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A key question in genome research is whether biologically active proteins are restricted 

to the ~20,000 canonical, well-annotated genes, or rather extend to the many non-

canonical open reading frames (ORFs) predicted by genomic analyses. To address this, 

we experimentally interrogated 553 ORFs nominated in ribosome profiling datasets. Of 

these 553 ORFs, 57 (10%) induced a viability defect when the endogenous ORF was 

knocked out using CRISPR/Cas9 in 8 human cancer cell lines, 257 (46%) showed 

evidence of protein translation when ectopically expressed in HEK293T cells, and 401 

(73%) induced gene expression changes measured by transcriptional profiling following 

ectopic expression across 4 cell types. CRISPR tiling and start codon mutagenesis 

indicated that the biological effects of these non-canonical ORFs required their 

translation as opposed to RNA-mediated effects. We selected one of these ORFs, 

G029442--renamed GREP1 (Glycine-Rich Extracellular Protein-1)--for further 

characterization. We found that GREP1 encodes a secreted protein highly expressed in 

breast cancer, and its knock-out in 263 cancer cell lines showed preferential essentiality 

in breast cancer derived lines. Analysis of the secretome of GREP1-expressing cells 

showed increased abundance of the oncogenic cytokine GDF15, and GDF15 

supplementation mitigated the growth inhibitory effect of GREP1 knock-out. Taken 

together, these experiments suggest that the non-canonical ORFeome is surprisingly 

rich in biologically active proteins and potential cancer therapeutic targets deserving of 

further study. (222 words) 

 

Early analyses of the human genome sequence suggested the existence of 100,000 or more 

protein-coding genes, but further scrutiny revealed that the majority of those candidate genes 

were more likely producing non-coding RNAs, fragmented cDNA clones, or RNAs expressed at 

inconsequential levels1–3. The current Human Proteome Project NeXtProt database recognizes 

~17,600 proteins confirmed by mass spectrometry and ~2,100 unconfirmed proteins4. 
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Nevertheless, a growing body of evidence utilizing high-throughput profiling of ribosome-

associated RNAs suggests that additional, non-canonical translation exists in genes currently 

annotated as noncoding RNAs or pseudogenes, as well as 5’ and 3’ untranslated regions 

(UTRs) of protein-coding genes5–8. Yet, it is unclear whether such translation reflects proteins 

overlooked during the construction of reference genome databases9–12, leaky ribosome 

scanning, or confounded computational predictions13,14, since stringent conservation-based 

analyses have added only a small number of new proteins to the human genome15. Indeed, 

systematic experimental evidence interrogating whether such predicted proteins are in fact 

stably translated and biologically functional is lacking. 

 

To address this, we curated a list 553 high priority ORFs nominated in lncRNAs and regions 

upstream and downstream of known protein coding genes (uORFs and dORFs, respectively). 

These were selected based on published predictions of ORF translation, additional analyses to 

eliminate pseudogenes, and exclusion of ORFs representing variants of known protein coding 

regions5,6,16–19,5,6,14,16,19–33 (Supplementary Table 1, Methods). 203/553 (37%) were identified as 

translated by at least two independent studies. We annotated the 553 ORFs according to 12 

metrics including evolutionary conservation, expression and structural features (Supplementary 

Tables 2-11, Methods). 518 of 553 selected ORFs (94%) scored highly for at least one metric, 

with 418 (76%) having multiple lines of evidence in support of relevance (Supplementary Fig. 1 

and Supplementary Table 2). 

 

We next asked whether systematic functional studies could test the predicted translation of 

these ORFs (Fig. 1a). The capacity for the ORFs to produce a stably translated protein was 

assessed by three independent methods. First, we queried publicly-available mass 

spectrometry databases (Methods) and observed 6,724 peptides (707 unique) supporting 174 of 

553 ORFs (31%) (Supplementary Tables 12 & 13).  Next, we designed an expression library of 
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the 553 ORFs containing a V5 epitope tag and developed a scalable assay for individual protein 

evaluation by anti-V5 detection (Fig. 1b and Supplementary Fig. 2a-d). 257 ORFs (46%) yielded 

a V5-tagged protein detectable by in-cell visualization (Fig. 1c-e, Supplementary Fig. 2e-g and 

Supplementary Table 14). Lastly, we detected a protein for 10 of 30 ORFs tested by in vitro 

transcription and translation (Supplementary Fig. 2h). Taken together, experimental evidence of 

protein translation was obtained for 334/553 (60%) of the ORFs. Translatability was associated 

with evolutionary conservation, with ancient ORFs being more likely to be translated compared 

to evolutionarily recent ORFs as determined by phylostratigraphy (p<0.001, two-way ANOVA, 

Fig. 1g, Supplementary Table 15). ORFs predicted to encode proteins < 50 amino acids were 

less likely to yield a detectable protein, although this may be explained by the deleterious effect 

of fusing a 14-amino acid V5 tag to a very small protein. 

  

Since the majority of non-canonical ORFs have evidence of translatability, we next asked 

whether such translation was associated with biological activity. To address this, we expressed 

the 553 ORFs in each of four cell lines (MCF7, A549, A375, HA1E), and then performed RNA 

expression analysis using the L1000 platform34 (Fig. 2a), which monitors the expression of 978 

mRNAs. Ectopic expression of 401 ORFs (73%) yielded a reproducible gene expression 

consequence, of which 237 ORFs induced a high transcriptional activation score (tas) indicating 

marked cellular changes34 (Fig. 2b, Supplementary Fig. 3 and Supplementary Table 16).  In 

comparison, 81% of 2,283 canonical protein-coding genes yielded a gene expression 

consequence in this assay, indicating that the frequency of biological activity of known genes 

and unannotated ORFs is similar (Fig. 2b). To exclude the possibility that the observed 

transcriptional signature was due simply to overexpression of the RNA, we mutated translational 

start sites and repeated the L1000 profiling. In 48 of 51 (94%) cases, the perturbational 

response was lost when translation was prevented, indicating that the biological effect was 
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indeed mediated by a protein, and not a non-coding RNA (Fig. 2c-f, Supplementary Fig. 4, 

Supplementary Tables 17-18). 

 

The transcriptional responses observed following ORF expression could conceivably be a 

consequence of overexpression of the transgene. To address the functional relevance of 

endogenous expression of these ORFs, we performed CRISPR/Cas9 loss-of-function viability 

screens in 8 cancer cell lines using a guide RNA library targeting the 553 ORFs (Fig. 3a, 

Supplementary Fig. 5a and Supplementary Table 19). Knock-out of 57 of the 553 ORFs (10%) 

demonstrated a growth inhibitory effect (Fig. 3b,c, Supplementary Tables 20-21). Of these, 31 

(54%) impaired survival of all 8 cell lines, whereas 26 (46%) displayed selective dependency 

(Supplementary Fig. 5b-e).  

 

To compare these data to knock-out of canonical proteins, we analyzed the Cancer 

Dependency Map (www.depmap.org) for the viability effects of 553 randomly selected genes. 

Among canonical proteins, 17% demonstrated a viability effect in 8 randomly chosen cell lines, 

compared to approximately 10% for the non-canonical ORFs (Fig. 3d, Supplementary Fig. 5f-g), 

indicating a surprisingly similar frequency of dependencies between known genes and non-

canonical ORFs.  These results were validated both in a secondary CRISPR screen of 147 

ORFs (Fig. 3e, Supplementary Fig. 5h-i, Supplementary Tables 22-24), as well as individually-

performed CRISPR assays for selected ORFs (Supplementary Fig. 6 and Supplementary Table 

27). 

 

Because the viability effects from knock-out of non-canonical ORFs could be explained by loss 

of a regulatory region in the genome rather than the protein itself, we subjected 41 ORFs to 

dense tiling of sgRNAs across the genomic locus of each ORF. Only 7/41 (17%) genomic 

regions demonstrated non-specific viability loss suggestive of a regulatory region of the 
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genome. For 18/41 ORFs (44%), the viability effect mapped exclusively to predicted coding 

exons or the coding region as well as adjacent nucleotides in the transcript, which may reflect 

sites of translational regulation or sgRNAs generating indels that also impact the ORF (Fig. 3f, 

Supplementary Fig. 7, Supplementary Table 29). Interestingly, in several cases, a novel ORF 

overlapped with an annotated protein-coding gene, but it is the novel ORF that best explained 

the knock-out phenotype (Fig. 3g).  As examples, we observed that ORFs arising from CTD-

2270L9.4 and ZBTB11-AS1, which overlap coding exons of COG7 and ZBTB11, respectively, 

both demonstrated markedly more dramatic viability phenotypes using sgRNAs that target the 

novel ORF compared to adjacent sgRNAs that target only the known, parent ORF (Fig. 3g-h, 

Supplementary Fig. 7b). These findings were supported by Cancer Dependency Map data in 

which sgRNAs targeting both the novel and the known ORFs had a more pronounced 

phenotype than sgRNAs targeting only the known ORF (Supplementary Fig. 8). Taken together, 

we conclude that a surprisingly high proportion of non-canonical ORFs exhibit a viability 

phenotype upon knock-out, and that prior CRISPR vulnerability screens may be confounded by 

cryptic, novel ORFs arising from the same genomic locus. 

 

We next noted that 13 ORFs scored highly in all three high-throughput assays supporting 

translation, bioactivity and CRISPR vulnerability (Fig. 4a), suggesting that they may have 

particularly important biological roles. Among these, we especially focused on G029442 (LA16c-

380H5.3 in GENCODE) because its knock-out resulted in selective cancer cell killing (1 of 8 cell 

lines killed), and it is highly expressed in several human cancer types (Fig. 4b and 

Supplementary Fig. 9). We subsequently renamed this gene GREP1 (Glycine-Rich Extracellular 

Protein-1) for reasons elucidated below. 

 

To systematically explore the importance of GREP1 in cancer cell viability, we infected a pool of 

486 barcoded human cancer cell lines with a single lentivirus harboring both Cas9 and a guide 
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RNA targeting GREP1 (Fig. 4c, Methods).  Because lentiviral infection rates vary across the cell 

lines, we focused our analysis on the 263 cell lines yielding highest quality data (Supplementary 

Fig. 10a-g, Supplementary Tables 30-31, Methods).  GREP1 knockout resulted in preferential 

loss of viability in certain cell lineages, most notably breast cancer (Fig. 4d).  We validated these 

pooled screening results with knock-out and rescue experiments for GREP1 in breast and non-

breast cell lines, which confirmed a striking breast cancer viability phenotype that correlated with 

GREP1 mRNA expression (Fig. 4e-f, Supplementary Fig. 10h, and Supplementary Fig. 11). 

Finally, GREP1 expression was higher in human breast cancers compared to normal breast 

tissue (p = 1.4 x 10-10) (Supplementary Fig. 9c) and was associated with decreased patient 

survival in breast but not colon cancer patients (Supplementary Fig. 11c,d). Together, these 

data implicate GREP1 as a previously unrecognized, prognostic breast cancer vulnerability 

gene. 

 

To explore the function of GREP1, we noted the presence of a signal localization sequence for 

extracellular secretion, as well as sites of glycosylation documented by mass spectrometry (Fig. 

4g, Supplementary Table 32). We confirmed that ectopic expression of a GREP1 fusion protein 

with a C-terminus V5 epitope tag, but not an N-terminal truncation mutant lacking the signal 

localization sequence, was indeed secreted as well as cleaved into a smaller product (Fig. 4h-i, 

Supplementary Fig. 11e-f, and Supplementary Table 33).  Analyses of the GREP1 amino acid 

sequence revealed a conserved, glycine-rich, and intrinsically disordered protein 

(Supplementary Fig. 12a-c), characteristics that resemble some members of the extracellular 

matrix35.  As expected, immunoprecipitation of ectopically expressed GREP1 from cell culture 

media followed by mass spectrometry revealed a strong enrichment for extracellular matrix 

proteins, including fibronectin and EMILIN2 (Supplementary Fig. 12d-h, Supplementary Table 

34).  
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To establish the cellular consequence of GREP1 expression, we examined the impact of 

GREP1 knock-out and overexpression on other secreted proteins by testing a panel of 102 

secreted proteins by antibody arrays across 3 cell lines (Fig. 4j).  The metabolic cytokine 

GDF1536,37 demonstrated the most dramatic change, with GREP1 knockout resulting in 

decreased GDF15 levels and GREP1 overexpression resulting in increased GDF15 levels (Fig. 

4k,l and Supplementary Fig. 13a,b). Consistent with this, GREP1 and GDF15 expression were 

correlated across multiple tumor types in the TCGA database (Supplementary Fig. 13c,d). To 

determine whether GDF15 was functionally important in cancer cells’ requirement of GREP1 for 

survival, we tested the effect of GREP1 knock-out in the presence and absence of recombinant 

GDF15. Remarkably, supplementation of recombinant human GDF15 rescued the loss of 

viability caused by GREP1 loss of function (Supplementary Fig. 13e,f). The fact that GDF15 

only partially rescues GREP1 knock-out in some cell lines suggests that there may be additional 

mechanisms downstream of GREP1 that regulate cell survival (Supplementary Fig. 13g). While 

GDF15 has been previously implicated in a number of cancer phenotypes including 

chemoresistance38,39, immune evasion40, cellular survival and invasiveness41,42, its regulation by 

GREP1, which itself is a cancer dependency, is entirely new.  

 

Despite the fact that the human genome was sequenced 18 years ago, the precise number of 

protein-coding genes in the genome remains a point of controversy.  Our systematic sampling of 

over 550 uncharacterized ORFs provides the first experimental evidence that a substantial 

proportion of such ORFs are functional.  Importantly, we establish that approximately 10% of the 

ORFs in our dataset were required for the survival of cancer cells, a rate only about half that 

observed for known, canonical proteins.  Although our dataset represents a curated list of ORFs 

rather than a random sampling of all possible ORFs, these experiments suggest that further 

investigations of unannotated ORFs in cancer and other disease states will likely yield new 

insights.  Since estimates of such ORFs now exceed 5,00043, our data predict the existence of 
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thousands of functional, unannotated ORFs in the human genome.  Overall, our work develops 

an approach for understanding uncharacterized ORFs through systematic interrogation and 

establishes that these non-canonical proteins represent a rich source of untapped biology that is 

deserving of further investigation. 

 

[1,955 words] 
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Methods 

Data statement: 

No statistical methods were used to predetermine sample size.  The experiments were not 

randomized and the investigators were not blinded to allocation during experiments and 

outcome assessment. 

  

Cell lines and reagents: 

All parental cell lines were obtained from the American Type Culture Collection (ATCC, 

Manassas, VA).  Cas9-derived cell lines were obtained from the Broad Institute.  Cell lines were 

maintained using standard media and conditions.  In brief, cell lines derived from ZR-75-1, 

HCC1806, HCC1954, HCC202, T47D, HT29, HCC15, KYSE410, KYSE510, SNU503, SW837, 

HCT116, AU565 and MDA-MB-231 were maintained in RPMI 1640 (Invitrogen, Carlsbad, CA, 

Carlsbad, CA) supplemented with 10% FBS and 1% penicillin-streptomycin in a 5% CO2 cell 

culture incubator at 37℃.  Cell lines derived from HDQP1, BT-474, JIMT1, A375, A549, 

MIAPACA2, MCF7, HEK293T and MDA-MB-468 were maintained in DMEM supplemented with 

10% FBS (Invitrogen, Carlsbad, CA) and 1% penicillin-streptomycin (Invitrogen, Carlsbad, CA) 

in a 5% CO2 cell culture incubator.  GFP-positive Cas9-derived cell lines were drug-selected 

using 2ug/mL blasticidin. 

  

For stable knockout cell lines, ZR-75-1 Cas9 and HDQP1 Cas9 expressing cells were infected 

with lentivirus for the indicated sgRNAs which had been cloned into the LentiGuide-Puro 

plasmid (plasmid #52963, Addgene) with 4ug/mL of polybrene.  16 hours after transduction, 

cells were selected with cell culture media containing 2ug/mL of puromycin.  Cells were 

maintained in puromycin-containing media for 72 hours before transitioned back to standard 

culture media.  Stable GREP1-overexpressing cell lines were generated in ZR-75-1 and CAMA-
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1 cells by infecting with a sgRNA-resistant GREP1 cDNA construct and selecting with 350ug/mL 

of hygromycin for 96 hours, before transitioning back to standard culture media. 

  

RNA isolation; cDNA synthesis; and qPCR experiments: 

Total RNA was isolated using Qiazol and an miRNeasy Kit (Qiagen, Hilden, Germany) with 

DNase I digestion according to the manufacturer’s instructions.   RNA integrity was verified on 

an Agilent Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA).  cDNA was synthesized from 

total RNA using Superscript III (Invitrogen, Carlsbad, CA) and random primers (Invitrogen, 

Carlsbad, CA).  Quantitative Real-time PCR (qPCR) was performed using Power SYBR Green 

Mastermix (Applied Biosystems, Foster City, CA) on a Thermo QStudio FLX Real-Time PCR 

System (Thermo Fisher Scientific, Waltham, MA).  GAPDH was used the housekeeping control 

gene.  The relative quantity of the target gene was completed for each sample using the ΔΔCt 

method by the comparing mean Ct of the gene to the average Ct of the geometric mean of the 

indicated housekeeping genes. The primer sequences are listed below: 

GREP1 3’UTR-forward: AGCCTCCAAATGGCTATGGAC 

GREP1 3’UTR-reverse: CTCGAGGCCACCATTAAAAC 

GREP1 ORF-forward: CTGGATATCCGGCTGGAGATG 

GREP1 ORF-reverse: ATTGCTGCCTCTCTTCACGTC 

GAPDH-forward: TGCACCACCAACTGCTTAGC 

GAPDH-reverse: GGCATGGACTGTGGTCATGAG 

Beta-actin forward: AAGGCCAACCGCGAGAAG 

Beta-actin reverse: ACAGCCTGGATAGCAACGTACA 

Fibronectin forward: GAGAAAATGGCCAGATGATGA 

Fibronectin reverse: AATGGCACCGAGATATTCCTT 

Emilin2 forward: AACAAAGTGCTGGTGAACGAC 

Emilin2 reverse: CTCTCCTGTACCCAGCGGTAT 
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ZBTB11-AS1 forward: CCGTTTTTACGTTTGAGACTCC 

ZBTB11-AS1 reverse: ATGTAAATGGGCTGTCTCTGGT 

HP08474 forward: GTGTAAAGAGGTCCTGGGACAG 

HP08474 reverse: GCACTCCAGTCTAGACGACACA 

RP11-54A9.1 forward: TTGGTGAGATGTTCCTTGAGC 

RP11-54A9.1 reverse: CTCCACTTCACTGTCGGTCTC 

G083755 forward: ATCCCATCTGAGTGCTTACCAA 

G083755 reverse: CATGCATAATCTCCTTCCCTGC 

OLMALINC forward: AGGAACATCTTGCCAATTTCA 

OLMALINC reverse: TGTGGATCTTCAGTTGCTTCA 

CTD-2270L9.4 forward: AGTCGTTGGCCGTTACCATA 

CTD-2270L9.4 reverse: CTTCCCAGGCTCAAGCAAT 

ASNSD1 uORF forward: ACAATTCGACCCCACACAAG 

ASNSD1 uORF reverse: GGTTAGAAAGTTCATCCACCACA 

RP11-277L2.3 forward: CTACGTGGGGCTGGAAATAC 

RP11-277L2.3 reverse: CCCTTCCCAGTTCTCTGACC 

  

Selection process for candidate ORFs: 

Candidate ORFs were collated via manual curation from 25 published studies and one in-house 

analysis of ribosomal profiling data (Z. Ji, personal communication). Published studies are listed 

in Supplementary Table 1. Data types included were 14 studies with mass spectrometry data, 6 

studies with ribosomal profiling data, 4 studies with computational ORF predictions, and 1 study 

with both mass spectrometry and ribosomal profiling data. In total, there were 9,918 candidate 

ORFs among which 4,433 unique Ensembl transcripts were represented.  From these, 

pseudogenes, N-terminal extension ORFs, ORFs of known proteins with new predicted exons, 

and alternative reading frame ORFs located entirely within the genomic nucleotides of an 
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annotated protein were removed from consideration. 553 high-priority ORFs were selected from 

the ORFeome. The 553 ORFs were then manually curated according to the following metrics as 

described. See Supplementary Figure 1 for an overview. 

DNA conservation: An ORF was considered to have high DNA conservation if the average 

PhastCons score for 100 placental mammals was ≥0.9 for the entire ORF. 

Murine homolog: Murine homologs were defined by the Slncky program44. 

Cancer association: ORFs were searched in the Pubmed database for associations with the 

word “cancer”. Additionally, cancer-associated transcripts in the MiTranscriptome were also 

queried. 

Lineage association: ORFs were searched in the NIH Roadmap Epigenome Project data45, 

which transcriptionally profiled human embryonic stem cells before and after differentiation into 

mesenchymal stem cells, neural progenitor cells, trophoblast-like cells, or meso-endoderm. 

High read coverage: ORFs were stratified if they had a read/length ratio of ≥1.0 in available 

ribosomal profiling data 

Codon substitution rate: ORFs were stratified is they had a codon PhyloCSF decibans score (29 

mammal alignment) of ≥ 5.0 averaged across the whole ORF transcript. 

Protein domain structure: ORFs were analyzed via the NCBI Conserved Domain finder.  ORFs 

were domain structures were an e value confidence score of < 0.01 are indicated. 

Multiple overlapping ORF predictions: Published ORF predictions from 25 large datasets were 

integrated5,6,16–19,22 to nominate 203 ORFs with at least 2 publications supporting their existence 

(Supplementary Tables 1 & 2). 

Predicted ORF CRISPR phenotype: Data from a CRISPR interference screen of lncRNAs were 

employed46.  Of 492 lncRNA hits nominated in that study, there were 312 hits with GENCODE 

identifiers were could be further evaluated.  Of those 312, there were 292 unique GENCODE 

identifiers, which were manually reviewed. GENCODE identifiers overlapping ORFs in this 

ORFeome are indicated. 
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Upstream and downstream ORFs: We used candidates from Ji et al.5 and considered 

conserved upstream and downstream ORFs between mouse and human, as defined by an 

inter-species alignment with an E value of < 0.0001.  We evaluated ORFs with all of the 

following attributes: a Ka/Ks conservation ratio of < 0.5, an ORF length of ≥25 amino acids, an 

ATG start site, and the ORF was non-overlapping with the annotated ORF.  49 dORFs and 195 

uORFs met these criteria and were manually reviewed to select candidates included in the 

ORFeome. 

Signal peptide: All ORFeome ORFs were analyzed by SignalP version 4.1 using standard 

default settings47 and a D-score of ≥0.450 to nominate ORFs with a classical signal localization 

sequence. 

Structural modeling: All ORFeome ORFs that are ≥40 amino acids were analyzed by the Phyre2 

structural domain prediction software using default settings48.  To distinguish ORFs enriched for 

structural models, we generated a random amino acid sequence library of 500 random 150-mer 

amino acid sequences with a methionine start codon.  We derived a structural model score of 

(%ORF alignment to the structural model) * (%confidence of the model).  A structural model 

score of 0.175 was used to maximally differentiate ORFeome ORFs from random amino acid 

sequences. 

Overall ORF confidence score: Each criteria as above in addition to mass spectrometry peptide 

evidence (see below) was given a binary score of 1 if the criterion was met by the ORF or 0 if 

not met by the ORF.  The ORF confidence score was the summation of these binary scores. 

  

Identification of small open reading frames in proteomics datasets: 

A fasta database containing the amino acid sequences of the 553 ORFs was appended to a 

reference protein database (UCSC RefSeq) and used to search peptide mass spectra of 

datasets acquired or analyzed in our laboratory. These datasets predominantly comprised of 

studies conducted by the Clinical Proteomics Tumor Analysis Consortium (CPTAC) 
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(Supplementary Table 12). Raw mass spectrometry (MS) data were analyzed in Spectrum Mill 

MS Proteomics Workbench v6.0 (Agilent Technologies, Santa Clara, CA) employing search 

parameters specific for each project. Detailed descriptions of search parameters such as 

enzyme definition and specificity or the number of types variable modifications included in 

database search can be found in the corresponding publications (Supplementary Table 12). 

Peptide-spectrum matches (PSMs) to the ORF database were identified by automatically 

parsing through database search results generated by Spectrum Mill Software using an in-

house developed R-script. Only PSMs validated by target-decoy based false-discovery (FDR) 

estimation were used for subsequent analysis. To further minimize the possibility of false 

positive identifications, we required a minimal Spectrum Mill PSM score of 8 which roughly 

translates to a minimum of eight identified fragment ions in the MS/MS spectrum. All PSMs 

meeting the criteria described above are listed in Supplementary Table 12. 

  

Phylostratigraphy analysis: 

All ORFs with an amino acid length of >= 40 amino acids was analyzed as described 

previously49,50, using TimeTree51 to identify evolutionary strata.  Using a BLASTP e-value 

threshold of 10-3 and a maximum number of 200,000 hits, we identified the phylostratum in 

which each ORF appeared. For clarity, we aggregated results into the following evolutionary 

eras: Invertebrates (phylostrata 1-9, including cellular organisms through Craniata, ~540 

millions of years ago (Mya)), Vertebrates (phylostrata 10-17, including Vertebrata through 

Amniota (312 Mya)), Mammals (phylostrata 18 - 22, including Mammalia through 

Euarchontoglires (95 Mya)), Primates (phylostrata 23-27, including Primates through 

Hominoidae (20 Mya)), Great apes (phylostrata 28-30, including Hominidae through Homo), and 

Humans (phylostratum 31, including Homo sapiens). 

 

Generation of the ORFeome library: 
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Initial prototype plasmids were generated in the pLX_TRC307 vector backbone designed for 

prior ORF studies52, obtained from the Broad Institute Genomic Perturbation Platform (Broad 

Institute, Cambridge, MA, USA), by PCR-amplification from cell line cDNA (HeLa, HEK293T, 

K562, or MCF7).  PCR products were gel-purified (Qiagen, Hilden, Germany), cloned into the 

non-directional Gateway PCR8 vector (Invitrogen, Carlsbad, CA) as an entry vector, and 

shuttling to pLX_TRC307 using LR clonase II (Invitrogen, Carlsbad, CA) according to the 

manufacturer’s instructions. pLX_307 is a Gateway-compatible expression vector where E1a is 

the promoter of the ORF and SV40 is the puromycin resistance gene (details available at 

https://portals.broadinstitute.org/gpp/public/resources/protocols).  Following technical 

optimization of the insert sequence to include a barcode sequence following the V5 tag, the final 

ORF construct design is as follows: 

vector backbone -> ORF sequence lacking stop codon -> c-terminus V5 sequence 

(GGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACG) -> Triple stop codon 

(TAGTAATGA) -> P1 primer site (TCTTGTGGAAAGGACGA) -> Barcode sequence -> AC 

(linker sequence) -> vector backbone. 

  

Following the ORF sequence, each construct therefore had the additional sequence: 

GGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGTAGTAATGATCTTGTGGAA

AGGACGA_BARCODE_AC 

  

The ORFeome library was then generated via insert synthesis and cloning of unique plasmid 

inserts consisting unique barcodes (Supplementary Table 22) by a commercial vendor 

(GenScript, Piscataway, NJ) in arrayed barcoded tube format.  Each plasmid therefore had a 

barcode sequence flanked by common PCR primer pair for amplification of a 233bp amplicon, 

where the sense primer was located in the ORF insert and the antisense primer was located in 

the plasmid backbone as follows: 
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P1 Sense primer:  TCTTGTGGAAAGGACGA 

P2 Antisense primer:  TTAAAGCAGCGTATCCACATAGCGT    

  

Generation of paired mutant ORFs: 

The 85 mutant constructs employed and identical plasmid insert construct as detailed above 

with the following modifications: the putative ORF start codon was mutated to GCG (encoding 

alanine), and all internal in-frame ATG codons (encoding methionine) were mutated to GCG to 

reduce the chance of internal initiation of translation.  Constructs were generated via 

commercial gene synthesis (GenScript, Piscataway, NJ). 

  

In cell western blotting: 

HEK293-T cells were plated at a density of 20,000 cells per well in a 96 well black plate format 

to minimize autofluorescence.  6 to 8 hours after plating, cells were transiently transfected with 

0.1 ug of an individual plasmid with Fugene HD reagent (Promega, Madison, WI).  48 hours 

later, cell culture media was removed, and cells were fixed for 20 minutes with 150 uL of 3.7% 

formaldehyde solution in 1x phosphate-buffered saline at room temperature with no shaking.  

Fixing buffer was removed and cells were washed five times with 200 uL PBS containing 0.1% 

Triton X-100 (Sigma-Aldrich, St. Louis, MO) for permeabilization.  Following this, cells were 

blocked with 150uL of Odyssey Blocking Buffer (LI-COR, Lincoln, NE) for 90 minutes at room 

temperature on a plate shaker.  Cells were then treated with anti-V5 antibody at 1:200 

concentration in Odyssey Blocking Buffer or no-antibody control wells.  Cells were incubated 

with the primary antibody overnight at 4℃.  The next day, the primary antibody was removed 

and cells were washed five times with 200uL PBS containing 0.1% Triton X-100 as above.  

Then, 50uL secondary antibody was applied at 1:1000 dilution and samples were incubated for 

1 hour with gentle shaking and protection from light.  Afterwards, wells were washed five times 

with 200uL PBS containing 0.1% Tween20 (Sigma-Aldrich, St. Louis, MO).  After the final wash, 
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plates were blotted on tissue paper to remove excess wash buffer and immediately scanned on 

a LI-COR Odyssey system using the 800nm light channel to image and quantify anti-V5 

abundance. 

  

Analysis of in cell western data: 

First, a preliminary dilution series was performed with decreasing amounts of transfected 

plasmid and decreasing numbers of HEK293T cells plated per well (Extended Data Figure 3).  

This was performed for two high-expressing plasmids that were verified by western blot (eGFP 

and LINC00116), and one low-expressing verified plasmid (RP11-539I5.1).  Using eGFP and 

RP11-539I5.1 we defined a dynamic range for the assay (Extended Data Figure 3) by 

normalizing V5 800nm light signal to the plate background.  This defined a threshold above 

which signal was reproducibly detected even in low-expressing plasmids when transfected into 

1,000 plated HEK293T cells. 

  

Then, for the full ORFeome library, all plasmids were run in biological triplicate on 3 unique 96 

well plates for in cell western analysis.  Each plate was normalized by median-centering raw 

800nm signals within each plate to minimize variance in plate background.  Normalized 800nm 

signals were then averaged across replicates.  Plasmids with averaged signal above the 

previously defined threshold based on RP11-539I5.1 expression were considered to generate a 

protein by V5 tag detection. 

  

In vitro transcription/translation: 

50 ORFs were selected at random from the ORFeome library for synthesis of the ORF insert 

lacking a V5 tag and containing a 5’ T7 promoter sequence.  This tag-free insert was cloned into 

pUC57 plasmid.  1.0 mcg of linearized purified plasmid were subjected to wheat germ extract in 

vitro transcription/translation systems employing the non-radioactive Transcend tRNA system 
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according to manufacturer’s instructions (Promega, Madison, WI).  10 of 50uL from the reaction 

volume was then heat-denatured in the presence of DTT and protein bands were detected by 

SDS-PAGE gel electrophoresis using a Tris-Glycine 10-20% gel (Thermo Fisher Scientific, 

Waltham, MA). 

  

Immunoblot Analysis: 

Cells were lysed in RIPA lysis buffer (Sigma-Aldrich, St. Louis, MO) and allowed to homogenize 

on ice for 30 minutes after lysis.  Cell debris was removed by centrifugation for 15 minutes at 

13,200 RPM and the debris pellet was discarded.  1x HALT protease inhibitor (Thermo Fisher 

Scientific, Waltham, MA) was added to lysate supernatants.  Protein abundance was quantified 

by the bicinchoninic acid (BCA) method using and bovine-specific albumin standard curve for 

normalization of protein abundance.  Aliquots of each protein extract were boiled in LDS sample 

buffer, size fractionated by SDS-PAGE at 4℃ by Tris-Glycine 10-20% gels, and transferred onto 

nitrocellulose membranes with pre-cast gels via the iBlot-2 system (Thermo Fisher Scientific, 

Waltham, MA).  The membrane was then incubated at room temperature for 1-2 hours in LICOR 

Odyssey blocking buffer and incubated at 4℃ with the appropriate antibody overnight.  

Following incubation, the blot was washed 4 times with 1x TBS with 0.1% Tween20 and 

incubated with fluorophore-specific IRDye secondary antibodies (LI-COR, Lincoln, NE) and 

imaged on a LI-COR Odyssey machine. 

  

For conditioned media western blots, conditioned media of GFP- or G029442-expressing 

HEK293T cells was concentrated using 3kDa size exclusion filter tubes (Millipore, Burlington, 

MA) by a factor of 5-fold.  Then, 1x HALT protease inhibitor was added to the sample.  Samples 

were kept at 4℃ and not frozen to preserve protein fidelity.  Western blots were then performed 

as detailed above. 
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Antibodies used: 

Antibody Species Monoclonal/
Polyclonal 

Dilution Catalogue 
Number 

Vendor Conditions 

V5 (D3H8Q) Rabbit Monoclonal 1:2000 13202S Cell 
Signaling 
Technology 

4C 
overnight 

ZBTB11 Rabbit Polyclonal 1:1000 A303-
240A-M 

Bethyl 
Laboratories 

4C 
overnight 

Beta-Actin Mouse Monoclonal 1:4000 A5316 Sigma-
Aldrich 

4C 
overnight 

Goat anti-mouse 
secondary 

Goat N/A 1:5000 926-32210 LI-COR 20C for 1 
hour 

Goat anti-rabbit 
secondary 

Goat N/A 1:5000 926-68021 LI-COR 20C for 1 
hour 

  

Non-denaturing western blot: 

Non-denaturing western analysis was performed using the NativePage system (Thermo Fisher 

Scientific, Waltham, MA).  In brief, HEK293T cells were transfected with plasmid encoding 

GREP1.  72 hours after transfection, conditioned media was collected and cellular debris was 

removed via centrifugation and filtering of the media.  Protease inhibitor was added to the 

conditioned media for preservation.  Conditioned media was then prepared with 4x NativePAGE 

sample buffer without heat, detergents, or reducing agents.  For comparison, conditioned media 

was also prepared using 4x NativePAGE sample buffer and also 1% SDS and 10% NuPAGE 

sample reducing agent (Thermo Fisher Scientific, Waltham, MA) followed by boiling at 95℃ for 5 

minutes.  Samples were then run on a NativePAGE Novex Bis-Tris gel using NativePAGE 

running buffer and NativePAGE 20x Cathode Buffer according to manufacturer’s instructions.  

Proteins were transferred to a PVDF membrane after membrane activation with isopropanol 

using a semi-dry system of 7V for 30 minutes at room temperature.  After blocking for 1 hour at 

room temperature in Odyssey Blocking Buffer, membranes were treated with rabbit anti-V5 

antibody at a 1:2000 dilution (Clone D3H8Q, #13202S, Cell Signaling Technology, Danvers, 
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MA) overnight at 4℃, then washed 4 times in 1x TBS-Tween, and treated with anti-rabbit HRP 

secondary antibody at a 1:10000 dilution.  Chemilluminence was achieved with SuperSignal 

West Dura Extended Duration Substrate (Thermo Fisher Scientific, Waltham, MA), and images 

were developed with CareStream Kodak BioMax light film (Kodak, Rochester, NY). 

  

Lentivirus production for L1000 experiments: 

Complete details of standard virus production pipelines can be found at the Broad Institute 

Genetic Perturbation Platform website https://portals.broadinstitute.org/gpp/public/. 

Virus was produced in arrayed 96 well plates via triple transfection of HEK293T cells with each 

packaging vector (100 ng), envelope plasmid (10 ng), and each respective pLX317 plasmid 

(100 ng). Lentiviral-containing supernatants were harvested at 32-56 hours post-transfection 

and stored in polypropylene plates at -80°C until use. 

  

Cell lines and lentiviral transduction for L1000 expression profiling: 

A549 and A375 cells were cultured in RPM1 media supplemented with 10% FBS and 1% 

penicillin/streptomycin.  MCF7 and HA1E cells were cultured in DMEM media supplemented 

with 10% FBS and 1% penicillin/streptomycin.  To perform L1000 HT gene expression profiling, 

cells were robotically seeded (40uL per well) into 384 well plates. Optimized seeding densities 

were 250 cells per well (MCF7), 400 cells per well (A549, A375 and HA1E).  Twenty-four hours 

post-seeding cells were spin-infected in the presence of polybrene (4 ug/mL for A549 and HA1E 

and 8 ug/mL for MCF7 and A375 cells). The plates were then centrifuged for 30 minutes at 

1,178 g at 37°C. The supernatant was robotically removed and replaced with fresh media 3 

hours (A549) or 24 hours post-infection (A375, MCF7, HA1E) and cells cultured for an additional 

72 hours till assay. 
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Infections were carried out in 5 replicates, 3 of which were used for L1000 assay and 2 used for 

assessing the infection efficiency. To assess infection efficiency, cells were treated with or 

without puromycin selection (1.5 ug/mL) 24 hours post-infection, and cell viability was 

determined using CellTiterGlo (Promega, Madison, WI) after 72 hours of selection. For the 

remaining plates, media was removed 96 hours post-infection, and the cells were lysed with the 

addition of TCL buffer (Qiagen, Hilden, Germany). Plates were then sealed and stored at -80 °C 

until gene expression profiling. 

  

L1000 experimental design: 

Two 384 well plates of perturbational ORFs were designed for cell treatment prior to L1000 

profiling, each containing 352 unique ORFs, negative control ORFs, internal technical controls, 

and untreated wells. Plate format can be found in Extended Data Figure 4. In each plate, 346 

wells were devoted to treatment ORFs, and ten to ORFs targeting L1000 landmark genes were 

included for positive control purposes. These positive control wells would later be assessed for 

targeted gene z-score (≥ 2) and targeted gene rank (computed relative to the expression levels 

of that same gene across the assay plate). Control genes included were ACAA1, ACD, AURKB, 

BMP4, CBR1, CCDC90A, CDK6, CSNK1A1, ETV1, and SOX2. Genes were selected for overall 

for high baseline expression levels in the lines profiled and previous reproducibility in the L1000 

assay. Additionally, 16 wells of negative control ORFs targeting BFP, EGFP, or HCRED were 

added. Each plate also contained 12 untreated wells. 

      

Cell lines MCF7, HA1E, A549, and A375 were chosen to represent a diversity of tissue types 

and also to match CMap cell lines that had been profiled extensively in the past and were 

constituents of the CMap reference database Touchstone34. 

  

L1000 data processing: 
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Detailed protocols for the L1000 assay are provided at https://clue.io/sop-L1000.pdf.  Each plate 

was profiled 96 hours after infection.  Antibiotic selection was not employed, and each plate was 

processed using the standard L1000 data processing pipeline which has been described 

elsewhere34.  Briefly, mRNA was initially captured using 384-well oligo dT-coated Turbocapture 

plates; after removing lysate and adding a reverse-transcription mix containing MLLV, the plate 

was washed and a mixture of both upstream and downstream probes (each containing a gene-

specific sequence and a universal primer site) for each of the 978 (“Landmark”) genes 

measured was added. The probes were first annealed to cDNA over a six hour period, and then 

ligated together to form a PCR template. After ligation, Hot Start Taq and universal primers were 

added to the plate, the upstream primer was biotinylated to allow for later staining with 

streptavidin-pycoerythrin, and the PCR amplicon was hybridized to Luminex microbeads using 

the complementary and probe-specific barcode on each bead. After overnight hybridization, the 

beads were washed and stained with streptavidin-pycoerythrin and Luminex FlexMap 3D 

scanners were used to measure each bead independently, reporting bead colour, identity, and 

fluorescence intensity of the stain. Fluorescence intensity of the stain values were then 

converted into median intensity values for each of the 978 measured genes using a 

deconvolution algorithm (resulting in “GEX” level data). These GEX data were then normalized 

relative to a set of invariant genes, and subsequently quantile normalized (resulting in 

“QNORM”) level data. An inference model was applied to the QNORM data to infer gene 

expression changes for a total of 10,174 genes, which corresponds to the “BING” (Best INferred 

Genes) genes we report below. Next, expression values of each individual well was converted 

to robust z-scores by z-scoring gene expression relative to corresponding expression across the 

entire plate population; these z-scored differential expression gene signatures were lastly 

replicate collapsed to a single differential expression vector per treatment, which we term a 

signature (and “MODZ” level data). 
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L1000 quality control: 

All samples profiled passed internal technical L1000 assay quality control measures described 

elsewhere34. Additionally, all samples included passed an internal fingerprinting algorithm that 

verifies the identity of cell lines on L1000 plates by comparing quantile-normalized gene 

expression data in each will to a ranked reference library of over 1000 cancer cell lines; samples 

are defined as passing if their Spearman correlation to their respective reference profile is 

higher than equivalent correlation values to all other reference cancer profiles. Additionally, 67% 

of positive control ORFs included had a replicate correlation of 0.25 or greater and induced a z-

score of 2 or greater in their target gene. Notably, ORFs targeting CNSK1A1 represented the 

majority of poorly performing positive control ORFs. Positive control ORFs that showed high 

transcriptional activity (TAS) also clustered together (Extended Data Figure 4c). 

  

Measures of L1000 signature bioactivity: 

Each perturbagen’s transcriptional activity was represented using a Transcriptional Activity 

Score (TAS), which has been described in depth elsewhere34. Briefly, TAS is computed as a 

geometric mean of signature strength (SS; or, the number of landmark (n=978) genes in a 

signature with absolute z-score greater than or equal to 2) and replicate correlation (RC; or, the 

75th quantile of all pairwise Spearman correlations between replicate level z-score profiles): 

𝑇𝐴𝑆 = &(𝑆𝑆 ⋅ 𝑚𝑎𝑥(𝑅𝐶, 0))/978 ∗RC, 0)).  Signatures were considered to be bioactive if they had 

a TAS score of 0.2 or higher, which represents the value at which 95% of negative control wells 

fall below34. 

  

L1000 signature queries: 

Each MODZ-level signature profiled was queried both against the other L1000 signatures in the 

dataset and against the Connectivity Map dataset that has been published and described 
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elsewhere34. Similarity values between these signatures was assessed using a percentile score 

derived from a normalized weighted connectivity score (WTCS). Briefly, WTCS is a similarity 

measure based on the weighted Kolmogorov-Smirnov enrichment statistic (ES) described 

previously53 and is computed as follows for a given query gene set pair (q_up, q_down) and a 

reference signature r: 

  

  

Where ES_up is the enrichment of q_up in r and ES_down is the enrichment of q_down in r. 

WTCS ranges between -1 and 1, and is positive for signatures that are positively related, 

negative for the converse, and near zero for unrelated signatures. 

      

WTCS is then normalized to allow for comparison of connectivity scores across cell and 

perturbagen types; this normalization is similar to that used in Gene Set Enrichment Analysis 

and accounts for differences in connectivity that may occur across such covariates. Given a 

vector of WTCS values from a query, normalization occurs as follows: 

  

 

Where NCSc,t, wc,t, U+c,t, U-c,t are the normalized connectivity scores, raw WTCS, and signed 

means (the mean of the positive and negative values evaluated separately) of the WTCS values 

within the subset of signatures corresponding to cell line c and perturbagen type t, respectively. 
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Lastly, NCS scores are converted to percentile scores accounting for whether the connectivity 

between the queried (“q”) and reference signature (“r”) are significantly different from that 

observed between r and other queries. This is done by comparing each observed NCS value 

ncsq,r between the query q and a reference signature r to a distribution of NCS values 

representing the similarities between a reference compendium of queries (Qref) and r. This 

procedure results in a standardized measure we refer to as Tau (τ) that ranges from -100 to 

+100 and represents the percentage of queries in Qref with a lower |NCS| than |ncsq,r|, adjusted 

to retain the sign of ncsq,r and relies on the following formula: 

 

  

Where ncsq,r is the normalized connectivity score for signature r w.r.t query q, ncsi,r  is the 

normalized connectivity score for signature r relative to the i-th query in Qref (a set of query 

signatures obtained from exemplar signatures of perturbagens matching the cell line and 

perturbagen type of signature r) and N is the number of queries in Qref. 

  

L1000 software packages used: 

L1000 data were analysed using the ‘tidyverse’ suite54 of R packages (v1.2.1) and the ‘cmapR’ 

package55 (v1.0.1) in R v3.5.0 (R Core Team 2018). 

  

CRISPR sgRNA design: 

sgRNAs for the ORFs in this study were designed using the Broad Institute GPP sgRNA 

designer for S. Pyogenes Cas9 against genome coordinates for the GRCh38 assembly of the 

human genome (https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design).  Only 
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exonic coding regions for the ORFs were used.  A maximum of 8 unique sgRNAs were 

employed per gene.  If fewer than 8 were nominated due to small gene size and lack of 

available PAM sites, then all nominated sgRNAs were used.  If more than 8 sgRNAs were 

nominated, then the top 8 ranked sgRNAs were used according the the Broad Institute GPP 

sgRNA designer pick analysis.  For the secondary CRISPR screen, 147 ORFs were tested.  

These were chosen to include all ORFs with a viability phenotype in the primary screen in the 

appropriate cell lines (A375, MCF7, HEPG2), as well as additional ORFs that did not have 

viability phenotype. 

  

For tiling sgRNA analyses, additional nominated sgRNAs for each ORF were selected.  Also, 

we selected sgRNAs to putative 3’UTR, 5’UTR, and promoter regions (defined as within 1000 

basepairs of the transcript start site).  A maximum of 16 sgRNAs were designed for each region.  

If there were multiple UTR exons, then a maximum of 16 sgRNAs were designed for each UTR 

exon.  Intronic sgRNAs were used were available and limited to 6 sgRNAs per intron.  sgRNAs 

for adjacent protein coding genes were also employed as indicated, and designed in an identical 

manner.  The number of sgRNAs for adjacent coding genes and various genome regions is 

detailed in Supplementary Tables 23 and 24.  

  

Determination of infection conditions for CRISPR pooled screens: 

Optimal infection conditions were determined in each cell line in order to achieve 30-50% 

infection efficiency, corresponding to a multiplicity of infection (MOI) of ~0.5 - 1. Spin-infections 

were performed in 12-well plate format with 3 × 106 cells each well. Optimal conditions were 

determined by infecting cells with different virus volumes with a final concentration of 4 ug/mL 

polybrene. Cells were spun for 2 hours at 1000 g at 30℃. Approximately 24 hours after 

infection, cells were trypsinized and 2x10e5 for A375, HT-29, and PC-3 cells; 1.5x10e5 for A549 

and HeLa cells; 3x10e5 for HepG2 cells; 5x10e5 for MCF-7 cells from each infection were 
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seeded 2 wells of a 6-well plate, each with complete medium, one supplemented with the 

appropriate concentration of puromycin (1.5 ug/mL for A375; 2 ug/mL for A549, MCF7 and PC-

3; 1 ug/mL for HeLa, HA1E, HepG2, and HT-29). Cells were counted 4-5 days post selection to 

determine the infection efficiency, comparing survival with and without puromycin selection. 

Volumes of virus that yielded ~30 - 50% infection efficiency were used for screening. 

  

Primary and secondary CRISPR pooled proliferation screens 

The lentiviral barcoded library used in the primary screen contains 5235 sgRNAs, which 

includes an average of 8 guides per gene and 500 non –targeting control guides. The validation 

library contains 6996 sgRNAs targeting selected regions of the smORFs. Genome-scale 

infections were performed in three replicates with the pre-determined volume of virus in the 

same 12-well format as the viral titration described above, and pooled 24 h post-centrifugation. 

Infections were performed with enough cells per replicate, in order to achieve a representation 

of at least 1000 cells per sgRNA following puromycin selection (~1.5x10e7 surviving cells). 

Approximately 24 hours after infection, all wells within a replicate were pooled and were split 

into T225 flasks. 24 hours after infection, cells were selected with puromycin for 7 days to 

remove uninfected cells. After selection was complete, 1.5-2x10e7 of cells were harvested for 

assessing the initial abundance of the library. Cells were passaged every 3-4 days and 

harvested ~21 days after infection. For all genome-wide screens, genomic DNA (gDNA) was 

isolated using Midi or Maxi kits for the validation screens gDNA was isolated using and Midi kits 

according to the manufacturer's protocol (Qiagen, Hilden, Germany). PCR and sequencing were 

performed as previously described56,57.  Samples were sequenced on a HiSeq2000 (Illumina, 

San Diego, CA). For analysis, the read counts were normalized to reads per million and then 

log2 transformed. The log2 fold-change of each sgRNA was determined relative to the initial 

time point for each biological replicate. 
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Analysis of CRISPR screening data: 

CRISPR data was analyzed as log2 fold change values computed between the day 21 timepoint 

and the input plasmid DNA.  A log2 fold change of <= -1 was defined as a scoring sgRNA which 

was depleted in the analysis.  In the primary screen, a gene with at least 2 sgRNAs with a log2 

fold change of <= -1 in at least 1 cell line was defined a putative vulnerability hit.  Because the 

vast majority of genes in the primary screen had 8 sgRNAs per cell line, genes could be 

compared against each other with this metric.   In the secondary screen, because the number of 

sgRNAs for each gene varied, a scoring candidate was defined as a gene in which at least 10% 

of the sgRNAs had a log2 fold change of <= -1, and there were at least 2 sgRNAs with a log2 

fold change of <= -1 in at least 1 cell line.  sgRNAs were also analyzed via STARS and CERES 

scores as previously described56,58. 

  

Analysis of CRISPR tiling screen: 

Log2 fold change values for each sgRNA at day 21 of the screen were considered as above.  

sgRNAs were then grouped into their respective genomic region (e.g. UTR, ORF exon, adjacent 

gene exon, intron).  The mean log2 fold change for each region was computed.  A mean log2 

fold change of <= -1 was considered to be a scoring hit.  Genes were then classified in the 

following manner according to the viability affect of the sgRNAs: “specific to ORF” if only the 

ORF region sgRNAs scored; “specific to ORF and transcript subregion” if the ORF sgRNAs and 

sgRNAs to only one other region of the RNA transcript scored; “specific to transcript” if sgRNAs 

to any part of the ORF or RNA transcript scored, but not sgRNAs to introns or genomic regions; 

“shared with adjacent gene” if the ORF and an annotated adjacent protein coding gene both 

scored; “nonspecific to the genome” if sgRNAs to any part of the genomic region, intron, RNA 

transcript or ORF all demonstrated depletion. 

  

Comparison of CRISPR screen data with Project Achilles: 
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For each gene of ORF in each of the eight cell lines used in the primary ORF CRISPR screen, 

knockout was determined to produce depletion if at least two guides produced at least 50% 

depletion from initial abundance after RPM normalization.  The file “Achilles_logfold_change” in 

DepMap_public_19Q4 was used for Achilles screens (available at 

https://depmap.org/portal/download).  To determine the expected number of genes or ORFs that 

deplete in any cell line given N cell lines, all possible subsets of N lines were selected and the 

number of genes with at least one depleted line were counted.  For a negative control, this 

process was repeated in Achilles screens using only genes proposed as non-essential by 

previously published RNA interference data59, to generate a null distribution. 

  

GREP1 annotation analysis and expression data: 

GREP1 annotation status was evaluated using the indicated historical versions of the 

GENCODE database with graphic visualization of the locus.  In cell lines, GREP1 expression 

was evaluated through Cancer Cell Line Encyclopedia data for LINC00514 (NR_033861.1), a 

RefSeq annotation which incorporates the first portion of GREP1.  CCLE data was downloaded 

from https://portals.broadinstitute.org/ccle. 

  

Pooled GREP1 knockout: 

For the pooled GREP1 CRISPR knockout assay, we used a pool of 486 barcoded, adherent 

human cancer cell lines developed at the Broad Institute60.  The cell line pool was grown in 

RPMI1640 media supplemented with 10% FBS.  sgRNAs used for this experiment were non-

cutting control sgLacZ (AACGGCGGATTGACCGTAAT), cutting control sgChr2 

(GGTGTGCGTATGAAGCAGTGG), sgGREP1 #1 (ACTCAAAATGGCTATAGACC), and 

sgGREP1 #2 (AGGCTTTAGAGGGGACATGA).  On Day 0, the cell line pool was plated in 6 

well plates at 400,000 cells per well in 3mL of cell culture media.  24 hours later, using an all-in-

one Cas9/sgRNA plasmid, the cell line pool was infected with each lentivirus at an MOI of 10; 
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lentivirus was concentrated prior to use to obtain a concentration of >1e7 particle/ml.  Cells 

were also treated with 4ug/mL polybrene in 2mL/well for the lentiviral infection, and spun at 

2250rpm for 1 hour at 37℃.  24 hours after transduction, cells were split from 1 well in a 6 well 

plate into two T25 flasks; at this time the baseline cell DNA lysate was harvested as a “no 

infection” control.  72 hours after infection, cell culture media was changed and puromycin 

selection was started at a concentration of 1ug/mL puromycin.  Thereafter, cell culture media 

was changed every 72 hours and cells were expanded as needed into T75 and T175 flasks.  

Pooled cell line DNA was collected from the input plasmid pool, on day +6 as an early timepoint, 

and day +15 as a late timepoint to assess for dropout of cell line.  At each sample timepoint, 

cells were counted and 2e6 cells were removed for lysis for DNA.  For lysis, cells were pelleted, 

washed in PBS, and genomic DNA was extracted with the DNA Blood and Tissue Kit according 

to manufacturer’s instructions (Qiagen, Hilden, Germany).  The remainder to the cells not taken 

for lysis were re-seeded into T75 and T175 flasks for continuing cell growth.  

  

For sequencing, timepoint DNA was subjected to PCR using universal barcode primers.  PCR 

products were run on a 2% agarose gel to confirm amplicon size.  Then 10uL from each PCR 

product was pooled, purified with AMPur beads (Beckman Coulter, Brea, CA).  DNA 

concentration was measured via Qubit fluorometric quantification (Thermo Fisher Scientific, 

Waltham, MA) and DNA was sequenced on a NovaSeq (Illumina, San Diego, CA) at the 

Genomics Platform at the Broad Institute. 

  

Analysis of pooled GREP1 knockout sequencing data: 

Cell line abundance was calculated based on cell line barcode detection by next generation 

sequencing as previously described60.  To analyze the pooled GREP1 CRISPR knockout data, 

we first calculated the theoretical number of cells in each well at each timepoint based on the 

experimental measurements of the total number of cells and the number of cells removed for 
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sequencing. We accounted for these removed cells by scaling the measured number of cells at 

a given timepoint by the ratio of the total number of cells at the previous timepoint to the number 

of reseeded, or continued, cells from the previous timepoint. 

  

Next, for quality control, we computed the purity of each sample as the percentage of the read 

counts mapping to cell lines not in the pool. We removed samples with lower than 95% purity. 

We also filtered out cell lines with fewer than 12 reads in more than one replicate of either of the 

two negative control conditions, LacZ and Chr2. The conservative threshold of 12 was 

determined from the minimum number of counts at which we are able to distinguish between 

that number of counts and half that number, at a confidence level of 0.05, under a Poisson 

distribution. 

  

Then, we added a pseudocount of 1 to each of the read counts and normalized the updated 

read counts by the library size and the theoretical total cell count. We define the log fold-change 

of a cell line in a sample as the log2-transform of the ratio of the normalized read count of the 

cell line in the sample to the normalized read count of the cell line at day 0. Finally, we define 

the viability as the difference between the log fold-change in the cell line and treatment of 

interest and the average of the log fold-changes in the cell line and the two negative controls. 

  

Next, we developed a series of data processing steps to empirically improve the quality of the 

dataset (see Supplementary Fig. 10).  First, we excluded cell lines believed to be puromycin 

resistant based on the criterion of positive viability in the puromycin, no-virus condition. These 

filters resulted in a viability dataset of 400 out of 486 cell lines.  Then, we removed cell lines that 

exhibited excessive lentiviral toxicity given the high MOI used for this experiment.  This left 320 

cell lines.  Next, we eliminated cancer type cohorts with less than or equal to 5 cell lines, due to 

insufficient numbers for analysis, leaving 294 cell lines.  Lastly, we calculated the number of cell 
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lines per cancer cohort that expressed GREP1 above a minimal threshold, and excluded 

cohorts with insufficient expression as any change in those cohorts may be spurious due to 

population shifts in the cell line pool or off-target effects. 

  

Patient outcomes analysis for GREP1: 

Expression data for GREP1 in the TCGA samples was acquired from the MiPanda publicly 

available tool using the LA16c-H380H5.3 gene annotation as a query61.  Data for the GDC 

TCGA Breast Cancer and GDC TCGA Colon Cancer datasets were used.  LINC00514 

expression was extracted as a proxy for GREP1 given that LINC00514 is a fragment of the 

longer gene.  Overall survival was also extracted for these datasets.  Kaplan-Meier curves and 

statistical significance via Log-rank P value were generated using GraphPad Prism8 software, 

with a p value of < 0.05 being considered statistically significant. 

  

GREP1 copy number analysis: 

CCLE copy number data from the 2013-12-03 segmentation was downloaded from 

https://depmap.org.  Data for LINC00514 (283875) was used as a proxy for GREP1 given 

overlapping genomic regions.  Copy number data was then aggregated by cell line lineage. 

  

CRISPR validation experiments: 

Cells were plated in 96-well plates and allow to grow for 4-8 hours prior to infection with the 

indicated sgRNA or treatment condition.  1,000 - 5,000 cells per well were plated depending on 

the cell line.  sgRNAs were obtained from the Broad Institute Genomic Perturbation Platform 

(Broad Institute, Cambridge, MA, USA) or from direct synthesis into the BRDN0003 backbone 

via commercial vendor (GenScript, Piscataway, NJ).  sgRNA sequences are listed below: 
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Gene sgRNA # sgRNA sequence 

ASNSD1 1 GCTCACGTCCTACACTTGAG 

ASNSD1 2 TTTGGGTGCCAACTGAAGAG 

ASNSD1 uORF 1 GCTTAGATCCTCCTTGTGTG 

ASNSD1 uORF 2 TAAAGAACAAAAAATTGTGG 

chr2-2 N/A GGTGTGCGTATGAAGCAGTGG 

COG7 2 TGTTGAAGCCCTAAAACAGG 

COG7 1 CTACTACTACAAGTGTCACA 

GREP1 1 ACTCAAAATGGCTATAGACC 

GREP1 2 AGGCTTTAGAGGGGACATGA 

GREP1 3 GCTCAAAATGGCTTTGGACC 

HP08474 1 TGTGTTTGAGCCAGGCATGG 

HP08474 2 AGTCCCAGCAGCTACTCCGG 

RP11-277L2.3 1 CGCCTCCTGGGTTCCAGCAG 

RP11-277L2.3 2 GGGACTAGATGGAGCCGAAG 

RP11-54A9.1 1 TGGGTCTCCTCACAGAGTGA 

RP11-54A9.1 2 TCCTCAGACCAACCAGCTCA 

LacZ N/A AACGGCGGATTGACCGTAAT 

ZBTB11-AS1 1 GCGGGACTCTGTATTACCAG 

ZBTB11-AS1 2 GCGACGCCGGGACCTCATCG 

CTD-2270L9.4 1 CGTGAAGGAGTGGATCAATG 

CTD-2270L9.4 2 GAACTTGGAGAAGTCCATGG 

G083755 1 CCAACAGGTGACCTCAGCAA 

G083755 2 GGACCTCTTACATCATGGAA 

SF3B1 N/A AAGGGTATCCGCCAACACAG 

ZBTB11 1 ACAGGTTGACACCAAAGGAG 

ZBTB11 2 GCATATATTCGACTACACAA 

OLMALINC 1 ACAGGGCACTGGTCTCCCAA 

OLMALINC 2 CAAGGCTGTATATTTCACCT 

  

All sgRNAs were sequenced and verified.  After sequence verification, constructs were 

transfected with packaging vectors into HEK-293T with Fugene HD (Sigma-Aldrich, St. Louis, 

MO).  After plating, cells were then infected with sgRNA lentivirus to achieve maximal knockout 
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but without viral toxicity.  16 hours after infection, cells were selected with 2ug/uL puromycin 

(Invitrogen, Carlsbad, CA) for 48 hours.  Cell viability was measured CellTiter-Glo reagent 

(Promega, Madison, WI) was measured at 16 hours post-transfection for a baseline 

assessment, and additional timepoints as needed.  For stable knockout cell lines, cells were 

plated at equal densities and cell viability was measured by CellTiter-Glo every 24 hours as 

indicated. 

  

GREP1 overexpression rescue experiments: 

For CRISPR rescue experiments, Cas9-derivatized cell lines were infected with lentivirus GFP 

or GREP1 coding plasmids cloned into the pLX_TRC313 vector, which has EF1a promoter and 

hygromycin resistance (see https://portals.broadinstitute.org/gpp/public/vector for details).  Cells 

were selected in 350ug/mL of hygromycin for 72 hours prior to transitioning back to standard 

culture media.  

  

In 96 well plates, 5000 ZR-75-1 derived cells were plated and infected with the indicated sgRNA 

lentivirus 4-6 hours after plating.  16 hours after infection, cells were selected with 2ug/mL 

puromycin for 48 hours and grown for 7 days prior to cell viability analysis using CellTiter-Glo 

reagent. 

  

Conditioned media rescue experiments: 

First, on day -2 HEK293-T cells were plated and transiently transfected with GFP and GREP1 

with Fugene HD reagent.  On day -2, 5000 ZR-75-1 derived cells or 2500 AU565-derived cells 

were plated in wells of a 96-well plate.  On day -1, ZR-75-1 and AU565 cells were switched to 

serum-free media.  On day 0, conditioned media from GFP- or GREP1-expressing HEK293-T 

cells was cleared of cellular debris via centrifugation and then 100uL of conditioned media was 
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applied to each well.  Conditioned media was then refreshed daily and cell viability was 

determined with the CellTiter-Glo reagent at the indicated time points. 

  

Immunoprecipitation: 

HEK293-T cells were transiently transfected with GFP-V5 or GREP1-V5 fusion proteins using 

OptiMem and Fugene HD (Sigma-Aldrich, St. Louis, MO).  72 hours after transfection, cell 

culture media was harvested and cell debris was sedimented by centrifugation at 1500 rpm x 5 

minutes twice.  Resulting cell culture media was concentrated in a 10:1 manner using 3kDa 

size-exclusion filter (Millipore, Burlington, MA).  Concentrated culture media was treated with 

HALT protease inhibitor.  Next, all immunoprecipitation steps were performed on ice or in a 4℃ 

cold room.  First, culture media was cleared with Pierce magnetic A/G beads (Thermo Fisher 

Scientific, Waltham, MA) for 1 hour while rotating at 18-20 rpm.  Beads were then discarded and 

10% of the media was removed as an input sample and kept at 4℃ without freezing. The 

remained of the culture media was then treated with 50uL of magnetic anti-V5 beads (MBL 

International, Woburn, MA) and rotated at 18-20 rpm overnight at 4℃.  The next day, the 

supernatant was discarded and beads were washed four times in IP wash buffer (50nM TricHCl, 

pH 8.0, 150nM NaCl, 2mM EDTA, pH 8.0, 0.2% NP-40, and 1ug/mL PMSF protease inhibitor) 

with rotation for 10 minutes per wash.  After the final wash, beads were gently centrifuged and 

residual wash buffer was removed.  Then, proteins were eluted twice with 2 ug/uL V5 peptide in 

water (Sigma-Aldrich, St. Louis, MO) at 37℃ for 15 minutes with shaking at 1000rpm.  The two 

elution fractions were pooled and samples were prepared with 4x LDS sample buffer and 10x 

Sample Reducing Agent (Thermo Fisher Scientific), followed by boiling at 95℃ for 5 minutes.  

One-third of the eluate was then run on a 10-20% Tris-Glycine SDS Page gel and stained with 

SimplyBlue Commassie stain (Thermo Fisher Scientific, Waltham, MA) for 2 hours.  Gels were 

destained with a minimum of 3 washes in water for at least 2 hours per wash.  Bands were 

visualized using Commassie autofluorescence on the LI-COR Odyssey in the 800nM channel.  
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Gel lanes were then cut into 6 equal-sized pieces using a sterile razor in sterile conditions, and 

stored in 1mL of DEPC-treated water prior to mass spectrometry analysis. 

  

Methods for Protein Sequence Analysis by LC-MS/MS: 

LC-MS/MS was performed in the Taplin Biological Mass Spectrometry Facility at the Harvard 

Medical School.  Briefly, excised gel bands were cut into approximately 1 mm3 pieces.  Gel 

pieces were then subjected to a modified in-gel trypsin digestion procedure62.  Gel pieces were 

washed and dehydrated with acetonitrile for 10 min. followed by removal of acetonitrile.  Pieces 

were then completely dried in a speed-vac.  Rehydration of the gel pieces was with 50 mM 

ammonium bicarbonate solution containing 12.5 ng/µl modified sequencing-grade trypsin 

(Promega, Madison, WI) at 4ºC.  After 45 min., the excess trypsin solution was removed and 

replaced with 50 mM ammonium bicarbonate solution to just cover the gel pieces.  Samples 

were then placed in a 37ºC room overnight.  Peptides were later extracted by removing the 

ammonium bicarbonate solution, followed by one wash with a solution containing 50% 

acetonitrile and 1% formic acid.  The extracts were then dried in a speed-vac (~1 hr).  The 

samples were then stored at 4ºC until analysis.  

  

On the day of analysis the samples were reconstituted in 5 - 10 µl of HPLC solvent A (2.5% 

acetonitrile, 0.1% formic acid).  A nano-scale reverse-phase HPLC capillary column was created 

by packing 2.6 µm C18 spherical silica beads into a fused silica capillary (100 µm inner 

diameter x ~30 cm length) with a flame-drawn tip63.  After equilibrating the column each sample 

was loaded via a Famos auto sampler (LC Packings, San Francisco CA) onto the column. A 

gradient was formed and peptides were eluted with increasing concentrations of solvent B 

(97.5% acetonitrile, 0.1% formic acid).  

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.981001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.981001


37 

As peptides eluted they were subjected to electrospray ionization and then entered into an LTQ 

Orbitrap Velos Pro ion-trap mass spectrometer (Thermo Fisher Scientific, Waltham, MA).  

Peptides were detected, isolated, and fragmented to produce a tandem mass spectrum of 

specific fragment ions for each peptide.  Peptide sequences (and hence protein identity) were 

determined by matching protein databases with the acquired fragmentation pattern by the 

software program, Sequest64 (Thermo Fisher Scientific, Waltham, MA).  All databases include a 

reversed version of all the sequences and the data was filtered to between a one and two 

percent peptide false discovery rate.  Glycosylated peptides were defined using the A score 

method as described65. 

  

IP-MS and gene ontology analysis: 

We analyzed IP-MS data from two independent experiments for V5 immunoprecipitation for 

GFP-V5 and GREP1-V5 conditioned media.  IP-MS data was merged for the two experiments 

and all proteins with < 2 total peptides were removed to exclude technical artifacts.  To the 

remaining proteins, a pseudocount of 1 was added to ensure a non-zero denominator.  Next, 

fold change of (GREP1+1)/(GFP+1) peptide count was calculated and log10-transformed.  

Enriched peptides with a (GREP1+1)/(GFP+1) ratio of >= 2 were further analyzed using the 

Gene Ontology database (http://geneontology.org) for cellular component analysis and 

corrected false discovery rates were plotted as shown. 

  

GREP1 disorder analysis: 

The GREP1 primary amino acid sequence was analyzed via the DISOPRED3 package66 on the 

PsiPred server (http://bioinf.cs.ucl.ac.uk/psipred/) using default settings.  Disorder scores were 

plotted as indicated. 

  

GREP1 evolutionary analysis: 
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The GREP1 amino acid sequence (ENST00000573315.2_prot) was aligned to non-redundant 

protein sequences using the NCBI BlastP suite as well as manually aligned to the genomes of 

the common rat (RGSC 6.0/rn6, July 2014 assembly) and domestic dog (Broad 

CanFam3.1/canFam3 assembly).  Resulting protein hits were then ranked by E-value value and 

the most significant result was used for each organism.  Predicted proteins and low-quality 

protein assemblies were included in this analysis.  Resultant species-specific amino acid 

sequences were then aligned by the Clustal Omega sequence aligner 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) and percent similarity to human GREP1 was plotted. 

  

GREP1 codon usage analysis: 

We calculated the triplet codon frequency for all triplet codons for the GREP1 amino acid 

sequence, the whole ORFeome in total, and GENBANK genes by collating all mRNA 

sequences within these respective groups and calculating the codon usage per group.  Each 

codon usage was normalized to a standard rate of codon usage per 1000 codons.  Triplet 

codons were then collapsed into single amino acids by scaling the codon usage rate to the 

relative frequency of usage for each codon per amino acid.  Aggregate frequency of amino acid 

representation was then calculated and compared across groups. 

  

Cytokine profiling array: 

Cytokine profiling was performed simultaneously using the Human XL Cytokine Array (R&D 

Systems, ARY022, Minneapolis, MN).  Briefly, cell culture media were cleared of cellular debris 

and Halt protease inhibitor was added as above.  Then, cytokine arrays were blocked in 2mL of 

Array Buffer 6 (blocking buffer) each for 1 hour on a shaker at room temperature.  Samples 

were prepared with 300uL of culture media and diluted with 1200uL of Array Buffer 6.  Cytokine 

arrays were then removed from blocking buffer and incubated with samples overnight at 4℃ on 

a rocker.  The next morning array membranes were washed in 20mL 1x Wash Buffer for a total 
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of 3 washes.  Then, arrays were placed in 1.5mL of 1x Array Buffer 4/6 (a 1:2 mixture of Array 

Buffer 4 and Array Buffer 6), and 30uL of reconstituted detection antibody cocktail was added.  

Samples were incubated for 1 hour at room temperature on a shaker.  Subsequently, 

membranes were washed in 20mL 1x Wash Buffer for a total of 3 washes, and then transferred 

to 2.0mL of 1x streptavidin-HRP for 30 minutes at room temperature on a shaker, followed by 

three more washes in 20mL of 1x Wash Buffer.  Afterwards, the membranes were blotted on 

tissue paper to remove excess buffer, and signal was developed with chemiluminescent reagent 

mix. Images were developed with CareStream Kodak BioMax light film (Kodak, Rochester, NY). 

  

Cytokine profiling analysis: 

Immunoblot images of the cytokine arrays were scanned and the signal intensity of all array 

antibody spots was determined using ImageJ (https://imagej.nih.gov/ij/index.html).  Raw data 

values were then inverted using the formula y = 255 - x, where x is the raw signal intensity.  

Inverted values were then normalized according to knockout or overexpression experiments.  

For knockout experiments, signal was analyzed as sgControl - sgGREP1.  For overexpression 

experiments, signal was analyzed as GREP1 - GFP.  Then, the absolute value of signal change 

was averaged across experiments and rank-listed according to the magnitude of average 

change. 

  

GDF15 ELISA: 

The GDF15 Quantikine ELISA kit (R&D Systems, Minneapolis, MN) was used.  In brief, cell 

culture media samples were diluted 1:3 by volume in Diluent RD5-20.  To prepare microplate 

wells, 100uL of Assay Diluent RD1-9 was added to each well.  Then, 50uL of standards, 

controls, or diluted samples were added to a given well.  The plates were incubated at 2 hours 

at room temperature on a horizontal orbital microplate shaker at 500rpm.  Wells were then 

washed four times with 400uL of 1x Wash Buffer for five minutes per wash; after the final wash, 
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plates were inverted and blotted on tissue paper to remove excess.  Then, 200uL of Human 

GDF-15 conjugate was added to each well and the plate was incubated for 1 hour at room 

temperature on an orbital shaker.  Following this, wells were then washed four times with 400uL 

of 1x Wash Buffer for five minutes per wash; after the final wash, plates were inverted and 

blotted on tissue paper to remove excess.  Then, 200uL of Substrate Solution was added per 

well, and plates were incubated for 30 minutes at room temperature without shaking and 

protected from light.  Then, 50uL of Stop Solution was added per well and samples were mixed 

with gentle tapping.  The optical density of samples at 450nM and 570nM was determined on a 

microplate reader within 15 minutes of completion of the protocol.  For analysis, background 

signal from 570nM was subtracted per well from the 450nM signal.  Samples were then 

calculated based on a standard curve to obtain GDF-15 concentration values. 

  

Correlation of GREP1 and GDF15 expression: 

GREP1, GDF15, FN1, and EMIL2 expression was downloaded via the MiPanda portal61 as TPM 

values.  GTex and TCGA samples were used.  Spearman rho correlation coefficients and 

Spearman p values were calculated using GraphPad Prism8 and plotted as shown. 

  

Recombinant GDF15 experiments: 

Recombinant human GDF15 (R&D Systems, Minneapolis, MN, catologue number 957-GD-025) 

was resuspended in water at 10ug/uL.  Knockout with sgGREP1 #2 or controls in ZR-75-1 was 

performed as described above.  24 hours after infection with lentiviral sgRNA, cell culture media 

was refreshed to contain puromycin as above for antibiotic selection, and GDF15 or vehicle 

control was supplemented at the following concentrations: 0.01 pg/mL, 0.1 pg/mL, 1pg/mL, 

10pg/mL, 100pg/mL.  Thereafter cell culture media and recombinant GDF15 was refreshed 

every 24 hours.  Cell viability was measured 7 days after lentiviral infection using the CellTiter-

Glo reagent (Promega, Madison, WI). 
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Statistical analyses for experimental studies 

All data are expressed as means ± standard deviation. All experimental assays were performed 

in duplicate or triplicate. Statistical analysis was performed by a two-tailed Student’s t-test, one-

way or two-way analysis of variance (ANOVA), Kolmogorov-Smirnov test, log-rank P value, or 

other tests as indicated.  A p value <0.05 was considered statistically significant. 

 

Data availability statement 

Processed data for CRISPR screens (in Figure 3 and Figure 4d) are available in Supplementary 

Tables 20, 25, and 29. Raw data will be made available upon request. Mass spectrometry data 

relating to Figure 1 are available in Supplementary Table 12. Raw MS spectra will be made 

available upon request. L1000 data relating to Figure 2 and Supplementary Figures 3 & 4 is 

available through the NIH LINCS program and at https://clue.io/data.  Data will be made publicly 

available upon publication.  The website lincsproject.org provides information about the LINCS 

consortium, including data standards. 
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Figure Legends 

Figure 1: Identification of translated unannotated or unstudied open reading frames.  a) A 

schematic overview of the research project.  b) The experimental set-up for in vitro detection of 

protein translation by transfection of V5-tagged cDNAs into HEK293T cells followed by in-cell 

western blotting.  c) In-cell western blot signal for each ORF.  Values are the average of three 

replicates.  d) Immunoblot correlates for three ORFs identified by in-cell western blotting, 

marked in panel c.  e) An overview of biological support for translation of a subset of ORFs.  f) 

Subgroup analyses of ORF biological features demonstrating fractions of ORFs supported by 

ectopic V5 translation assays, mass spectrometry or both.  g) The fraction of ORFs supported 

by evidence of translation across major epochs in evolutionary time.  Evidence of translation 

shown as the fraction of ORFs with V5 western blot signal, endogenous mass spectrometry 

peptides, and the summation of both. 

  

Figure 2: Defining bioactive ORFs through gene expression profiling.  a) A schematic 

showing the experimental set-up. Briefly, ORFs were individually transduced into 4 cell lines and 

expression was profiled 96 hours after infection using the L1000 platform.  b) The fraction of 

ORFs resulting in transcriptional perturbation compared to all profiled known genes and assay 

positive controls.  Inset at the right, a barplot enumerating the percentage of ORFs in each 

group with a transcriptional signature above the indicated reproducibility threshold.  c)  A barplot 

showing the strength of transcriptional perturbation following expression of the indicated groups 

of wild-type or mutant ORF constructs.  P value by Wilcoxon test.  Error bars represent standard 

deviation.  d) A heatmap showing the number of ORFs demonstrating positive or negative 

connections with individual Perturbational Classes (PCLs) at the indicated percentile rank.  e) 

An example of RP11-505K9.1 showing the high concordance of connectivity signatures when 

the wild type ORF is expressed compared to the ORF with mutated translational start sites.  f) 
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Bland-Altman analysis demonstrating enrichment of high-ranking connectivity values following 

expression of wild type ORFs compared to mutant ORFs.  P value by Wilcoxon test. 

  

Figure 3: CRISPR screening to identify unknown ORFs implicated in cancer cell viability.  

a) A schematic showing the experimental design, including a primary screen in 8 cancer cell 

lines and a secondary screen in 3 cancer cell lines.  b) The distribution of sgRNA depletion at 

day +21 following lentiviral infection in the CRISPR screen across 8 cell lines.  2.5% of sgRNAs 

were identified as depleted in a particular cell line with a log2 fold change of <= -1.  c) The 

distribution of nominated ORFs.  For each cell line, the inner circle, the number of sgRNAs with 

a log2 fold change of <= -1, and the number of nominated genes are shown.  The outer circle 

shows the ORFs nominated in that cell line, with the ORFs ranked by the number of supporting 

sgRNAs.  The thickness of the outer circle boxes reflects the number of sgRNAs supporting that 

ORF’s nomination.  Only ORFs nominated with >= 2 sgRNAs are shown.  d) A boxplot showing 

the fraction of annotated genes, new ORF genes, and RNAi-defined nonessential genes that 

score as a vulnerability gene in the indicated number of cell lines.  Each data point represents a 

unique cell line.  The cell lines for ORF genes represent the cell lines used in this study.  For 

annotated genes, the randomly selected cell lines from the Dependency Map were used.  Box 

plots represent median with interquartile ranges.  e) The correlation between the number of 

sgRNAs producing a viability phenotype in the primary and the fraction of sgRNAs producing a 

viability phenotype in the secondary screen.  P value by a one-way ANOVA.  f) A barplot 

showing the number of ORFs with each category of viability phenotype in the tiling sgRNA 

CRISPR screens.  g) An example of ZBTB11 and ZBTB11-AS1 for tiling CRISPR data, showing 

enhanced cell killing when the ZBTB11-AS1 ORF is knocked-out.  Each data point represents a 

sgRNA.  Data points are color-coded for the indicated cell lines.  h) Individual CRISPR knockout 

experiments in a doxycycline-inducible Cas9 HeLa cell line using two sgRNAs targeting 

exclusively ZBTB11 or two sgRNAs targeting both the ZBTB11-AS1 ORF and ZBTB11.  The 
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line plot shows cell viability measured by cellular ATP following induction of Cas9 activity with 

2ug/mL doxycycline.  sgLacZ and sgCh2-2 are non-cutting and cutting negative controls, 

respectively, and sgSF3B1 is a pan-lethal positive control.  The inset western blot shows 

ZBTB11 protein abundance upon induction of Cas9.  P value by a two-tailed Student’s t-test.  

Error bars represent standard deviation. 

 

Figure 4: Characterizing GREP1 as a cancer dependency gene in breast cancer.  a) 

Nomination of candidate ORFs with evidence for protein translation, gene expression effect, and 

CRISPR phenotype.  b) A table summarizing the characteristics of the GREP1 gene.  c) A 

schematic showing the overview of pooled CRISPR screening.  d) Log2 fold change abundance 

of cancer cell lines at Day 6 and Day 15 following pooled CRISPR screening.  Cell lineages are 

ranked based on the median log2 fold change at Day 15.  Each data point represents a unique 

cell line.  e) Individual CRISPR validation experiments for GREP1 in a panel of non-breast 

(n=10) and breast (n=9) cell lines.  Data are scaled so that 0 reflects the sgCh2-2 negative 

cutting control and -1 reflects the degree of viability loss from the sgSF3B1 positive control.  

Data were obtained 7 days after lentiviral infection.  P value by a Mann-Whitney test.  f) Rescue 

of the CRISPR phenotype with overexpression of a CRISPR resistant GREP1 construct and not 

GFP.  An asterisk (*) indicates a P value < 0.05.  P values by a two-tailed Student’s t-test.  g) 

The GREP1 amino acid sequence with the signal localization sequence and the sites of 

glycosylation indicated.  h) Immunoprecipitation followed by mass spectrometry of HEK293T 

conditioned media and whole cell lysate following ectopic expression of a pool of V5-tagged 

ORFs.  The x and y axes represent the total number of MS peptides detected in two 

independent experiments.  i) Expression of V5-tagged GREP1 or a truncated GREP1 lacking 

the N-terminal signal localization sequence in HEK293T cells.  Cell lysates or conditioned media 

were subjected to V5 immunoprecipitation and then protein was visualized by Commassie stain.  

j) Experimental design for secreted cytokine profiling following GREP1 perturbation.  k) A 
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heatmap showing individual cell line changes in cytokine abundance following GREP1 

perturbation.  Cytokines are ranked according to the average of the absolute value of signal 

change for each cell line.  l) Validation of GDF15 modulation upon GREP1 perturbation by 

ELISA in the indicated cell lines.  P value by a two-tailed Student’s t-test.   All error bars 

represent standard deviation. 
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Supplementary Figure 1: A flowchart of ORF support. 

Manual curation of ~9900 ORF loci from the indicated dataset sources were then filtered using 

the indicated biological attributes and selection criteria.  After selection, the 553 ORFs were then 

evaluated by additional metrics as shown.  Please see the Methods for additional details on 

selection criteria.  
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Supplementary Figure 2: Validation of ORF proteins. 

a) Vector design and sequence details for the ORF library.  The vector used is a modified version 

of the plx307 vector developed by the Genomic Perturbation Platform at the Broad Institute.  b) 

Titration analyses of in cell western experiments.  Three ORFs were chosen: eGFP (positive 

control), LINC00116 (high-expressing ORF), and RP11-539I5 (low expressing ORF).  Increasing 

amounts of plasmid were transfected into increasing numbers of HEK293T cells as shown.  c) 

Quantification the in cell western titration shown in b, demonstrating signal detection over noise 

and signal plateau.  Signal was quantified using pixel density in the 800nM green color channel.   
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d) Replicate experiments assessing signal-to-noise thresholds for a low-expressing ORF 

transfected into HEK293T cells with a low DNA plasmid concentration, as well as a high-

expressing ORF (eGFP) transfected into HEK293T cells at a high DNA plasmid concentration.  e) 

Example in cell western data in triplicate experiments for selected ORFs.  f) Abrogation of protein 

translation via mutation of the ORF for selected examples.  g) A systematic evaluation of in cell 

western signal for wild type and mutant ORFs for all pairs.  ORFs are separated into those with 

signal above the baseline threshold, and those without reproducible signal.  h) An immunoblot 

showing in vitro transcription/translation of selected tag-free ORFs using a wheat germ lysate 

system.  Red arrows indicate the translated ORFs. 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.981001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.981001


5 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.981001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.981001


6 

Supplementary Figure 3: ORF gene expression data on the L1000 platform. 

a) A L1000 perturbational plate layout showing locations of treatment ORFs, non-human 

proteins, untreated wells, and technical positive control ORFs.   b) A second L1000 perturbational 

plate layout showing locations of treatment ORFs, non-human proteins, untreated wells, and 

technical positive control ORFs.  c) Level 5 L1000 data processing (“MODZ” score) and clustering 

of L1000 signatures for positive control ORFs with a TAS score of >= 0.2. Color red in cells denotes 

a connectivity score of 95 percentile or greater (similar signatures); blue denotes <= -95 

percentile (dissimilar signatures).  d) Scatter plots of L1000 data for experimental ORFs.  The Y 

axis represents signature strength and the X axis represents reproducibility, the two metrics used 

to calculate the TAS score.  Each TAS score is indicated by the color code of each individual ORF.  

Each data point represents one ORF.  e) The distribution of replicate reproducibility scores across 

all L1000 experiments.  Red denotes signatures >= 0.2, which indicated that a signature was 

present. Blue denotes signatures < 0.2, which denotes that a signature was not detected.  f) The 

distribution of transcriptional activation scores (TAS) across all L1000 experiments.  Red denotes 

signatures >= 0.2, which indicated that a signature was present. Blue denotes signatures < 0.2, 

which denotes that a signature was not detected.  g) Intersection of replicate reproducibility and 

TAS scores shows a high degree of correlation.  360 signatures were considered positive for both 

replicate reproducibility and high TAS score. 
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Supplementary Figure 4: Analysis of paired wild-type and mutant constructs in L1000 data. 
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a) An example of ORF mutagenesis strategy in which the start codon and downstream 

methionines were mutated to alanine.  The shown amino acid sequence is fictional and does not 

represent an ORF in this study. b) A pie chart showing the number and percentage of amino acids 

changed per ORF from the mutagenesis.  c) A violin plot showing the number of PCL connections 

made at the 98th percentile for matched mutant and wild type constructs.  P value by a Wilcoxon 

matched pairs rank test.  d) Left, the overall distribution of PCL connections across all ranks in 

wild type and mutant constructs.  Right, an inset image of distribution of PCL connections at high 

connectivity, showing a bias in connections made with wild type constructs.  P value by a 

Wilcoxon matched pairs rank test.  e) All PCL connections in wild type constructs at either the 

>=95th percentile or <= -95th percentile, with the matched percentile connectivity in the mutant 

constructs.  f) The distribution of percentile connectivity results in wild type or mutant constructs 

for the indicated genes.  In brief, all ORF L1000 signatures were queried against all PCL classes 

and a percentile connectivity was generated for each individual cell line and for both wild type 

and mutant constructs.  Cell line and construct data was then aggregated and ranked from 

highest to lowest connectivity.  The rank positions of wild type and mutant ORFs were then 

plotted to reveal a depletion of mutant constructs at high connectivity scores.  g) Two example 

heatmaps for the TINCR and SLC35A4 uORF genes showing clustering of PCL connectivity among 

wild type constructs that is not shared with mutant constructs.  Purple bars denote wild type ORF 

experiments and green bars denote mutant ORF experiments.   h) L1000 signature replicate 

reproducibility for all wild type and mutant pairs across all cell lines. All ORF signatures with at 

least one reproducible wild type signature are shown. 
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Supplementary Figure 5: CRISPR screens for new ORFs. 

a) A barplot and inset table showing the number of sgRNAs per ORF in the primary CRISPR screen.  

b) Frequency distribution of putative CRISPR hits using a viability threshold of log fold change of 

<= -1 or <= -0.5 in the primary CRISPR screen.  c) The percentage of nominated CRISPR hits which 

had minimal detectable expression or expressed above the threshold of >= 0.5 TPM.  d)  The 
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correlation between log fold change values for nominated CRISPR hits and the CERES score for 

each gene, which integrates copy number data for each cell line. Spearman and Pearson 

correlations are shown with Spearman’s p value shown.  e) An example of the chr17q23 

amplification locus in MCF7 cells.  CRISPR knockout of genes in the locus result in nonspecific cell 

death due to excessive genomic cutting, regardless of gene expression level.  Three putative ORFs 

were located in this genomic region, indicated with red dots in the figure.  f) A histogram showing 

the fraction of genes that would score as a vulnerability gene from a randomly selected set of 

500 annotated genes from cell lines in the Cancer Dependency Map.  The ORFeome CRISPR 

screen result is indicated.  g) The rate of genes scoring as viability genes in the canonical Avana 

gene library and the ORFeome sgRNA library for the five cell lines shared between both screens.  

h) The distribution of sgRNAs across various genome regions in the secondary CRISPR screen.  i) 

A histogram showing the number of sgRNAs per ORF in the secondary CRISPR screen. 
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Supplementary Figure 6: Validation of CRISPR hits via manual assays.  

a-i) CRISPR assays using doxycycline-inducible Cas9 in HeLa cells.  Targets are divided in ones that 

validated and ones that did not. For each experiment, the right-set panel is qPCR data of 

expression 96 hours after induction of Cas9 with doxycycline. a) ZBTB11-AS1  b) HP08474  c) 

G029442  d) RP11-54A9.1  e) G083755  f) OLMALINC  g) CTD-2270L9.4  h) RP11-277L2.3,  i) 
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ASNSD1 uORF.  j-k) CRISPR assays using stably-expressing A375 Cas9 cells.  j) CTD-2270L9.4  k) 

ASNSD1 uORF.  Error bars represent standard deviation. 
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Supplementary Figure 7: Tiling CRISPR to elucidate functional ORFs. 

a) A heatmap showing log fold change viability loss at Day +21 for the indicated ORFs tested by 

multiple tiling sgRNA regions.  b-e)  Examples of ORFs with a CRISPR tiling phenotype.  b) CTD-

2270L9.4  c) OLMALINC  d) RP11-54A9.1  e) RPP14 dORF / HTD2.  f - k) Representative sgRNA log 

fold change data for the indicated transcripts.  Each tiling experiment is classified as indicated.  f) 

LINC00662  g) RP11-195B21.3  h) LYRM4-AS1  i) ESRG  j) TCONS_I2_00007040  k) LINC01184. 
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Supplementary Figure 8: Discordant RNAi and CRISPR data for two overlapping ORFs.  

a) The dependency profile for COG7 using RNAi or CRISPR data.  b) A scatter plot comparing the 

magnitude of dependency phenotype for individual cell lines in RNAi or CRISPR data.  c) A 

comparison of the log fold change in cell abundance using the average LFC of the two sgRNAs 

targeting CTD-2270L9.4 and COG7, compared to two sgRNAs targeting COG7 alone.  Only cell 

lines with a viability phenotype in the CTD-2770L9.4 targeting sgRNAs are shown.  P value by a 

two-tailed Student’s t test.  d) The dependency profile for ZBTB11 in RNAi or CRISPR data.  e) A 

scatter plot comparing the magnitude of dependency phenotype for individual cell lines in RNAi 

or CRISPR data.  f) A comparison of the log fold change in cell abundance using the average LFC 

of the two sgRNAs targeting ZBTB11 and ZBTB11-AS1, compared to two sgRNAs targeting ZBTB11 

alone.  Only cell lines with a viability phenotype in the ZBTB11-AS1 targeting sgRNAs are shown.  

P value by a two-tailed Student’s t test. 
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Supplementary Figure 9: The GREP1 locus and expression. 

a) A schematic representation of the GREP1 gene structure and the annotation of this locus in 

the indicated databases.  The year of release for each database is indicated.  b) mRNA expression 

level of GREP1 across tumor lineages in the Cancer Cell Line Encyclopedia.  The Y axis is in a log10 
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scale.  c) mRNA expression of GREP1 across tumor types using TCGA and GTex data.  A two-tailed 

Student’s t-test was used to  calculate significance of change between normal and cancer tissues.  

Cell lineages are grouped according to whether GREP1 expression is specifically modulated in 

cancer, universally expressed as a lineage gene, or not robustly expressed in the indicated 

lineage. 
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Supplementary Figure 10: Pooled GREP1 knockout across cell lines. 

a) A table summarizing all input cell lines in the pool and filters applied to the data for final 

analysis.  b) All raw cell line viability data at Day +6 prior to data filtering.  c) Cell line viability data 

at Day +6 after data filtering. d) All raw cell line viability data at Day +15 prior to data filtering. e) 

Cell line viability data at Day +15 after data filtering. f) Correlation of G029442 sgRNAs at Day +6 

using filtered data.  g) Spearman’s correlation of G029442 sgRNAs at Day +15 using filtered data.  

P value for the Spearman’s rho is shown.  h) G029442 locus copy number profile across cell line 

tumor types using Cancer Cell Line Encyclopedia data.  No cell lineage harbors high-level 

amplifications. 
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Supplementary Figure 11: GREP1 is implicated in cell proliferation. 

a) Cell growth curves by CellTiter-Glo following GREP1 knockout in three sensitive and three 

insensitive cell lines.  b) A scatter plot showing lineage-specific correlation between cell viability 

and GREP1 mRNA expression on the X axis with the average GREP1 expression level on the Y axis. 

c) Overall survival for breast cancer patients in the TCGA database stratified by GREP1 expression.  

Significance by log-rank P value.  d) Overall survival for colon cancer patients in the TCGA 

database stratified by GREP1 expression.  Significance by log-rank P value.  e) Immunoblot of V5-

tagged GREP1 or GFP in HEK293T cells in both whole cell lysate and conditioned media.  A mutant 

GREP1, in which translational start sites were mutated to alanine, lacks protein translation 

initiation ability.  i) Abundance of mass spec peptides detected in the full length GREP1 or 

cleavage product GREP1 proteins.  Peptide abundance is represented as a fraction of total 

peptides detected.  All error bars represent standard deviation. 
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Supplementary Figure 12: GREP1 is associated with the extracellular matrix. 

a) Total fraction of amino acid usage in the ORFeome, GENBANK, GREP1, and the Collagen alpha-

1 family.  Sequence similarities between GREP1 and the collagen family are indicated.  b) 

Predicted disorder score for the GREP1 amino acid sequence.  c) Amino acid conservation for 

detected homologs of GREP1 in the indicated species.  d) Non-denaturing native western blot of 

GREP1 in conditioned media from HEK293T cells expressing V5-tagged GREP1.  e) Representative 

Commassie-stained gels for immunoprecipitation of GREP1 from the conditioned media of 

HEK293T cells.  Two representative biological replicates are shown. f) Enrichment of extracellular 

matrix proteins in the IP-MS data for GREP1 compared to IP-MS data for GFP.  g) Gene Ontology 

Cellular Component analysis of proteins >= 2 fold enriched in GREP1 immunoprecipitation 
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compared to GFP immunoprecipitations.  h) IP MS total peptide count for fibronectin shown for 

three separate experiments. 
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Supplementary Figure 13: GREP1 regulates GDF15. 

a) Cytokine profiling in HEK293T cells with transient ectopic GREP1 or GFP overexpression, ZR-

75-1 cells with stable GREP1 knockout, or HDQP1 cells with stable GREP1 knockout.  The change 

in signal abundance was calculated for each control/GREP1 pair.  To rank cytokines, the average 

of the absolute values for the individual signal changes was plotted.  b) GDF15 abundance by 

ELISA in ZR-75-1 and CAMA-1 cells overexpressing a GREP1 or GFP cDNA plasmid.  c) Spearman's 

rho for GREP1 expression correlation with GDF15, EMILIN2, or FN1 in the indicated TCGA 

datasets.  d) Spearman's p value for the GREP1 correlation coefficient for GREP1 correlation with 
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GDF15, EMILIN2, or FN1 in the indicated TCGA datasets.  e-g) Recombinant GDF15 partially 

rescues GREP1 knockout.  CAMA-1, ZR-75-1 or T47D Cas9 cells were infected with the indicated 

sgRNAs.  24 hours after infection, cells were treated with vehicle control or increasing 

concentration of recombinant human GDF15 as shown.  Relative abundance was measured 7 

days after infection.  All error bars represent standard deviation. 
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Supplementary Figure 14: A graphical model 
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Supplementary discussion 

 

Historical perspectives on the human genome annotation 

The human genome is now generally felt to have ~19,029 protein-coding genes (Homo sapiens 

CCDS release 22 as of October 10, 2019).  The single largest gene discovery project was the 

Human Genome Project (HGP).  The RefSeq database included approximately ~10,000 genes 

prior to publication of the HGP1,2, which had doubled from the 4,270 genes in the July 1995 

GenBank Release 89.93.  Many of these genes were known from positional cloning and other 

techniques.   

 

The initial HGP in 2001 postulated 30,000 - 40,000 human genes.  By itself, this was a dramatic 

reduction in the ~50,000 - ~100,000 anticipated genes4–6.   However, by the revision of the HGP 

in 2004, this number had been decreased to 20,000 - 25,0007.  It was subsequently reduced to 

~19,000, with ~17,600 confidently observed by mass spectrometry8.  This number has been the 

current estimate for the past 10 years and the number used as the basis of all exome sequencing 

studies. 

 

Assumptions made during gene discovery 

In the HGP, mRNAs were queried for the presence of an open reading frame that was >= 100 

amino acids and began with a methionine start codon.  If present, this ORF was reported as a 

novel protein in the HGP.  Such methods had basis in precedent, but were not without challenges: 

the established noncoding RNA Xist was initially reported to have a 894 bp ORF9 until it was 

determined that this ORF was not actually coded10. 

 

Proteins less than 100 amino acids were included in the HGP only if they had been previously 

known, as such ORFs were difficult to predict due to noise from existing cDNA fragments at that 

time.  Therefore, ORFs less than 100 amino acids were not nominated solely based on 

computational analyses11–13.   

 

Protein size and function 

There is no specific scientific rationale for why smaller proteins would be less real.  An analysis 

by John Mattick and colleagues suggested that an ORF of >100 amino acids was approximately 

two standard deviations above the average random ORF size in a random 1kb segment of genome 

sequence14.  This is statistic, though, is not particularly meaningful as most genes are much longer 

than 1000bp due to extended untranslated regions (UTRs).  However, it highlights the challenge 

in computationally separating signal from noise. 

 

It is not clear whether there is a minimum size required for peptide/protein function.  The 

smallest known functional unit is a zinc finger, which is an aggregation of the Cys2-His2 four amino 

acid motif.  It is typically thought that a minimum of four or five such motifs are required for 

functional zinc finger DNA binding, thus suggesting that a peptide of 20 amino acids or greater 

may be eligible for this function.  Secondary structure for a peptide may exist with as few as four 

or five amino acids15, and enkephalins are five amino acid peptides found in the central nervous 
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system and thought to be functional16.  An alpha helical peptide can be stably produced with 14 

amino acids17.  There are also now known proteins less than 50 amino acids18,19.   

 

Skew in the size distribution of annotated proteins 

Most annotated proteins are >100 amino acids in most organisms.  As shown below, the fraction 

of the annotated proteome for humans, C. elegans, D. melanogaster and D. rerio. 

 

 
 

Among human proteins <100 amino acids, 61% are 90 - 99 amino acids large, and thus proteins 

< 90 amino acids are very rare in annotated databases.  Below these data are shown in figure 

formation for H. sapiens. 

 

 
 

Methods to validate a putative protein 

Once a potential protein is identified, there are many possible ways to demonstrate its existence.  

Mass spectrometry of endogenous peptides can provide evidence, though small proteins often 

have few trypic sites and may not perform well by mass spectrometry.  Also, many unannotated 

proteins are likely lineage-restricted and may not be historically well represented in the mature 

tissues profiled by mass spectrometry. 

 

Tag-free biochemical transcription/translation with rabbit or wheat germ lysates can be used, 

but these assays have a high false negative rate and are biochemical assays only.  In vitro studies 

can include ribosome profiling/polysome association to see if the mRNA is bound by ribosomes, 

though this is not direct evidence of translation.  Other in vitro studies are exogenously 
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expressing an epitope-tagged plasmid construct.  However, the epitope tags may destabilize 

small proteins, leading to protein elimination. 

 

Other approaches include development of a new antibody for a protein for experimental use.  

This approach is limited as it is expensive and takes a significant amount of time.  A genetic knock-

in of a fusion-tagged cDNA is also possible, but again costly and time-intensive. 

 

Expression of the ORFeome compared to other lncRNAs 

It is well-established that, in general, so-called lncRNAs are more tissue-restricted and lower 

expressed than annotated human proteins20,21.  To evaluate the expression level of the ORFs in 

our ORFeome, we were able to extract gene expression data for 13,049 ncRNA, 18,165 mRNA, 

and 446 of our ORFs in the Cancer Cell Line Encyclopedia dataset22.  We found that the ORFs were 

significantly higher expressed than baseline ncRNAs, though less highly expressed than canonical 

proteins.  See figure below (p values by the Kolmogorov-Smirnov test): 

 

 
 

Features of the ORFeome amino acid sequences 

For the 490 ORFeome ORFs with predicted amino acid sequences longer than 40 amino acids, we 

evaluated several biophysical properties, including protein sequence length, number of protein 

binding-sites, aggregation propensity, disorder and number of Pfam-annotated protein domains. 

First, the amino acid sequences of these ORFs suggest that they have a large proportion of their 

outer surface exposed to water (73% ± 0.4%), have a high number of predicted protein-binding 

sites (12.79 ± 0.2 per 100 aa) and disorder (0.98 ± 0.04 per 100 aa), and that have few Pfam-

annotated protein domains (0.08 ± 0.01 per 100 aa). In contrast, average mammalian genes, 

including human genes, encode much longer proteins of ~500 aa that have a low amount of 

disorder and high aggregation propensity23,24
. 

 

Distinguishing a predictive structural model from background signal 

Predicting protein structure was performed with the PHYRE2 server25 for the 530 ORFs that were 

>= 40 amino acids in length.  To control for the chance of randomly predicted protein structure, 

we created a score to distinguish background signal.  Each amino acid sequence was given a 
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percent confidence score and an alignment coverage percentage by the PHYRE2 server.  We 

multiplied these two numbers together to create a protein structure score.  We then 

computationally generated a list of 500 random 150 amino acid peptides with a methionine start 

site, and analyzed these in the same manner.  We used the distribution of these datasets to 

define a threshold for determining the presence of a robust structural prediction.  See figure 

below (p value by the Kolmogorov-Smirnov test): 

 

  
 

Updated annotation status of the ORFs in this manuscript 

This project was initiated in January 2016 and therefore we employed databases available at that 

time.  Over the past several years, these gene annotation databases have been updated, but our 

study was not able to accommodate changes in annotation status due to the nature of large-

scale ORF and CRISPR library generation for functional genomics.  Therefore, a subset of the 

genes included in this study are now annotated in the recent versions of GENCODE.  A few of the 

ORFs in this study have now been functionally characterized and published in other studies as 

well.  

 

We have now re-evaluated the annotation status of our ORFs in GENCODE v31.  There are 61 

ORFs that are now annotated as protein-coding in GENCODE v31.  43 of these 61 (70.5%) are 

annotated as the same ORF in GENCODE v31 as in our ORFeome.  2 of the 61 are annotated as 

different ORFs in the two databases.  44 of the 61 (74%) validated in our V5 western blot assay 

as a translated protein.  The table below shows a list of ORFs that are now annotated as protein-

coding, along with the current transcript name and a publication investigating that ORF, if 

available. 

 

 

Name GENCODE v31 name Validation 

percentile 

Validated? Publications 

LINC01420 NBDY 1 Yes 8,26–28 

LINC00116 MTLN 0.998 Yes 27,29,30  
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CHTF8 DERPC 0.996 Yes 31 

ASNSD1 ASDURF 0.989 Yes 8,28  

RPP14_ORF1 HTD2 0.972 Yes   

RP11-429J17.8 IQANK1 0.971 Yes   

LINC00693 AC098650.1 0.967 Yes   

LOC105371267 AC007906.2 0.965 Yes   

AATK1-AS1 PVALEF 0.961 Yes   

LINC01314 CTXND1 0.958 Yes   

LOC284023 RNF227 0.956 Yes   

LINC00371 C13orf42 0.954 Yes   

LOC93622 AC093323.1 0.945 Yes 32 

LOC728743 AC073111.4 0.943 Yes   

PIGBOS1 PIGBOS1 0.932 Yes   

RP11-680F20.6 VSIG10L2 0.929 Yes   

EFCAB10 EFCAB10 0.923 Yes   

G029442 LINC00514 0.916 Yes   

LOC389332 SMIM32 0.902 Yes   

LINC00176 C20orf204 0.882 Yes   

RP11-195B21.3 RP11-195B21.3 0.869 Yes   

MIEF1 AL022312.1 0.865 Yes 8,28,33 

SLC35A4_ORF1 SLC34A4 0.856 Yes 8,28 

ERVK3-1 ERVK3-1 0.831 Yes   

LINC00094 BRD3OS 0.822 Yes   

ZNF525 ZNF525 0.818 Yes   

LOC100133315 AP002495.1 0.817 Yes   

AP000783.1 GRAM1B 0.809 Yes   
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TINCR TINCR 0.8 Yes   

C5orf56 AC116366.3 0.798 Yes   

MKKS AL034430.2 0.789 Yes 8,28,34 

NCBP2-AS2 NCBP2AS2 0.784 Yes   

FAM83H-AS1 IQANK1 0.782 Yes   

TOPORS-AS1 SMIM27 0.78 Yes   

RP11-689K5.3 part of RASGEF1B 0.759 Yes   

LINC00961 SPAAR 0.74 Yes 35 

CTD-3088G3.8 AC099489.1 0.73 Yes   

LINC00493 SMIM26 0.719 Yes   

LINC00998 SMIM30 0.684 Yes   

LINC01272 SMIM25 0.679 Yes   

G086960 PRRT1B 0.641 Yes   

ZNF738 ZNF738 0.548 Yes   

RP11-539I5.1 part of HSPA12A 0.536 Yes   

RP11-166B2.1 NPIPB2 0.516 No   

SNHG3 Part of RCC1 0.512 No   

DDIT3 AC022506.1 0.51 No   

AP000783.2 GRAM1B 0.503 No   

PNRC2 PNRC2 0.498 No   

TCONS_I2_00007040 CFAP97D2 0.465 No   

ZNF66 ZNF66 0.413 No   

FAM220A AC009412.1 0.409 No   

LOC100507002 Part of RGS9 0.369 No   

RP11-345F18.1 EXOC1L 0.269 No   

SPTY2D1-AS1 SPTY2D1OS 0.24 No   
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MMP24-AS1 MMP24OS 0.192 No   

LINC00617 TUNAR 0.13 No   

LOC105372440 AC010325.1 0.092 No   

PTP4A1 AL135905.2 0.056 No   

FTCDNL1 FTCDNL1 0.027 No   

LINC00634 LINC00634, but it is a 

different ORF 

0.039 No   

RP11-295G20.2 AL445524.2, but it is a 

different ORF 

0.728 Yes   

 

Implications of this research 

The human genome houses the basis for much of human biology and disease.  Understanding 

the full complement of human protein-coding genes and their functions is a critical component 

of biomedical science.  If a large fraction of human proteins remains undiscovered or unexplored, 

this provides a tremendous opportunity to expand the purview of research, with further 

opportunities to search for both the biological causes of disease as well as potential therapeutic 

targets. 
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Immunoblot figures 

 

 
 

 

Immunoblot Figure 1: Uncropped images for ORF proteins in Figure 1.  The dotted red box 

indicates the images used in the figure. 
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Immunoblot Figure 2: Uncropped images of ZBTB11 and Beta-actin immunoblots.  The dotted 

red box indicates the images used in the figure. 
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Immunoblot Figure 3: Uncropped images of GREP1 secretion Commassie stains.  The dotted 

red box indicates the images used in the figure. 
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Immunoblot Figure 4: Uncropped images of GREP1 non-denaturing western blots.  The dotted 

red box indicates the images used in the figure. 
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Immunoblot Figure 5: Uncropped images of cytokine array profiling.  The dotted red box 

indicates GDF15. 
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