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Canonical Notch signaling is initiated by γ-secretase-mediated cleavage of the Notch recep-

tor, leading to the release of the active intra-cellular domain of Notch that migrates to

the nucleus and interacts with RBP-Jκ, resulting in the activation of downstream target

genes. While canonical Notch signaling is well known to play an active role in several

steps during development as well in multiple cell fate decisions, recent evidence from both

invertebrate and vertebrate systems indicates that non-canonical, RBP-Jκ-independent sig-

naling is important in several cellular processes including oncogenesis and activation of T

lymphocytes. These observations raise the possibility that, through an understanding of

non-canonical Notch signaling, novel strategies for inhibiting Notch signaling may prove

useful in the design of therapies targeted to block aberrant Notch activity. In this mini-

review, we will examine the current data demonstrating a non-canonical role for Notch

signaling in both cancer and the immune system and suggest a better understanding of

non-canonical signaling may reveal novel strategies to block Notch signaling in disease.
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INTRODUCTION

Notch is a trans-membrane protein with four family members

(Notch 1–4). Canonical Notch signaling is initiated by interac-

tion of the Notch protein with a cell bound ligand (Delta-like

1, 3, 4 or Jagged 1, 2) and results in cleavage of Notch, initially

by ADAM10 and ADAM17 proteases, followed by cleavage by the

gamma-secretase complex (1–3). At the completion of this process,

the Notch intra-cellular domain (NICD) translocates into the

nucleus and interacts with RBPJκ/CSL, a transcriptional repres-

sor. Upon interaction with NICD, RBPJκ/CSL is converted into a

potent transcriptional activator of downstream target genes (4).

However, more recent studies reveal the existence of several

other modes of Notch signaling generally referred to as non-

canonical Notch signaling (5). Interestingly, many instances of

non-canonical signaling are associated with potentially patholog-

ical conditions including cancer and activation of the immune

system while many normal cellular processes require canonical

Notch signaling. For example, it is likely that early development

in the mammalian embryo requires canonical Notch signaling

since deletion of RBP-Jκ mimics’ deletion of Notch1 (6, 7). Several

other physiological processes, such as maintenance of the intestinal

epithelium, also require canonical Notch signaling (8). There-

fore, it is possible that blockade of non-canonical Notch signaling

may provide opportunities to inhibit some instances of patho-

logical Notch signaling leaving many other normal physiological

processes intact. However, since non-canonical Notch signaling

is not as well characterized as the canonical signaling pathway,

more in-depth inquiries in this area are likely to reveal potential

new targets to manipulate non-canonical Notch signaling. Below,

we describe a number of instances where non-canonical Notch

signaling is associated with cancer or abnormal immune function

and we propose that a better understanding of these pathways may

uncover new opportunities for therapeutic approaches.

NON-CANONICAL NOTCH SIGNALING IN CANCER

The first indication for a role of Notch pathway in oncogenesis

came from Aster et al. (9) and Pear et al. (10) in T-cell acute lym-

phoblastic leukemia (T-ALL) in which chromosomal translocation

of the Notch1 gene was identified as a cause of T-cell oncogene-

sis. In later reports, the Notch pathway has been associated with

tumorigenesis and cancer progression in the other cancers includ-

ing breast, ovarian, cervical, lung, prostate carcinomas, gliomas,

and mesotheliomas (6, 9–16). It is well documented that Notch

signaling regulates proliferation, differentiation, and survival of

tumor cells (17, 18) and also is reported to maintain the stem

cell-like characteristics of cancer stem cells (19–21). Notch is also

required for further progression of differentiated cancer cells by

regulating metabolism, survival, and transcription in these cells.

In addition to its role in tumorigenesis, Notch has also been

reported to act as a tumor suppressor in certain cell types such

as skin epithelium (22). This observation makes it quite clear

that an understanding of individual Notch signaling pathways is

important for the rational therapeutic manipulation of Notch.

Inhibition of γ-secretase does not block all Notch-related func-

tions in tumor cells, suggesting a role for non-canonical Notch

signaling in transformed cells (6, 8, 9, 11–13, 16). Addition-

ally, transformation of baby rat kidney cells through coopera-

tion between the adenoviral E1A protein and NICD does not

require the RBPJκ/CSL binding domain of NICD, suggesting that

transformation in this system may be non-canonical. However,

non-canonical nuclear localization of NICD was still required for

oncogenesis (23, 24).

NON-CANONICAL NOTCH SIGNALING IN LEUKEMIA

Studies by Vacca et al. (25) suggest that non-canonical Notch3

signaling regulates T-cell development and leukemia through acti-

vation of the NF-κB pathway. In their transgenic mouse model,
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Notch3 overexpression, specifically in T cells, led to the devel-

opment of leukemia (25). This group showed that increased

Notch3 expression enabled constitutive activation of NF-κB and

demonstrated that Notch3 interacts with IKKα to maintain NF-κB

activity (25).

In human myelogenous leukemia cells, Notch1 directly inter-

acts with the transcription factor, YY1, to drive expression of

the oncogenic transcription factor c-myc independently of CSL

(26). In HPV-driven human cervical cancer, non-canonical Notch

signaling enables oncogenesis, independently of CSL, via PI3K

pathway (27). However, little is known about how non-canonical

Notch signaling drives transformation in these situations.

NON-CANONICAL NOTCH SIGNALING IN THE MAMMARY GLAND

Raafat et al. (28), using conditional RBPJκ knockout mice, revealed

that non-canonical Notch4 signaling is involved in mammary

gland tumorigenesis, whereas canonical Notch4 was required

for the development of mammary glands (28). This differential

regulation provides an attractive opportunity for targeting non-

canonical Notch signaling to dampen oncogenesis while enabling

intact tissue homeostasis and development to occur via canonical

Notch signaling. Another study suggests an RBPJκ-independent

role for Notch4 signaling in the survival of endothelial cell lines

(29). Furthermore, during breast cancer progression, Notch sig-

naling plays a role in epithelial transformation independent of

CSL (30). These studies further emphasize the importance of

non-canonical Notch signaling in breast cancer cell survival and

progression.

Additionally, in breast cancer cell lines, non-canonical Notch

signaling is known to regulate IL-6 expression, and IL-6, in turn,

acts on tumor cells to further increase their oncogenic potential.

In this study, cytoplasmic NICD interaction with the NF-κB path-

way induced IL-6 expression (31). These studies, in addition to

those reported above in leukemic T cells (25), support a role for

non-canonical Notch signaling via NF-κB pathway in oncogenesis.

NON-CANONICAL NOTCH SIGNALING IN APOPTOSIS AND

METABOLISM

Non-canonical Notch signaling also is implicated in the regulation

of metabolism in tumor cells. Recent studies from Perumalsamy

et al. (32) demonstrated that non-nuclear, either cytoplasmic or

membrane tethered, NICD blocks starvation-induced apoptosis

in HeLa, a cervical cancer cell line. This group also showed that

nuclear retention of NICD abrogates its anti-apoptotic activity

thus demonstrating that, in their system, Notch controls apop-

tosis via a non-canonical, cytosolic pathway. Their data further

suggest that non-canonical Notch regulation of apoptosis occurs

through the mTOR–Rictor pathway (32). Another study linking

Notch to metabolism examined the role of Notch in regulating

neuronal stem cells (33). This report demonstrated an interac-

tion between Notch and the PTEN-induced kinase 1 (PINK1)

and provides evidence that the Notch/PINK1 interaction influ-

ences mitochondrial function and activates the mTORC2/Akt

pathway. This non-canonical Notch signaling induced prolifer-

ation and tumor stem cell maintenance through mitochondrial

and metabolic pathways. Additionally, in this study, the authors

observed localization of full length Notch1 on the mitochondrial

membrane further linking at least some forms of non-canonical

Notch signaling to the mitochondria (33).

Non-canonical Notch signaling is known to regulate hypoxic

pathways in transformed human cell lines (34). In this study, it

was shown that NICD sequesters a negative regulator of HIF-

1α resulting in increased protein levels of HIF-1α and, in turn,

increasing its downstream effects (34). Since hypoxia and meta-

bolic changes are hallmarks of tumor tissue, the emerging role of

non-canonical signaling in these pathways implies that there will

be increased recognition of non-canonical Notch signaling mech-

anisms and cross-talk with other important pathways in a variety

of tumor settings (35).

NON-CANONICAL NOTCH SIGNALING IN THE IMMUNE

SYSTEM

Notch signaling regulates some lineage decisions of hematopoietic

cells (36, 37), and enables generation of T cells at the expense of B

and myeloid cells in the early stages of hematopoietic cell develop-

ment. At later time points, Notch plays a key role in the survival,

proliferation, and differentiation of T cells. Notch signaling also

regulates the development of some innate lymphoid cells, marginal

zone B cells from precursor B cells, megakaryocytes, and cytotoxic

(CD8+) T-cell lymphocytes (CTLs) (38–43). Thus, as discussed

more extensively below, non-canonical Notch signaling is involved

in the development and function of several types of immune cells.

NON-CANONICAL NOTCH SIGNALING IN T-CELL ACTIVATION AND

DIFFERENTIATION

Notch is important in driving the differentiation of naïve CD4+ T

cells into specific T helper (Th) subsets and targeting Notch signal-

ing in Th cells provides the opportunity for immune modulation.

Studies in our lab demonstrate that GSI treatment significantly

reduces Th1, Th17, and induced Treg (iTreg) polarization (44,

45). Studies by other labs using different methods to block Notch

signaling showed that Th2 polarization is also driven by Notch sig-

naling (46, 47). We demonstrated a significant decrease in Th1 and

iTreg differentiation in conditional Notch1 knockout Th cells and

through the use of conditional RBPJκ knockout T cells, revealed

that Notch regulates Th cell differentiation into different Th cell

fates independent of RBPJκ and hence is non-canonical. Further-

more, our data showed that both activation and proliferation of

CD4+ T cells are not impaired by conditional deletion of RBPJκ

(45). Thus, CD4+ T-cell activation, proliferation, and differentia-

tion all require non-canonical Notch signaling, and recent data

from our lab suggest Notch, in conjunction with NF-κB, and

regulate this non-canonical signaling in CD4+ T cells. (45).

The possibility that non-canonical Notch signaling may occur

through activation of NF-κB is not surprising since links between

Notch and NF-κB have been documented by several groups includ-

ing our own (48, 49). In cells of the immune system, Notch3

in collaboration with NF-κB is reported to cooperatively reg-

ulate FoxP3 expression (50). Additionally, we recently reported

that Notch1 can initiate NF-κB activation via cytosolic interac-

tions with components of the T-cell signalosome. In particular,

cytosolic Notch1 drives the formation of the CARMA1, BCL10,

and MALT1 (CBM) complex that is essential for NF-κB activation

in T cells. These data demonstrated that cytosolic, rather than

Frontiers in Oncology | Cancer Molecular Targets and Therapeutics December 2014 | Volume 4 | Article 345 | 2

http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ayaz and Osborne Notch signaling pathways

FIGURE 1 | Non-canonical Notch signaling pathways. Non-canonical Notch

signaling may occur either dependent or independent of ligand interaction.

Additionally, non-canonical Notch signaling may be γ-secretase dependent or

independent with the latter exerting its function as membrane bound Notch.

Non-canonical Notch signaling is independent of CSL/RBPJκ and, instead,

interacts with PI3K, mTORC2, AKT, Wnt, NFκB, YY1, or HIF-1α pathways at

either the cytoplasmic and/or nuclear levels. Non-canonical Notch signaling

regulates cell survival, metabolism, and differentiation through interaction

with these pathways in many important biological processes including

immunity and cancer.

nuclear, Notch1 drives CBM complex formation emphasizing the

non-canonical role of Notch1 in this process (49).

NON-CANONICAL NOTCH SIGNALING IN T-CELL METABOLISM

In addition to Notch signaling through NF-κB, non-canonical

Notch signaling is implicated in T-cell metabolism and cell sur-

vival. Upon lymphocyte activation, there is an immense change

in the metabolic activity of T cells to enable the production of

building blocks for cell division and growth as well as ATP produc-

tion. This metabolic switch is closely linked with cell survival. As

described above, Perumalsamy et al. (32) described a link between

non-canonical Notch signaling and the mTORC2-Akt cascade

(32). In this report, they also provide evidence that cell survival

of activated T cells is regulated by the interaction of cytoplas-

mic or membrane tethered NICD with the mTORC2-Akt cascade

and this may also be involved in cell metabolism (32). The same

group had previously demonstrated that interaction of Notch1 and

kinases involved in early T-cell activation (PI3K and p56lck) reg-

ulates an anti-apoptotic program in T cells through Akt signaling

(51). Interestingly, another group has demonstrated mitochondr-

ial localization of full length Notch1 protein in neuronal cells pro-

viding additional evidence in another system for non-canonical

Notch signaling in metabolism and cell survival (33).

A ROLE FOR LIGAND-INDEPENDENT ACTIVATION OF NOTCH

As described above, canonical Notch signaling begins with the

interaction between Notch and its ligand and this interaction

catalyzes a series of events leading to cleavage and release of NICD.

A conundrum in the immune system is the observation by our

group and others, that activation of the T-cell receptor leads to

rapid release of NICD (52, 53) and this may occur in the absence

of ligand. While the mechanism of Notch activation through the

TCR is poorly understood, a possible hint to this process is sug-

gested by studies of Drosophila immune cells showing NICD can be

generated independently of ligand interaction and this is depen-

dent upon HIF-1α-mediated stabilization of NICD (52). Since

ligand-independent Notch activation can occur through HIF-1α

in Drosophila immune cells, it is tempting to speculate that this also

may occur in mammals (54). The observed ligand-independent

activation in immune cells of Drosophila may possibly be phys-

iologically relevant in mammals. There is no evidence that Th

cells express Notch ligands in the circulation while trafficking to

effector sites after initial priming in lymph nodes and continuous

Notch signaling could provide survival and differentiation signals

in the circulation; however, this remains speculative.

A role for membrane tethered Notch is found in dendritic cells,

a cell found at the nexus of the innate and adaptive immune system.

According to one recent study, in dendritic cells, membrane bound

Notch activates PI3 kinase. This non-canonical Notch signaling

regulates the production of the immune suppressive cytokine,

IL10, by dendritic cells in response to LPS (55).

Notch signaling in the immune system, while required for

normal immune function, also is linked to several diseases of

the immune system (38–41, 56–60). Aberrant Notch signaling is
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implicated in several autoimmune diseases including bone marrow

failure, experimental autoimmune encephalomyelitis, rheumatoid

arthritis, and type 1 diabetes (59,61–63). Many of these diseases are

caused, at least in part, by auto-reactive T cells. Since we know that

Th1 and Th17 cell differentiation requires non-canonical Notch

signaling, it is reasonable to envision a therapeutic strategy that

would block non-canonical Notch signaling perhaps leaving intact

other Notch signaling pathways important for normal function of

other cells and tissues. However, to achieve such a goal, it is essential

that we better understand the various pathways of non-canonical

Notch signaling.

SUMMARY AND FUTURE PERSPECTIVES

Notch signaling plays an important role in the fine tuning of

oncogenesis and immunity as well as many other essential bio-

logical processes. Here, we provide evidence for three types of

non-canonical Notch signaling: (i) γ-secretase regulated activa-

tion of the Notch pathway that occurs independently of ligand

interaction; (ii) NICD activity independent of RBPJκ/CSL; (iii)

membrane bound Notch signaling in the absence of cleavage by

the γ-secretase complex and, in some cases, independent of ligand

interaction (Figure 1).

The studies described in this review emphasize the role of

non-canonical Notch signaling in both cancer and the immune

system. These studies highlight the various strategies employed by

non-canonical Notch to drive a multitude of biological effects. A

clear appreciation of both canonical and non-canonical Notch

will deepen our understanding of the basic biology of Notch

signaling. Inhibitors are available for many of the signaling path-

ways involved in non-canonical Notch signaling (NF-κB, PI3K,

AKT, mTOR, HIF-1α, and β-catenin) and, in several instances,

these inhibitors have passed through clinical trials. Therefore, it

is possible to consider combination therapies where one of these

inhibitors,perhaps in conjunction with reduced doses of a gamma-

secretase inhibitor, might prove efficacious. For example, in T

cell-mediated autoimmunity, where we know Notch and NF-kB

cooperate to mediate aberrant Th1 activation (64), one might use

a combination of gamma-secretase inhibition with curcumin, a

neutracuetical known to inhibit NF-kB signaling (65). Thus, in

the near future, it will be possible to test the possibility that com-

bination therapy, using Notch inhibitors together with inhibitors

of these other pathways, may be more efficacious in the treat-

ment of diseases regulated by Notch. Careful delineation of Notch

signaling pathways both in normal cells and tissues as well as in

auto-reactive or oncogenic situations may produce a deeper and

more nuanced understanding of this important signaling pathway

and hence provide a roadmap for the identification of new and

novel drug targets useful in the treatment of disease.
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