasks of community detection and node centrality measurement can both be addressed by quanti-

fying traversals around a network; either random [21, 28] or deterministic [6, 11]. In particular, the

c© The author 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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concept of a walk, which allows nodes and edges to be revisited, forms the basis of the Katz centrality

measure [16, 34], whose limiting value corresponds to eigenvector centrality [4, 5]. However, all walks

are not created equal. Recently, several authors have argued that certain, backtracking, walks, should

be ignored. These walks include at least one back-and-forth flip between a pair of nodes. One concrete

justification for the use of nonbacktracking walks is that localization effects can sometimes be avoided

[17, 24, 31]. In the context of community detection, a nonbacktracking version of spectral clustering

was proposed in [20]. Moreover, quantities defined using the concept of nonbacktracking walks have

proved useful in the framework of undirected networks when tackling decycling problems, as well as

dismantling problems and the problem of optimal percolation (see, e.g., [25, 26] and references therein).

A nonbacktracking analogue of eigenvector centrality was developed in [24] for undirected networks,

and a Katz version was proposed in [14] and studied from a matrix polynomial perspective. However,

none of those references handle directed edges. In this work, we therefore address the case of nonback-

tracking walk centrality for directed networks.

The paper is organized as follows. In Section 2 we introduce some background concepts and notation

and, in particular, set up the task of computing nonbacktracking walk centrality on a directed network.

In Section 3 we review a recurrence that counts nonbacktracking walks and leads to a closed form

generating function. This allows us to conclude that nonbacktracking walk centrality on a directed

network may be computed at the same cost as Katz centrality. Section 4 shows that the new centrality

measure may also be interpreted as standard Katz on a modified version of the network, where self

loops and negative versions of non-reciprocal edges have been added. We also show that the measure

may be viewed from a multilayer perspective. The nonbacktracking walk centrality measure involves

a downweighting parameter whose range of values is determined by the radius of convergence of the

generating function. We show in Section 5 how this upper limit is related to the spectral radius of a

three-by-three block matrix built from the underlying adjacency matrix. We also show that the spectral

radius is unchanged when nodes of certain types are removed, and we argue that this property can

have computational benefits. Section 6 considers the limiting values of the downweighting parameter.

In particular, by allowing the downweighting parameter to approach its upper bound, we arrive at a

generalization to directed networks of the nonbacktracking eigenvector centrality measure proposed

in [24]. Section 7 gives a rigorous analysis of the new measure on a synthetic network. On this example,

in the limit of large network size the nonbacktracking measure can avoid a localization issue present in

the Katz version. In Section 8 we give experimental results on some real networks, and we finish in

Section 9 with a brief discussion.

2. Background and Problem Setting

We begin this section with some definitions and notation. Let G = (V,E) be a directed graph (digraph)

with n nodes. Suppose that the graph does not contain self loops (edges from a node to itself) or multiple

edges, and assume moreover that it is unweighted, i.e., all its edges have unit weight. The graph can

thus be represented by means of an n× n binary adjacency matrix A = (ai j). Here ai j = 1 if there is a

directed edge from node i to node j, and ai j = 0 otherwise.

The identity matrix, whose order will be clear from the context, will be denoted by I. The ith column

of the identity matrix of order n will be denoted by ei ∈ R
n. The vector 0 ∈ R

n will be the vector of all

zeros and 1 ∈ R
n the vector of all ones. We use 1̂ ∈ R

n−1 and êi ∈ R
n−1 (for i = 1, . . . ,n−1) to denote

the vectors containing the first (n− 1) components of vectors 1 and ei, respectively. We use ‖v‖2 to

denote the Euclidean norm of a vector v, and ρ(M) to denote the spectral radius of a square matrix M.

We denote a directed edge from i to j by i→ j. We call an edge i→ j reciprocal, and denote this by
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i ↔ j, if i→ j ∈ E and j→i ∈ E. We denote by S = (si j) ∈ R
n×n the adjacency matrix of the subgraph of

G obtained by removing all edges that are not reciprocal. The entries of this matrix may thus be defined

as si j = ai ja ji.

A walk of length r from node i1 to node ir+1 is a sequence of r+ 1 nodes i1, i2, . . . , ir+1 such that

iℓ→iℓ+1 ∈ E for all ℓ = 1,2, . . . ,r. A standard result shows that (Ar)i j counts the number of walks of

length r from node i to node j [10]. We will use the notation

abc · · · h

to denote a walk that uses nodes abc · · ·h in that order. Where necessary, we use ⋆ as a placeholder for

a general node and indicate the walk length. So, for example,

i ⋆ ℓ ⋆ · · · ⋆ j of length r

denotes a walk from i to j of length r whose third node must be ℓ .

We denote by D the diagonal matrix whose diagonal entries are Dii = (A2)ii = (S1)i. Hence Dii

counts the number of neighbours of i that are connected to i by reciprocal edges. We use dout
i to denote

the out-degree of node i, that is, the number of nodes that i can reach in one step. So dout := A1 is the

vector of out-degrees. Similarly, din
i denotes the in-degree of node i, that is the number of nodes that

can reach i in one step. In vector form, din := AT 1, where AT denotes the transpose of A.

A walk is said to be backtracking if it contains at least one sequence of nodes of the form iℓ i, and

nonbacktracking otherwise. We will use BTW and NBTW as shorthand for backtracking walk and

nonbacktracking walk, respectively. We note that NBTWs have typically been studied on undirected

networks [2, 17, 20, 24–26, 32], but the definition continues to make sense in the directed case. We will

denote by pr(A) the matrix whose (i, j)th entry counts the number of NBTWs of length r from node i

to node j. Note that this is the nonbacktracking analogue of the matrix power Ar. To illustrate the idea,

in Figure 1 we show an example of a windmill network—this class of networks will be studied more

comprehensively in Section 7. It is easily verified that

p1(A) = A =




0 1 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 1 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

1 1 1 1 1 1 0




, p2(A) = A2 −D =




0 1 1 1 1 1 1

1 0 1 1 1 1 0

1 1 0 1 1 1 1

1 1 1 0 1 1 0

1 1 1 1 0 1 1

1 1 1 1 1 0 0

0 1 0 1 0 1 0




and

p3(A) =




1 0 1 2 1 2 0

0 1 0 1 0 1 0

1 2 1 0 1 2 0

0 1 0 1 0 1 0

1 2 1 2 1 0 0

0 1 0 1 0 1 0

0 0 0 0 0 0 3




.

For example, there are two walks of length three from node 1 to node 2, given by 1272 and 1712. Both

of these are backtracking, and hence (p3(A))12 = 0.
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FIG. 1. Windmill network with m = 3 triangles.

The concept of walk counting has proved useful in the development of network centrality measures.

Katz centrality [16] assigns a value ki = eT
i k to node i according to

(I −αA)k = 1, (2.1a)

where α > 0 is a parameter. To ensure that ki > 0, this parameter must be restricted to the range

0 < α < 1/ρ(A), in which case we may expand the resolvent (I −αA)−1 = I+αA+α2A2+ · · · , so that

ki may be written as

ki = 1+
∞

∑
r=1

n

∑
j=1

αr(Ar)i j. (2.1b)

In this way, we see that ki from (2.1b) may be viewed as a weighted sum of all walks1 emanating from

node i, with the count for walks of length r scaled by αr. In the limit as α → 1/ρ(A), the Katz centrality

vector k approaches the Perron-Frobenius vector of A, which corresponds to eigenvector centrality [4, 5],

when the graph under study is strongly connected.

Katz centrality gives the same weight to all walks of the same length. For example, in Figure 1,

717176 has the same influence on the centrality measure as 712756, even though the latter, nonback-

tracking, walk, traverses the network more widely and is likely to be more relevant in terms of message

passing or disease spreading. This type of argument motivated the authors in [14] to propose and study

a nonbacktracking analogue of Katz centrality, restricted to the case of undirected networks, where

A = AT . Here, the node centrality vector is defined as

b = 1+
∞

∑
r=1

tr pr(A)1, (2.2a)

where 0 < t < 1 is a parameter analogous to α . Hence, node i is assigned the centrality

bi = 1+
∞

∑
r=1

n

∑
j=1

tr(pr(A))i j. (2.2b)

1The unit shift on the right hand side of (2.1b), which does not affect the relative ordering of the node centralities, may be

regarded as arising from a single walk of length zero.



DIRECTED NONBACKTRACKING CENTRALITY 5 of 24

It was shown in [14] that, for undirected networks, the NBTW centrality vector (2.2a) can be computed

as cheaply as the Katz version in (2.1a). Further, in an appropriate sense, the limiting value of b as a

function of t in (2.2a) agrees with the nonbacktracking eigenvector centrality measure proposed in [24]

for undirected networks.

Our aim here is to consider the NBTW centrality measure (2.2b) in the case where the network has

directed edges.

3. Recurrence and Generating Function

We now quote a three-term recurrence that relates pr(A) to pr−1(A), pr−2(A) and pr−3(A), and leads to

an expression for the generating function ∑∞
r=0 tr pr(A). The result may be traced back to [7]. A more

accessible treatment from the perspective of graph theory and linear algebra may be found in [33]. We

also note that in the case of an undirected network, the recurrence collapses to a two-term expression

that was discovered independently in the theory of zeta functions of graphs [32] and exploited in [14]

from a network science perspective.

THEOREM 3.1 In the notation above, p0(A) = I, p1(A) = A, p2(A) = A2 −D and

pr(A) = Apr−1(A)+(I −D) pr−2(A)− (A−S) pr−3(A), ∀r > 3. (3.1)

Further, let M(t) = I −At +(D− I)t2 +(A−S)t3 and suppose t is such that the power series φ(A, t) :=

∑∞
r=0 tr pr(A) converges. Then

M(t)φ(A, t) = (1− t2)I. (3.2)

Proof. See [7, 33]. �

Recall from (2.2a) that we may compute the NBTW centrality vector as b = φ(A, t)1. Theorem 3.1

shows that this may be written as the linear system

(
I −At +(D− I)t2 +(A−S)t3

)
b = (1− t2)1. (3.3)

We see that the coefficient matrix has the same sparsity as I −αA in (2.1a), which shows that NBTW

centrality for a directed network may be computed at least as cheaply as Katz centrality. Further com-

ments on computational complexity will be given in Section 5.

REMARK 3.1 The results in Theorem 3.1 correspond naturally to a recursive proof on walk length where

new edges are added at the start of a walk. An alternative recurrence for pr(A) could be established via

a proof that adds edges at the end of the walk. This leads to the relationships

pr(A) = pr−1(A)A+ pr−2(A)(I −D)− pr−3(A)(A−S)

and

φ(A, t)M(t) = (1− t2)I,

which are equivalent to (3.1) and (3.2), respectively.

REMARK 3.2 It is easily checked that equation (3.3) reduces to (I −At)b = 1, i.e., to the linear sys-

tem (2.1a), when the network does not contain reciprocal edges, and thus pr(A) = Ar.
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Let us now define, for r > 2, the 3n×n matrix

qr(A) :=




pr(A)
pr−1(A)
pr−2(A)


 . (3.4)

Then, if we let

C :=




A (I −D) (S−A)
I 0 0

0 I 0


 ∈ R

3n×3n (3.5)

it holds from Theorem 3.1 that qr(A) =Cqr−1(A) for r > 3, and thus

qr(A) =Cr−2q2(A), for r > 2. (3.6)

This will prove useful in section 5, where we study the radius of convergence of the power series.

4. Other Interpretations

In the previous section we characterized NBTW centrality in terms of a linear system. To add further

insight, we now interpret this system heuristically from two alternative viewpoints.

4.1 Katz on a Modified Graph

To give another interpretation of the NBTW centrality measure in (3.3), we first note that the walk-

counting motivation for Katz centrality continues to make sense when the edge weights are nonnegative

integers. In this case we interpret an integer weight s as representing s distinct edges between two nodes.

For example, in a transport setting, if there are two roads between Pisa and Florence and three roads

between Florence and Bologna, then there are 2×3 = 6 distinct ways to get from Pisa to Bologna with

these roads.

Now, the centrality measure b in (3.3) arises when standard Katz, with α = t, is applied to a modified

network with adjacency matrix

A (t) := A− (D− I)t − (A−S)t2,

and with the right-hand side rescaled by a factor 1−t2. In this modification to the network, each node i is

given a self loop with a integer weight, 1−Dii, scaled by t. Also, the unit weight on each nonreciprocal

edge i→ j is decreased by t2. It must therefore be the case that adding these self loops and reweighting

nonreciprocal edges and then applying the standard Katz procedure, with a rescaled right-hand side, is

entirely equivalent to restricting to NBTW counts on the original graph. To understand this equivalence,

we may consider what happens when we count “standard walks” by powering up A (t).
We note that on one hand, this alternative interpretation is conceptually easier, in the sense that we

need only consider standard walks. On the other hand, the interpretation is conceptually harder, in the

sense that we must relate walks on a modified, weighted graph (with scaled integer weights, that for the

loops may even be negative) to NBTWs on the original graph.

When considering traversals around the modified graph, we should regard

• each loop as representing a walk of length two, since the extra factor of t in its weight indicates

that it is compensating for traversals that use one extra edge, and
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FIG. 2. Illustration of walks on the modified graph, for ℓ ↔ j. In reaching node j via its neighbour ℓ, an immediate backtrack

to node ℓ is eliminated by the loop at node ℓ. Hence the continuation that finishes ℓ jℓ j must be treated as a special case. Walks

finishing ℓ jh j for h 6= ℓ are eliminated by the loop at node j.

• each non-reciprocal edge as representing both a walk of length one and a walk of length three. In

the latter case, the weight t2 indicates that the edge is counteracting the presence of traversals that

use two extra edges.

Focusing on distinct nodes i 6= j and walks of length r, we will give an explanation that relies on

induction. So, we assume that the weighted count for NBTWs of any s < r in the original graph is

correctly matched by the ts coefficient in (1− t2)(I − tA (t))−1
1. Now, since A (t) is formed from A

by adding extra edges and weights, it is clear that any walk of length r in the original graph is also

present in the modified graph, and in both cases this walk contributes to the tr term in the respective

Katz resolvent. Our task is now to show that the modifications in A (t) reduce the count in such a way

that what remains as the tr coefficient corresponds precisely to the count for NBTWs of length r in A.

For convenience, we will form longer walks by adding edges at the end of shorter walks. With this

viewpoint, the loops in A (t) are used to balance the presence of BTWs of the form

i ⋆ · · · ⋆ ℓ j ⋆ j of length r.

To get an overview of the next step in the argument, we turn to Figures 2 and 3. Here, a walk on the

modified graph reaches node j after r−2 steps, and it does so via some neighbour ℓ of j.

Case 1: We focus first on the case where the edge ℓ→ j is reciprocated, as in Figure 2. Here sℓ j =
s jℓ = 1 and (S−A)ℓ j = (S−A) jℓ = 0. The walk may perform a final backtracking double-step either

by visiting a distinct neighbour h 6= ℓ and returning to j, or by revisiting ℓ and returning to j. We

must distinguish between these two types because our inductive argument assumes that we have already

removed backtracking walks of length less than r—so a walk that revisits node ℓ corresponds to a length

r−1 backtracking walk ending at ℓ. Such a walk has already been removed from the count, so will not

be further propagated when we increase length by one (i.e., multiply by tA (t)). In essence, the negative

loop attached at node ℓ has already taken care of this case. In more detail, ignoring node ℓ, there are

D j j − 1 distinct neighbours of j such that j ↔ ⋆, each offering a final backtracking double-step. Their

presence is compensated for by the loop at node j. This is consistent with (I − tA (t))−1
1, giving part
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FIG. 3. Illustration of walks on the modified graph, variation of Figure 2 where ℓ→ j. In this case, a continuation that finishes ℓ jℓ j

is not possible.

of the required expression. The case

i ⋆ · · · ⋆ ℓ j ℓ j of length r (4.1)

must be treated differently because, by induction, walks on the modified graph of the form

i ⋆ · · · ⋆ ℓ j ℓ of length r−1

have already been removed from the coefficient of tr−1. Hence, we cannot simply propagate the count

by adding the final edge ℓ→ j. Instead, we must propagate the count from length r−2 to r. The number

of walks of the form (4.1) is precisely the number of walks of the form

i ⋆ · · · ⋆ ℓ j of length r−2.

Hence, to deal with walks of the form (4.1) we simply subtract the tr−2 coefficient. This is consistent

with (I − tA (t))−1 (−t2)1, so, overall, a factor 1− t2 arises in the right-hand side of (3.3).

Case 2: Now consider the alternative case where the edge ℓ→ j is not reciprocated, as in Figure 3. Here

(S−A)ℓ j =−1 and (S−A) jℓ = 0. The arguments in Case 1 must be adapted slightly because there is no

longer a backtracking walk of length r− 1 ending at ℓ. Since this nonexistent walk will not have been

removed at the previous level, we must not add it back in, which explains the extra −(A−S)t2 term in

A (t).

4.2 Relationship to Multilayer Networks

From Theorem 3.1 and (3.6), since p0(A) = I we see that the NBTW counting matrix pr(A) may be

extracted from the upper left n× n block of the rth power of C. The matrix C can be viewed as the

supra-adjacency matrix associated with a multilayer network. Here, as shown in Figure 4, we have

three layers, each of which contains the same set of nodes. This type of multilayering structure is

usually referred to as node aligned [18]. In this setting, the diagonal blocks describe interactions within

each layer, while the off-diagonal blocks describe interactions between layers. Forming powers of the

matrix C counts walks around the multilayer structure where edges within and between layers are treated

equally. From (3.5) we see that interactions occurring within layer 1 are described by A, while those

occurring within layers 2 and 3 are both described by a zero matrix. In particular, having entered layer
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FIG. 4. Representation of the multilayer network described by the matrix C in (3.5).

2 or 3, the walk may be continued only by moving back up to the previous layer. Intuitively, the effect

of moving down the layers is to introduce negatively weighted walks that cancel the contribution of the

BTWs within layer 1. Moving back up the layers, to return to layer 1, causes extra edges to be traversed;

so we take one extra step on moving from layer 2 back to layer 1 and two extra steps on moving from

layer 3 to layer 2 and then to layer 1. These extra steps are needed to match the number of edges used

by the equivalent BTWs taking place within layer 1.

5. The Radius of Convergence

In this section we study the radius of convergence of the power series φ(A, t) in Theorem 3.1. The

parameter t > 0 represents a weight for walks taking place in the network under study; therefore, it is

natural to require t ∈ (0,1), so that shorter walks are given more importance than longer ones.2 From a

practical perspective, it is necessary to know what further restriction, if any, is required. The following

theorem shows that 1/ρ(C) is a lower bound on the radius of convergence which is sharp when there

is at least one directed cycle, where C is defined in in (3.5). An example, where there are no directed

cycles is given by

A =




0 1 1

0 0 1

0 0 0


 .

Here the radius of convergence for φ(A, t) is infinite; whereas 1/ρ(C) = 1.

THEOREM 5.1 The radius of convergence Rφ of the power series φ(A, t) = ∑∞
r=0 tr pr(A) is

Rφ =

{
1/ρ(C) if there is at least one directed cycle;

∞ if there are no directed cycles, in which case ρ(C) = 1.

Proof. Recall (3.4) and (3.6), and, for the sake of convenience, set pr(A) = 0 for all r < 0. We then

2It is worth mentioning that the series defining φ(A, t) makes sense for t ∈ C. We restrict ourselves to the case of t ∈ (0,1)
since we are interested in the application to network science.
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have

q1(A) :=




A

I

0


 and q0(A) :=




I

0

0


 ,

and thus q1(A) = Cq0(A) and q2(A) = Cq1(A)− q0(A) = (C2 − I)q0(A). Then a straightforward com-

putation shows

φ(A, t) =
∞

∑
r=0

tr pr(A) = [I,0,0]T
∞

∑
r=2

trqr(A)+ I + tA

= q0(A)
T

(
∞

∑
r=2

trCr−2q2(A)

)
+ I + tA

= q0(A)
T

(
∞

∑
r=2

trCr−2(C2 − I)q0(A)+q0(A)+ tq1(A)

)

= q0(A)
T

(
∞

∑
r=2

trCrq0(A)+q0(A)+ tCq0(A)− t2
∞

∑
r=0

trCrq0(A)

)

= q0(A)
T

(
(1− t2)

∞

∑
r=0

trCr

)
q0(A)

and thus the series φ(A, t) converges if ∑∞
r=0 trCr does, i.e., if tρ(C)< 1. Moreover, the only possibility

for Rφ 6= 1/ρ(C) is when ρ(C) = 1.

Suppose that there are no directed cycles. Then, there are no NBTWs of arbitrary length, and hence

Rφ = ∞.

Conversely, suppose that there is at least one directed cycle. Note first that 1 is an eigenvalue of

C, since C1 = 1, and hence, ρ(C) > 1. There are two cases. If ρ(C) > 1, then the first part of the

proof shows that Rφ = 1/ρ(C). If ρ(C) = 1, observe if i is a node in a directed cycle of length k

then (pnk(A))ii > 1 for all n = 1,2,3, . . . , implying Rφ 6 1. Hence, 1 = 1/ρ(C) 6 Rφ 6 1, and thus

Rφ = 1 = 1/ρ(C). �

THEOREM 5.2 Let Rψ be the radius of convergence of ψ(A, t) = ∑∞
r=0 trAr and let Rφ be the radius of

convergence of φ(A, t) = ∑∞
r=0 tr pr(A). Then, Rψ 6 Rφ .

Proof. Since every nonbacktracking walk is a walk, elementwise it holds that pr(A)6 Ar. This implies

that elementwise

|φ(A, t)|6 |ψ(A, t)| ,
and hence the radius of convergence of the right-hand side is less than or equal to the radius of conver-

gence of the left-hand side. �

Theorem 5.2 shows that the interval in which the downweighting parameter of Katz centrality is

allowed to vary is not reduced when f (z) = (1− tz)−1 is applied to A (t) instead of A. Indeed, generi-

cally, in the former case t ∈ (0,1/ρ(C)), while in the latter t ∈ (0,1/ρ(A)).
In the next subsection, we show that the spectral radius of C does not change when certain types

of nodes are removed from the graph. This property is not shared by the matrix A, whose spectrum

changes, in general, under this type of node (and edge) removal.
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5.1 Pruning and the Spectral Radius

In the remainder of this section we assume without loss of generality that the graph under study is

weakly connected, i.e., that each node in the network is reachable from any other node when all the

edges are regarded as having no orientation. (Otherwise, the problems that we study below break down

into essentially independent subtasks. A node i will be called a source node if it only has outgoing links

and thus dout
i > 0 and din

i = 0; similarly, i will be referred to as a dangling node if din
i > 0 and dout

i = 0,

i.e., if it only has incoming links. For the sake of clarity in the exposition, we will assume that the graph

represented by A has only one source (resp., dangling) node, namely node n.3 If the graph has more than

one, the following reasoning can be applied iteratively. In the remainder of this section we adopt the

following notation. We denote by Â = (âi j) the (n−1)× (n−1) adjacency matrix of the graph obtained

after node n is removed. The matrix Ŝ = (ŝi j) will have entries ŝi j = âi jâ ji and the diagonal matrix D̂ will

be such that D̂ii = (Â2)ii. If n is a source, then Aen = 0 and eT
n A= [aT

R ,0] = [an1,an2, . . . ,an,n−1,0], where

A = (ai j) are the entries of the adjacency matrix; similarly, if n is a dangling node, then eT
n A = 0T and

Aen = [aT
C ,0]

T = [a1n,a2n, . . . ,an−1,n,0]
T . Note that, since the graph is assumed to be weakly connected

and since n is either a source or a dangling node, aC 6= 0̂ or aR 6= 0̂. Once node n is removed from the

graph, the three-by-three block matrix analogue of (3.5) used to determine the number of NBTWs in the

new graph has the form

Ĉ :=




Â (I − D̂) (Ŝ− Â)
I 0 0

0 I 0


 ∈ R

(3n−3)×(3n−3).

The following theorem tells us that removing source and dangling nodes from a network does not

alter the spectral radius of the three-by-three block matrix used to determine the number of NBTWs.

THEOREM 5.3 In the above notation,

det(λ I −C) = (λ 3 −λ )det(λ I −Ĉ).

Proof. Let F(λ ) = Iλ 3 −Aλ 2 +(D− I)λ +(A−S). The matrix equation




λ I −A D− I A−S

−I λ I 0

0 −I λ I






I λ I λ 2I

0 I λ I

0 0 I


=



⋆ ⋆ F(λ )
−I 0 0

0 −I 0


 ,

where ⋆ denotes a block whose exact form is not relevant for the argument, shows that det(λ I −C) =

detF(λ ). Similarly, one can prove that det(λ I−Ĉ) = det F̂(λ ) =: det(Iλ 3− Âλ 2+(D̂− I)λ +(Â− Ŝ)).
It is easily seen that

F(λ ) =

[
F̂(λ ) g(λ )aC

h(λ )aT
R λ 3 −λ

]
, (5.1)

where the functions g(λ ) and h(λ ) are defined as:

(1) g(λ ) = 0, h(λ ) = 1−λ 2 if dout
n = 0;

3This can be obtained after relabelling the nodes and, consequently, after a symmetric permutation applied to the matrix A.
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(2) h(λ ) = 0, g(λ ) = 1−λ 2 if din
n = 0.

Hence, F(λ ) is block triangular and the statement immediately follows. �

The class of nodes that can be removed from the network without affecting the radius of convergence

of φ(A, t) = ∑r pr(A)t
r is broader than the one we just described. Let us call node i a reciprocal leaf

connected to node j if Aei = AT ei = e j; here, the node has a single neighbour, connected by a reciprocal

edge. Suppose now with no loss of generality that node n is a reciprocal leaf and is connected to node

n−1. The following result shows that we can also safely remove reciprocal leaves from the network.

THEOREM 5.4 In the notation above,

det(λ I −C) = λ 3 det(λ I −Ĉ).

Proof. A proof may be given along the same lines of that of Theorem 5.3 by using the fact that now

F(λ ) =

[
F̂(λ )+λ ên−1êT

n−1 −λ 2ên−1

−λ 2êT
n−1 λ 3

]

and

detF(λ ) = λ 3 det(F̂(λ )+λ ên−1êT
n−1)+λ 2 det

([
(F̂(λ ))1:n−2,1:n−1

−λ 2êT
n−1

])

= λ 3 det(F̂(λ )+λ ên−1êT
n−1)−λ 4 det(F̂(λ ))1:n−2,1:n−2

= λ 3 det F̂(λ )+λ 4 det(F̂(λ ))1:n−2,1:n−2 −λ 4 det(F̂(λ ))1:n−2,1:n−2

= λ 3 det F̂(λ ),

where in the second-to-last equality we have expanded the determinant with respect to the last row (or,

equivalently, column). �

Theorems 5.3 and 5.4 are computationally relevant because, as established in Theorem 5.1, in order

to understand what range of t values is valid, we require ρ(C). The results show that before computing

ρ(C) we are allowed to iteratively prune sources, dangling nodes and reciprocal leaves from the network.

In the next section, we show for completeness that the linear system defining the NBTW centralities is

also amenable to the same type of pruning. We note that similar ideas have been proposed to reduce the

cost of the linear system solve asssociated with Katz and PageRank, where the coefficient matrix has a

related structure; see, for example, [3, 22].

5.2 Pruning the linear system

In this section we study how the linear system (3.3) changes when source nodes, dangling nodes and

reciprocal leaves are removed from the network. First, let us assume, without loss of generality, that

node n is the only source (resp., dangling) node in the network. We describe what happens in the

two different cases, depending on the type of node. We adopt the same notation as in subsection 5.1.

Furthermore, b̂ will denote the vector containing the first n− 1 components of the NBTW centrality

vector b = (bi).
(1) din

n = 0. Intuitively, since n is a source node, it sends information to the rest of the graph, and thus

its importance, as measured in terms of walk counts, will depend on the importance of the nodes it is
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pointing to. On the other hand, the importance of the other nodes will not be affected by the importance

of node n, since there is no route connecting these nodes to n. Algebraically, the matrix M(t) can be

written as

M(t) =

[
M̂(t) 0

(t3 − t)aT
R 1− t2

]
,

where here and in the following M̂(t) = I − Ât +(D̂− I)t2 +(Â− Ŝ)t3, and thus (3.3) is equivalent to

{
M̂(t)b̂ = (1− t2)1̂

bn = 1+ taT
R b̂.

(2) dout
n = 0. Here, because n has no access to the rest of the network, we know that its centrality

value is 1. Indeed, the linear system (3.3) can be rewritten
{

M̂(t)b̂ = (1− t2)[1̂+ taC]

bn = 1.

Note that the nodes pointing to node n and, more generally, the other nodes that can reach it, gain

some of their importance from the presence of node n. This is why the right-hand side of the system is

perturbed by the pruning operation.

Let us now consider the case where n is a reciprocal leaf connected to node n− 1. This last case

results as a combination of the above two, when aC = aR = ên−1; the importance of node n is non-trivial

and that of all the other nodes is computed by modifying the right-hand side of the system to take into

account the leaf removal. It can be shown that

M(t) =

[
M̂(t)+ t2ên−1êT

n−1 −t ên−1

−t êT
n−1 1

]

and hence (3.3) can be written as
{

M̂(t)b̂ = (1− t2)[1̂+ t ên−1]

bn = (1− t2)+ tbn−1.

Overall, we conclude that the NBTW measure may be computed by solving a linear system whose

dimension is that of the network remaining after all source/dangling nodes and reciprocal leaves have

been pruned, and then, if required, recovering the centrality of the pruned nodes via simple scalar

recurrences.

6. Limiting Behavior

In [14] it was shown in the undirected case that the Katz-style NBTW measure recovers the eigenvector

version of [24] as the attenuation parameter approaches its upper limit. Here we show that in the more

general case of directed edges, a related eigenvector limit arises. This gives a natural generalization of

the work in [24] to the directed case, and we note that the lack of symmetry takes us from a two-by-two

block matrix to a new three-by-three extension.

In order to make the dependence on the attenuation parameter explicit, in the remainder of this

section we use b(t) in place of b to denote the NBTW centrality vector. The theorem also considers the

more straightforward t → 0+ limit.
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THEOREM 6.1 Let b(t) be the NBTW centrality vector, defined as in (3.3), with t ∈ (0,ρ(C)−1). Then,

the ranking produced by b(t) converges to that produced by the vector of outdegrees dout = (dout
i ) as

t → 0+.

Moreover, suppose that I−ρ(C)−1C has rank 3n−1. Then, as t → (1/ρ(C))− the ranking produced

by b(t) converges to that given by the first n components of the eigenvector of C associated with the

eigenvalue ρ(C).

Proof. By using (2.2b) and the definition of φ(A, t) one finds that entrywise

bi(t) = eT
i φ(A, t)1 = 1+dout

i t +O(t2)

and the first part of the statement follows.

For the second part, we first note that ρ(C) must be an eigenvalue of C.4 Then note that, since b(t)
solves (3.3), it follows that

(I − tC)




b(t)
tb(t)
t2b(t)


=




(I −At +(D− I)t2 +(A−S)t3)b(t)
0

0


 .

Hence, for 0 < t < ρ(C)−1, b(t) solves the NBTW system (3.3) if and only if

(I − tC)




b(t)
tb(t)
t2b(t)


= (1− t2)




1

0

0


 .

So, to study the limiting behaviour, t → ρ(C), we can focus on

(1− t2)(I − tC)−1




1

0

0


 .

At this point observe that I − tC can be seen as a matrix whose entries depend analytically on the

real variable t. As such, it admits an analytic singular value decomposition (see, e.g., [8, 15, 29]). In

more detail, we can write

I − tC =U(t)Σ(t)V (t)T =
3n

∑
i=1

σi(t)ui(t)vi(t),

where U(t),V (t) are orthogonal and analytic for all real t, Σ(t) is diagonal and analytic for all real t,

ui(t) (resp., vi(t)) is the ith column of U(t) (resp., V (t)) and σi(t) = (Σ(t))ii. We assume, without loss

of generality, that the functions σi(t) are labelled in such a way that

σ1(ρ(C)−1)> · · ·> σ3n−1(ρ(C)−1)> σ3n(ρ(C)−1) = 0.

Since I − tC is invertible for all 0 6 t < ρ(C)−1, we can write

(1− t2)(I − tC)−1




1

0

0


= (1− t2)

3n

∑
i=1

υi(t)

σi(t)
ui(t) = (1− t2)

υ3n(t)

σ3n(t)
u3n(t)+O

(
σ3n(t)

σ3n−1(t)

)
,

4This follows from results in the theory of matrix polynomials, see, e.g., [12, 14, 23, 27, 30] and references therein.
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where

υi(t) := vi(t)
T




1

0

0


 .

Now, define

b̃(t) =
σ3n(t)

(1− t)2υ3n(t)
b(t).

The rankings given by b̃(t) and b(t) are equivalent, since they only differ by an overall scalar multi-

plicative factor.

To conclude the proof, it now suffices to observe that

• υ3n(t) 6= 0 for all t ∈ [0,ρ(C)−1], as can be shown by technical arguments similar to those in [14];

• σ3n(t)/σ3n−1(t)→ 0 for t → ρ(C)−1, since by assumption I −ρ(C)−1C has rank 3n−1;

• u3n(t) is the right singular vector corresponding to σ3n(t), and therefore converges to the right

null space of I −ρ(C)−1C as t → ρ(C)−1, i.e., the eigenvector of C associated with ρ(C).

�

We note that, using the results in [32, 33], it is possible to prove that the assumption that (I −
ρ(C)−1C) has rank n− 1 is automatically satisfied when the underlying graph is strongly connected.

Hence, any problem may be broken down into a set of subproblems for which the assumption holds.

7. Analysis for Windmill Networks

In this section, we introduce and study windmill networks; the case with m = 3 triangles was defined

in Section 2 and illustrated in Figure 1. Our aim is to give a rigorous analysis of a large-scale directed

network example where Katz and NBTW centrality can be shown to behave differently. In both cases

the generating function has a finite radius of convergence. However, the restriction required for Katz

centrality produces a localization effect that can be avoided with the NBTW version.

To quantify localization, we use the approach of [13]. Suppose we have a family of unit Euclidean

norm vectors x ∈ R
n, defined for all large n. Then the inverse participation ratio is defined to be

S (x) := ∑n
i=1 x4

i . The family of vectors is said to be localized if S = O(1) and nonlocalized if S =
o(1), as n → ∞. Intuitively, localization implies that the majority of the mass in the vector is confined to

a finite subset of components (in our case a single component).

Figure 1 illustrates a directed windmill network with m = 3 triangles. In the general case we have a

hub that is involved in m triangles. The network has n = 2m+1 nodes. Labelling the hub as node n for

convenience, we have the following edges

• undirected edges from node n to all other nodes in the network,

• a directed edge from node 2i−1 to node 2i for all 1 6 i 6 m.

By symmetry, when we study an eigenvector of A or C, or a vector of walk-based centrality measures,

on this class of network, there will be at most three distinct components; these will correspond to the

odd-numbered nodes from 1 to 2m−1, the even-numbered nodes, and the hub node n. Hence, we will

use nodes 1, 2 and n as representatives.
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Before giving a full asymptotic analysis, we will make some general remarks. For small α or t,

the Katz and NBTW centralities correspond to out-degree centrality. Since node n has out-degree 2m

whereas the remaining nodes have out-degrees of either one or two, it follows that, with out-degree

centrality, node n is assigned almost all the measure: dout
n /‖dout‖2 = 1+O(m−1), and dout

i /‖dout‖2 =
O(m−1) for all other i. Hence, the inverse participation ratio is S (dout/‖dout‖2) = 1+O(m−1) and the

measure is localized. We show below that Katz centrality does not allow α to become sufficiently large

to overcome this effect, whereas NBTW centrality does. Referring to Figure 1 we see that if we count

standard walks starting from node n, we may backtrack to node n on every second step, e.g., after using

the edge 7 → 1, we may return to 7 via 1 → 7, whence we have a further 2m choices for the next edge.

Hence, the overall walk count can grow by a factor 2m every two steps. If we do not allow backtracking,

then a full, one-way, triangle must be completed before we can return to the hub; so the overall walk

count can only grow by a factor of roughly m every three steps. This relates to the terms (2m)
1
2 and m

1
3

that arise in the analysis below.

7.1 Katz Centrality

To study Katz centrality on this example, we first consider the spectrum of the adjacency matrix A. An

eigenpair satisfies Ax = λx, which reduces to

mx1 +mx2 = λxn, x2 + xn = λx1, xn = λx2.

Requiring x 6= 0 leads to the condition

λ 3 −2mλ −m = 0. (7.1)

Straightforward analysis shows that, for large m, this cubic has three real roots. The largest root in

modulus, λ1, is positive and bounded below by
√

2m. Moreover, given any ε > 0 there exists m0 ∈ N

such that m > m0 ⇒
√

2m < λ1 <
√

2m+ε . Therefore, taking 0 < α < 1/
√

2m is a sufficient condition

for the Katz parameter to be within the allowed range, and it is a good approximation of the exact

allowed interval for large values of m.

Now, the Katz system (2.1a) reduces to

kn −α(mk1 +mk2) = 1, k1 −α(k2 + kn) = 1, k2 −αkn = 1.

This solves to give

kn =
1+2mα +mα2

1−2mα2 −mα3
, k2 =

1+α

1−2mα2 −mα3
, k1 =

1+2α +α2

1−2mα2 −mα3
. (7.2)

We note that as α increases away from zero, the denominator in these expressions vanishes precisely at

the reciprocal of the largest root of the cubic appearing in (7.1).

To choose a large α that is consistent with the upper bound, we set α = c/
√

2m, for some 0 < c < 1.

We are interested in the behaviour of the inverse participation ratio in the limit m → ∞. Using standard

asymptotic expansions, we find that the the normalized Katz vector, k̃ := k/‖k‖2 satisfies

k̃n =
c√

1+ c2

(
1+O(1/

√
m)
)
, k̃2 = O(1/

√
m), k̃1 = O(1/

√
m).

The inverse participation ratio for Katz centrality is then found to be

S (k̃) =
n

∑
i=1

k̃4
i =

c4

(1+ c2)2
+O(1/

√
m).
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We see that this quantity is O(1), and hence the centrality measure is localized.

7.2 Nonbacktracking Walk Centrality

To investigate NBTW centrality on a windmill network, we begin by characterizing the spectral radius

of the matrix C in (3.5). Write Cv = λv, where λ 6= 0, and partition v into three vectors of equal

dimension: vT = [xT ,yT ,zT ]. Then, after eliminating y and z, we arrive at

(
λ 3I −λ 2A+λ (D− I)+(A−S)

)
x = 0.

The relevant equations for xn, x1 and x2, are then, respectively,

λ 3xn −λ 2(mx1 +mx2)+λ (2m−1)xn = 0,

λ 3x1 −λ 2(x2 + xn)+ x2 = 0,

λ 3x2 −λ 2xn = 0.

Eliminating x1 and x2, and using λ 6= 0 and xn 6= 0, we arrive at

λ 5 −λ 3 −mλ 2 +m = 0.

The roots are ±1 and the cube roots of m. So ρ(C) = m1/3.

The directed NBTW linear system (3.3) solves to give

bn =
1+2mt +(m−1)t2 −2mt3 −2mt4 +mt6

1− t2 −mt3 +mt5
,

b2 =
1+ t +(2m−2)t2 − t3 − (2m−1)t4

1− t2 −mt3 +mt5
,

b1 =
1+2t +(2m−1)t2 +(2m−4)t3 − (2m+1)t4 − (4m−3)t5 + t6 +(2m−1)t7

1− t2 −mt3 +mt5
.

We note that in each case the denominator has roots ±1 and the cube roots of 1/m. Hence, as t increases

from zero the denominators first vanish at t = m−1/3, which is the reciprocal of ρ(C). This is consistent

with Theorem 5.1. Setting t = cm− 1
3 , for some 0 < c < 1, we find that the normalized NBTW centrality

vector b̃ := b/‖b‖2 has components

b̃n =
m− 1

6

√
2c

(
1+O(m− 1

3 )
)
, b̃2 =

m− 1
2

√
2

(
1+O(m− 1

3 )
)
, b̃1 =

m− 1
2

√
2

(
1+O(m− 1

3 )
)
,

and the inverse participation ratio has the expansion

S (b̃) =
n

∑
i=1

b̃4
i =

m− 2
3

4c4
+O(m−1).

We see that with this choice of t, the NBTW centrality measure is nonlocalized.
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8. Experiments

In this section we describe the results of some numerical tests performed on real-world networks. All

digraphs used here can be found in the SuiteSparse Matrix Collection, formerly known as the Univer-

sity of Florida Sparse Matrix Collection, [9]. The network PAJEK/GLOSSGT represents connections

between words from the graph/digraph glossary. PAJEK/CALIFORNIA was constructed by expanding

a 200-page response set to a search engine query ‘California’, as used for the HITS algorithm [19].

The network GLEICH/WB-CS-STANFORD reflects the Stanford CS web, where a link in the graph

represents an actual link in the web. This network has 1299 nonzeros on the main diagonal which

we removed before performing our computations. The last three networks all belong to the SNAP

group. SNAP/EPINIONS is a who-trusts-whom online social network of a general consumer review

site: Epinions.com. The network SNAP/WIKI-TALK summarises users and discussions from the

inception of Wikipedia until January 2008. Nodes in the network represent Wikipedia users and a

directed edge from node i to node j indicates that user i at least once edited a talk page of user j.

Finally, SNAP/CIT-PATENTS is a citation network among US Patents. The data set includes all the

utility patents granted between 1975 and 1999 and all citations made by them.

8.1 NBTW Centrality vs. Katz

We first show with a small example how NBTW broadcast centrality may differ from Katz centrality

when identifying the most important broadcasters in a network. We performed our test on the small

network PAJEK/GLOSSGT. This network contains 72 nodes, but we restrict ourselves to its largest

weakly connected component, which has 60 nodes. For this digraph it holds that ρ(A) = ρ(C) = 1 and

thus the parameters used in the computation of the two centrality indices can be selected to be the same.

In our test α = t = 0.9. Figure 5 scatter plots the NBTW and Katz centrality vectors. It can be seen

that the two centrality measures do not identify the same top broadcasters. Moreover, looking at the

correlation coefficients between the rankings, we have that the Pearson’s correlation coefficient between

the Katz and NBTW centralities is 0.49, so there is not a strong correlation.

In Figures 6 and 7 we display two network visualisations, where node size is proportional to central-

ity; with Katz in Figure 6 and NBTW in Figure 7. Two nodes share the top Katz centrality. These are

connected through a reciprocal edge and are pointed to by the third Katz-ranked node, which is a source

node with outdegree equal to one. It can thus be argued that these nodes are identified as the most influ-

ential because they point to or are involved in a closed cycle of small length. Indeed, when computing

the Katz centrality, short, backtracking walks, are given as much importance as nonbacktracking walks

of the same length. In this example, the NBTW measure gives top ranking to a node with outdegree

two and, as is also clear from Figure 5, generally provides a more even (less localized) spread of values

across the nodes.

8.2 Nodal Pruning

We saw in subsections 5.1 and 5.2 that both the cost of computing ρ(C) in order to establish a suitable

range for the parameter t and the cost of solving the overall linear system (3.3) may be reduced by

iteratively removing source/dangling nodes and reciprocal leaves until none remain. The benefits will,

of course, depend on the level of dimension reduction achieved. To investigate this issue, in this set of
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FIG. 5. Scatter plot of the Katz (horizontal axis) and NBTW (vertical axis) centrality vectors. Note that the top Katz centrality

score is shared by two nodes, which also have identical NBTW centrality; in this case the two symbols occupy the same place in

the scatter plot.

FIG. 6. Representation of the network PAJEK/GLOSSGT where node size is proportional to Katz centrality.
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FIG. 7. Representation of the network PAJEK/GLOSSGT where node size is proportional to NBTW centrality.
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Table 1. Description of the dataset: name of the digraph, number of nodes n and number of edges m, percentage of nodes n% and

edges m% retained after pruning, and number of iterations required.

NAME n m n% m% iter

PAJEK/CALIFORNIA 9,664 16,150 2% 3% 7

GLEICH/WB-CS-STANFORD 9,914 35,555 57% 80% 15

SNAP/SOC-EPINIONS 75,888 508,837 36% 85% 5

SNAP/WIKI-TALK 2,394,385 5,021,410 4% 29% 4

SNAP/CIT-PATENTS 3,774,768 16,518,947 0% 0% 16

numerical tests we worked on larger networks to understand the extent to which the size of the problem

reduces when we remove these types of nodes from real world directed graphs. In Table 1 we display

the name of the network, the number of nodes and edges in the original data, and the percentage of

nodes and edges that are retained in the network when sources, dangling nodes and reciprocal leaves are

successively eliminated from each network. We will denote these quantities by n% and m%, respectively.

Moreoever, we display the number of iterations required to complete the pruning process.

Generally, we see that significant reductions were achieved in all cases, with the linear system

dimension, n, reduced to at least 57% of its original value. The network SNAP/CIT-PATENTS, which is

the one requiring the highest number of iterative steps, retained no nodes. All dangled or became source

nodes. This can be seen from Figure 8, where we display on a semi-logarithmic scale the number of

each of the three types of nodes that are removed at each iteration for all the networks in our dataset.

We conclude that SNAP/CIT-PATENTS does not contain nodes connected through a reciprocal edge to

any other node and, since it prunes to zero, we also conclude that, as one would expect from the nature

of the dataset, none of its nodes is involved in a directed cylce of any length. (We also note that the

symmetrized version of this network, where all edges are regarded as being undirected, is not a tree, so

the original network is not a directed tree.)

From this set of tests we conclude that the approach of iteratively removing sources, dangling nodes,

and reciprocal leaves can be of computational benefit, especially for computing or estimating the spectral

radius of the matrix C. For the networks tested here, in the worst case the order of the matrix whose

spectral radius we need to estimate is reduced from 3n to 0.57×3n ≈ 1.7n.

8.3 Symmetrized network

We note that a spectral community detection algorithm for undirected networks based on nonbacktrack-

ing walks was introduced and studied in [20]. In their numerical tests, the authors included results

on a symmetrized version of a network from [1] that is based on directed links. Now that we have

a means to deal with nonbacktracking walks on directed networks it is of interest to study the effect

of such a symmetrization step. We obtained the data from the NEWMAN/POLBLOGS directory of the

SuiteSparse Matrix Collection. After removal of nodes with neither outgoing nor incoming links, the

network contained n = 1224 nodes and m = 19022 edges. Three iterations of pruning gave n% = 53%

and m% = 83%. The symmetrized version contained 16715 undirected edges, that is, 33430 nonzeros

in the associated adjacency matrix. In Figure 9 we scatter plot the nonbacktracking centralities for the

original (vertical axis) and symmetrized (horizontal axis) networks. The left-hand picture shows the

normalized NBTW centralities for t = 0.01, and the right-hand picture shows the corrresponding non-

backtracking eigenvector centralities. We see that symmetrizing the digraph has significantly altered

the results. Indeed, in both cases the top five nodes do not overlap and the overall correlation is weak.
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FIG. 8. Number of nodes removed at each step for each of the three types of nodes.

Overall, this test justifies the development of an algorithm that respects directed edges.

9. Summary

The concept of a walk around a network has proved to be extremely useful in the derivation of net-

work centrality algorithms. In this work, we argued that some types of walk are less relevant than

others. Focusing on the general case of directed networks, we showed that backtracking walks can

be eliminated effectively, leading to new network centrality measures with attractive properties and,

perhaps surprisingly, reduced computational cost. This approach allowed us to extend the original non-

backtracking Katz-like measure from [14], which dealt with the undirected case. We showed that the

underlying generating function, and its radius of convergence, were intimately connected to a three-by-

three block matrix defined in terms of the original adjacency matrix. In the undirected case, this block

matrix collapses down to a two-by-two form that has appeared in previous nonbacktracking studies.

From a computational perspective, a useful result is that the radius of convergence of the generating

function does not change when the problem dimension is reduced by the iterative removal of certain

types of nodes. Moreover, the resulting linear system for centrality may also be couched in terms of the

remaining, lower dimensional, system. We showed in practice that these pruning operations can lead to

significant reductions in problem size.

The treatment of nonbacktracking walk combinatorics given here has focused on network centrality

issues and used the tools of matrix analysis. In future work, we plan to study further spectral proper-

ties of the generating function from a matrix polynomial viewpoint and to consider more general edge

breaking and divide-and-conquer style approaches to reducing the network dimension.
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FIG. 9. Left: scatter plot of the normalized NBTW centrality computed on the original (vertical axis) and symmetrized (horizontal

axis) network. Right: corresponding picture for nonbactraking eigenvector centrality.
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