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Abstract

We study the effects of severe non-Boussinesq conditions on thermal convection at the

moderate Rayleigh numbers of Ra = 2 × 108 and 2 × 109 by resorting to direct numerical

computations of the full governing equations. We illustrate the effects by considering low

temperature gaseous helium. The properties of helium are allowed to depend on the

temperature around the mean of 5.4 K. The Nusselt number is shown to decrease as the system

departs from the Boussinesq approximation. For the Rayleigh numbers chosen here, the role

of viscosity in thermal convection is limited to smudging the plume generation at the bottom

surface, whereas the thermal expansion coefficient is demonstrated to have a larger impact on

heat transport.

PACS numbers: 47.27.te, 47.55.P−, 47.55.pb, 47.27.ek

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The Rayleigh–Bénard system is a celebrated paradigm for

convection in a variety of geophysical and engineering

circumstances, such as the convection due to terrestrial

heating by the Sun and convection in heat exchangers. In

laboratory realizations of the Rayleigh–Bénard convection,

the apparatus consists of a heated bottom horizontal plate and

a cooled top horizontal plate, with the sidewalls essentially

non-conducting. The aspect ratio is the relative size of

the horizontal dimension of the apparatus with respect

to the vertical distance between the horizontal plates. In

applications, this ratio is often larger than unity.

The natural occurrence of thermal convection is

associated with high Rayleigh number, defined as

Ra ≡ α12gH 3

νκ
, (1)

where α is the isobaric thermal expansion coefficient (or

expansivity) of the fluid, 12 the temperature difference

across the vertical distance H between the top and bottom

plates, g the acceleration due to gravity, ν the kinematic

viscosity and κ the thermal diffusivity of the fluid. The heat

transport is measured by the Nusselt number, Nu, which

is the ratio of the measured value to that possible only by

thermal conduction. The Nusselt number is equal to unity in

the absence of convection and increases with the Rayleigh

number because of the onset of convection and, subsequently,

of turbulence. At high enough Ra, it is generally assumed that

Nu varies according to a power law in Ra: Nu = ARaβ [1],

or, sometimes, as a combination of power laws [2].

Existing theory for Rayleigh–Bénard convection is

usually associated with the so-called Boussinesq conditions,

according to which the density of the fluid is regarded

as a constant except in so far as it affects the buoyancy

term. In particular, fluid properties such as viscosity, thermal

expansivity, thermal conductivity and specific heats are

considered constants. The approximation is never perfectly

true but is reasonably satisfactory when the temperature

difference between the horizontal plates is small (in the

sense that needs to be made more precise) [3]. It is a great

simplification for both analytical theories (such as upper
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bound estimates) and the numerical solutions of the governing

equations.

The use of low-temperature helium gas in experiments

has enabled very high Rayleigh numbers to be reached [4, 5].

Unfortunately, at the high end of Rayleigh number ranges

covered by these experiments, the measured Nusselt

numbers differ between experiments beyond measurement

uncertainties. It has been argued that one possible explanation

of this difference is the degree to which the Boussinesq

approximation is valid. While some broad arguments were

presented in [6], quantitative details have not yet been

established.

This paper is devoted to quantitative considerations

of the non-Boussinesq effects. We will attempt to

understand the implications of Boussinesq approximation

in Rayleigh–Bénard convection at moderate Ra by solving

the full equations, and taking into account changes of fluid

properties with temperature, for conditions that correspond to

experiments with cryogenic helium gas. In keeping with the

experimental situations, we consider a cylindrical domain.

A notable effect of the departure from the Boussinesq

approximation is the asymmetric temperature drop in the top

and bottom boundary layers [7], though the related effect on

Nu is speculative.

The following previous work on this topic must be

mentioned. In [6], qualitative estimates were made to suggest

that non-Boussinesq effects could be quite important. Ahlers

et al [8] measured the Nu and center temperature, Tcen, for

non-Boussinesq liquids. The corresponding measurements for

gaseous thermal convection appeared in [9] with ethane as

working fluid. The authors found that Tcen increases for liquids

and decreases for gases, and reported that heat transport

for gases increases considerably for severe non-Boussinesq

condition: for ethane gas Nunb (where subscript ‘nb’ stands

for non-Boussinesq) was found to be larger than Nub (the

suffix ‘b’ standing for Boussinesq) by some ∼20% for α12

of 0.3. However, for water [8], the decrease in Nusselt number

was marginal (∼1%). In [8], it was reported that the sum of

thermal boundary layer thickness at top and bottom plates

was approximately equal to twice the thermal boundary layer

thickness obtained from Boussinesq conditions. Sujiyama

et al [10] conclude from a two-dimensional non-Boussinesq

computation for glycerol that this ‘thickness sum rule’ is

applicable only to water.

2. Governing equation and computational method

The computational method used in the present paper is

explained in detail in [11] and references cited there for a

Boussinesq thermal convection. Only the changes made to

accommodate non-Boussinesq effects are briefly described

here. The governing equations in non-dimensional form under

the low Mach number approximation read as

∂ρ

∂t
+ ∇ · (ρV ) = 0, (2)

∂ρV

∂t
+ ∇ · (ρV V ) = −∇ p + αT ẑ +

(

Pr

Ra

)1/2

∇

× (2µS − 2
3
µ(∇ · V )I ), (3)

∂T

∂t
+ ∇ · (T V ) =

(

1

Pr Ra

)1/2
1

ρC p

∇ · (λ∇T ), (4)

where S is the symmetric part of velocity gradient

tensor. Here, we note that non-Boussinesq equation requires

the physical properties to be temperature-dependent. The

dynamic viscosity (µ), the density (ρ), the coefficient of

thermal expansion (α), the constant pressure specific heat

(C p) and thermal conductivity (λ), appearing in the governing

equation, are all non-dimensionalized by respective values at

the mean temperature, 20. The Rayleigh and Prandtl numbers

are defined through values at 20. As already remarked, we fix

20 = 5.4 K for all our computations.

The equations are non-dimensionalized by the free fall

velocity U =
√

gα12H . The non-dimensional temperature

is T = (2 − 2c)/12, where 2 is dimensional temperature

of the convection system at any given point in space and

time; 0 < T < 1. The actual time-averaged temperature in the

bulk is called Tcen which is different from the mean, T0 =
(Th + Tc)/2, due to the non-Boussinesq effect. The bottom

plate is heated and kept at a constant temperature Th and the

top plate kept at Tc. The cylinder aspect ratio Ŵ is 1/2. The

sidewall is taken to be adiabatic.

The equations are discretized on a staggered mesh by

central second-order accurate finite-difference approximation,

solved by a fractional-step procedure, with pressure equation

inverted using trigonometric expansion in azimuthal direction

and FISHPACK package [12] in the other two directions.

The time marching is done with a third-order Runge–Kutta

scheme [13, 14]. It should be noted that the velocity field is

not divergence-free and that the compressibility of the gas is

not accounted for. The vectors and scalars are staggered on

space and time coordinates.

The time-discrete form for the temperature equation

yields

T n+1 = T n − 1t (BGn + CGn−1)

+

(

1

Ra Pr

)1/2
A1tκ

2
∇2(T n+1 + T n), (5)

where

Gn = V̄ · ∇T n − ∇λn · ∇T n

ρnCn
p

,

and A, B and C are coefficients of the time integration

scheme, κ being the coefficient of thermal diffusion. The

staggered time discretization will require V at tn+1, which

is extrapolated from tn and tn−1 at the same time as T n ,

to compute Gn . The implicitly treated diffusive term of

the equation requires the values of thermal diffusivity at

tn+1/2, which is also extrapolated from values at tn and tn−1.

Once the temperature field is computed, all properties are

corrected using state equations. The momentum equation is

discretized as

q∗ = qn − 1t (B H n + C H n−1) − A1t∇ pn

+

(

Pr

Ra

)1/2
A1tµ

2
∇2

(

q∗

ρ
+

qn

ρn

)

, (6)
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Figure 1. Properties computed from HEPACK (solid). The best-fit functions (dash-square) are used to evaluate the properties for the
pressure and temperature ranges shown. The diffusivity variation in the bottom-right panel is from HEPAK calculations.

where

H n = ∇(qn V n) − αT ẑ − 1
3
µ∇(∇ · V n)

−2Sn · ∇µ + 2
3
(∇ · V n)∇µ.

Since the pressure at the latest time step is not known,

we assume a surrogate momentum vector q∗, with the error

between qn+1 and q∗ being given as qn+1 − q∗ = −A1t∇φ,

where the scalar φ is computed from

∇2φ = 1

A1t

(

∇ · q∗ +
∂ρ

∂t

)

; (7)

∂ρ/∂t is evaluated at tn+1 from extrapolation of values

computed from the continuity equation at tn and tn−1. The

pressure is updated and the scheme is repeated for a new time

step.

Simulations for Ra = 2 × 108 and 2 × 109 reported here

correspond to grid sizes of 97 × 49 × 193 and 129 × 65 ×
257, respectively. These computational meshes can resolve

the relevant smallest scales, as discussed in [11]. Nu is

computed from the mean heat flux at the hot and cold plates as

Nu = λ∂T /∂z|w, where the suffix w represents the derivative

computed at the wall and the overbar represents average over

time and a fixed horizontal plane.

The fluid under consideration is gaseous helium, whose

properties are compiled by Cryodata Inc., in the package

called HEPACK [15]. Table 1 shows the computed Prandtl

number and Boussinesq parameter α12 for various operating

pressures for Rayleigh number of 2 × 108 at 20 = 5.4 K. For

each pressure, the properties are computed for a range of

temperatures on either side of 20 and the best-fit curve thus

Table 1. Computed values of Prandtl number and Boussinesq
parameter using HEPACK for 20 = 5.4 K evaluated for
Ra = 2 × 108.

P (Pa) Pr 12(K ) α12

80 0.6776 5.7073 1.05
90 0.6776 4.5104 0.83

110 0.6775 3.0176 0.56
180 0.6778 1.1264 0.20

obtained is used as the temperature-dependent function of the

corresponding property. The results for a sample pressure are

shown in figure 1.

One of the most commonly used parameters to determine

Boussinesq condition is α12. For 20 = 5.4 K, various

pressures produce different values of α12. The code is

validated for the Boussinesq case, by fixing α12 = 0 for

Ra = 2 × 108. The computed Nu = 40.53 ± 3.2 matches well

with the previous Boussinesq computation of Nu = 41.32 ±
2.3 in [11]. For validating a non-Boussinesq case, we try

to reproduce a case from [5] for Ra = 5.8 × 108 and Pr =
0.7 for α12 = 1.11 (one of the largest in the experiment),

20 = 4.555 K, ρ0 = 0.108 kg m−3. The experimental Nusselt

number was 38.9. We could not quite reach α12 = 1.11

because of numerical stability and limitation of available CPU

time, but the comparison given in table 2 shows that the

extrapolated result matches reasonably well with experiments.

3. Results and discussions

Figure 2 shows the variation of Nusselt number with respect

to α12. There is a decrease in heat transport when the

3
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Figure 2. (a) Nusselt numbers variation against the non-Boussinesq
parameter α12. (b) The Nusselt number ratio of the
non-Boussinesq value to the Boussinesq value.

system departs from Boussinesq approximation. The decrease

is more evident when the non-Boussinesq to Boussinesq ratio

is plotted against α12 (figure 3(b)). Nusselt numbers for

moderate to severe non-Boussinesq cases for these Rayleigh

numbers are not studied systematically in the literature, except

for a few data points from [5]. In figure 3, the experimental

values of [5] are plotted, segregating (arbitrarily) those

with α12 < 0.4 from larger values, roughly treating them

as representative of ‘large’ and ‘moderate’ non-Boussinesq

effects. The computed values of the present DNS are shown as

diamonds for Ra = 2 × 108 and 2 × 109. The Nusselt number

falls as the Boussinesq parameter increases. A heuristic

explanation for this behavior is discussed below. At present,

it is unclear if this decrease in Nu is ‘universal’; in particular,

it is not clear if the behavior can be sustained at much higher

Rayleigh numbers.

Wu and Libchaber [7] demonstrated that an asymmetry

in boundary layers between top and bottom walls will be

generated due to non-Boussinesq conditions. The Tcen will

then be different from the algebraic mean of top and bottom

temperatures. Figure 4 shows that there is a reduction in the

Tcen with increase in the Boussinesq parameter, α12. This is

consistent with the experiments of [8, 9].

The thermal boundary layer thickness is plotted in

figure 5. The figure shows that thermal boundary layer at the

Table 2. Nusselt number comparison of present computation
with [5]. The experimental data correspond to Ra = 5.38 × 108,
Pr = 0.7 for α12 = 1.11, 20 = 4.555 K and ρ = 0.108 kg m−3.

α12 0 0.11 0.33 0.67 1.0
Nu 58 56.5 54 50.3 45

1e+08 1e+09
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N
u

α∆Θ< 0.4 (Chavanne  et al) [5]

α∆Θ > 0.4 (Chavanne  et al) [5]

DNS

Figure 3. Comparison of the computed Nu with experimental
values from [5]. The diamonds are the present DNS values whose
α12 increases as the symbols move down in the ordinate (see
table 1).

top is thinner than that at the bottom. In figure 6, we show

the viscous boundary layer thickness against the Boussinesq

parameter. The boundary layer thickness is defined here to

be the distance of the peak root-mean-square value from the

wall [11]. The sum of boundary layers of top and bottom are

shown with square symbols, which is approximately equal to

twice boundary layer thickness from Boussinesq computation:

2δb

δtop + δbottom

∼ 1, (8)

where the subscript ‘b’ stands for Boussinesq case, as before.

At present, an explanation for this behavior is not known.

As shown in figure 5, the sum of top and bottom

thermal boundary layer thickness increases with α12. This

is consistent with two-dimensional computation of Sugiyama

et al (see figure 5 of [10]) for glycerol: the sum decreases

for low Rayleigh numbers (∼104) and increases for high

Rayleigh numbers (>107). Note that this sum rule does not

apply as well to thermal boundary layers.

The obvious question is why the heat transport decreases

with α12 for the Rayleigh numbers considered here. It

is already known that there is large-scale circulation (the

‘wind’) for these Ra [11]. Consider Ra = 2 × 108. In figure 7,

the isosurfaces of temperature are shown for three different

non-Boussinesq parameters. The contour values shown in the

figure are 0.9 (red), 0.5 (green) and 0.1 (blue). From left to

right they correspond to α12 = 0, 0.56 and 1.05. The bulk

flow in the Boussinesq case shows the wind with two counter

rotating cells. As α12 increases, a big roll filling the entire

height of the cell becomes more prominent. We infer that this

is a manifestation of reduced heat transport and lower Nu.

Figure 8 shows isosurfaces of axial velocity. The mixing of the

fluid, thus the heat transfer, for α12 = 0 (leftmost panel) is

larger than that for α12 = 1.05 (rightmost panel). To find the

4
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for Ra = 2 × 108 and 20 = 5.4 K.

Figure 5. Temperature boundary layer thickness for Ra = 2 × 108

and 20 = 5.4 K.

Figure 6. The boundary layer thickness for Ra = 2 × 108 and
20 = 5.4 K. It is to be noted that 2δb ≈ δtop + δbottom.

reason for the decrease in mixing, we examine the generation

of plumes.

At moderate Ra, our computations show major variations

in conductivity, expansivity, viscosity and density within the

thermal boundary layers. Of these quantities, conductivity and

viscosity of helium increase with the temperature. This results

in the bottom thermal boundary layer being thicker than that at

Figure 7. Instantaneous temperature isosurfaces for T = 0.9, 0.5
and 0.1, for α12 = 0, 0.56 and 1.05.

Figure 8. Instantaneous axial velocity isosurfaces for vz = −0.1
and 0.1, for α12 = 0, 0.56 and 1.05. The effective mixing
decreases with increase in α12.

Figure 9. Instantaneous temperature isosurfaces (near the
hot-bottom plate) for T = 0.8. From left to right, α12 = 0.0, 0.56
and 1.05.

the top plate. We conjecture that the thermal plumes generated

on the lower plate are smeared out by the larger viscosity in

the vicinity. This means that fewer plumes from the lower

plate rise all the way to the top (figure 9). In effect, the

heat transport to the bulk is hindered by the highly viscous

and conducting bottom thermal boundary layer. The reverse

happens in the top boundary layer and convection through

jets dominates the heat transfer, but, since the temperature at

mid-height is lower than T0, the heat transport by jets is not

large enough to compensate the reduction from the bottom

plate.

To further elucidate the roles of various fluid properties

on global heat transport, we repeat the calculations as follows.

The dominance of property X can be identified by computing

with X = f (T ), while holding all other properties constant.

Table 3 shows the computed Nusselt numbers for such

hypothetical cases. It is clear that expansivity has the largest

effect on heat transport. In figures 10 and 11, temperature

isosurfaces near top and bottom plates are shown for α12 =
1.05, while only µ and α are individually allowed to vary.

As mentioned earlier, the role of viscosity is to smear out

5
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Table 3. Contribution of each property variation to heat transport.
First column is the Nusselt number obtained from the Boussinesq
computation, and second column from full non-Boussinesq
computation. Nusselt numbers calculated when each property, X , is
alone allowed to depend on the temperature are also shown.

Bouss Non-B X = µ X = α X = C p X = λ X = ρ

Nu 40.53 33.1 38.5 33.6 40.4 39.2 38

Figure 10. Temperature isosurfaces for T = 0.8. The leftmost
panel is for the non-Boussinesq case when all properties are allowed
to depend on temperature; the middle panel corresponds to viscosity
alone being a function of temperature; the right panel corresponds
to the case for which the expansivity alone is a function of
temperature.

Figure 11. Same as figure 10 but with isosurface values 0.2.

the plume generation, but the Nusselt number is reduced only

marginally. However, when only the expansivity is allowed

to depend on the temperature, the Nusselt number is reduced

dramatically, even though the plumes generated are about the

same as the Boussinesq case. Thermal expansivity determines

the volume increase of a parcel of fluid due to temperature

changes. Since expansivity has a negative dependence on

temperature, a parcel of fluid moving up from the bottom

will increase in volume dramatically in comparison to the

Boussinesq case. This will lead to an increase in the surface

area available for conduction, thus promoting local exchange

while reducing transport to the top plate. In effect, this reduces

the Nusselt number.

4. Conclusions

The non-Boussinesq effect in thermal convection is

investigated by direct numerical simulation of the full

governing equations. The non-dimensional heat transport, or

the Nusselt number, is found to decrease nearly 20% for the

severely non-Boussinesq case of α12 ≈ 1. The conclusion

of [9] that for gases Nu increases with increase in α12

is thus not general. We have shown that viscosity plays a

moderately important role in diminishing the movement of

plumes to the interior of convection domain by smearing out

the generation at the hot plate. The coefficient of thermal

expansion, because of negative dependence on temperature,

subjugates thermal convection by increasing the effective

surface area available for conduction. This enhances the

local heat transfer, reduces the amount transmitted to the

top wall, and thus the Nusselt number. These conclusions

are specific to gaseous helium and the conditions chosen,

since a qualitatively different property variation may lead

to a different conclusion. For example, near the critical

point, where most high Rayleigh numbers are experimentally

achieved, the specific heat is highly sensitive to temperature,

which can make the global heat transport dramatically

different. In particular, the results will depend on the path by

which one approaches the critical point. At present, we are

not in a position to comment generally on all non-Boussinesq

effects, especially at very high Rayleigh numbers.

Acknowledgment

We thank J J Niemela for useful discussions and for lending

us the HEPACK package.

References

[1] Malkus M V R 1954 Heat transport and spectrum of thermal
turbulence Proc. R. Soc. Lond. A 225 196–212

[2] Grossmann S and Lohse D 2000 Scaling in thermal
convection: a unifying view J. Fluid Mech.
407 27–56

[3] Tritton D J 1988 Physical Fluid Dynamics 2nd edn (Oxford:
Clarendon)

[4] Niemela J J, Skrbek L, Sreenivasan K R and Donnelly R J
2000 Turbulent convection at very high Rayleigh numbers
Nature 404 837–40

[5] Chavanne X, Chilla F, Chabaud B, Castaing B and Hebral B
2001 Turbulent Rayleigh–Benard convection in gaseous and
liquid He Phys. Fluids 13 1300–20

[6] Niemela J J and Sreenivasan K R 2003 Confined turbulent
convection J. Fluid Mech. 481 355–84

[7] Wu X-Z and Libchaber A 1991 Non-Boussinesq effects in free
thermal convection Phys. Rev. A 43 2833–9

[8] Ahlers G, Brown E, Araujo F F, Funschilling D, Grossmann S
and Lohse D 2006 Non-Oberbeck–Boussinesq effects in
strongly turbulent Rayleigh–Benard convection J. Fluid
Mech. 569 409–45

[9] Ahlers G, Araujo F F, Funschilling D, Grossmann S and Lohse
D 2007 Non-Oberbeck–Boussinesq effects in gaseous
Rayleigh–Benard convection Phys. Rev. Lett. 98 054501

[10] Sugiyama K, Calzavarini E, Grossmann S and Lohse D 2007
Non-Oberbeck–Boussinesq effects in two-dimensional
Rayleigh–Bénard convection in glycerol Europhys. Lett.
80 34002

[11] Verzicco R and Camussi R 2003 Numerical experiments on
strongly turbulent thermal convection in a slender
cylindrical cell J. Fluid Mech. 477 19–49

[12] Swartzrauber P N 1974 A direct method for the discrete
solution of separable elliptic equations SIAM J. Numer.
Anal. 11 1136–50

[13] Verzicco R and Camussi R 1997 Transitional regimes of
low-Prandtl thermal convection in a cylindrical cell
Phys. Fluids 9 1287–95

[14] Verzicco R and Orlandi P 1996 A finite-difference scheme for
three-dimensional incompressible flow in cylindrical
coordinates J. Comput. Phys. 123 402–13

[15] Arp V D and McCarty R D 1998 The properties of critical
helium gas Technical report University of Oregon

6

http://dx.doi.org/10.1017/S0022112099007545
http://dx.doi.org/10.1038/35009036
http://dx.doi.org/10.1063/1.1355683
http://dx.doi.org/10.1017/S0022112003004087
http://dx.doi.org/10.1103/PhysRevA.43.2833
http://dx.doi.org/10.1017/S0022112006002916
http://dx.doi.org/10.1103/PhysRevLett.98.054501
http://dx.doi.org/10.1209/0295-5075/80/34002
http://dx.doi.org/10.1017/S0022112002003063
http://dx.doi.org/10.1137/0711086
http://dx.doi.org/10.1063/1.869244
http://dx.doi.org/10.1006/jcph.1996.0033

	1. Introduction
	2. Governing equation and computational method
	3. Results and discussions
	4. Conclusions
	Acknowledgment
	References

