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Non-canonical Notch signaling activates IL-6/JAK/STAT

signaling in breast tumor cells and is controlled by p53

and IKKa/IKKb
S Jin1,8, AP Mutvei1,8, IV Chivukula1, ER Andersson1, D Ramsköld1,2, R Sandberg1,2, KL Lee3, P Kronqvist4, V Mamaeva5, P Östling6,

J-P Mpindi6, O Kallioniemi6, I Screpanti7, L Poellinger1,3, C Sahlgren5 and U Lendahl1

Notch signaling is frequently hyperactivated in breast cancer, but how the enhanced signaling contributes to the tumor process is
less well understood. In this report, we identify the proinflammatory cytokine interleukin-6 (IL-6) as a novel Notch target in breast
tumor cells. Enhanced Notch signaling upregulated IL-6 expression, leading to activation of autocrine and paracrine Janus
kinase/signal transducers and activators of transcription signaling. IL-6 upregulation was mediated by non-canonical Notch
signaling, as it could be effectuated by a cytoplasmically localized Notch intracellular domain and was independent of the
DNA-binding protein CSL. Instead, Notch-mediated IL-6 upregulation was controlled by two proteins in the nuclear factor (NF)-kB
signaling cascade, IKKa and IKKb (inhibitor of nuclear factor kappa-B kinase subunit alpha and beta, respectively), as well as by p53.
Activation of IL-6 by Notch required IKKa/IKKb function, but interestingly, did not engage canonical NF-kB signaling, in contrast to
IL-6 activation by inflammatory agents such as lipopolysaccharide. With regard to p53 status, IL-6 expression was upregulated by
Notch when p53 was mutated or lost, and restoring wild-type p53 into p53-mutated or -deficient cells abrogated the IL-6
upregulation. Furthermore, Notch-induced transcriptomes from p53 wild-type and -mutated breast tumor cell lines differed
extensively, and for a subset of genes upregulated by Notch in a p53-mutant cell line, this upregulation was reduced by wild-type
p53. In conclusion, we identify IL-6 as a novel non-canonical Notch target gene, and reveal roles for p53 and IKKa/IKKb in non-
canonical Notch signaling in breast cancer and in the generation of cell context-dependent diversity in the Notch signaling output.
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INTRODUCTION

Notch signaling is frequently deregulated in breast cancer, and
hyperactivation of Notch contributes to the tumor process. Gene
rearrangements generating gain-of-function versions of Notch
receptors have recently been described in breast tumors,1 and
upregulation of Notch signaling is linked to loss or inactivation of
Numb, a negative regulator of Notch.2,3 Similarly, elevated
expression of the Notch ligand JAGGED1 correlates with poor
prognosis in breast cancer, and overexpression of NOTCH1 and
NOTCH4 receptors is observed in triple-negative breast tumors.4,5

Pharmacological intervention with estrogen receptor (ER)
function, by tamoxifen, leads to enhanced Notch signaling,6

which may be an unwanted side effect of the current use of
tamoxifen in breast cancer therapy. In addition, deregulation of
Notch activity leads to a glycolytic switch in breast tumor cells,
and elevated Notch signaling correlates with more invasive
growth in breast tumor xenograft experiments.7

The Notch signaling pathway is an evolutionarily highly
conserved signaling mechanism for cell–cell communication.
Activation of Notch signaling by membrane-bound ligands on
juxtaposed cells results in proteolytic processing of the Notch

receptor by the g-secretase complex, ultimately releasing the
intracellular domain of the Notch receptor (Notch ICD). Notch ICD
is translocated from the cytoplasm to the nucleus, where it binds
to the DNA-binding protein CSL (RBP-Jk) to activate transcription
of downstream genes.8 Activation through Notch ICD/CSL is
referred to as canonical Notch signaling, and in addition there are
non-canonical modes of Notch signaling, including CSL-
independent Notch signaling.9 Although we still have a quite
limited understanding of how non-canonical Notch signaling
works, it appears to be important in breast cancer, as mammary
tumors arise in a mouse model overexpressing Notch4 ICD in a
CSL-deficient mammary tissue background.10 Furthermore, non-
canonical Notch signaling is involved in abrogating Bax-induced
apoptosis.11

It is increasingly understood that inflammation and proinflam-
matory cytokines are important for the tumor process12 and in this
report, we explore the effects of hyperactivated Notch signaling in
breast cancer, with a particular focus on non-canonical Notch
signaling, and the proinflammatory cytokine interleukin-6 (IL-6).
IL-6 activates the IL-6 receptor to initiate signaling through the
Janus kinase (JAK)/signal transducers and activators of
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transcription (STAT) signaling pathway,13 and elevated levels of
IL-6 correlate with poor prognosis for breast cancer patients.14,15

We show that Notch upregulates IL-6 expression, leading to
activation of JAK/STAT signaling. IL-6 expression was regulated by
non-canonical Notch signaling, as a cytoplasmically localized
Notch ICD was sufficient to induce IL-6 expression. The non-
canonical activation of IL-6 was shown to be dependent on IKKa
and IKKb (inhibitor of nuclear factor kappa-B kinase subunit alpha
and beta, respectively), but Notch signaling did not engage
canonical NF-kB (nuclear factor kappa-light-chain-enhancer of
activated B cells) signaling, in contrast to activation of IL-6 by
inflammatory agents, which requires canonical NF-kB signaling.
Furthermore, the upregulation of IL-6 was dependent on the p53
status in the cell: IL-6 expression was upregulated by Notch when
p53 was mutated or lost. Collectively, these data identify IL-6 as a
novel non-canonical Notch target gene, and provide evidence of
roles for p53 and IKKa/IKKb in the regulation of non-canonical
Notch signaling in breast cancer and in generating diversity in the
Notch downstream response.

RESULTS

Elevated Notch signaling upregulates IL-6 mRNA and protein
expression
We first analyzed a panel of breast cancers for expression of
markers for basal and non-basal breast cancers relative to
the status of active Notch signaling. Breast cancers that were of
the basal type and thus expressed CD44 and cytokeratin 5/6 but
were negative for progesterone and ER-a expression exhibited
high expression of nuclear Notch1 ICD immunoreactivity (Figures
1a and b, Supplementary Figure 1). In contrast, breast cancers of
the non-basal type, which expressed progesterone and ER-a
receptors but only low levels of CD44 and cytokeratin 5/6, showed
considerably lower levels of Notch1 ICD immunoreactivity (Figures
1c and d, Supplementary Figure 1). Enhanced IL-6 mRNA
expression was also found in basal breast cancers, as compared
with luminal breast cancers (Figure 1e; see also Sethi et al.14 and
Wang et al.15). This observation, combined with the notion that
high IL-6 levels correlate with poor prognosis for breast cancer
patients,14,15 led us to explore a link between Notch signaling and
the cytokine response in breast cancer, and to ask whether IL-6
expression was regulated by Notch signaling. Expression of
activated forms or Notch1 or Notch3, Notch1 ICD and Notch3
ICD, respectively, led to an increase in IL-6 mRNA expression in the
basal type MDA-MB-231 cell line (Figure 1f). Similarly, activation of
endogenous Notch signaling by culturing MDA-MB-231 cells on
immobilized Jagged1 or Dll4 ligand elevated IL-6 mRNA expres-
sion (Figure 1g). The IL-6 mRNA upregulation was dependent
on proteolytic processing of the Notch receptors to liberate
Notch ICD, as it was abrogated by the g-secretase inhibitor
5-difluorophenylacetyl-L-alanyl-2-phenylglycine-1,1-di- methylethyl
ester (DAPT) (Figure 1g). To learn whether Notch regulated IL-6
expression at the transcriptional or post-transcriptional level, we
compared the levels of nascent (pre-splicing) and mature (spliced)
IL-6 mRNA in response to Notch activation. Nascent and mature
IL-6 mRNA were upregulated to the same extent (Figure 1h),
indicating that Notch transcriptionally controls IL-6 expression.
The increase in IL-6 mRNA resulted in elevated IL-6 protein levels
in the cell culture medium, as determined by an IL-6 enzyme-
linked immunosorbent assay (Figure 1i).
To assess whether high levels of IL-6 mRNA correlated with

elevated Notch signaling in breast cancers, we examined a
previously reported data set containing various types of breast
cancer stratified into luminal or basal breast tumors.16 As the
Notch transcriptome is quite varied in different tumor types
(see Andersson et al.17 and Figure 4 below), we used expression of
the Jagged1 ligand as a proxy for Notch signaling, in keeping with
a previous report.14 We found that IL-6 and Jagged1 mRNA

expression correlated in basal but not in luminal (Aþ B) breast
cancers (Figures 1j and k). We also observed that three out of four
basal type of breast cancer cell lines upregulated IL-6 mRNA
expression in response to Notch activation, whereas only one out
of four luminal cell lines showed enhanced IL-6 expression
following Notch stimulation (Figure 1l). In conclusion, the data
show that IL-6 is a novel Notch target gene in breast tumor cells,
and that both Notch and IL-6 expression is higher in basal breast
cancers.

Notch-induced increase in IL-6 expression results in autocrine and
paracrine activation of JAK/STAT signaling
We next assessed whether the observed upregulation of IL-6
expression by Notch led to activated JAK/STAT signaling.
Recombinant IL-6 potently enhanced the level of Tyr705
phosphorylated STAT3 in the MDA-MB-231 cells (Figure 2a), and
a robust increase in phosphorylated STAT3 was also observed 12 h
after expression of Notch1 ICD, which could be reduced by
addition of an IL-6 blocking antibody to the cell culture medium
(Figure 2b). Furthermore, expression of the JAK/STAT target gene
Bcl-xL,18 which encodes an antiapoptotic protein, was elevated by
Notch1 ICD (Figure 2c) and as control, by recombinant IL-6
(Figure 2d). To assess paracrine activation, we subjected naive
MCF7 cells to conditioned medium from MBA-MB-231 cells, which
had been transduced with Notch1 ICD or enhanced green
fluorescent protein. Conditioned medium from Notch1 ICD-
transduced cells resulted in a robust increase of phosphorylated
STAT3 in the MCF7 cells, which could be blocked by an IL-6
blocking antibody (Figure 2e). In sum, these data suggest that IL-6
produced in response to Notch activation can activate JAK/STAT
signaling in both an autocrine and paracrine manner.

Notch-mediated upregulation of IL-6 depends on the cellular p53
status
On testing other breast tumor cell lines for induction of IL-6
expression, we noted that IL-6 was not significantly upregulated in
MCF7 cells, in contrast to MDA-MB-231 cells. (Figure 3a, see also
Figure 1l). MDA-MB-231 and MCF7 cells differ in two important
regards: MCF7 cells are ER-positive and carry a wild-type p53 gene,
whereas MDA-MB-231 cells are ER-negative and harbor a mutated
p53 gene.19

The difference in the ability to upregulate IL-6 expression did
not depend on the ER status, as expression of wild-type ERa in
MDA-MB-231 cells did not affect Notch-mediated IL-6 mRNA
upregulation, whereas it did activate an estrogen-responsive
element-luciferase reporter construct (Supplementary Figure 2).
In contrast, the cellular p53 status turned out to be important, as
introduction of wild-type p53 into the MDA-MB-231 cells
(Figure 3b) led to considerably reduced Notch-mediated IL-6
upregulation (Figure 3c), without affecting the induction of the
Notch downstream gene Hes1 (Figure 3d). As a control,
introduction of wild-type p53 increased expression of p21 and a
p53-responsive reporter (Figure 3e). Introduction of Notch1 ICD
into mouse embryonic fibroblasts genetically deficient for p53 led
to an upregulation of IL-6 expression, which was abrogated on
transduction of wild-type p53 (Figure 3f). To explore the effect of
the p53 status in the converse setting, we introduced a mutated
form of p53 (p53R248W)20 into MCF7 cells. Introduction of p53R248W

was sufficient to induce activation of IL-6 in response to Notch1
ICD (Figure 3g).
Finally, we asked whether a correlation between IL-6 mRNA

expression and p53 status was observed in a clinical context. IL-6
expression levels in a group of breast cancer patients with
mutations or loss of p5321 were compared with data from a
matched control group of breast cancer patients carrying wild-
type p53.22–24 IL-6 was significantly increased in the patients with
mutated or lost p53 (Figure 3h) but not when the breast tumor
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transcriptomes instead were stratified according to ER status
(Figure 3h). Taken together, these data show that Notch-induced
IL-6 expression depends on the cellular p53 status.

The immediate Notch transcriptomes in basal and luminal type B
breast cancer cell lines differ extensively
The difference in Notch-induced upregulation of IL-6 between
MDA-MB-231 and MCF7 cells prompted us to assess to what
extent their Notch-induced transcriptomes differed. To capture
genes that are part of the immediate Notch signaling output, the

transcriptomes from MDA-MB-231 or MCF7 cells were analyzed
following activation by immobilized Jagged1 or Dll4 ligand for 6 h.
The Jagged1-induced transcriptome was very similar to the Dll4-
induced transcriptome in both cell types, and the ligand-induced
expression could largely be abrogated by DAPT treatment,
indicating that it indeed reflected Notch-mediated transcriptional
upregulation (Figure 4a). However, the Jagged1- or Dll4-induced
transcriptomes in MDA-MB-231 and MCF7 turned out to be
remarkably different (Figure 4a). In fact, the majority of genes
regulated by either Notch ligand in MDA-MB-231 cells were not
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regulated in MCF7 cells, and vice versa (Figure 4a). Unsupervised
principal component analysis of the transcriptome data confirmed
that the MDA-MB-231 and MCF7 transcriptomes clustered very
differently (Figure 4b). Quantitative PCR analysis following Notch1
ICD activation corroborated the transcriptome analysis data and
identified several genes that were upregulated by Notch in MCF7
but not in MDA-MB-231 cells (Figure 4c), or conversely upregu-

lated in MDA-MB-231 but not in MCF7 cells (Figure 4d). We next
asked whether transduction of wild-type p53 abrogated the
induction of the genes upregulated specifically in MDA-MB-231
cells. Like for IL-6, p53 reduced the Notch-mediated upregulation
of SSH1, whereas the Notch-mediated upregulation of TIMP3,
NR2F1, LYST and PGF was not significantly affected by p53
(Figure 4e). Analysis of the genes in Figures 4c-e for the presence
of functional p53-binding sites, as determined by ChIP-seq data,25

in the vicinity of the gene revealed that four of the genes,
IL-6, SSH1, LYST and PGF, contained such sites (Supplementary
Figure 3). In conclusion, these data show that Notch signaling
induces quite distinct gene sets in two different types of breast
cancer cell lines, and that the p53 status affects a subset of genes
upregulated by Notch in MDA-MB-231 cells.

IL-6 expression is regulated by non-canonical, CSL-independent,
Notch signaling
The fact that expression of IL-6, but not the canonical target gene
Hes1, was affected by p53 (Figures 3c and d) raised the possibility
that IL-6 was regulated by non-canonical Notch signaling.
Expression of a dominant-negative version of CSL (CSLR218H),
which can bind to Notch ICD but not to DNA,26 did not diminish
Notch-mediated increase in IL-6 expression, but as expected,
markedly abrogated the Notch-mediated upregulation of the
canonical Notch target gene Hey1 (Figure 5a). Furthermore,
transfection of Notch1ICDDRAM, a Notch ICD construct lacking the
CSL-binding RAM domain,27 upregulated IL-6 expression, but not
expression of Hes1 (Figure 5b). Finally, transfection of a Notch1
ICD–ER fusion protein (NERT2), which is cytoplasmically retained
in the absence of tamoxifen,28 upregulated IL-6 expression both
in the absence and presence of tamoxifen, whereas the canonical
target gene Nrarp was only upregulated when tamoxifen was
added (Figure 5c).
To further address the issue of non-canonical Notch signaling,

we tested the potential role of Hes1 in regulation of IL-6 mRNA
expression. Hes1 is activated by Notch1 ICD via CSL, and has in
other cellular contexts been implicated in the regulation of IL-6.14

Expression of Hes1, however, did not activate IL-6 mRNA
expression in the MDA-MB-231 cells (Figure 5d). Similarly, we
did not observe a high correlation between Hes1 and IL-6 mRNA
expression in the breast ductal cancer and breast carcinoma
transcriptome data sets from GeneSapiens, whereas a correlation
between IL-6 and Jag1 expression was observed from the same
data set (Figures 5e and f). In conclusion, these data indicate that
Notch controls IL-6 expression by a CSL-independent mode of
signaling in breast cancer cells and show that Hes1 is not involved
in IL-6 upregulation in the MDA-MB-231 cells.

Notch-mediated IL-6 activation requires IKKa and IKKb function
but not canonical NF-kB signaling
In canonical NF-kB signaling, inflammatory stimuli such as
lipopolysaccharide (LPS) or tumor necrosis factor-a cause activa-
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Figure 2. Notch activates JAK/STAT signaling via upregulation of IL-6.
(a) Addition of recombinant IL-6 to the cell culture medium of MDA-
MB-231 cells (þ rec IL-6) led to elevated levels of pTyr705 STAT3
(phosphorylated STAT3 (pSTAT3)) but not total STAT3 (tSTAT3)
protein. (b) Analysis of pSTAT3 (upper) and total STAT3 (lower)
protein levels in MDA-MB-231 cells infected with adenoviral vectors
expressing Notch1 ICD or enhanced green fluorescent protein
(EGFP) (control) as indicated. In the two rightmost lanes, an IL-6
blocking antibody (a-IL-6) was added to the cell culture medium
before Notch1 ICD or EGFP expression. (c, d) Analysis of (c) Bcl-xL
protein levels in MDA-MB-231 cells infected with adenoviral vectors
expressing Notch1 ICD or EGFP (control) or (d) in MDA-MB-231 cells
supplemented with recombinant IL-6, and with phosphate-buffered
saline (PBS) as control. (e) Analysis of paracrine IL-6 activation in
MCF7 cells. Conditioned medium from MDA-MB-231 cells trans-
fected with Notch1 ICD or EGFP (control). The conditioned medium
was pre-treated with an IL-6 blocking antibody (a-IL-6) before
supplemented to the MCF7 cells, and the levels of pSTAT3 and total
STAT3 protein were analyzed.

Figure 1. Notch signaling controls IL-6 expression. (a-d) Expression of Notch1 ICD in two basal (a, b) and two non-basal (c, d) breast cancers
(data from 12 additional patients are shown in Supplementary Figure 1). Notch1 ICD expression (a1–d1) was analyzed by immuno-
histochemistry for the N-terminus of Notch1 ICD generated following g-secretase cleavage. Expression of CD44 (a2–d2), estrogen receptor-a
(ER; a3–d3), progesterone receptor (PR; a4–d4) and cytokeratin 5/6 (CK5/6; a5–d5) was analyzed using previously described antibodies.
(e) Expression levels of IL-6 in luminal and basal breast tumors16 (f, g) IL-6 mRNA expression measured by quantitative PCR (QPCR) in MDA-
MB-231 cells (f ) infected with adenoviral vectors expressing GFP, Notch1 ICD (N1ICD) or Notch3 ICD (N3ICD) or (g) cultured on immobilized
Jagged1 or Dll4 ligands (Jag1-Fc and Dll4-Fc, respectively) or Fc fragments as control (Fc). In some of the experiments in g, the g-secretase
inhibitor DAPT was used to block Notch receptor proteolytic processing. (h) Analysis of effects of Notch activation on production of nascent
versus mature IL-6 mRNA. Primer pairs were designed to capture nascent (pre-splicing) and mature (spliced) IL-6 mRNA (right), and the
amount of nascent and mature IL-6 mRNA was analyzed by Q-PCR after culture on Fc-Jag1 or Fc (left). (i) Protein analysis by enzyme-linked
immunosorbent assay (ELISA) from MDA-MB-231 cells transfected with Notch1 ICD or enhanced green fluorescent protein (EGFP) (control).
(j, k) Correlation between IL-6 and Jagged1 mRNA data from luminal (j) and basal (k) breast cancer transcriptome data.16 (l) Expression of IL-6
mRNA in response to Notch (Notch1 ICD) activation in four basal and four luminal breast cancer cell lines. Values are significant at ***Po0.001,
**Po0.01 and *Po0.05. r, correlation coefficient. Graphs represent average of three independent experiments.
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tion of the IKK complex (IKKa, IKKb and IKKg (NEMO)), leading to
phosphorylation of IkB and its subsequent ubiquitylation and
degradation. The removal of IkB results in translocation of a p50/
p65 (RelA) dimer to the nucleus, where it activates transcription of
downstream genes containing kB-binding sites, including IL-6.29

As NF-kB has a key role in IL-6 regulation,29 and Notch and NF-kB
signaling cross-talk in a number of ways,30

we asked whether NF-kB signaling was involved in the CSL-
independent activation of IL-6. Pharmacological blocking
of IKKb by TPCA1 ([5-(p-fluorophenyl)-2-ureido]thiophene-3-
carboxamide)31 or small interfering RNA knockdown of IKKb
expression resulted in abrogation of the Notch-induced IL-6
upregulation (Figures 6a and b). Similarly, knockdown of IKKa but
not of IKKg, reduced IL-6 upregulation (Figures 6c and d). IKKa and
IKKb alone could, however, not substitute for Notch in terms of IL-
6 induction, as overexpression of IKKa or IKKb, without activation
of Notch, did not increase the IL-6 mRNA levels (Figure 6e).
Furthermore, IKKa and IKKb did not superactivate the Notch-
induced IL-6 upregulation (Figure 6e). The observation that Notch
signaling did not activate a reporter construct containing
kB-binding sites linked to luciferase (kB-luc), which was robustly

activated by both tumor necrosis factor-a and LPS, suggests that
Notch signaling does not trigger a canonical transcriptional NF-kB
response (Figure 6f). Moreover, Notch activation did not alter
protein levels of p65 or p105, and knockdown of p50 did not
affect the upregulation of IL-6 expression induced by Notch
(Supplementary Figure 4). In line with these data, a 2 kb
immediate IL-6 proximal promoter reporter construct, which was
induced by LPS, was not activated by Notch1 ICD (Figure 6g),
despite a CSL-binding site in this region.32 In fact, when CSL
expression was knocked down by small interfering RNA,
expression of IL-6 and Hes1 were increased in the absence of
Notch stimulation (Figure 6h), suggesting that CSL may be
positioned at the CSL-binding site in the IL-6 proximal promoter
acting as a transcriptional repressor, but is not required for the
Notch-mediated activation of IL-6 transcription. As the p53 status
was important for the Notch-induced IL-6 upregulation (see
Figure 3), we also tested whether the p53 status affected the
canonical NF-kB response. Introduction of wild-type p53 into
the MDA-MB-231 cells led to a reduction of LPS-induced IL-6-
promoter and kB-reporter activation (Figures 6i and j), in keeping
with previous reports33 and references therein. However, in
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Figure 3. Notch-mediated IL-6 upregulation is dependent on the cellular p53 status. (a) IL-6 mRNA expression was not significantly
upregulated in MCF7 cells following infection with adenoviral vectors expressing Notch1 ICD (N1ICD) or enhanced green fluorescent protein
(EGFP) (control). (b) Western blot analysis of p53 protein levels in MDA-MB-231 cells after transfection of empty pCMX vector (control) or wild-
type p53 (wt p53). (c, d) IL-6 (c) and Hes1 (d) mRNA expression was analyzed following infection with adenoviral vectors expressing EGFP
(control), Notch1 ICD or Notch3 ICD in MDA-MB-231 cells, combined with transfection of wt p53 or empty pCMX vector as control, as
indicated. (e) p21 mRNA expression or p53-luciferase activation in MDA-MB-231 cells transfected with wt p53 or control plasmid (pCMX).
(f ) IL-6 mRNA expression analyzed in p53� /� mouse embryonic fibroblasts (MEFs) transfected with Notch1 ICD or EGFP plasmid and co-
transfected with either wt p53 or empty pCMX vector, as indicated. (g) Analysis of IL-6 mRNA expression in MCF7 cells transfected with pCMX,
Notch1 ICD or p53R248W (mut p53) co-transfected with Notch1 ICD plasmid, as indicated. (h) Comparison of IL-6 mRNA expression levels in
breast tumors stratified according to p53 status (p53 wild-type versus p53 mutated/deficient, right bar) or ER status (ERþ or ER–, left bar). The
median is shown as a horizontal line. Values are significant at ***Po0.001, **Po0.01 and *Po0.05, as indicated in the figure. Graphs represent
averages of three independent experiments. n.s., not significant. RLU, relative luciferase units.
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Figure 4. Notch regulates distinct gene sets in MDA-MB-231 and MCF7 cells. (a) A heat map (with triplicates) showing regulation of genes in
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contrast to other cell types,34 canonical NF-kB signaling did
not upregulate Jagged1 expression in the MDA-MB-231 cells
(Figure 6k), suggesting that Notch signaling is not indirectly
augmented by NF-kB through regulation of the level of ligand.
Taken together, these data show that IKKa and IKKb are required
for the Notch-mediated activation of IL-6, but that canonical NF-kB
signaling is not engaged by Notch.

A role for Notch-mediated, CSL-independent IL-6 activation in the
interaction between tumor cells and macrophages
Macrophages constitute an important component of the tumor
stroma and tumor cells can influence tumor-associated macro-
phages to promote tumor growth and metastasis.35,36 To test
whether Notch-mediated IL-6 production in tumor cells could
influence tumor-associated macrophages, we exposed RAW264.7
cells, a macrophage-like cell line used as a mimic for tumor-

associated macrophages,37 to conditioned medium from Notch-
stimulated MDA-MB-231 cells. This resulted in increased JAK/STAT
signaling in the RAW264.7 cells, as judged by elevated
phosphorylated STAT3 levels, and this increase was abrogated
by a IL-6 blocking antibody (Figure 7a). As a previous report has
suggested that IL-6 can upregulate expression of components of
the Notch pathway,38 we tested whether this was also the case in
RAW264.7 cells. Addition of recombinant IL-6 to RAW264.7 cells
increased the expression of both Notch 1 and Jagged1 mRNA
(Figure 7b). Conversely, introduction of Notch1 ICD or Notch1
ICDDRAM led to a robust upregulation of mRNA expression of IL-6
(Figure 7c). Collectively, this reveals that IL-6 is activated by CSL-
independent Notch signaling in macrophages, and that IL-6 and
Notch signaling can reciprocally upregulate each other, indicating
the existence of a feed-forward loop, which may lead to sustained
Notch and IL-6 expression in macrophages.

DISCUSSION

Deregulated Notch signaling is frequently observed in breast
cancer1–3 but how this contributes to tumor progression is less
well understood. Here we identify the cytokine IL-6 as a novel
Notch target gene in breast tumor cells, and show that the IL-6
upregulation resulted in activation of autocrine and paracrine JAK/
STAT signaling. IL-6 was upregulated by non-canonical Notch
signaling and was influenced by the cellular p53 status, by two
proteins in the NF-kB signaling pathway: IKKa and IKKb.
A non-canonical CSL-independent mode of activation is

supported by the fact that a dominant-negative form of CSL did
not affect IL-6 upregulation but reduced Notch-mediated activa-
tion of the canonical Notch gene Hey1. Also, a Notch ICD that is
not capable of binding CSL upregulated IL-6 without affecting
canonical Notch genes. Furthermore, localization of Notch ICD to
the cytoplasm was sufficient to upregulate IL-6, whereas nuclear
translocation was required for canonical Notch gene activation.
This is, to our knowledge, the first example of gene activation from
a cytoplasmically localized Notch ICD. The non-canonical, CSL-
independent mode of activation also reveals an interesting cell
type-specific difference in Notch regulation of IL-6, as it has
recently been proposed that Notch activates IL-6 through a Hes1-
dependent mechanism in the bone metastatic niche in a mouse
mammary tumor model.14

Our data provide evidence that the non-canonical Notch
activation of IL-6 is linked to NF-kB signaling, as pharmacological
inhibition of IKKb by TPCA1 or small interfering RNA-mediated
knockdown of IKKa or IKKb mRNA reduced Notch-mediated IL-6
upregulation. There is an emerging view that the Notch and NF-kB
pathways interact at different steps in the signaling cascade,30 and
interactions between Notch ICD and the IKK signalosome or IKKa
have indeed been demonstrated.39,40 Although we have not been
able to demonstrate a direct interaction between Notch and any
of the IKKs in the MDA-MB-231 cells, such an interaction is in
accordance with a cytoplasmically localized Notch ICD mediating
IL-6 upregulation. Interestingly, Notch-mediated IL-6 upregulation
was not accompanied by activation of canonical NF-kB signaling,
which reveals a pronounced difference between how Notch and
inflammatory agents regulate IL-6. Although Notch required IKKa
and IKKb to induce IL-6, it did not induce a kB reporter or the
proximal IL-6 promoter, whereas this was the case for LPS and
tumor necrosis factor-a. We demonstrate that Notch controls IL-6
expression at the transcriptional level, but how IKKa and IKKb are
involved, not acting via canonical NF-kB signaling, remains to be
elucidated. It should be emphasized that NF-kB-independent
functions for IKKb have been described, for example, in the control
of FOXO3a.29 Collectively, the data show that IL-6 is subject to
complex regulation, and that inflammatory agents and Notch
signaling use the NF-kB signaling pathway differently to control
IL-6 expression.
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The cellular p53 status was important for how Notch controls
IL-6 expression. The Notch-mediated induction of IL-6 expression
in the p53 mutant MDA-MB-231 cells or in p53� /� mouse
embryonic fibroblasts was significantly reduced when wild-type
p53 was transduced. Conversely, introduction of a mutant p53
into MCF7 cells was sufficient to induce a Notch-mediated IL-6
upregulation. Given that p53 is frequently lost or mutated not only
in mammary tumors but in a large fraction of many different
tumors,41 and that p53 is also known to interact with NF-kB
signaling at multiple levels in the pathways,42,43 it will be
interesting to learn to what extent the Notch transcriptional
response is modified as a result of p53 loss or mutation in different
tumor types, and how this contributes to tumor progression. The
notion that p53 negatively regulates Notch signaling is
corroborated by the finding that the mammosphere-forming

potential was increased from p53� /� mice, but only under
conditions of intact Notch signaling.44 Similarly, p53 has been
shown to suppress Notch4 ICD-mediated growth of mammary
epithelial cells.45

The relation between the cellular p53 status and the Notch
transcriptional output is also of interest in the quest to better
understand why Notch transcriptomes from different cell types
differ so extensively.17 The transcriptome data from the MDA-MB-
231 and MCF7 cells provide a compelling example of cell context-
dependent diversity, and among five genes that were upregulated
by Notch in MDA-MB-231 but not in MCF7 cells, two genes, IL-6
and SSH1, showed a Notch-induced upregulation that was
reduced by transduction of wild-type p53. This may indicate
that a defined subset of Notch-induced genes are sensitive to the
cellular p53 status, and that p53 could stratify the Notch
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transcriptome into a p53-independent and p53-dependent
portion, which may contribute, at least in part, to the observed
cell context-dependent diversity in signaling output.
In conclusion, the data in this report provide evidence for the

involvement of IKKa/IKKb and p53 in non-canonical Notch signaling.
This contributes to our understanding of how diversity in the Notch
signaling output is generated, and may provide new ideas for
combinatorial treatments for breast cancer in the future. It is also
noteworthy that while Notch, NF-kB and p53 in many cases regulate
gene activity through transcriptional control in the nucleus, our
results point to that for both Notch and NF-kB signaling, and

possibly also for p53, the effects appear not to be mediated directly
at the transcriptional level, but rather through non-canonical
branches of the signaling pathways involving and, in the case of
Notch, a cytoplasmic location of the effector molecule.

MATERIALS AND METHODS

Cell culture
MDA-MB-231, MCF7, MCF10A, Hs578T, HCC38, MDA-MB-175-VII, T47D and
SKBR3 were purchased from ATCC (American Type Culture Collection,
Manassas, VA, USA). RAW267.4 and p53-/- mouse embryonic fibroblast cells
were kind gifts from Drs Robert A Harris and Olle Sangfelt (Karolinska
Institutet), respectively. Culture conditions are specified in the
Supplementary Information.

DNA constructs
The p53 luciferase (#16442), IKKa (#23296) and IKKb 11103) constructs were
purchased from Addgene (Cambridge, MA, USA). N1ICD-GFP, dnCSL,
N1ICDDRAM were generously provided by Dr A Sarin46 and the wild-type
and mutated p53 constructs from Drs K Wiman and G Selivanova, respectively.
The IL-6 luciferase promoter construct was a kind gift from Drs W Vanden
Bergh and G Haegeman.47 The NERT2 plasmid was generated by cloning the
Notch-ERT2 from the rNERTneo plasmid48 into the vector pEF1IRESpuro at
XhoI and XbaI sites by In-fusion Cloning (Clontech, San Jose, CA, USA).

Western blot analysis
Protein lysates were prepared by directly lysing cells in Laemmli sample
buffer containing 5% b-mercaptoethanol. Protein lysates were separated
on 4% to 12% Tris–glycine gels (Life Technologies, Carlsbad, CA, USA) and
transferred to polyvinylidene difluoride membranes (Millipore, Billerica,
MA, USA). After blocking with 10% nonfat dry milk in phosphate-buffered
saline, membranes were incubated with primary antibodies (overnight)
and peroxidase-conjugated secondary antibody (Amersham). Immuno-
complexes were detected with an enhanced chemiluminescence (ECL) kit
(Amersham, GE Healthcare, Pittsburgh, PA, USA).

Activation of Notch signaling by immobilized ligand
Activation of Notch signaling by immobilized ligands was performed as
previously described.49

Antibodies and reagents
The primary antibodies used were anti-STAT3, anti-phosphoSTAT3,
anti-Bcl-xL, -IKKa, -IKKb, -NF-kB -p65 and -p105 Cell signaling (Boston,
MA, USA), mouse anti-b-actin (Sigma-Aldrich, St Louis, MO, USA), rabbit
anti-Notch1 C-20 (Santa Cruz, CA, USA) anti-IL6 (Sigma-Aldrich). The
secondary antibodies used were anti-rabbit horseradish peroxidase and
anti-mouse horseradish peroxidase (Dako, Glostrup, Denmark). Recombi-
nant human IL-6, TPCA-1, LPS, tumor necrosis factor-a, 4-hydroxytamoxifen
and actinomycin D were purchased from Sigma-Aldrich.

Immunohistochemistry
Eight cases of basal and eight cases of non-basal breast cancer with
associated clinical and pathological data were analyzed for Notch1 ICD
expression (using anti activated Notch 1 antibody ab8925 (Abcam,
Cambridge, UK), which recognizes the newly formed N-terminus of Notch
ICD following g-secretase cleavage). Tissue sections were also stained for
expression of ER, progesterone receptor, CD44 and cytokeratin 5/6. Tissue
section preparation is described in the Supplementary Information.

Real-time quantitative reverse transcriptase–PCR analysis
RNA was extracted using the RNeasy mini kit (Qiagen, Hilden, Germany) and
complementary DNA was synthesized from 1mg total RNA using Superscript III
Reverse Transcriptase, oligo(dT)12–18 primers or random primers according to
the manufacturer’s protocol (Invitrogen). Reverse transcriptase–PCR was
carried out on a 7500 Fast Real-Time PCR system with Fast SYBR Green
Master Mix (Applied Biosystems, Carlsbad, CA, USA) according to the
manufacturer’s recommendations. Primers used for quantitative PCR are
listed in Supplementary Figure 5. Primers used for analysis of mouse and
human Hes1, Hey1 have been published previously.49,50 Expression levels were
normalized to human b-actin mRNA expression.
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Statistical analysis
The unpaired Student’s t-test was applied to evaluate differences between
experimental groups. P-values p0.05 were considered statistically
significant.

Transcriptome analysis, bioinformatics and GeneSapiens analysis
For each array experiment, 2 million cells each were plated. In experiments
where Notch signaling was pharmacologically blocked, DAPT was applied
before ligand stimulation. After stimulation with immobilized ligand
(Jagged1-Fc or Dll4-Fc) for 6 h, cells were washed with phosphate-buffered
saline, trypsinized, resuspended in RNA later and stored at � 20 1C. the
method for RNA preparation is described in the Supplementary
Information. The micro-array data were subjected to background subtrac-
tion on the BeadStudio Data Analysis software (Illumina, San Diego, CA,
USA) and normalized using the cross-correlation method.51 Differentially
expressed transcripts were identified and sorted based on the mean Log2
fold change in expression values compared with the controls. The micro-
array data were deposited into NCBI GEO with the accession number
GSE36051. For the gene expression analysis in a clinical breast cancer
material, the database is available from the GeneSapiens website
(www.genesapiens.org), and the analysis of data from GeneSapiens has
been previously described.24,52

Transfections, adenoviral infections, enzyme-linked
immunosorbent assay and analysis of IL-6 signaling
The procedures for transfections, adenoviral infections, enzyme-linked
immunosorbent assay and analysis of IL-6 signaling are described in the
Supplementary Information. All cellular transfections were carried out with
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol.
Luciferase assays were performed as described previously.53
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