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Non-Binary Protograph-Based LDPC Codes:

Enumerators, Analysis, and Designs
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Abstract—This paper provides a comprehensive analysis of
non-binary low-density parity check (LDPC) codes built out of
protographs. We consider both random and constrained edge-
weight labeling, and refer to the former as the unconstrained
non-binary protograph-based LDPC codes (U-NBPB codes) and
the latter as the constrained non-binary protograph-based LDPC
codes (C-NBPB codes). Equipped with combinatorial definitions
extended to the non-binary domain, ensemble enumerators of
codewords, trapping sets, stopping sets, and pseudocodewords
are calculated. The exact enumerators are presented in the
finite-length regime, and the corresponding growth rates are
calculated in the asymptotic regime. We then present an EXIT
chat tool for computing the iterative decoding thresholds of
protograph-based LDPC codes followed by several examples of
finite-length U-NBPB and C-NBPB codes with high performance.
Throughout the paper, we provide accompanying examples which
demonstrate the advantage of non-binary protograph-based
LDPC codes over their binary counterparts and over random
constructions. The results presented in this paper advance the
analytical toolbox of non-binary graph-based codes.

I. INTRODUCTION

Graph-based codes can be divided into two categories: codes

where each coded symbol is represented by a single bit (binary

codes), and codes where each coded symbol is represented

by ℓ, ℓ > 1 bits (non-binary codes). In his seminal work

on low-density parity check (LDPC) codes [21], Gallager

studied both binary and non-binary codes. As the graph-

based codes resurrected in late 1990s, Davey and MacKay

[13] empirically recognized that non-binary low density parity

check (LDPC) codes can outperform binary LDPC codes in

certain cases. However, a considerable amount of subsequent

research effort was devoted to studying binary LPDC codes

and their decoders. As pointed out in [23], non-binary LDPC

codes can outperform binary LDPC codes on binary channels

and can be seamlessly merged with high-order modulation

techniques for multiple input, multiple output channels. With

these early promising results and the emergence of a range

of applications that use non-binary coding schemes, such as
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optical communication channels [17] and dense data stor-

age [20], the interest in non-binary LDPC codes is being

actively renewed.

Generalizing from the binary to the non-binary domain

of LDPC codes is often non-trivial, and sometimes even

surprising. For example, [39] showed that non-binary LDPC

codes with variable degree set to 2 perform quite well, while it

is well-known that in the binary setting such codes have rather

poor performance. Recent results in [3], [4], [26], and [27]

have made an important progress in the non-binary domain in

terms of characterizing codeword and pseudocodeword weight

distributions of certain regular non-binary codes, both in terms

of binary weights and symbol weights.

The works of [11], [25], [46], and [53] have put forth finite-

length designs of non-binary LDPC codes with outstanding

performance. In a parallel thread, works such as [10] and [49],

among others, have explored various aspects of decoding of

non-binary LDPC codes. Codes with efficient encoding and

decoding were proposed in [52]. The error-floor performance

of non-binary LDPC codes was recently investigated in [36]

and [38], and non-codeword objects that cause the decoding

error under iterative decoding were studied in [37] and [41].

Minimum distance properties of non-binary LDPC codes were

recently explored in [29].

Despite the on-going surge of interest in non-binary LDPC

codes, many questions regarding structured codes remain to

be answered. Notable recent results on this topic include the

analysis and design of so-called cluster-based LDPC codes,

for which bounds on the minimum distance and asymptotic

thresholds were derived in [15] and [43]. Hybrid LDPC codes

that built upon both binary and non-binary constructions were

recently proposed in [42].

In this work we focus our attention on the characteriza-

tion of non-binary LDPC codes built out of protographs. In

particular, we consider novel non-binary code constructions

that are based on repeating the nodes and permuting the

edges as in the binary case [2], but that are also equipped

with the added freedom of choosing the non-binary edge

weights (i.e., edge scaling). We refer to resultant codes as non-

binary protograph-based (NBPB) codes. One can generalize

the construction of binary protograph-based LDPC codes by

replacing the copy-permute operations with either copy-scale-

permute operations 1 or with scale-copy-permute operations.

We consider both approaches. The former construction is less

restrictive: copies of an edge can receive different non-zero

1We remark that the copy-permute-scale sequence is equivalent to the copy-
scale-permute sequence.
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weights, whereas in the latter construction all copies of an

edge receive the same weight. We refer to the non-binary

LDPC codes obtained from an underlying protograph based on

the copy-scale-permute operations as the unconstrained NBPB

(U-NBPB) codes, and the non-binary codes obtained from

an underlying protograph based on the scale-copy-permute

operations as the constrained NBPB (C-NBPB) codes. We

note that C-NBPB codes constitute the first graph-cover style

non-binary code construction.

The goal of this paper is multifold: (1) to suitably generalize

existing definitions and techniques from the binary to the non-

binary domain, (2) to offer novel structured constructions of

non-binary codes using guided edge weight assignment on the

sequence of replicated protographs, (3) to provide ensemble

performance evaluation of the resultant NBPB codes through

the explicit computation of codeword enumerator and key non-

codeword enumerators, (4) to offer new non-binary EXIT chart

evaluation tool for NBPB codes, and (5) to offer explicit non-

binary code designs based on NBPB constructions with ex-

cellent finite-length and asymptotic performance. Collectively,

these results serve to advance the available toolbox of non-

binary graph-based codes.

The rest of the paper is organized as follows. In Section

II we introduce U-NBPB and C-NBPB codes. In Section III,

we present codeword weight enumerators of U-NBPB codes

along with illustrative examples. Counterpart enumerators of

C-NBPB codes are presented in Section IV. In Section V, we

extend the enumeration technique to trapping sets, stopping

sets, and pseudocodewords. Iterative decoding thresholds of

NBPB codes are derived in Section VI using a new EXIT

chart analysis, suitably developed for non-binary protographs.

Finite-length examples of U-NBPB and C-NBPB codes with

excellent performance are discussed in Section VII. Sec-

tion VIII concludes the paper and proposes questions for future

investigation.

II. U-NBPB AND C-NBPB CODES

There is a considerable freedom in choosing the edge

weights in constructing protograph-based non-binary LDPC

codes. Let us first consider the case where the edges are

weighted independently of each other. We refer to resul-

tant codes as unconstrained non-binary protograph-based (U-

NBPB) codes. We then consider the constructions wherein the

edge weights are assigned in bundles, and refer to resultant

codes as constrained non-binary protograph-based (C-NBPB)

codes. Both methods provide natural extensions of binary

protograph-based code designs that are described by copy-

permute operations, cf. [2], however, the U-NBPB construction

is a series of copy-scale-permute operations whereas the C-

NBPB construction is a series of scale-copy-permute opera-

tions.

A protograph G = (V,C,E) [48] consists of the

set V = {v1,v2,. . . ,vnv
} of variable nodes, the set

C = {c1,c2,. . . ,cnc} of check nodes, and the set E =
{

e1,e2,. . . ,e|E|

}

of edges connecting variable nodes and check

nodes. Here, nv is the total number of variable nodes, nc is

the total number of check nodes, and |E| is the cardinality of

the edge set E.

When the graph G is copied N times, each variable node

vi ∈ V (each check node ci ∈ C) in this mother protograph

produces the set Vi of variable nodes {vi1 , . . . , viN } (the set Ci

of check nodes {ci1 , . . . , ciN }) in the resultant daughter graph

GN . Likewise, each edge ei ∈ E in the mother protograph

produces the set Ei of edges in the daughter graph where

Ei = {ei,1, . . . , ei,N}, and the edge ei,j for 1 ≤ j ≤ N
connects the variable node vkj

and the check node clj if the

edge ei connects the variable node vk and the check node cl
in the mother protograph. We denote the resultant daughter

graph GN = (V N , CN , EN ).
We first provide the definition of U-NBPB codes and their

ensembles. Let πi denote the edge permutation associated with

N copies of edge i.

Definition 1 (U-NBPB code). Given the mother protograph

G = (V,C,E), a (G,N, {sk}k, {πi}i) U-NBPB code is

constructed from the daughter graph GN = (V N , CN , EN )
by permuting the edges in the set Ei according to πi for each

1 ≤ i ≤ |E|, followed by scaling each edge k in GN by a

non-zero element sk of GF (q) for 1 ≤ k ≤ N · |E|. �

The U-NBPB code construction is illustrated in Figure 1(a)

based on the mother protograph with nv = 3, nc = 2 and

N = 3. The U-NBPB ensemble is defined as follows.

Definition 2 (U-NBPB code ensemble). The (G,N, q) U-

NBPB ensemble is the collection of all (G,N, {sk}k, {πi}i)
U-NBPB codes with all possible choices of sk’s as non-zero

elements of GF (q) (for 1 ≤ k ≤ N × |E|) and {πi}’s as all

possible N -permutations (for 1 ≤ i ≤ |E|). �

Another way of constructing a non-binary code based on

a protograph is to first fix the non-binary edge weights of

the protograph and then apply copy-and-permute operations

to that protograph without altering the edge weights in the

resultant graph. Consider again the underlying protograph

G = (V,C,E). Let Sq =
{

s1,s2,. . . ,s|E|

}

be the collection

of non-zero scales (weights) with one-to-one association with

the edges, namely si ∈ Sq is associated with ei ∈ E,

and si 6= 0 ∈ GF (q). Note that Gq = (V,C,E, Sq) fully

specifies a q-ary graph-based code with the variable node set

V , check node set C, edge set E, and weight set Sq . For

notational convenience, Gq will also be referred to as the

scaled protograph when used to build a larger code.

A C-NBPB code is then constructed by a copy-and-permute

procedure (while keeping the edge scalings fixed) applied to

the non-binary protograph Gq . Here, the terminology ‘con-

strained’ refers to choosing labels for the baseline protograph

and keeping them fixed during the subsequent copy-and-

permute steps. When the mother graph Gq is copied N times,

each variable node vi ∈ V (each check node ci ∈ C) expands

into the set Vi of variable nodes {vi1 , . . . , viN } (the set Ci

of check nodes {ci1 , . . . , ciN }) in the resultant daughter graph

GN
q . Likewise, each edge ei ∈ E with its associated scale

si expands into the set Ei of edges in GN
q . Note that the

elements of Ei, Ei = {ei,1, . . . , ei,N}, each have the same

scale si ∈ Sq as ei ∈ E, and the edge ei,j for 1 ≤ j ≤ N
connects the variable node vkj and the check node clj if the

edge ei connects the variable node vk and the check node cl
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Fig. 1. Different NBPB code constructions: (a) The original unlabeled protograph and an example of a U-NBPB code construction with N = 3 (copy-scale-
permute). (b) The original scaled protograph and an example of a C-NBPB code construction with N = 3 (scale-copy-permute).

with the same scale si ∈ Sq in the original protograph Gq .

We let GN
q = (V N , CN , EN , SN

q ) denote the resultant graph.

C-NBPB codes are then defined as follows.

Definition 3 (C-NBPB code). Given the mother non-binary

protograph Gq = (V,C,E, Sq), a (Gq, N, {πi}i) C-NBPB

code is constructed from the daughter graph GN
q =

(V N , CN , EN , SN
q ) by permuting the edges in the set Ei

according to πi for each 1 ≤ i ≤ |E|. �

An example of a C-NBPB code construction is shown in

Fig. 1(b) based on the mother protograph with nv = 3, nc = 2
and N = 3. The definition of the C-NBPB code ensemble then

follows in the usual sense.

Definition 4 (C-NBPB code ensemble). The (Gq, N, q) C-

NBPB code ensemble is the collection of all (Gq, N, {πi}i)
C-NBPB codes with the given choices of si ∈ Sq as non-

zero elements of GF (q) (for 1 ≤ i ≤ |E|) and {πi}’s as all

possible N -permutations (for 1 ≤ i ≤ |E|). �

It is worth noting that the C-NBPB construction is a natural

extension of the graph cover construction originally proposed

to study pseudocodewords of a given code [28]. In contrast,

here we use the graph-cover idea to construct a structured

larger code based on the original smaller code. For more on

graph covers of graph-based codes, please see [50].

It is clear that when the field size q = 2, both U-NBPB

and C-NBPB constructions naturally reduce to the binary case,

previously analyzed in the literature [2].

Lastly, we specify satisfied and unsatisfied check nodes. Let

Gq = (V,C,E, Sq) denote a bipartite graph describing a q-ary

LDPC code, with the usual notation of V denoting the set of

variable nodes, C denoting the set of check nodes, and the set

E describing the edges between the nodes in V and C. For

notational convenience recall that we use Gq to also denote

a scaled protograph; we tacitly assume that parallel edges are

not permitted in the graph describing a code but that they

may be permitted in the protograph (as in the latter case the

parallel edges will be eliminated during the subsequent copy-

and-permute operations). In the non-binary case, each variable

node vi in V can have any value ui in GF (q). The weight of

each edge ei,j in E connecting the variable node vi and the

check node cj is given by si,j ∈ Sq and is a non-zero element

of GF (q).
For the graph Gq , we say that the check node cj of degree

m is satisfied if
∑m

i=1 si,jvi = 0 ∈ GF (q), where si,j is the

weight given to the edge connecting the check node cj and

the variable node vi. If
∑m

i=1 si,jvi 6= 0 ∈ GF (q) we say that

the check node cj is unsatisfied.

Codeword weight enumerators are known to be useful for
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bounding the performance under the maximum likelihood

(ML) decoding, whereas the enumerators of certain non-

codeword objects are of interest when evaluating the per-

formance under iterative decoding. In sequel, we will study

several enumerators of interest.

III. U-NBPB WEIGHT ENUMERATORS

The section is composed of three parts. We first provide the

exact weight enumerator of a code induced by one check node

(Subsection III-A). We then discuss non-asymptotic ensemble

weight enumerators (Subsection III-B) and the asymptotic

ensemble weight enumerators (Subsection III-C). Some of the

presented results build upon [2], and generalize these known

results to the non-binary set-up. Throughout the section,

illustrative examples accompany the derivations.

A. Weight enumerator of a check node and of its replicas

Let us begin building the enumerator result by first consider-

ing a check node cj with degree mj in the mother protograph

G. We first establish the necessary notation.

It is convenient to view this check node cj as a (mj , mj−1)

linear block code Cj over GF (q). Let Kj = q(mj−1) denote

the number of codewords in Cj . Further, let MCj be the Kj ×
mj matrix with the codewords of Cj as its rows (whose entries

are by construction in GF (q)), and let M
Cj

b be the Kj ×mj

binary matrix obtained by converting all non-zero entries of

M
Cj to 1. Note that by construction, some rows of M

Cj

b may

be the same. Let the collection MCj

b represent all rows x

of M
Cj

b , where x = [x1, x2, . . . , xmj
], xi ∈ {0, 1}. Define a

Kj,r ×mj binary matrix M
Cj

b,r as the submatrix of M
Cj

b that

consists of all distinct rows of M
Cj

b . The number of rows in

M
Cj

b,r is Kj,r = 1 +
∑mj

i=2

(

mj

i

)

. Let the set MCj

b,r represent

the rows xk = [xk,1, xk,2, . . . , xk,mj
], xk,i ∈ {0, 1}, for i =

1, 2, . . .mj , k = 1, 2, . . . ,Kj,r of M
Cj

b,r.

Following the proposed construction of U-NBPB codes, we

consider the N copies of node cj in the daughter graph, and

call the resultant (Nmj , N(mj − 1)) linear block code CN
j .

It is convenient to denote by nk the number of occurrences

of the kth codeword among these N copies of cj , and to

collect them into the vector n, where n = [n1, n2, . . . , nKj ].

Lastly, let ACN
j (w) denote the weight-vector enumerator of

CN
j where w = [w1, w2, . . . , wmj

] is the weight vector of the

input message in CN
j , where the entry wi denotes the number

of occurrences of a non-zero value in position i, 1 ≤ i ≤ mj ,

over the set of input messages.

With the above, the main result of this subsection is pro-

vided in the following theorem that characterizes the weight

enumerator of the code CN
j (in the daughter graph GN ) that

is described by N copies of the single check node cj (in the

mother graph G). For the ease of exposition and since we

currently focus on the single check node, we suppress the

index j in cj , CN
j and Kj,r, and simply refer to the check node

as c, its resultant code as CN , and reduced row dimension as

Kr.

Throughout the analysis

C (N ;x1, x2, · · · , xL) =
N !

x1!x2! · · ·xL!
, (1)

denotes the multinomial coefficient, where xi’s are non-

negative integers summing to N .

Theorem 1. The weight-vector enumerator ACN

(w) of CN is

given by,

ACN

(w) =
∑

{n}

C (N ;n1, n2, . . . , nKr
) en·f

T
q , (2)

where C (N ;n1, n2, . . . , nKr
) is the multinomial coefficient

specified in (1), and {n} is the set of integer-vector solutions

to w = n ·MC
b,r, with n1, n2, . . . , nKr ≥ 0, and

∑Kr

k=1 nk =
N . The vector fq = [fq,1, fq,2 . . . , fq,Kr

] has entries fq,k =
ln g(q, |xk|), where xk is the k-th element of MC

b,r, |xk| is

the weight of xk, and g(q, i) = q−1
q [(q − 1)i−1 + (−1)i].

Proof: The weight-vector enumerators {ACN

(w)} may

be found as the coefficients of a multi-dimensional generating

function of {ACN

(w)}. The generating function of the code C
induced by the check node c is

∑

x∈MC

b
W x1

1 W x2
2 · · ·W xm

m ,
where the Wi’s are indeterminate bookkeeping variables.

From [21], the weight generating function for the code C
induced by a single check node c of degree m, is given by

AC(W ) = 1
q [(1+(q−1)W )m+(q−1)(1−W )m], which also

holds for GF (q). This generating function can also be written

as AC(W ) =
∑m

w=0

(

m
w

)

g(q, w)Ww. For our problem, the

number g(q, w) represents exactly the number of repeated rows

with weight w in MC
b . Thus,

∑

x∈MC

b
W x1

1 W x2
2 · · ·W xm

m =
∑

∀xk∈MC

b,r
g(q, |xk|)W xk,1

1 W
xk,2

2 · · ·W xk,m
m , where xk is the

k-th element of MC
b,r and |xk| is its weight (that is, the sum

of its entries). The generating function for N copies of this

check node in the daughter graph is then

ACN

(W1,W2, . . . ,Wm) =




∑

∀xk∈MC

b,r

g(q, |xk|) W xk,1

1 W
xk,2

2 · · ·W xk,m
m





N

.
(3)

Applying the multinomial theorem to (3) yields,

ACN

(W1,W2, . . . ,Wm) =
∑

n1,n2,...,nKr≥0
n1+n2+···+nKr=N

C (N ;n1, n2, . . . , nKr )

×
∏

∀xk∈MC

b,r

(

g(q, |xk|)W xk,1

1 W
xk,2

2 · · ·W xk,m
m

)nk .

(4)

Then, (4) can be written as

ACN

(W1,W2, . . . ,Wm) =
∑

w

∑

{n}

C (N ;n1, n2, . . . , nKr
)

×





∏

∀xk∈MC

b,r

[g(q, |xk|)]nk





×Ww1
1 Ww2

2 · · ·Wwm
m ,

(5)

where {n} is the set of integer solutions to w = n·MC
b,r, under

the constraints n1, n2, . . . , nKr ≥ 0 and
∑Kr

k=1 nk = N , and

where wl =
∑

∀xk∈MC

b,r
xk,lnk, l = {1, 2, . . . ,m}. To see the
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last step, note that the product in (4) can be manipulated as

follows
∏

∀xk∈MC

b,r

(

W
xk,1

1 W
xk,2

2 · · ·W xk,m
m

)nk = Ww1
1 Ww2

2 · · ·Wwm
m .

(6)

Also, if w = n ·MC
b,r has more than one solution for n, the

term Ww1
1 Ww2

2 · · ·Wwm
m will appear as a common factor in

all of the terms that are associated with these solutions. This

observation explains the presence of the second summation in

(5). The generating function of {ACN

(w)} can also be written

as

ACN

(W1,W2, . . . ,Wm) =
∑

w

ACN

(w)Ww1
1 Ww2

2 · · ·Wwm
m .

(7)

Finally, comparing (7) and (5) leads to (2).

Note that if we choose to use MC
b (which has repeated

elements) then

ACN

(w) =
∑

{n}

C (N ;n1, n2, . . . , nK) , (8)

where {n} is now the set of integer-vector solutions to w =
n ·MC

b , with n1, n2, . . . , nK ≥ 0,
∑K

k=1 nk = N , and K =
qm−1. We now provide an illustrative example.

Example 1. Consider a (3, 2) linear block code over GF (q)
replicated N times, whose weight enumerator we seek to

compute. There is only one check node so we simply refer

to this node as c and to the code it generates as C. Let CN

denote the (3N, 2N) code obtained by replicating C code N

times. Our objective is to evaluate ACN

(w1, w2, w3).
We now show that if we start with (8) we can in fact

obtain (2) with reduced computational complexity. Observe

that MC
b is a q2 × 3 (binary) matrix with repeated rows.

Solving the equation w = n · MC
b for K = q2 integers ni,

i ∈ {1, 2, . . . ,K}, only requires to solve for 5 integers.

In the set of codewords (x1, x2, x3) of this (3, 2) code,

apart from the all-zeros codeword, there are (q − 1) code-

words of Hamming weight 2, where xi and xj are non-

zero, and xk is zero element of GF (q), for i, j, k dis-

tinct indices from the set {1, 2, 3}. There are also (q −
1)(q − 2) codewords of Hamming weight 3. The set MC

b,r

is {[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]} and the matrix

M
C
b,r (the reduced version of the matrix M

C
b ) is then the

lexicographical ordering of these rows.

Computing the solution to w = n · MC
b is equivalent

to solving the set of equations w = k · MC
b,r, n1 =

k1,
∑q

i=2 ni = k2,
∑2q−1

i=q+1 ni = k3,
∑3q−2

i=2q ni = k4,
∑q2

i=3q−1 ni = k5, where k = [k1, k2, k3, k4, k5], and

w = [w1, w2, w3]. An application of the multinomial theorem

results in
∑

i1,i2,...,il≥0
i1+i2+···+il=t

1
i1!i2!...il!

= lt

t! . Using this equality,

one can show that (8) reduces to

ACN

(w) =
∑

{k}

C (N ; k1, . . . , k5) (q−1)k2+k3+k4+k5(q−2)k5 ,

(9)

where {k} is the set of integer-vector solutions to w = k ·
M

C
b,r, with k1, k2, . . . , k5 ≥ 0 and

∑5
i=1 ki = N . Solving this

set of equations we get k1 = N−s+k5/2, k2 = s−w1−k5/2,

k3 = s − w2 − k5/2, and k4 = s − w3 − k5/2, where s =
(w1+w2+w3)/2. Since ki ≥ 0, we have max{0, 2(s−N)} ≤
k5 ≤ 2s− 2max{w1, w2, w3}.

If w1 + w2 + w3 is even, then

ACN

(w) =
∑

l C (N ; (N − s+ l), (s− w1 − l),
(s− w2 − l), (s− w3 − l), (2l)

)

× (q − 1)(s−l)(q − 2)2l,
(10)

where l = k5/2 and k5 is even. If w1 +w2 +w3 is odd, then

ACN

(w) =
∑

l C
(

N ; (N − s+ l + 1/2), (s− w1 − l − 1/2),
(s− w2 − l − 1/2), (s− w3 − l − 1/2), (2l + 1)

)

×(q − 1)(s−l−1/2)(q − 2)2l+1,
(11)

where l = (k5 − 1)/2 and k5 is odd. �

Based on this exact combinatorial count on the per-node ba-

sis, in the next section we derive the exact weight enumerator

of the U-NBPB ensemble.

B. Weight enumerator of the U-NBPB ensemble

Before stating the enumerator result, we first define the non-

binary uniform interleaver.

Definition 5 (Non-binary uniform interleaver). A length-L
non-binary uniform interleaver over GF (q) is a probabilistic

device that maps each input of length L and of Hamming

weight w into the (q− 1)w
(

L
w

)

distinct weighted permutations

of the input, such that it generates each weighted permutation

with equal probability, 1

(q−1)w(Lw)
. �

The notion of Uniform Codeword Selector (UCS) was

introduced in [18] in the context of the concatenation of non-

binary product codes. This definition is equivalent to the notion

of non-binary uniform interleaver in this paper.

With the protograph based set-up, it is convenient to view

the resultant code as a serial concatenation of certain com-

ponent codes (cf. [7]). Suppose C1 and C2 are two serially

concatenated block codes over GF (q) that are connected by

a length-L non-binary uniform interleaver over GF (q). For

the given codes C1 and C2, let SCC = SCC(C1, C2) be the

resultant ensemble over all possible interleavers.

Lemma 1. Consider two block codes C1 and C2 of dimensions

Kl and codeword lengths Nl, l = 1, 2, that are serially

concatenated via a non-binary uniform interleaver, with all

system components over GF (q). The average number of

codewords of Hamming weight d that are created by inputs of

Hamming weight f in the resultant SCC ensemble is given

by

ASCC
f,d =

∑

w

AC1

f,wA
C2

w,d

(q − 1)w
(

K2

w

) , (12)

where AC1

f,w is the number of codewords in C1 of Hamming

weight w corresponding to C1-encoder inputs of Hamming

weight f , and AC2

w,d is the number of codewords in C2 of

Hamming weight d corresponding to C2-encoder inputs of

Hamming weight w.
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Proof: For the constituent code C1, there are (q−1)f
(

K1

f

)

possible encoder inputs of Hamming weight f , and they

produce AC1

f,w codewords of Hamming weight w. Likewise,

for the constituent code C2, there are (q − 1)w
(

K2

w

)

possible

encoder inputs of weight w, and they produce AC2

w,d codewords

of Hamming weight d. When C1 and C2 are connected via a

length-K2 non-binary uniform interleaver (K2 = N1), each

of these AC1

f,w codewords in C1 maps into one of the AC2

w,d

codewords of C2 with probability 1

(q−1)w(K2
w )

.

Averaged over the resultant SCC ensemble, there are

AC1

f,wA
C2

w,d/(q − 1)w
(

K2

w

)

codewords of Hamming weight d
corresponding to the SCC encoder inputs of weight f and to

the C2-encoder inputs of weight w. Summing these codewords

over all w, (12) follows.

Based on Lemma 1 we derive the exact weight enumerator

over the entire U-NBPB ensemble as follows.

Recall that there are nv variable nodes and nc check

nodes in the mother protograph G, and that mj denotes

the degree of the check node cj . Let ti denote the degree

of the variable node vi. Recall that the U-NBPB ensemble

consists of all codes obtained by performing all possible

weight permutations on the edges of the daughter graph GN .

Let dj =
[

dj1 , dj2 , ..., djmj

]

be the weight vector which

describes the weights of the N symbol words on the edges

connected to check node cj , produced by the variable nodes

{vj1 , vj2 , ..., vjmj
} neighboring cj .

It is convenient to specify Kronecker Delta κx,y as

κx,y =

{

1 if x = y, and

0 ifx 6= y.
(13)

If x and y are vectors, we interpret Kronecker Delta having

value 1 only if x and y agree in all components.

Theorem 2. The weight-vector enumerator of the U-NBPB

code averaged over the entire ensemble is

A(d) =

∏nc

j=1 A
CN
j (dj)

∏nv

i=1 (q − 1)di(ti−1)
(

N
di

)ti−1 , (14)

where ACN
j (dj) is the weight-vector enumerator of the code

CN
j induced by the N copies of the check node cj . Here,

the elements of dj comprise a subset of the elements of

d = [d1, d2, ..., dnv
], and this subset is obtained from the

edge connections in the mother protograph G (see Fig. 2 for

illustration).

Proof: Consider N copies of each node in the pro-

tograph as a constituent code. These constituent codes are

then inter-connected through non-binary uniform interleavers

each of size N × N . The N copies of each variable node

vi ∈ G can be treated as a constituent code with one

input of weight di and ti outputs [wi,1, wi,2, . . . , wi,ti ]. The

input-output weight coefficient for node vi is then (q −
1)di

(

N
di

)

κdi,wi,1 · · ·κdi,wi,ti
. The N copies of each check node

cj ∈ G can be treated as a constituent code with mj input

weights wj = [wj,1, wj,2, . . . , wj,mj
] and no output.

Let ACN
j (wj) be the input weight enumerator of the check

node group CN
j . Let A(d) represent the number of sequences

11
v

21
v

31
v

11
c

12
v

22
v

32
v

13
v

23
v

33
v

21
c

31
c

12
c

22
c

32
c

1
d

2
d 3

d

],[
21 111

ddd ],,[
321 2222

dddd

1
s 8

s 3
s 11

s
13

s

15
s

10
s

5
s

14
s9

s

4
s

6
s

12
s2

s
7

s

Fig. 2. Illustration of the relationship between vectors d = [d1, d2, d3] and
d1 = [d11 , d12 ], d2 = [d21 , d22 , d23 ] for an U-NBPB code with N = 3,
where d11 = d1, d12 = d2, d21 = d1, d22 = d2, d23 = d3.

each with weight vector d = [d1, d2, . . . , dnv
] that is applied

to the variable nodes according to the protograph constraints.

Then, the result of Lemma 1 is applied to individual

concatenations to obtain the average protograph weight-vector

enumerator as,

A(d) =
∑

wm,u
m=1,...,nv
u=1,...,tm

∏nv
k=1[(q−1)dk(N

dk
)gdk,wk,1

...gdk,wk,tk
]

∏nv
s=1

∏ts
r=1 (q−1)ws,r ( N

ws,r
)

× ∏nc

i=1 A
CN
j (wj).

(15)

Here, the summation is over all weights wm,u, where wm,u is

the weight along the uth edge of variable node vm. Note that

wj,l = wi,k if the lth edge of check node cj is the kth edge

of variable node vi. The vector dj =
[

dj1 , dj2 , ..., djmj

]

is a

weight vector which describes the weights of the N -symbol

words on the edges connected to check node cj , produced

by the variable nodes neighboring cj . The elements of dj

comprise a subset of the elements of d. Then, (15) reduces to

A(d) =

∏nc

j=1 A
CN
j (dj)

∏nv

i=1 (q − 1)di(ti−1)
(

N
di

)ti−1 ,

as desired.

The average number of codewords of symbol weight d in

the ensemble, denoted by Ad, equals the sum of A(d) over

all d for which
∑

{di:vi∈V } di = d.

Example 2. In this example we calculate the symbol weight

enumerator for the three protographs given in Fig. 3. The first

protograph describes a regular (2, 4) code, the second and

the third protographs are obtained by adding an accumulator

to the regular (2, 4) protograph followed by puncturing of

a node. We refer to the former as the punctured (2, 4) type

1 protograph and we refer to the latter as the punctured

(2, 4) type 2 protograph. Here and in subsequent examples

black nodes are punctured. In the calculations, all three code

ensembles have 32 transmitted variable nodes and are defined

over GF (8), so the total number of bits is 96. As a result, the

first code has N = 16, and the second and the third code have

N = 8. The results for the average weight enumerator Ad are
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(a) (b)

(c)

Fig. 3. Three candidate protographs: (a) Regular (2, 4) protograph, (b) Punc-
tured (2, 4) type 1 protograph, and (c) Punctured (2, 4) type 2 protograph.
Black nodes are punctured.
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Fig. 4. Weight enumerator for the U-NBPB ensembles of the protographs
in Fig. 3 over GF (8) for symbol length 32.

shown in Fig. 4 for the smallest 9 non-zero codeword symbol

weights. To further illustrate the enumeration technique, we

plot the weight enumerators of the three protograph code

ensembles with 80 transmitted variable nodes over GF (8),
i.e., N = 40 for the first code and N = 20 for the second

and third codes. The results are shown in Fig. 5, also for the

lowest 9 non-zero codeword symbol weights. We note that,

relative to the regular (2, 4) code, the punctured type 1 code

and the punctured type 2 code both have on average fewer low

symbol weight codewords, and that the type 2 code has the

best distribution of the three codes for small codeword weights.

As we shall see later in Section VI, this relative ordering of

codes will also be consistent with the threshold calculations

computed for the three codes.

Example 3. Continuing on with the baseline regular (2, 4)
protograph repeated N = 20 times (i.e., with 40 symbols), in

Fig. 6, we now plot the average number of codewords, Ad, as a

function of the field order q for the first few smallest values of
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Regular (2,4) code

Punctured (2,4) type 1 code

Punctured (2,4) type 2 code

Fig. 5. Weight enumerator for the U-NBPB ensembles of the protographs
in Fig. 3 over GF (8) for symbol length 80.
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q=2

q=8
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q=128

Fig. 6. Weight enumerator for the U-NBPB ensembles of the regular (2, 4)
protograph in Fig. 3 for symbol length 40 and over different field orders.

the non-zero symbol weight. As expected, the average number

of codewords increases with q.

C. Asymptotic ensemble weight enumerators

Given that the formulas in the previous subsection involve

the number of copies N , we define the normalized logarithmic

asymptotic weight (the growth rate) to be

r(δ) = lim sup
N→∞

lnAd

N
= lim sup

N→∞

lnAδN

N
, (16)

where δ = d/N . Note that n = nv ·N , so the growth rate in

terms of n can be expressed as

r̃(δ̃) = lim sup
n→∞

lnAd

n
, (17)

where r̃(δ̃) = 1
nv

r(δ̃nv).
From (14), we have

lnA(d) =

nc
∑

j=1

lnAC
N
j (dj)−

nv
∑

i=1

(ti−1)

[

di ln(q − 1) + ln

(

N

di

)]

.

(18)
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Fig. 7. Asymptotic symbol weight enumerators of protographs in Fig. 3 over
GF (8).

Let δi = di/N , and take the limit as N → ∞. Using

lim supN→∞ ln
(

N
di

)

/N = H(δi) = −(1 − δi) ln(1 − δi) −
δi ln δi, [12], we obtain

r(δ) = max
{δl:vl∈V }







nc
∑

j=1

acj (δj)−
nv
∑

i=1

(ti − 1)[Hq(δi)]







,

(19)

under the constraint
∑

{δi:vi∈V } δi = δ, and Hq(δi) ,

δi ln(q−1)+H(δi). In (19), acj (δj) is the asymptotic weight-

vector enumerator associated with the check node cj , defined

as

acj (ω) = lim sup
N→∞

lnACN
j (w)

N
, (20)

where ω = w/N , and δj = dj/N .

Let Pω = [p1, p2, . . . , pK ] be the relative proportion of

occurrences of each codeword of constituent check node code

C in a sequence of N codewords, where pk = nk/N and nk

is the number of occurrences of the kth codeword. We then

let the type class of Pω , T (Pω), be the set of all length-N
sequences of codewords in C, each containing nk occurrences

of the kth codeword in C, for k = 1, 2, ...,Kr. Observe that

|T (Pω)| = C (N ;n1, n2, . . . , nKr ). From [12, Thm.12.1.3]

and [2], |T (Pω)| → eN ·H(Pω), as N → ∞, where H(Pω) =
−∑Kr

k=1 pk ln pk. As N → ∞ (2) is

AC(w) =
∑

{n} C (N ;n1, n2, . . . , nKr
) en·f

T
q

=
∑

{Pω} |T (Pω)|eNPω ·fTq →∑

{Pω} e
N [H(Pω)+Pω ·fTq ],

under the constraint that {Pω} is the set of solutions to ω =
Pω · MC

b,r, with p1, p2, . . . , pKr
≥ 0 and

∑Kr

k=1 pk = 1. It

follows from (20) that

aC(ω) = max
{Pω}

{

H(Pω) + Pω · fTq
}

. (21)

Example 4. Continuing with the protographs discussed in

Example 2, we compute the asymptotic symbol weight enu-

merators for the three protographs for q = 8, as shown in

Fig 7. As we can see, in the asymptotic case, the punctured

Fig. 8. Regular (3, 6) protograph.

type 1 protograph and the punctured type 2 protograph both

have on average fewer low symbol weight codewords than the

regular (2, 4) protograph. This result is in agreement with the

finite length calculation (and will be later shown to be also

consistent with the threshold calculations).

Note that the ensemble of all rate-R, q-ary (“random”) linear

codes (whose parity-check matrix entries are i.i.d. uniform) has

the weight enumerator AC(w) = (q − 1)w
(

n
w

)

e−n(1−R) ln(q)

and the asymptotic weight enumerator [21]

r̃(δ̃) = Hq(δ̃)− (1−R) ln(q), (22)

which corresponds to the asymptotic Gilbert-Varshamov bound

for the non-binary case. In Fig. 7, we plot the Gilbert-

Varshamov bound for q = 8. Similar to the binary protograph

case studied in [2], the asymptotic symbol weight enumerators

converge to the Gilbert-Varshamov bound as δ̃ gets larger.

Here, again, of the three candidate protographs, the punctured

type 2 protograph offers the growth rate closest to the Gilbert-

Varshamov bound.

Example 5. In this example, we provide the asymptotic weight

enumerator for the regular (3, 6) protograph (presented in Fig.

8) over GF (q), as shown in Fig. 9. We also note that our result

for GF (2) is in agreement with [2]. From the figure, we can

see that as q increases, there are fewer low weight codewords.

In addition, as q increases, the growth rate of high weight

codewords increases. We use νmin to denote the second zero

crossing of r̃(δ̃) (the first zero crossing is r̃(0) = 0). The

second zero crossing, if it exists, is called the typical relative

minimum distance.

Fig. 10 shows how the typical relative minimum distance

νmin changes with varying q. Consistent with [16], while the

Gilbert -Varshamov bound grows monotonically with q, νmin

is in fact non-monotonic. In particular, νmin attains maximum

value for q = 64, 128.

IV. ENUMERATORS OF C-NBPB CODES

Building upon the computational machinery developed in

the previous section for U-NBPB codes, in this section we

derive the corresponding codeword weight enumerators for

the C-NBPB codes. As before, we first consider the weight

enumerator of a single check node (Section IV-A), followed by

the code weight enumerator (Section IV-B) and the asymptotic

analysis (Section IV-C). We compare unconstrained and con-

strained NBPB constructions complexity-wise via an example

in Section IV-D.

A. Weight enumerator of a check node and of its replicas

Consider a degree-mj check node cj in the scaled pro-

tograph Gq defined over GF (q), with neighboring vari-
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Fig. 9. Asymptotic symbol weight enumerators of regular (3, 6) protograph
for different q.
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Fig. 10. Typical minimum distance of regular (3, 6) protograph for different
q.

able nodes given by the vector vj = (vj1 , vj2 , . . . vjmj
)

and scalings on the incident edges given by the vector

sj = (sj1 , sj2 , . . . sjmj
), where sji ’s are non-zero elements

of GF (q) for i = 1, 2, . . . ,mj . Since the edge weights are

a priori chosen by construction, we view the node cj with

specified sj as a (mj , mj −1) single parity check, linear code

Cj over GF (q).

Recall the notation from the previous section: we again let

Kj = q(mj−1) be the total number of codewords in Cj . Further,

we also let MCj be the Kj ×mj matrix with the codewords

of Cj as its rows.

Consider a 1×mj codeword x ∈ Cj . Let the mapping ϕ(x)
be defined as the symbol indicator,

ϕ(x) = [x1,1 · · ·x1,(q−1), x2,1 · · ·x2,(q−1), . . . , xmj ,1 · · ·xmj ,(q−1)],
where xi,ℓ = 1, if the i-th component of x is equal to a

non-binary symbol with index ℓ, otherwise xi,ℓ = 0, for ℓ
ranging over all (q − 1) non-zero symbols in GF (q). We

collect the indicators ϕ(x) for all x as matrix rows of a

Kj ×mj(q − 1) binary matrix. This matrix is referred to as

M
Cj

b .

We now consider the N copies of the check node cj in

GN
q . Let the resultant (Nmj , N(mj − 1)) linear block code

be denoted as CN
j .

Let us represent a codeword of CN
j as xN =

(x1,1 · · ·x1,N , x2,1 · · ·x2,N , . . . , xmj ,1 · · ·xmj ,N ), in which

(xi,1 · · ·xi,N ) denotes the value of N variable nodes in GN
q

generated from variable node vji in Gq . The frequency row

vector ∂ji = [di,1di,2 · · · di,(q−1)] denotes the number of times

each non-zero symbol occurs in (xi,1 · · ·xi,N ), for example

di,3 is the number of occurrences of the third non-zero element

in (xi,1 · · ·xi,N ).
It is convenient to collect the 1 × (q − 1) frequency row

vectors {∂j1 , ∂j2 , ..., ∂jmj
} of the N non-binary elements on

the edges connected to check node cj , arising from the incident

variable nodes {vj1 , vj2 , ..., vjmj
}, into the protograph check

node frequency weight vector dj =
[

∂j1 , ∂j2 , ..., ∂jmj

]

. As

in the U-NBPB case, let ACN
j (dj) denote the weight-vector

enumerator of CN
j . This enumerator is computed according to

the following Theorem.

Theorem 3. The frequency weight matrix enumerator

ACN
j (dj) of CN

j is given by,

ACN
j (dj) =

∑

{n}

C
(

N ;n1, n2, . . . , nKj

)

, (23)

where C
(

N ;n1, n2, . . . , nKj

)

is the multinomial coefficient

given by (1) and {n} is the set of integer-vector solutions to

dj = n·MCj

b . Here, n1, n2, . . . , nKj ≥ 0, and
∑Kj

k=1 nk = N ,

and nk is the number of occurrences of the kth codeword

among these N copies of cj .

Proof: The proof is based on constructing a multi-

dimensional generating function {ACN

(dj)} and extracting

appropriate coefficients from this generating function using

a multinomial theorem. The function itself is derived from the

generating function of the underlying code Cj (induced by the

check node cj , and associated scale collection sj), multiplied

N times. Since the proof uses known techniques previously

discussed in the proof of Theorem 1, details are omitted for

brevity.

Note the contrast between the results in Theorem 1 for U-

NBPB codes and Theorem 3 for C-NBPB codes. The former

treats edge scalings as random whereas the latter treats edge

scalings as fixed.

B. Weight enumerator of the C-NBPB ensemble

To obtain the weight enumerator of the C-NBPB ensemble

we need the following definition of the frequency uniform

interleaver. The frequency uniform interleaver decouples the

frequency weight enumeration of component codes. Note that

the symbol interleaver, given in Definition 5 and based on

Hamming weight, does not represent a frequency uniform

interleaver since now the edge weights are a priori fixed. Recall

from (1) that C (N ;n1, n2, . . . , nK) = N !
n1!n2!...nK ! denotes the

multinomial coefficient.

Definition 6 (Frequency uniform interleaver). A length-N fre-

quency uniform interleaver is a probabilistic device that maps
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each input of length N with entries as non-zero symbols of

GF (q) and with the frequency weight vector [d1, d2, . . . , dq−1]
(each dt denotes the number of occurrences of the t-th symbol

in the input) into the C(N ; d0, d1, . . . , d(q−1)) distinct output

sequences of length N . Here d0 = N−∑i>0 di. These outputs

have the same frequency weight vector as the input, and they

are chosen equiprobably. �

When q = 2, the frequency uniform interleaver is the same

as the binary uniform interleaver.

Suppose, as usual, that the scaled protograph Gq has nv

variable nodes and nc check nodes. As in the U-NBPB case,

let mj denote the degree of the check node cj . Let ti denote the

degree of the variable node vi. By construction, the C-NBPB

code ensemble consists of all codes obtained by performing

all possible edge permutations in the derived graph GN
q .

Theorem 4. Let ACN
j (dj) be the frequency weight matrix

enumerator of the code CN
j induced by the N copies of

the check node cj with the associated scaling sj . Then, the

frequency weight matrix enumerator of the C-NBPB ensemble

is

A(d) =

∏nc

j=1 A
CN
j (dj)

∏nv

i=1 C(N ; di,0, di,1, . . . , di,(q−1))ti−1
.(24)

Here, the elements of row vector dj comprise a concatenation

of column vectors of matrix d, written in the transposed form,

so that dj is an mj(q − 1) row vector
[

∂j1 , ∂j2 , . . . , ∂jmj

]

.

In this case, transpose of each (q− 1)-subvector ∂ji , 1 ≤ i ≤
mj is a column vector of matrix d. In particular, the vector

dj =
[

∂j1 , ∂j2 , ..., ∂jmj

]

describes the frequency weights of

the N -symbol words on the edges connected to check node cj ,
produced by the variable nodes neighboring cj .

Proof: Consider a concatenation of two codes, one in-

duced by nv variable nodes and another induced by nc

check nodes (in the protograph Gq), inter-connected by |E|
frequency uniform interleavers, each of length N . Node

vi ∈ Gq can be treated as a constituent code with one

input of frequency weight row vector ∂i and ti outputs of

frequency weight vectors [wi,1, wi,2, . . . , wi,ti ]. The input-

output frequency weight enumerator for node vi is then

C(N ; di,0, di,1, . . . , di,(q−1))κ∂i,wi,1
· · ·κ∂i,wi,ti

, (25)

where ∂i = [di,1, . . . , di,(q−1)], and (vector) Kronecker Delta

κx,y is defined in (13).

The N copies of each check node cj ∈ Gq can be treated

as a constituent code with mj input frequency weights vectors

wj = [wj1 , wj2 , . . . , wjmj
] and no output.

Let ACN
j (wj) be the input frequency weight enumera-

tor of the check node group CN
j . Let A(d) represent the

number of sequences each with frequency weight matrix

d = [∂T
1 , ∂

T
2 , . . . , ∂

T
nv
] that is applied to the variable nodes

according to the protograph constraints. (See also Fig. 15 for

illustration.)

Then, the result of Lemma 1 is applied to individual

concatenations to obtain the average protograph frequency

weight matrix enumerator as,

A(d)=
∑

wm,u
m=1,...,nv
u=1,...,tm

∏nv
k=1[C(N ;dk,0,dk,1,...,dk,(q−1))κ∂k,wk,1

...κ∂k,wk,ti
]

∏nv
s=1

∏ts
r=1 C(N ;ws,r,0,ws,r,1,...,ws,r,(q−1))

× ∏nc

i=1 A
CN
j (wj).

(26)

Here, the summation is over all frequency weight vectors

wm,u, where wm,u is the frequency weight vector along the

uth edge of variable node vm. Note that wj,l = wi,k if the

lth edge of check node cj is the kth edge of variable node

vi.The elements of dj comprise a subset of column vectors of

d. Then (26) reduces to

A(d) =

∏nc

j=1 A
CN
j (dj)

∏nv

i=1 C(N ; di,0, di,1, . . . , di,(q−1))ti−1
.(27)

as desired.

Note that the result in (27) is not merely a consequence

of the weight enumerator previously computed for the U-

NBPB codes: the former assumes fixed edge scalings while

the latter considers all possible non-zero scalings in the edge

permutations, thus incurring different combinatorial terms (in

the denominator) in the expression for the weight enumerator.

We note that an element z in GF (q) can be expressed as

a binary vector (z0, · · · , zr−1) ∈ {0, 1}r, when q = 2r. Such

a binary vector is called the binary image of z. For the given

Hamming weight dB of the binary image, the average number

of codewords of binary Hamming weight dB in the C-NBPB

ensemble, AdB
, is then simply the sum of A(d) over all d

for which
∑

{di,ℓ:vi∈V } di,ℓwℓ = dB , where wℓ denotes the

Hamming of the binary image of non-binary symbol ℓ.
We also note that for a given symbol Hamming weight d,

the average number of codewords of weight d in the C-NBPB

ensemble, Ad, is then simply the sum of A(d) over all d for

which
∑

{di,ℓ:vi∈V } di,ℓ = d.

Continuing on with the binary image representation, our

goal is to choose edge weights so that the minimum distance

of the binary image of the code is improved. An approach to

improve the minimum distance is to maximize the minimum

distance of the binary image of each check node, see e.g., [31]

and [39]. We will use this approach later in the paper when

we discuss the design of finite-length NBPB codes.

Remark 1. We also remark that if we average the expression

in (23) over all possible non-zero scales and use it in (27), we

then obtain the frequency weight matrix enumerator for the U-

NBPB code, denoted by Ā(d). This expression can in turn be

used to compute the weight enumerators for the binary image

of a U-NBPB code. For the given Hamming weight dB of

the binary image, the average number of codewords of binary

weight dB in the U-NBPB ensemble, ĀdB
, is then simply the

sum of Ā(d) over all d for which
∑

{di,ℓ:vi∈V } di,ℓwℓ = dB ,

where wℓ denotes the Hamming weight of the binary image of

a non-binary symbol ℓ.

Example 6. Let us consider the binary image of the regular-

(2, 4) code in Fig. 3(a), now defined over GF (16) and with

N = 4, as a C-NBPB code. We evaluate C-NBPB ensemble

enumerators for different choices of edge weights, by consider-

ing two randomly chosen assignments described by the edge
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Fig. 11. Weight enumerator for the binary image of various C-NBPB
ensembles and for the random edge weight assignment.

vectors (α6, α7, α9, α10) and (α1, α2, α7, α14) (read top to

bottom in the panel) for α a primitive element over GF (16),
and a root of x4 + x + 1. We also evaluate the ensemble

enumerator for (α0, α3, α7, α11), an edge weight choice that

was proposed in [39] as a good choice for edge weights.

Indeed, Fig. 11 shows that the code described with edge

weights as proposed in [39] has fewer low weight codewords

than the two randomly chosen edge weight assignments for the

C-NBPB construction. We also plot the ensemble enumerator

under randomly assigned edge scalings in Fig. 11. As we

can see, with a good edge weight assignment, the C-NBPB

ensemble has fewer low weight codewords than the random

ensemble.

C. Asymptotic ensemble weight enumerators

Equipped with the new weight enumerator, for the Galois

field size q = 2r, the asymptotic growth rate can now be

derived in the usual sense, either in terms of the number of

protograph copies, N ,

rB(δ) = lim sup
N→∞

lnAdB

N
= lim sup

N→∞

lnAδN

N
, (28)

or in terms of the codeword bit length n (where n = r·nv ·N ),

r̃B(δ̃) = lim sup
n→∞

lnAdB

n
(29)

where r̃B(δ̃) =
1

rnv
rB(δ̃rnv). From (27), it follows that,

lnA(d) =

nc
∑

j=1

lnAC
N
j (dj)−

nv
∑

i=1

(ti−1) lnC(N ; di,0, . . . , di,(q−1)),

(30)

and, with N tending to infinity,

rB(δ) = max{δ}

{

∑nc

j=1 a
C∞

j (δj)

−∑nv

i=1(ti − 1)H
(

[δi,0, δi,1, . . . , δi,(q−1)]
)}

,
(31)

under the constraint
∑

{δi,ℓ:di∈V } δi,ℓwℓ = δ. Here, δ

= d/N , δj = dj/N , δi,ℓ = di,ℓ/N , δ̃ = δ/rnv = dB/n,

and H(·, · · · , ·) is the multi-dimensional entropy function.

The term aC
∞

j (δj) stands for the asymptotic frequency weight

matrix enumerator of the check node cj , and it is computed

as aC
∞

j (δj) = max{Pδj
}

{

H(Pδj
)
}

. The collection {Pδj
}

represents the set of solutions to δj = Pδj
· MCj

b , with

Pδj
= [p1, p2, . . . , pK ], p1, p2, . . . , pK ≥ 0 and

∑K
k=1 pk = 1.

The asymptotic C-NBPB weight enumerators with the same

protograph and edge assignments as for the parameters in

Example 6 are also calculated. Simulation results show that

rB(δ) of C-NBPB protographs with good edge scaling as-

signment and randomly chosen edge scaling assignments are

approximately the same.

D. Comparison of computational complexity of U-NBPB and

C-NBPB enumerators

Lastly, we compare the computational complexity of enu-

merators induced by a simple linear code with the single check

node for the U-NBPB and the C-NBPB cases.

Example 7. Assume that a single-parity check code is defined

over GF (16) with a degree-4 check node cj (i.e., mj = 4).

We consider the enumerators of the induced U-NBPB and C-

NBPB ensembles in both the finite-length and in the infinite-

length regime. In particular, for the finite case, we assume that

the single-parity check code is repeated N times. (Since we

are dealing with one check node, the subscript i = 1 in δi,ℓ is

suppressed.)

(a) For the U-NBPB case, one computes w = n ·MCj

b,r. The

dimension of the matrix M
Cj

b,r is Kj,r × mj , where Kj,r =

1 +
mj
∑

i=2

(

mj

i

)

= 12, and Cj denotes our single parity-check

code. For the finite case, there are
(

N+Kj,r−1
Kj,r−1

)

=
(

N+11
11

)

possible choices for n. All possible n’s need to be identified

to get the symbol weight enumerator for all weights. For the

asymptotic case, with fixed δ, we need to find the length-4

vector (since mj = 4) ω = [δ1, δ2, δ3, δ4] under the constraint
mj
∑

ℓ=1

δℓ = δ and δℓ ≥ 0 that maximizes acj (ω). This is a search

in a 4-dimensional space.

(b) For the C-NBPB case, the dimension of the matrix M
Cj

b

is Kj ×mj(q − 1), where Kj = q(mj−1) = 163 = 4096 and

mj(q − 1) = 60. For the finite case, there are
(

N+Kj−1
Kj−1

)

=
(

N+4095
4095

)

possible choices for n. The total number of possible

choices for n is considerably larger in the C-NBPB case

than in the U-NBPB case, thus clearly making the overall

enumeration much more involved.

For the asymptotic case, with fixed δ, we need to find a vec-

tor of length mj(q−1) = 60, call it δj= [δ1, δ2, . . . , δ59, δ60],

that maximizes aC
∞

j (δj) under the constraint δj = Pδj
·MCj

b ,

with Pδj = [p1, p2, . . . , pKj ], p1, p2, . . . , pKj ≥ 0 and
∑Kj

k=1 pk = 1. This is a search in a 60-dimensional space.

Obviously, since the dimension of the search space is much

higher than in the U-NBPB case, the overall computational

complexity is also much higher.
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V. PSEUDOCODEWORD, TRAPPING SET, AND STOPPING

SET ENUMERATORS

In this section we discuss how the weight enumeration

techniques from the previous section can be extended to

enumerate certain graphical objects of interest such as trapping

sets, stopping sets, and pseudocodewords. We start off with

the definitions of non-binary trapping sets, stopping sets and

pseudocodewords (Subsection V-A) followed by trapping set

enumerators of the U-NBPB and C-NBPB code ensembles

(Subsection V-B), stopping set enumerators (Subsection V-C)

and the pseudocodeword analysis of the U-NBPB codes (Sub-

section V-D).

A. Non-binary quantities of interest

Let Gq = (V,C,E, Sq) be the Tanner graph of an LDPC

code defined over GF (q), with V and C denoting the variable

node set, and the check node set, respectively, and E and Sq

denoting the edge set and the associated scalings, respectively.

Also, let |V | = n.

Definition 7 (Trapping set in GF (q)). For the graph Gq =
(V,C,E, Sq), an (a, b) trapping set Ta,b is a subgraph of Gq

if all a variable nodes in Ta,b have values in GF (q) \ 0, all

other variable nodes in V are with value 0, and all of b check

nodes in Ta,b are unsatisfied. �

Note that in the definition of non-binary trapping sets, the

number b of unsatisfied checks depends on the input values

and the edge weights. That is, two subgraphs with the same

topology (and thus the same a) may result in different b
depending on the choice of the symbol values on the a variable

nodes and depending on the choice of non-zero weights

assigned to the edges of the subgraph. We remark that, in

the binary case, the value of b is uniquely determined since

all edge weights are equal to 1 and all of the a variable nodes

have value 1. In contrast to trapping sets, the definition of

stopping sets only depends on the topology of the subgraph

and therefore is the same as in the binary case.

Definition 8 (Stopping set in GF (q)). For the graph Gq =
(V,C,E, Sq), an (a, b) stopping set Sa,b is a subgraph of Gq

induced by a variable nodes in V , such that there are b check

nodes in the induced subgraph, and such that in this subgraph

every check node has at least two neighboring variable nodes.

�

We now turn our attention to pseudocodewords. For M a

positive integer, a degree-M cover of Gq is a Tanner graph

G
(M)
q that results from replicating M times each node of

Gq , followed by introducing edges in a way that the local

adjacency is preserved among the replicated nodes (cf. [28]).

As an illustration, the resultant graph in Figure 1(b) can

be viewed as a construction of a degree-3 cover of the

original protograph of 1(b). For simplicity, permutation matrix




1 0 0
0 0 1
0 1 0



 was used for each group of M = 3 replicated

edges in the graph cover.

We let C denote the code generated by Gq . We let

ĉM = (c1,1 · · · c1,M , c2,1 · · · c2,M , . . . , cn,1 · · · cn,M ) be an

M -cover codeword of C(M), the code generated by G
(M)
q .

Analogously to the codeword weight enumerator where one is

concerned with the number of non-zero symbols per codeword

(and not with their exact location), when enumerating the pseu-

docodewords one keeps track of the frequency of occurrence

of each non-zero symbol in each variable of the underlying

graph. This observation is the motivation for the following

definition of pseudocodeword matrix.

Suppose that the distinct elements of GF (q) form the set

{0, 1, α, α2, . . . , αq−2} for α a primitive element of GF (q).

Definition 9 (Pseudocodewords in GF(q)). Following the

notation in [45], we let P = P (ĉM ) be the (q−1)×n matrix

where the entry P (i, j) represents the number of occurrences

of symbol αi−1 in positions cj,k 1 ≤ k ≤ M in ĉM , computed

for each i between 1 and q − 1, and each j between 1 and

n. The number of 0 elements then follows from subtracting

the total count of non-zero elements of GF (q) from M .

Matrix P is called the degree-M pseudocodeword matrix. As

a shorthand, P is then referred to as the pseudocodeword.

Matrix P can be viewed as a concatenation of column

vectors, each of length (q − 1) that indicate the number (or

frequency, when these vectors are normalized) of times each

symbol occurs in a particular variable node. We call these

(q − 1) dimensional vectors pseudo symbols.

B. Ensemble trapping set enumerators

In this section we consider the trapping set enumerators of

the U-NBPB and C-NBPB ensembles, starting with the former.

1) Trapping set enumerators for a U-NBPB ensemble:

Let us consider a Ta,b trapping set in a Tanner graph G̃N
q =

(V,C,E, Sq) specifying a U-NBPB code over GF (q) which

is obtained by copying the underlying protograph G N times

followed by permuting and scaling. of these a variable nodes

to (arbitrary) non-zero elements of GF (q) and set the values of

all remaining variable nodes to the zero element of GF (q),
so that b neighboring check nodes are unsatisfied. We then

attach additional b variable nodes, one to each of these b check

nodes in the graph G̃N
q . The attached nodes are connected

via new edges of weight 1 each, and have a non-zero value

uniquely chosen to force all check nodes to be satisfied. This

suggests to add degree-1 variable nodes to all check nodes in

the underlying protograph G. Let this set of nodes be F and

call the new graph G′. We can then obtain the trapping set

enumerator of the U-NBPB ensemble specified by G from the

weight enumerator of the U-NBPB ensemble specified by G′.

In particular, the Ta,b trapping set enumerator A
(t)
a,b is

computed as

A
(t)
a,b =

∑

{di:vi∈V }

∑

{dk:vk∈F}

A(d), (32)

under the constraints
∑

{di:vi∈V } di = a and
∑

{di:vi∈F} di =
b, where

A(d) =

∏nc

j=1 A
C′N

j (dj)
∏nv

i=1 (q − 1)di(ti−1)
(

N
di

)ti−1 . (33)
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Fig. 12. Asymptotic trapping set enumerators of the regular (3, 6) protograph
code ensemble over GF (16).

We use C′N
j instead of CN

j in (33) to indicate that the weight-

vector enumerators in (33) are obtained from the check nodes

in G′. These weight-vector enumerators can be evaluated using

(2).

As in Section III-C, we define the normalized logarithmic

asymptotic trapping set enumerator r̃(t)(α̃, β̃), as

r̃(t)(α̃, β̃) = lim sup
n→∞

lnA
(t)
a,b

n
, (34)

where α̃ = a/n and β̃ = b/n (recall n = nv ·N is the code

length). The derivation of an expression for (34) from (33)

uses the same steps used in deriving r̃(δ̃), and yields

r̃(t)(α̃, β̃) =
1

nv
r(t)(α̃nv, β̃nv), (35)

where

r(t)(α, β) = max
{δl:vl∈V }

{ max
{δk:vk∈F}

{
nc
∑

j=1

ac
′

j (δj)−
nv
∑

i=1

Hq(δi)}},

(36)

under the constraints
∑

{δi:vi∈V } δi = α, and
∑

{δi:vi∈F} δi =

β. The asymptotic weight-vector enumerator, ac
′

j (δj), can be

evaluated using (21).

Example 8. Let us consider the regular (3, 6) protograph code

ensemble over GF (16). The asymptotic trapping set enumera-

tors are plotted for different β̃ in Fig. 12. Note when β̃ = 0, by

our definition, the curve corresponds to the asymptotic symbol

weight enumerator of the regular (3, 6) protograph. In the

figure, when α̃ is fixed, r̃(t)(α̃, β̃) increases with increasing β̃.

This result is consistent with the trapping set enumerator for

binary protograph-based LDPC codes reported in [2].

Example 9. In this example, we consider the regular (3, 6)
protograph code ensemble for different q’s with fixed β̃ =
0.0002. The asymptotic enumeration results are shown in

Fig. 13. In the figure, we can see that when β̃ = 0.0002,

there always exists the second zero-crossing, i.e., there exist

the typical relative r̃(t)(α̃, 0.0002) smallest trapping sets for
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Fig. 13. Asymptotic trapping set enumerators of the regular-(3, 6) protograph

code ensemble for different q with β̃ = 0.0002, for protograph shown in
Fig. 8.

different q’s. Also, when α̃ is fixed, r̃(t)(α̃, 0.0002) decreases

as q increases. This indicates that for β̃ = 0.0002 (and more

generally), codes over larger q have fewer trapping sets.

2) Trapping set enumerators for a C-NBPB ensemble:

As in the U-NBPB case, let us enlarge the original scaled

protograph Gq with V denoting the set of its variable nodes

by additional degree-1 variable nodes (call this set F ) to obtain

a new scaled protograph G′
q . Let us again denote by F the set

of additional degree-1 variable nodes in the resultant graph.

Lastly, as in the trapping set analysis of U-NBPB codes, it

suffices now to consider the weight enumerator of the C-NBPB

ensemble specified by G′
q when calculating the trapping set

enumerator of the C-NBPB ensemble specified by Gq .

Based on the results in Section IV, it follows that the

trapping set enumerator A
(t)
a,b can be computed as

A
(t)
a,b =

∑

{di,ℓ:vi∈V }

∑

{dk,ℓ:vk∈F}

A(d), (37)

under the constraints
∑

{di,ℓ:vi∈V } di,ℓ = a and
∑

{di,ℓ:vi∈F} di,ℓ = b, where

A(d) =

∏nc

j=1 A
C′N

j (dj)
∏nv

i=1 C(N ; di,0, di,1, . . . , di,(q−1))ti−1
. (38)

Note that here AC′N
j refers to the weight-vector check node

enumerators for the check nodes in G′
q . These weight-vector

enumerators are readily evaluated using (23). The growth rate

r(t)(α, β) can now be computed in a similar way as (31).

C. Ensemble stopping set enumerators

We first recall that, in contrast to trapping sets, the definition

of stopping sets is purely topological, that is we seek structure

Sa,b with a variable nodes and b check nodes such that each

check node has more than one connection to the subset of

variable nodes. This constraint, in particular, does not depend

on edge scaling. As a result, the problem of enumerating non-

binary stopping sets can be simply recast as the problem of
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Fig. 14. Asymptotic stopping set enumerators of regular (3, 6) protograph.

enumerating binary stopping sets. These in turn are enumer-

ated via a weight enumerator of a suitably enlarged graph

as in [2]. Let us define A
(s)
a,b as the average number of Sa,b

stopping sets of a given ensemble. Similar to the analysis in

Section III-C, define the normalized logarithmic asymptotic

stopping set enumerator r̃(s)(α̃, β̃), as

r̃(s)(α̃, β̃) = lim sup
n→∞

lnA
(s)
a,b

n
, (39)

where α̃ = a/n and β̃ = b/n.

Example 10. Let us consider the regular (3, 6) protograph in

Fig. 8 again. In Fig. 14, r̃(s)(α̃,∆ · α̃) is evaluated for several

values of ∆. For the regular (3, 6) protograph, each variable

node is connected to three check nodes and each check node

is connected to six variable nodes. Thus for α̃ variable nodes,

there are 3α̃ edges connected to these variable nodes and
3α̃

6
≤ β̃ ≤ 3α̃

2
, i.e. 0.5 ≤ ∆ ≤ 1.5. From Fig. 14, we can

see that for fixed α̃, there tends to be more stopping sets with

larger ∆.

D. Ensemble U-NBPB pseudocodeword enumerators

In this section we describe the pseudocodewords arising

from the graph covers of U-NBPB codes.

Let us consider a single variable node vi in the protograph

G having nv variable nodes. Let G̃N
q be the graph obtained

by copying the graph G N times, followed by edge scaling

and permutation. As before, the result of replicating node vi
N times can be viewed as a single constituent code.

Following the notation in Section V-A (with G̃N
q playing

the role of Gq), we now investigate the degree-M cover of

G̃N
q . One computes the distributions of the pseudocodewords

for the constituent code induced by node vi. Each column

vector of length (q − 1), Pk, 1 ≤ k ≤ N in the P = P (vi)
matrix of dimension (q− 1)×N , represents a pseudo symbol

in the degree-M cover of G̃N
q corresponding to vi in G. Note

that each entry in the vector Pk, 1 ≤ k ≤ N , is an integer

between 0 and M . Let M ′ denote the total number of distinct

C j
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Fig. 15. Illustration of the relation between ∂i and ∂ji .

non-zero pseudo symbols , where each distinct pseudo symbol

fℓ = [f1,ℓ, f2,ℓ, · · · , f(q−1),ℓ]
T is a (q − 1)-vector.

The number M ′ of possible distinct non-zero pseudo sym-

bols is M ′ =

(

M + q − 1
q − 1

)

−1, since each pseudo symbol

has (q− 1) entries, and considering the count of ‘0’ elements

as discussed above, we have q non-negative integers that sum

to M . Thus M ′ + 1 is just the number of possible partitions

of M into q.

It is helpful to express these pseudo symbol vectors via a

distribution: let di,ℓ denote the total number of occurrences

of the distinct pseudo symbol fℓ in pseudocodeword P so

that
∑M ′

ℓ=0 di,ℓ = N , and define distribution row vector ∂i =
[di,1, di,2, . . . , di,M ′ ] as the pseudoweight vector associated

with vi. Define the matrix of distributions for all nv variable

nodes as d = [∂T
1 ∂T

2 . . . ∂T
nv
].

The relative effect that each pseudo symbol has on the

overall performance is a function of its pseudoweight, that

itself depends on the channel. A representative evaluation of

the pseudoweight (cf. [27]) for the AWGN channel and the

q-ary PAM is:

dAWGN (P (ĉM )) =
(
∑M ′

ℓ=1 di,ℓ
∑q−1

k=1 fk,l × k2)2
∑M ′

ℓ=1 di,ℓ(
∑q−1

k=1 fk,l × k)2
. (40)

Now, let us consider a particular check node cj in G of

degree mj . For check node cj , Pcj represents the set of

pseudocodewords of degree-M cover of the check node cj .

Analogous to the definition of ∂i for variable node vi, we

define distribution row vector ∂jk = [dj,k1
dj,k2

. . . dj,kM′ ], as-

sociated with the k-th edge of check node cj for 1 ≤ k ≤ mj .

Please see Fig. 15 for clarification of notation. Similarly we

define a vector of distributions dj = [∂j1 ∂j2 . . . ∂jmj
] for all

mj edges of check node cj .

Let A
PN

cj (dj) be the pseudoweight vector enumerator as-

sociated with N copies of the check node cj . This vector

enumerator is given by

A
PN

cj (dj) =
∑

{n}

C(N ; n1, n2, . . . , nK), (41)

where the sum is over all realizable pseudocodeword weight

count configurations each described by the vector n =
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[n1 n2 . . . nK ], and where K represents the total num-

ber of pseudocodewords of the check node cj . Thus, {n}
is the set of integer solutions to dj = n · MPcj with

n1, n2, . . . , nK > 0 and
∑K

k=1 nk = N , and M
Pcj is the

binary matrix whose rows are obtained as follows. Each row

is related to a given (q − 1) ×mj pseudocodeword P ∈ Pcj

by the nonbinary-to-binary mapping ϕ defined as ϕ(P ) =
[x1,1 . . . x1,M ′ , x2,1 . . . x2,M ′ , . . . , xmj ,1 . . . xmj ,M ′ ], where

xi,l = 1, if the i-th column of P is equal to fℓ, otherwise

xi,l = 0. Note that ϕ(P ) can be viewed as an indicator

function in the sense that the location of a 1 in ϕ(P ) indicates

the presence of the corresponding value in P .

Combining the constraints for the check nodes and for the

variable nodes, and viewing them as concatenated codes the

formula for the ensemble average is given by

A(p)(d) =

∏nc

j=1 Ā
PN

cj (dj)
∏nv

i=1 C(N ; di,0, di,1, . . . , di,M ′ )ti−1
, (42)

where Ā
PN

cj (dj) is the pseudocodeword enumerator of the

check node cj averaged over all possible scales on those

edges connected to this check node. The vector dj collects

distribution of pseudocodeword symbols over all width-N
input variables adjacent to cj .

We now introduce the binary matrix M
Pcj
s as the counter-

part of M
Pcj which now also depends on the input scalings

s, with s being the vector representation of scalings sk on the

edges incident to cj . Again, for a given check node cj , each

row of this binary matrix M
Pcj
s is related to a (q − 1) × m

pseudocodeword P , P ∈ Pcj by the same nonbinary-to-binary

mapping ϕ(P ). For a fixed s, M
Pcj
s is the same for all degree-

M covers.

The generating function of the code C induced

by the M -fold cover of a check node c is
∑

xi∈M
Pc
s

∏m
i=1 W

xi,1

i,1 W
xi,2

i,2 · · ·W x
i,M

′

i,M ′ , where the

Wi,j’s are indeterminate bookkeeping variables,

xi = [xi,1, xi,2, . . . , xi,M ′ ], and m is the degree of c.
The generating function for the N copies of this check node

in the resultant graph is then

APN
c (W1,1,W1,2, . . . ,Wm,M ′ ) =

N
∏

k=1







∑

x∈M
Pc
sk

m
∏

i=1

W
xi,1

i,1 W
xi,2

i,2 · · ·W x
i,M

′

i,M ′






.

(43)

Since all edge labels are i.i.d. then

ĀPN
c (W1,1,W1,2, . . . ,Wm,M ′ ) =






E







∑

x∈M
Pc
sk

m
∏

i=1

W
xi,1

i,1 W
xi,2

i,2 · · ·W x
i,M

′

i,M ′













N

=

(

∑

x∈MPc

h(x)

m
∏

i=1

W
xi,1

i,1 W
xi,2

i,2 · · ·W x
i,M

′

i,M ′

)N

,

(44)

where M
Pc now includes distinct pseudocodewords of

all M
Pc
sk

’s. Note that in going from M
Pc
sk

’s to M
Pc , h(x)

accounts for the normalized frequency of occurrence of x in

the underlying graph cover ranging over all s.

Applying the multinomial theorem, we can write

ĀPN
c (W1,1,W1,2, . . . ,Wm,M ′ ) =

∑

n1,n2,...,nK≥0
n1+n2+···+nK=N

C (N ;n1, n2, . . . , nK)

×
∏

x∈MPc

(

h(x)

m
∏

i=1

W
xi,1

i,1 W
xi,2

i,2 · · ·W x
i,M

′

i,M ′

)nk

=
∑

d

∑

{n}

C (N ;n1, n2, . . . , nK)

× exp{n · bT }
m
∏

i=1

W
di,1

i,1 W
di,2

i,2 · · ·W d
i,M

′

i,M ′ ,

(45)

where b = [b1 b2 . . . bK ] and bk = ln(h(xk)). From (45),

Ā
PN

cj (dj) =
∑

{n} C(N ;n1, n2, . . . , nK) × exp{n · bT },

where n = [n1 n2 . . . nK ], and {n} is the set of integer

solutions to dj = n · MPcj with n1, n2, . . . , nK > 0 and
∑K

k=1 nk = N . Lastly, the average pseudo-weight enumerator

can be computed as

A
(p)
d =

∑

{d}

A(p)(d), (46)

where the sum ranges over all matrices d whose pseu-

docodeword weight is the channel dependent parameter d. For

example, under the channel-dependent constraints provided

by the AWGN channel and the q-ary PAM, pseudocodeword

weight (40) becomes

d =

(

∑nv

i=1

∑M
′

l=1 di,l
∑q−1

k=1 fk,l · k2
)2

∑nv

i=1

∑M ′

l=1 di,l

(

∑q−1
k=1 fk,l · k

)2 . (47)

Remark 2. We quickly remark that using the expression in

(42) for degree-1 cover (M = 1) also provides the frequency

weight matrix enumerator for a U-NBPB code, denoted by

Ā(d) (see also Remark 1). This enumerator can also be used

to obtain binary Hamming weight enumerators for the binary

image of U-NBPB codes.

Remark 3. We also note that the pseudocodeword enumera-

tion viz. the M -th cover of a C-NBPB code ensemble (with,

say, the N -fold copy operation) is similar to the derivation of

pseudo codewords of U-NBPB code ensemble (with N × M
copy operation) but now no averaging over scales is required.

Details are omitted for brevity.

The enumeration methods are illustrated with representative

examples.

Example 11. Consider the (3, 2) NB protograph code shown

in Fig. 16 over GF (3). Suppose that the base protograph is

replicated N = 2 times. We seek to compute the ensemble
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Fig. 16. (3, 2) NB protograph code.
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Fig. 17. Pseudo-codeword PAM distance spectrum for protograph in Fig.
16.

pseudo-weight enumerator for the resultant U-NBPB code for

the graph cover degree M = 2. The number of distinct non-

zero pseudocodeword symbols is 5, i.e. M ′ = 5, and the set

of all pseudo symbols is

{[

0
0

]

,

[

0
1

]

,

[

0
2

]

,

[

1
0

]

,

[

1
1

]

,

[

2
0

]}

.

For either check node c1 or c2 (both being degree-

2 check nodes), the codewords are {00, 12, 21}, or

{00, 11, 22} depending on the assigned non-zero

scales. In the degree-2 cover of such a check, there

are 4 sets: two sets with pseudocodewords Pcj =
{[

0 0
0 0

]

,

[

0 1
1 0

]

,

[

0 2
2 0

]

,

[

1 0
0 1

]

,

[

1 1
1 1

]

,

[

2 0
0 2

]}

,

and two other sets with pseudocodewords Pcj =
{[

0 0
0 0

]

,

[

1 1
0 0

]

,

[

2 2
0 0

]

,

[

0 0
1 1

]

,

[

1 1
1 1

]

,

[

0 0
2 2

]}

,

for j = 1, 2. The matrix M
Pcj is obtained by averaging

these two sets. The set of pseudocodewords to be

considered in the construction of matrix M
Pcj , is

{[

0 0
0 0

]

,

[

1 1
0 0

]

,

[

0 1
1 0

]

,

[

2 2
0 0

]

,

[

0 2
2 0

]

,

[

1 0
0 1

]

,
[

0 0
1 1

]

,

[

1 1
1 1

]

,

[

2 0
0 2

]

,

[

0 0
2 2

]}

. The matrix M
Pcj is

then

]

]

v
1

v
2

v
3

c c

c
1

v
1

v
2

,

Fig. 18. An RA protograph.

M
Pcj =





























0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0





























.

Note that Pcj is a 10× 10 matrix since the total number of

pseudocodewords of the check node cj is K = 10 (therefore

the number of rows is 10) and M ′ × mj = 5 × 2 = 10
(therefore the number of columns is 10). Except for rows 1 and

8 where h(x) = 1, all other rows of M
Pcj have h(x) = 1

2 .

To obtain cover-2 pseudocodewords of c1, AP2
c1 ([∂1, ∂2]),

we solve [n1, n2, . . . , n10]M
Pc1 = [∂1, ∂2]. A similar com-

putation is required for cover-2 pseudocodewords of c2,

AP2
c2 ([∂1, ∂3]). Then, we obtain non-zero vector enumerators

A(p)([∂T
1 , ∂

T
2 , ∂

T
3 ])for all possible realizations of (∂1, ∂2, ∂3).

The final distribution using PAM evaluation in (47) is shown

in Fig. 17.

Example 12. We consider a rate- 12 repeat accumulate

code over GF (4). The protograph of this code includes

one check node with degree 5 (call it c1) and two

variable nodes, one with degree 3, and one with degree

2, as shown in Fig. 18. Suppose that this protograph

is copied N = 3 times We compute the pseudo-weight

enumerator for the graph cover degree M = 2 of the

resultant code. For this code, the set of all pseudo-

symbols is











0
0
0



 ,





1
0
0



 ,





0
1
0



 ,





0
0
1



 ,





2
0
0



 ,





0
2
0



 ,





0
0
2



 ,





1
1
0



 ,





1
0
1



 ,





0
1
1











which includes 9 distinct non-zero

pseudo-symbols, i.e., M ′ = 9.

For this code, based on the non-zero values of the edges

incident to the set of the check node, there are 81 different

distinct sets, each including 256 codewords for check node c1.

Now, in order to find AP3
c1 ([∂1, ∂1, ∂1, ∂2, ∂2]) for the cover-2

of c1, similar to Example 11, we seek all the Pc1 sets and as a

result, matrix MPc1 can be computed. Finally, A(p)([∂T
1 , ∂

T
2 ])

can be computed using (42) for all choices of (∂1, ∂2) (details

are omitted). The distribution using PAM is shown in Fig. 19.

For a finite cover degree M , we now compute the asymp-

totic ensemble pseudo weight enumerator, as the number of

replications N of the original protograph tends to infinity.
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Fig. 19. Pseudo-codeword PAM distance spectrum for the protograph shown
in Fig. 18.

We define the normalized logarithmic asymptotic weight (the

growth rate) to be

r(p)(δ) , lim sup
N→∞

lnA
(p)
d

N
= lim sup

N→∞

lnA
(p)
δN

N
, (48)

where δ = d/N . Note that n = nv ·N so the growth rate in

terms of n is then expressed as

r̃(p)(δ̃) , lim sup
n→∞

lnA
(p)
d

n
, (49)

where r̃p(δ̃) = 1
nv

rp(δ̃nv). After some computations, it

follows that

r(p)(δ) = max
{δ}







nc
∑

j=1

ā
P∞

cj (δj)

−
nv
∑

i=1

(ti − 1)H ([δi0, δi1, . . . , δiM ′ ])

}

.

(50)

Under the normalized version of channel-dependent con-

straints for the AWGN channel with q-ary PAM, δ is

δ =

(

∑nv

i=1

∑M
′

l=1 δi,l
∑q−1

k=1 fk,l · k2
)2

∑nv

i=1

∑M ′

l=1 δi,l

(

∑q−1
k=1 fk,l · k

)2 . (51)

In (50), δ = d/N , δj = dj/N , δi,l = di,l/N , H(·, · · · , ·)
is the multi-dimensional entropy function, and ā

P∞

cj (δj) is

the asymptotic vector pseudo-weight enumerator of the check

node cj . This enumerator is computed as

ā
P∞

cj (δj) = max
{Pδj

}

{

H(Pδj
) + Pδj

· bT
}

, (52)

under the constraint that {Pδj
} is the set of solutions to δj =

Pδj
·MPcj , with Pδj

= [p1, p2, . . . , pK ], p1, p2, . . . , pK ≥ 0

and
∑K

k=1 pk = 1.

VI. ITERATIVE THRESHOLDS VIA EXIT CHARTS FOR

NON-BINARY PROTOGRAPHS

In this section we present a novel EXIT chart-based

method for computing thresholds of non-binary protograph-

based codes with random edge weights. In particular, the

method is designed to efficiently evaluate thresholds of U-

NBPB codes and generalizes the EXIT-chart methodology

previously developed for binary protograph-based codes in

[30] and for unstructured non-binary LDPC codes in [5]. We

call the proposed technique non-binary PEXIT (NB-PEXIT).

Using the NB-PEXIT method, we then offer new non-binary

protograph-based codes with capacity-achieving performance

for field order as large as q = 256. We first revisit the basic

concepts underlying the EXIT chart approach in Section VI-A.

We then formulate the NB-PEXIT scheme in Section VI-B,

and provide threshold evaluations of various codes and mod-

ulation schemes in Section VI-C.

A. Preliminaries and Previous Work

The well-known EXIT chart method [8] for computing

the decoding threshold of a graph-based code is based on

iteratively computing the mutual information (MI) between

an edge message and an associated transmitted bit. On the

variable node side, we denote the extrinsic MI between

the output message of a variable node and the associated

transmitted bit as IEv(IAv, Ich, dv), where IAv denotes the

a priori MI between input message of the variable node and

the transmitted bit, Ich is the MI between the channel output

and the transmitted bit, and dv is the variable node degree.

On the check node side, we denote the extrinsic MI between

the output message of a check node and the transmitted bit as

IEc(IAc, dc), where IAc denotes the a priori MI between the

input message of the check node and the associated transmitted

bit, dc is the check node degree. EXIT chart analysis utilizes

the above two functions to examine whether the MI between

the edge message and the transmitted bit reaches value 1

by iterative computing. The value 1 of the MI implies that

the transmitted bit is decoded correctly by iterative decoding.

Since the output message of a variable node is the input

message of a check node and vice versa, it follows that

I
(t)
Ac = I

(t−1)
Ev and I

(t)
Av = I

(t−1)
Ec where t denotes the iteration

index. At the initial condition t = 0, I
(0)
Ev = Ich and I

(0)
Ec = 0.

The EXIT functions were introduced in [9] for the AWGN

channel. We denote by J(σ) the MI between a binary random

variable X ∈ {+σ2

2 ,−σ2

2 } with equally likely probabilities,

and a Gaussian random variable Y ∼ N (X,σ2). Therefore

J(σ) represents the capacity of a binary-input Gaussian noise

channel with the parameter σ and is given in [8]:

J(σ) = 1− E[log2(1 + e−Y )]

= 1−
∫ ∞

−∞

1√
2πσ2

e−
(y−σ2/2)2

2σ2 log2(1 + e−y)dy. (53)

Given the AWGN channel with BPSK modulation, the variable

node EXIT function for a degree-dv variable node is

IEv(IAv, Ich, dv) =
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J(
√

(dv − 1)[J−1(IAv)]2 + σ2
c ), (54)

where σc =
√

8REb

N0
, R is the code rate and Eb

N0
is the bit

signal-to-noise ratio (SNR). The check node EXIT function

for a degree-dc check node can be approximated by the duality

property ([9]):

IEc(IAc, dc) ≃ 1− J(
√

dc − 1J−1(1− IAc)). (55)

For the irregular LDPC code ensemble with degree distribu-

tions λ(x) and ρ(x), the average EXIT functions are

IEv =

dv
∑

i=1

λiIEv(IAv, Ich, i) (56)

and

IEc =

dc
∑

i=1

ρiIEc(IAc, i), (57)

where λi and ρi are the fractions (edge perspective) of degree-i
variable nodes and check nodes, respectively.

For non-binary LDPC (NB-LDPC) code over GF (q), Ben-

natan and Burshtein proved in [5] the message symmetry

and permutation invariance properties given the assumption of

uniform random weights and coset vectors. With the support

of these two properties, they modeled message distribution as

follows.
1) Check-to-variable message distribution: Given the as-

sumption that the edge weight is chosen uniformly over q− 1
non-zero symbols of GF (q) and given the message symme-

try and permutation invariance, the distribution of check-to-

variable (c-to-v) messages is formulated as a Gaussian random

vector of size (q − 1) with mean µ and covariance matrix Σ
given by,

µ =











σ2/2
σ2/2

...

σ2/2











(q−1)×1

, (58)

and

Σ =











σ2 σ2/2
σ2

. . .

σ2/2 σ2











(q−1)×(q−1)

, (59)

where Σi,j = σ2 if i = j and σ2/2 otherwise. Note that this

distribution is parameterized by σ only.
2) Variable-to-check message distribution: Since the initial

message may not be well approximated by a Gaussian random

variable, the distribution of variable-to-check (v-to-c) mes-

sages is expressed as the superposition of two random vectors:

the one representing initial messages from the channel, and

another one representing c-to-v messages. The first component

depends on the modulation scheme and channel parameter, and

the second component is Gaussian with the parameters given

in (58) and (59).

The MI between the transmitted symbol S and the random

vector W of messages is computed as in [5],

I(S;W ) = 1− E[logq(1 +

q−1
∑

i=1

e−Wi)|S = 0], (60)

under uniformly distributed transmitted symbols S and edge

weights. Here Wi is the i-th entry in W . The MI func-

tion between c-to-v messages and transmitted symbols is

denoted by J(σ), where σ is the parameter of the multivariate

Gaussian distribution (see (58), and (59)). The MI function

between v-to-c messages and transmitted symbols is denoted

by JR(σc, σ), where σ2
c is the variance of the channel output.

Unlike in the simpler binary case, a closed form expression

is not available for the non-binary MI functions. Monte

Carlo method is thus used to suitably approximate these MI

functions.

B. NB-PEXIT formulation

The original PEXIT chart analysis [30] is used to evaluate

the performance of protograph LDPC code ensembles in the

binary case. By evaluating the MI between the a posteriori

estimation at each variable node and the transmitted codeword

bit, PEXIT analysis characterizes the protograph code ensem-

bles by an asymptotic iterative decoding threshold, which is

measured as SNR. With the work [5] and the assumption of

uniformly distributed edge labels, we generalize the PEXIT

analysis to the non-binary setup encompassing different mod-

ulations for our U-NBPB codes. For check (variable) node i,
we let N(i) denote the set of its neighboring variable (check)

nodes. In our non-binary PEXIT (NB-PEXIT) chart analysis

there are three components of each iteration:

• V-to-C update: Given the transpose of the adjacency

matrix B of a protograph (with check nodes indexed by

rows and variable nodes indexed by columns), the MI

between the v-to-c message from variable node j to check

node i and the transmitted symbol vj is formulated as:

IEv(i, j) =

{

J(σv−to−c) if node j is punctured,

JR(σv−to−c) otherwise.
(61)

Here,

J(σv−to−c) = I(S;W = X), (62)

JR(σv−to−c) = I(S;W = X + Y ), (63)

and

σ2
v−to−c =

∑

s∈N(j),s 6=i

bs,j [J
−1(IAv(s, j))]

2+

+(bi,j − 1)[J−1(IAv(i, j))]
2, (64)

where X is a Gaussian random vector with the parameter

σv−to−c in (58) and (59), Y is the random vector of

the initial messages, S is the random variable modeling

transmitted symbol vj , bi,j is the (i, j)-entry of matrix

B, and IEv(i, j) = 0 if bi,j = 0. Note that for a

punctured node there is no information from the channel,

and only the c-to-v messages are used to evaluate the MI.

• C-to-V update: The MI between the c-to-v message

from check node i to variable node j and the transmitted

symbol vj is formulated as a Gaussian random vector

with parameter σc−to−v in (58) and (59):

IEc(i, j) = 1− J(σc−to−v), (65)
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Fig. 20. The MI propagation on a part of a protograph.

where

σ2
c−to−v =

∑

s∈N(i),s 6=j

bi,s[J
−1(1− IAc(i, s))]

2+

(bi,j − 1)[J−1(1− IAc(i, j))]
2. (66)

• Convergence evaluation: Similar to the v-to-c update,

the MI between the a posteriori message and the trans-

mitted symbol at variable node j is a superposition of two

random vectors, which represent initial messages and c-
to-v messages, respectively:

IAP (j) =

{

J(σAP ) if node j is punctured,

JR(σAP ) otherwise,
(67)

where

σ2
AP =

∑

s∈N(j)

bs,j [J
−1(IAv(s, j))]

2. (68)

The evaluation process ends when either IAP (j) = 1 for

all variable nodes, or the algorithm reaches the maximum

number of iterations.

The MI propagation on a bipartite graph is illustrated in

Fig. 20.

C. Threshold evaluation

In this section we present the threshold evaluation results

of different NB protographs using their binary images over

AWGN, and considering PSK and PAM modulations. The

maximum number of iterations is 1000. The value of IAP

typically converges to a constant lower than 1 in 100 iterations,

if the decoder fails to produce the correct estimate of the

transmitted codeword. We compute the SNR threshold with

up to two decimal places. First, we present the result for

the binary case to demonstrate the consistency with existing

works that use complementary methods for computing the

SNR threshold. We then describe the underlying variables

governing the proposed NB-PEXIT tool, and present several

illustrative examples.

1) Binary case: We focus on the RA codes and ARA

codes [1] and several popular regular codes to evaluate the

consistency of the NB-PEXIT analysis in the binary case.

Tables I and II illustrate the SNR thresholds of the AR3A

family and AR4A family over the AWGN channel with BPSK

modulation, respectively. Table III shows the thresholds of the

R DE threshold (dB) PEXIT threshold (dB) |ǫ|
1/2 0.516 0.56 0.044
2/3 1.288 1.30 0.012
3/4 1.848 1.88 0.032
4/5 2.277 2.30 0.023
5/6 2.626 2.60 0.026
6/7 2.897 2.91 0.013
7/8 3.129 3.14 0.011

TABLE I
PROTOGRAPHS AND THRESHOLDS FOR THE AR3A FAMILY.

R DE threshold (dB) PEXIT threshold (dB) |ǫ|
1/2 0.560 0.55 0.010
2/3 1.414 1.45 0.036
3/4 1.980 1.96 0.020
4/5 2.396 2.41 0.014
5/6 2.717 2.72 0.003
6/7 2.980 2.97 0.010
7/8 3.197 3.24 0.043

TABLE II
PROTOGRAPHS AND THRESHOLDS FOR THE AR4A FAMILY.

RA code and the regular-(2, 4) binary code. The errors |ǫ| are

less than 0.05 dB for all protographs of different rates. These

results demonstrate that NB-PEXIT analysis is consistent with

the existing works when reduced to the binary case.

2) Binary image of NBPB codes over AWGN with BPSK:

Here, we consider the AWGN transmission for each individual

bit in the binary image of the symbols of U-NBPB codes. Let

σ2
c denote the variance of channel noise.

Let µB be an r-length vector with all entries set to σ2
c/2.

Let ΣB be an r×r diagonal matrix with σ2
c as diagonal entries.

Following the set-up in the binary case, the random vector

of the initial message Y can be represented as a Gaussian

random vector with mean

µY =











br(1)
br(2)

...

br(q − 1)











µB =











d(1)
d(2)

...

d(q − 1)











σ2
c

2
, (69)

where br(k) is the binary row vector, which contains the binary

representation of k, and d(k) is the Hamming weight of the

binary representation of k. The covariance ΣY of Y is

ΣY =











br(1)
br(2)

...

br(q − 1)











ΣB

[

br(1)
T . . . br(q − 1)T

]

. (70)

Therefore, for an unpunctured variable node, the distribution

code DE threshold (dB) PEXIT threshold (dB) |ǫ|
rate 1/2 RA code 1.116 1.14 0.024
regular-(2,4) code 3.004 3.04 0.036

TABLE III
PROTOGRAPHS AND THRESHOLDS FOR THE RATE-1/2 RA CODE AND

REGULAR-(2,4) CODE.
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of v-to-c messages W in (63) is a (q− 1)-dimensional vector

Gaussian random vector with mean µW and covariance ΣW

with entries

µW (k) = d(k)
σ2
c

2
+

σ2
v−to−c

2
, (71)

and

ΣW (k, ℓ) =

{

d(k)σ2
c + σ2

v−to−c if k = ℓ,

d(k ⊗ ℓ)σ2
c +

σ2
v−to−c

2 otherwise.
(72)

Here, ⊗ represents the bit-wise AND operation.

We compute the function JR(σc, σv−to−c) by applying the

Monte Carlo method. Given the assumption that the energy is

uniformly distributed over the binary image of a symbol, we

have the following representation:

Λb = Λs − 10 log10 r, q = 2r, (73)

where Λb is the bit SNR, Λs is the symbol SNR in the

logarithmic decibel scale, and q is the size of the Galois field

used to represent the non-binary symbols.

In the following, we discuss several illustrative examples

and point out some interesting observations.

Example 13. We present iterative decoding thresholds in Fig.

21 for candidate protographs shown in Fig. 3, where we

consider the binary image of the code used in transmission

over an AWGN channel with BPSK modulation. From this

figure, we first observe that the threshold of the regular (2, 4)
protograph monotonically decreases as the alphabet size q
in GF (q) increases. Among the three codes, the punctured

(2, 4) type 2 protograph has the best threshold at q = 8.

We recall that this is consistent with the enumeration results

previously presented in Examples 2 and 4. Interestingly, the

punctured (2, 4) type 1 protograph has a lower threshold

at q = 16, 32, 64 than the regular (2, 4) protograph has at

q = 256, and this threshold is only within 0.2dB of the

capacity 0.187dB.

The next example provides further illustrations.

Example 14. We consider the RA protograph shown in Fig.

18 and additional two protographs shown in Fig. 22. Black

nodes are punctured. The iterative decoding thresholds of their

binary image over AWGN channel with BPSK are shown in

Fig. 23.

From Fig. 21 and Fig. 23, one observation is that the

function relating the field order q and the decoding thresh-

old depends on the average variable node degree (AVND).

Protographs with small AVND (<2.5) tend to have higher

thresholds for small q and lower thresholds for large q. In

contrast, protographs with large AVND (>2.5) tend to have

lower thresholds for small q and higher thresholds for large q.

To further demonstrate this phenomenon and eliminate

potential influence of punctured nodes, we compare the thresh-

olds of the regular (2, 4) protograph (AVND= 2) shown in Fig.

3(a), the RA protograph shown in Fig. 18 (AVND=2.5) with

the regular (3, 6) protograph shown in Fig. 8 (AVND= 3)

and the protograph shown in Fig. 24. This protograph has two

variable nodes of degree 4 and two variable nodes of degree 3
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Fig. 21. Bit SNR threshold of the binary image of candidate protograph in
Fig. 3 with BPSK over AWGN.

(a)

(b)

Fig. 22. Candidate protographs. (a) AR3A protograph, and (b) Punctured
(2, 4) type 3 protograph.

so its AVND is 3.5. The results are plotted in Fig. 25. The four

protographs have the lowest thresholds at q = 256, q = 16,

q = 8, and q = 2, respectively which is inversely correlated

with the value of AVND. In particular, the thresholds of the

regular (2, 4) protograph decreases with q and the threshold

of the protograph in Fig. 24 increases with q. Observations

of this type may be useful when designing NBPB codes over

GF (q).

Similar to the analysis for the binary image of NBPB

codes suitable for the BPSK modulation, we apply the Monte

Carlo method to approximate J(σ) and JR(σ) for PAM and

PSK modulations over AWGN channel. For PAM we apply a

technique in [47], which suggests a non-uniform constellation

for PAM. We apply the equation (73) to normalize the symbol

SNR with respect to the number of bits in a symbol.

Example 15. Fig. 26 shows the bit SNR thresholds with

PAM modulation over AWGN for protographs in Fig. 3. Fig.
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Fig. 23. Bit SNR threshold of the binary image of candidate protographs in
Fig. 22 with BPSK over AWGN.

Fig. 24. A candidate protograph with AVND=3.5.

27 shows the thresholds for QPSK modulation over AWGN

for protographs in Fig. 3. Similar to the BPSK over AWGN

channel transmission, the regular (2, 4) protograph has the

highest threshold when q is small and the lowest threshold

when q is large.

We remark that for C-NBPB codes, the edge labels are fixed,

so the message distribution specified in (58) and (59) does

not apply. Further, the MI between the transmitted symbol

and edge message does not change with different edge labels.

In order to measure the threshold of C-NBPB code, a more

accurate method should be considered.
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Fig. 25. Bit SNR threshold of the binary image of candidate protograph
with different AVND with BPSK over AWGN.
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Fig. 26. Bit SNR thresholds of NBPB codes with PAM over AWGN.
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Fig. 27. Bit SNR thresholds of NBPB codes with QPSK over AWGN.

VII. FINITE-LENGTH U-NBPB AND C-NBPB CODES

Building upon the analysis from the previous sections, in

this section we provide new code designs for finite-length

NBPB codes. The proposed codes offer excellent performance,

both relative to binary and non-binary constructions. In Section

VII-A, we summarize the design guidelines for the code con-

struction. In Sections VII-B and VII-C, we present examples of

finite-length C-NBPB codes and U-NBPB codes constructed

using our approach. Simulation results are presented for the

AWGN channel with an FFT-based decoder [6] with 100

maximum iterations.

A. Design criteria for NBPB codes

The design method for short blocks is based on ensuring

a large enough girth and a suitable edge label assignment to

achieve a good code minimum distance. Our design criteria is

similar to the construction method used by Poulliat, Fossorier,

and Declercq in [39]. Here, for a given protograph, we obtain

a derived graph by copy-and-permute operations using the

circulant PEG algorithm [24] such that the girth is as large

as possible. The selection of the original protograph is guided
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by our EXIT analysis: we start with a protograph having a

competitive threshold (as computed in the previous section)

at the prescribed alphabet size. After lifting the protograph to

a desired size to obtain a large girth, we compute the cycle

distribution of the graph to select the best one among the

resulting graph candidates.

The assignment of the non-binary labels from a given field

GF (q) is selective rather than random. We select the labels

so that the binary image of the check node with the assigned

labels produces the largest possible minimum Hamming dis-

tance for that check node. Such label optimization was used

by MacKay [31] and in [39]. However, the number of labels

proposed in these references are somewhat limited. In contrast,

for each q, we generate all possible label sets that produce the

largest minimum distance for the binary images of the checks

with associated labels. Moreover, we also modify the cycle

cancellation method proposed in [39] so that, in addition to

the shortest cycles, we attempt to eliminate other short cycles

as well. In our extensive simulations of non-binary codes, with

the all-zero transmitted codewords, the lowest-weight detected

codewords were collected. The lowest weight of the binary

image of empirically collected codewords is denoted by dumin.

The true minimum weight codeword is of course less than or

equal to dumin.

B. Examples of C-NBPB code construction and performance

simulation results

First, we construct regular (2, 4) C-NBPB codes with code

rate 1/2 and block-lengths 128, 256, and 512 in bits, by taking

the binary image of constructed non-binary protograph codes

over GF (256). The reason for choosing q = 256 is influenced

by the EXIT analysis as well as experimental observations

indicating that iterative non-binary decoders perform better for

higher alphabet size.

Here is an example of construction of a (128, 64) C-NBPB

code. We start with a scaled protograph with four degree-

2 variable nodes and two degree-4 check nodes. We select

two sets of optimal labels (each set consists of 4 labels per

check node of degree-4) among all sets provided in [39]. This

protograph and its edge scalings are shown in Fig. 28(a). In

the figure, the labels are non-zero elements of GF (256) and

are expressed as powers of a primitive element α of the field,

where α is a root of the primitive polynomial x8 + x4 + x3 +
x2 + 1.

We then lift this protograph by a factor of N = 4 using

circulant N × N = 4 × 4 permutations that produce the

largest possible girth with minimal multiplicity. The circulant

permutations are specified by σi, where σ denotes the unit left

circular shift of the identity matrix. The permutations are also

indicated in Fig. 28(a). Distribution of cycles for the resulting

lifted graph is shown in Table IV (first row group). The girth

of the graph is 8, and dumin is 15. It is interesting to observe

that for the U-NBPB code, there are no codewords associated

with single cycles, that is low-weight codewords are all due

to interconnected cycles.

Similar constructions produce (256, 128) (N = 8), and

(512, 256) (N = 16) codes. Their scaled protographs and
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Fig. 28. Non-binary protographs, circulant permutations with optimal
assigned labels are shown. The derived graphs are obtained by using graph
cover construction.

lifting operations are shown in Fig. 28(b) and Fig. 28(c),

respectively. The cycle distributions are also shown in Table

IV, in the second and third row groups. (The distribution of

cycles is shown for cycles up to size 32.) These two codes

both have dumin of 15.

Note that the derived graphs are obtained by only perform-

ing the copy and permute operations, while preserving the

same labels as in the underlying graph. We also constructed

a (2048, 1024) code using the same method. A slightly better

code was proposed in [39]. Performance simulation of the

proposed codes is shown in Fig. 29.

C. Examples of U-NBPB code construction and performance

simulation results

We also construct regular (2, 4) U-NBPB codes with code

rate 1/2 and block-lengths 128, 256, and 512 in bits, by

taking the binary image of constructed non-binary protograph

codes over GF (256). We start with a protograph with four

degree-2 variable nodes and two degree-4 check node with

no scaling attached to the edges. We use the same circulant

permutations as in Fig. 28 to lift the graph by a factor of N
(N = 4, 8, 16) to obtain the derived graphs. From the available

sets of optimal labels, we randomly selected a label set (or its
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cycle distribution,
no. associated 8 12 16 20 24 28 32

codewords / cycle size

N=4 36 96 72 0 0 0 0

C-NBPB (128,64) 0 16 16 0 0 0 0

U-NBPB (128.64) 0 0 0 0 0 0 0

N=8 20 160 634 2304 5184 5632 1464

C-NBPB (256,128) 0 32 48 288 640 1152 1152

U-NBPB (256,128) 0 3 7 21 43 69 71

N=16 0 208 788 5760 28392 146192 614872

C-NBPB (512,256) 0 64 96 864 3488 16448 61248

U-NBPB (512,256) 0 0 4 22 144 729 3134

TABLE IV
DISTRIBUTION OF CYCLES AND ASSOCIATED CODEWORDS FOR THE

RESULTANT GRAPH.THE GRAPH IS BASED ON THE PROTOGRAPH WITH 4
VARIABLE NODES AND 2 CHECK NODES EXPANDED BY CIRCULANT

PERMUTATION MATRICES OF SIZE N ×N .
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Fig. 29. Simulation of rate-1/2, (n, k) binary image of C-NBPB codes, for
blocklength n = 128, 256, 512, 2048, in bits.

permuted version) and assigned it to the edges of each check

node. The parity-check matrix of (128, 64) U-NBPB code is

shown in Table V. The table is interpreted as follows: the

matrix has 8 rows and 16 columns with entries over GF (256).
The non-zero entries are specified by their value and the row

and column indices. For example, the non-zero entry in row

1 and column 6 is α89, where α is a primitive element of

GF (256) and is a root of x8 + x4 + x3 + x2 + 1. The parity-

check matrices of (256, 128) and (512, 256) U-NBPB codes

are shown in Tables VI and VII. We obtained dumin = 14 for

the (128, 64) U-NBPB code, dumin = 16 for the (256, 128)
U-NBPB code, and dumin = 23 for the (512, 256) U-NBPB

code.

Performance simulations of these codes are shown in Fig.

30. For comparison, we also plotted the simulation results for

our best binary protograph codes with variable node degrees

3 and 5, proposed to the Consultative Committee for Space

Data Systems (CCSDS) [54]. The minimum distance of this

binary (128, 64) code is 14. It is worthwhile to note that the

non-binary (2, 4) protograph codes over GF (256) outperform

their binary counterparts by around 1.25, 1.15, and 1.05 dB

for n = 128, 256, and 512, respectively, at FER of 10−5.

Further, we plot non-binary LDPC codes with the same code

Row index Column index and scaling

1 (1,α0) (6,α89) (12,α81) (15,α9)

2 (2,α8) (7,α0) (9,α182) (16,α173)

3 (3,α173) (8,α8) (10,α0) (13,α183)

4 (4,α8) (5,α0) (11,α88) (14,α80)

5 (1,α183) (5,α173) (9,α8) (16,α0)

6 (2,α0) (6,α88) (10,α80) (14,α8)

7 (3,α0) (7,α167) (11,α127) (15,α40)

8 (4,α0) (8,α182) (12,α173) (16,α8)

TABLE V
PARITY CHECK MATRIX OF A (128, 64) U-NBPB CODE OVER GF (256).

parameters as our U-NBPB designs. For each code length we

selected three such codes at random; these curves are labeled

with dashed lines with triangles in the plot. It is clear that

the proposed codes outperform codes with uninformed edge

labeling and unoptimized choice of permutation matrices.

Obviously, the C-NBPB codes are more restrictive and

should not perform as well as the U-NBPB codes. Interest-

ingly, our simulation results shows that the performance of

the C-NBPB codes (at least for block sizes n = 128, 256, 512
in bits) are almost on top of the U-NBPB code performance.

Performance of these codes matches with the performance of

unconstrained non-binary codes reported in [11].

We also compare our rate-1/2 U-NBPB codes over

GF (256) with U-NBPB codes over GF (16). The simulation

result is shown in Fig. 31. The (128, 64) code over GF (16)
is built from the RA protograph shown in Fig. 18, (256, 128)
and (512, 256) codes over GF (16) are built from the IRA

protograph shown in Fig. 32. Simulation shows that U-NBPB

codes over GF (16) outperform their binary counterparts by

around 0.80, 0.95, and 0.85 dB for n = 128, 256, and 512,

respectively, at FER = 10−5, but have higher frame error rate

than U-NBPB codes over GF (256) for the same SNR.

By puncturing one of the four variable nodes in Fig. 28,

we can get a rate-2/3 protograph. The NB-PEXIT analysis

shows that the rate-2/3 protograph has the lowest threshold

when q = 256 (1.15dB), which is only 0.1dB higher than the

channel capacity of 1.059dB. Using the same Tanner graphs

and labels with the three U-NBPB codes, we construct rate-

2/3 U-NBPB codes with block-lengths 96, 192 and 384 bits by

taking the binary image of constructed non-binary protograph

codes over GF (256). Performance simulations of these codes

are shown in Fig. 33. For comparison, we plot simulation

results of rate-2/3 binary LDPC codes with length 192 bits

proposed in [44]. Our non-binary code over GF (256) of the

same length outperforms the binary code by around 0.85dB at

FER = 10−5. We also compare our code of length 384 bits

with a binary code proposed in [22]. We remark that the code

in [22] has a somewhat lower rate (3/5) and more than double

the length of our proposed code. Yet, our code shows similar

performance in terms of the bit error rate.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a class of structured non-binary

LDPC codes built out of protographs, called NBPB codes,

wherein we considered both constrained and unconstrained
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Row index Column index and scaling

1 (1,α0) (11,α8) (22,α80) (29,α88)

2 (2,α0) (12,α8) (23,α80) (30,α89)

3 (3,α0) (13,α8) (24,α80) (31,α90)

4 (4,α0) (14,α8) (17,α80) (32,α91)

5 (5,α0) (15,α8) (18,α81) (25,α89)

6 (6,α0) (16,α8) (19,α81) (26,α90)

7 (7,α0) (9,α8) (20,α81) (27,α91)

8 (8,α0) (10,α8) (21,α82) (28,α90)

9 (8,α90) (9,α81) (17,α9) (25,α0)

10 (1,α91) (10,α81) (18,α9) (26,α0)

11 (2,α91) (11,α82) (19,α9) (27,α0)

12 (3,α183) (12,α173) (20,α9) (28,α0)

13 (4,α86) (13,α72) (21,α10) (29,α0)

14 (5,α87) (14,α72) (22,α10) (30,α0)

15 (6,α151) (15,α72) (23,α10) (31,α0)

16 (7,α86) (16,α72) (24,α11) (32,α0)

TABLE VI
PARITY CHECK MATRIX OF A (256, 128) U-NBPB CODE OVER GF (256).

Row index Column index and scaling

1 (1,α0) (21,α8) (42,α80) (57,α88)

2 (2,α0) (22,α8) (43,α80) (58,α89)

3 (3,α0) (23,α8) (44,α80) (59,α90)

4 (4,α0) (24,α8) (45,α80) (60,α91)

5 (5,α0) (25,α8) (46,α81) (61,α89)

6 (6,α0) (26,α8) (47,α81) (62,α90)

7 (7,α0) (27,α8) (48,α81) (63,α91)

8 (8,α0) (28,α8) (33,α82) (64,α90)

9 (9,α0) (29,α8) (34,α82) (49,α91)

10 (10,α0) (30,α8) (35,α83) (50,α91)

11 (11,α0) (31,α8) (36,α172) (51,α181)

12 (12,α0) (32,α8) (37,α172) (52,α182)

13 (13,α0) (17,α8) (38,α172) (53,α183)

14 (14,α0) (18,α8) (39,α173) (54,α182)

15 (15,α0) (19,α8) (40,α173) (55,α183)

16 (16,α0) (20,α8) (41,α174) (56,α183)

17 (15,α90) (17,α81) (33,α9) (49,α0)

18 (16,α91) (18,α81) (34,α9) (50,α0)

19 (1,α91) (19,α82) (35,α9) (51,α0)

20 (2,α183) (20,α173) (36,α9) (52,α0)

21 (3,α86) (21,α72) (37,α10) (53,α0)

22 (4,α87) (22,α72) (38,α10) (54,α0)

23 (5,α151) (23,α72) (39,α10) (55,α0)

24 (6,α86) (24,α72) (40,α11) (56,α0)

25 (7,α87) (25,α72) (41,α11) (57,α0)

26 (8,α87) (26,α73) (42,α11) (58,α0)

27 (9,α88) (27,α73) (43,α11) (59,α0)

28 (10,α73) (28,α56) (44,α14) (60,α0)

29 (11,α74) (29,α57) (45,α15) (61,α0)

30 (12,α166) (30,α126) (46,α40) (62,α0)

31 (13,α167) (31,α126) (47,α40) (63,α0)

32 (14,α168) (32,α126) (48,α40) (64,α0)

TABLE VII
PARITY CHECK MATRIX OF A (512, 256) U-NBPB CODE OVER GF (256).
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Fig. 30. Comparison of the simulation results of the binary image of rate-1/2
U-NBPB codes with various block-lengths with best known binary protograph
codes and with codes having random edge labels.
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Fig. 31. Comparison of the simulation results of the binary image of rate-1/2
U-NBPB codes over GF (256) and GF (16) of various block-lengths.

edge weight selections. In many instances, non-binary con-

structions were shown to have superior properties to their

binary counterparts. Specifically, we computed various enu-

merators of NBPB ensembles for both the finite and the infinite

block-length regimes. We also provided new EXIT chart style

analysis for identifying NBPB codes with good thresholds.

We also proposed designs of some excellent finite length

NBPB codes. Collectively, these results offer a comprehensive

framework for designing and analyzing structured non-binary

LDPC codes.

Given a considerable freedom in designing non-binary

graph-based codes, there are several exciting directions for

Fig. 32. An IRA protograph.
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Fig. 33. Simulation results of the binary image of rate-2/3 U-NBPB codes
and a comparison with a binary code of length 384 bits and rate 2/3, taken
from [44].

future investigation. For example, building upon the results

presented here, one may wish to further investigate trapping

sets and related objects for finite-length NBPB codes and

optimize code design based on the elimination of such objects.

Another interesting future direction would to explore a refor-

mulation of the C-NBPB (graph cover-style) constructions in

terms of the factor graphs and potentially utilize some of the

enumeration methods recently presented in [51]. One may also

seek to design NBPB codes in conjunction with a prescribed

high-order modulation scheme. While the focus of this work

was on the code design and analysis, it is equally important to

devise practical decoding algorithms. Given the rich structure

of NBPB codes, it may be possible to simplify certain a priori

complex decoding steps thus making non-binary LDPC codes

designed over very high order fields a reality.
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