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Abstract

Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in

MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which

can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even

faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel

imaging can be employed to reconstruct images from undersampled Cartesian data, non-Cartesian

parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding

information in the form of the non-homogeneous sensitivities of multi-coil phased arrays.

This review will begin with an overview of non-Cartesian k-space trajectories and their sampling

properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging

algorithms. Three representative non-Cartesian parallel imaging methods will be described,

including Conjugate Gradient SENSE (CG SENSE), non-Cartesian GRAPPA, and Iterative Self-

Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques,

several potential promising clinical applications of non-Cartesian parallel imaging will be covered.
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Introduction

MRI is a widely-used medical imaging modality, but long data acquisition times can make

the use of MRI challenging for some medical imaging applications. The limiting factor in

data acquisition speed is the time needed to play out gradient waveforms. Currently, the

maximum gradient strengths and slew rates in modern MRI systems are constrained by

physiological considerations. Therefore, imaging speed can only be further improved by

increasing the efficiency of gradient waveforms or by reducing the amount of gradient

encoding. Non-Cartesian parallel imaging seeks to use both of these approaches

simultaneously to significantly reduce the amount of time required to collect MRI data.
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The goal of this review is to discuss the adaptation of parallel imaging methods for the

reconstruction of accelerated non-Cartesian data. Parallel imaging techniques have been

extensively employed to reduce scan time for Cartesian trajectories, but these methods must

be significantly modified to work with data acquired using non-Cartesian trajectories to

traverse k-space. While there have been many interesting and valid implementations of non-

Cartesian parallel imaging, three representative methods that span the various types of

reconstruction classifications will specifically be examined, namely Conjugate Gradient

SENSE (CG SENSE) (1), non-Cartesian GRAPPA (2–5), and Iterative Self Consistent

Parallel Imaging Reconstruction (SPIRiT) (6). These three methods were selected as they

are often used in research settings, and they illustrate important theoretical and practical

concepts of non-Cartesian parallel imaging techniques. With an understanding of these

methods, many other non-Cartesian parallel imaging approaches not discussed here can be

understood as well.

Non-Cartesian K-Space Sampling

Almost all clinical MR imaging is performed by acquiring k-space along a Cartesian, or

rectilinear, trajectory. Data are sampled line-by-line on a rectangular grid as shown in Figure

1 (top left). A benefit of this sampling trajectory is that the data are uniformly sampled, and

images can be easily and quickly reconstructed using a fast Fourier transform (FFT).

However, k-space can also be sampled in an arbitrary non-Cartesian manner, and different

sampling trajectories will have different properties and implications for the reconstructed

image. Many non-Cartesian trajectories have been explored, including but not limited to

radial/projection (7,8), spiral (9,10), rosette (11), BLADE/PROPELLER (12), and stochastic

(13) trajectories.

Sampling along a non-Cartesian trajectory can have many benefits based on the unique

properties of these trajectories. One of the most important properties of non-Cartesian

trajectories is their potential for efficient use of MR gradient hardware and therefore rapid

coverage of k-space. Additionally, many non-Cartesian trajectories contain fewer coherent

artifacts from undersampling (14) are less affected by motion (8,15), allow image contrast to

be updated throughout data acquisition (16), and/or enable motion correction (12), self-

navigation (17,18), ultra-short TE acquisitions (19), spectrally selective imaging (11), and

chemical shift imaging (20).

While non-Cartesian trajectories have many advantages, it is considerably more difficult to

reconstruct images from non-Cartesian data because the non-Cartesian data points do not

fall on a grid in k-space. There are many approaches for reconstructing non-Cartesian data

(21–27) using a class of methods generally referred to as gridding, which transform non-

Cartesian k-space data into either Cartesian k-space data or images. Such gridding

operations typically require parameters such as the density compensation function (DCF),

which takes the non-uniform sampling density of the data into account, although some

iterative gridding methods such as (25) can be performed without a DCF. All non-Cartesian

reconstructions performed in this manuscript employed the non-uniform fast Fourier

transform (NUFFT) (21), which has been made available in an open-source toolbox (28).

Density compensation functions were determined for radial data using the Voronoi method
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(29) and for the BLADE dataset using the method by Pipe, et al. (23). Both of these density

compensation methods are available open-source in (28). It is also important to note that

these reconstruction methods require knowledge of the actual trajectory used to acquire the

non-Cartesian data, which may be different than the theoretical trajectory because of

hardware imperfections. In order to avoid image artifacts due to differences between the

desired and actual trajectories, the trajectory should be measured or approximated prior to

image reconstruction (30–32).

In MRI, k-space data are often intentionally undersampled to reduce scan time. If the

spacing between k-space points becomes too large, such that the Nyquist criterion is not

met, aliasing artifacts can appear. In the Cartesian case, data are undersampled in the phase

encoding direction as seen in Figure 1 (bottom left), and the aliasing occurs only along that

direction. In the non-Cartesian parallel imaging case, data are undersampled and this form of

undersampling relates to the type of trajectory employed. For example, this may involve

collecting a subset of projections from a radial trajectory or skipping some arms in a spiral

acquisition as seen in Figures 1 (bottom central and bottom right).

When data are undersampled, the ratio of the amount of data in a fully-sampled scan to that

in an undersampled scan is defined as the acceleration factor R. It is good practice to specify

whether the acceleration factor is reported with respect to a fully-sampled Cartesian or non-

Cartesian grid. For instance, an image with size 128×128 would require 

projections to be completely free of aliasing artifacts; if only 20 projections were acquired,

the acceleration with respect to the Nyquist limit would be R = 10. However, the

acceleration factor with respect to the fully-sampled Cartesian dataset would only be 128/20

≈ 6.4. Because either or both values could be reported, it is important to specify the metric

that is used to determine the acceleration. The aliasing artifacts resulting from undersampled

non-Cartesian k-space data depend on the type of trajectory, the amount of data collected,

and the density compensation function. The form of the artifacts can be understood by

looking at the point spread function (PSF) of the undersampled trajectory. Some examples

of aliasing artifacts and PSFs for undersampled Cartesian, radial, and variable density spiral

trajectories are shown in Figure 2. The undersampled radial and spiral data were gridded

using a DCF suitable for fully-sampled non-Cartesian data, and show significant streak and

swirling artifacts due to aliasing. By selecting a DCF which weights high spatial frequencies

to a lesser degree, these artifacts can be “converted” to blurring; a detailed treatment of how

the choice of DCF affects aliasing artifacts can be found in (33). In general, aliasing artifacts

from undersampled non-Cartesian trajectories tend to be more diffuse and less coherent than

their Cartesian counterparts because data reduction is not uniform across k-space.

Non-Cartesian Parallel Imaging

As described above, non-Cartesian trajectories can be used to increase acquisition speed by

sampling k-space more efficiently, and data acquisition can be further accelerated by

undersampling these non-Cartesian trajectories. While low levels of undersampling can

often be tolerated (14), the resulting aliasing artifacts from highly undersampled data must

be mitigated to achieve clinically acceptable image quality. Parallel imaging algorithms

Wright et al. Page 3

J Magn Reson Imaging. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



have been applied to undersampled Cartesian data (34–36) to reduce aliasing artifacts by

using the additional spatial information provided by an array of receiver coils. Combining

parallel imaging reconstruction algorithms with highly accelerated non-Cartesian trajectories

would combine the benefits of both methods, allowing much faster imaging speed than is

possible with either method alone.

Non-Cartesian parallel imaging uses the same general approach as Cartesian parallel

imaging by taking advantage of additional spatial information from coil sensitivities for the

reconstruction of undersampled non-Cartesian data. However, applying these algorithms to

undersampled non-Cartesian data is not trivial. As described above, the aliasing is more

complicated with trajectories such as radial and spiral due to their complex PSFs,. As will be

seen later, this more complex aliasing can complicate SENSE-type reconstructions, and the

non-uniform undersampling throughout k-space can complicate GRAPPA-type

reconstructions. Thus, traditional parallel imaging techniques must be adapted for use with

undersampled non-Cartesian trajectories. The most commonly-used non-Cartesian parallel

imaging algorithms are similar to existing Cartesian parallel imaging methods in approach

and general properties, and thus a complete review of these basic methods is beneficial to

understanding non-Cartesian parallel imaging and can be found in other review papers,

including (37–39).

In addition to increased imaging speed, non-Cartesian parallel imaging offers a number of

other potential advantages over Cartesian approaches. The g-factor, which describes the

noise enhancement resulting from the use of a parallel imaging algorithm, is significantly

lower for non-Cartesian trajectories than for Cartesian data at the same data reduction factor

(40). The relative retention of SNR is due to the fact that the acceleration is divided between

two directions in 2D non-Cartesian imaging, whereas acceleration is performed in one

direction (the phase encoding direction) in Cartesian imaging. The division of acceleration

among several directions enables the coil sensitivities to be used more effectively.

Additionally, because typically employed non-Cartesian trajectories are oversampled in the

center of k-space, the full acceleration is only realized at the periphery of k-space. As the

high-signal k-space center is completely captured even in undersampled datasets, less noise

enhancement is seen in highly accelerated non-Cartesian parallel imaging reconstructions.

These factors allow higher data reduction rates to be employed with non-Cartesian

trajectories than when using standard Cartesian parallel imaging, warranting the use of more

complex non-Cartesian approaches.

Many non-Cartesian parallel imaging algorithms have been proposed, including but not

limited to: Conjugate Gradient SENSE (CG SENSE) (1), non-Cartesian GRAPPA (2–

5,41,42), iTerative Self Consistent Parallel Imaging Reconstruction (SPIRiT) (6), Partially

Parallel Imaging with Localized Sensitivities (PILS) (43,44), parallel imaging for arbitrary

trajectories using k-space sparse matrices (kSPA) (45), Parallel MRI with Adaptive Radius

in k-Space (PARS) (46,47), and parallel reconstruction Based On Successive Convolution

Operations (BOSCO) (48). It is instructive to briefly examine the various types of non-

Cartesian parallel imaging algorithms and to categorize them for comparison. Non-Cartesian

parallel imaging reconstructions can be performed in the image domain using methods

including CG SENSE, SPIRiT, or PILS, or in k-space with non-Cartesian GRAPPA, kSPA,
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PARS, or BOSCO. Reconstructions can be performed using direct methods (non-Cartesian

GRAPPA, PILS, kSPA, PARS, or BOSCO), or using iterative algorithms (CG SENSE and

SPIRiT). Additionally, reconstructions can employ coil sensitivity information (CG SENSE,

PILS, kSPA, or PARS) or k-space autocalibration data (non-Cartesian GRAPPA, SPIRiT,

and BOSCO). Finally, the result of these reconstruction algorithms can be a reconstructed

image (CG SENSE, SPIRiT, and PILS), a Cartesian k-space (SPIRiT, kSPA, and PARS), or

a non-Cartesian k-space (non-Cartesian GRAPPA).

While there are many effective reconstruction algorithms, as can be seen above, three

representative methods that span the range of reconstruction types have been selected for

review in this manuscript, namely CG SENSE (1), non-Cartesian GRAPPA (2–5,42), and

SPIRiT (6). Table 1 provides a summary of the manuscript(s) and reconstruction details for

these three non-Cartesian parallel imaging methods. CG SENSE works in the image domain

using an iterative algorithm and requires coil sensitivity information. Non-Cartesian

GRAPPA techniques reconstruct missing data in k-space using a direct reconstruction

approach, and require autocalibration data. SPIRiT can be performed in either the image

domain or in k-space and uses an iterative algorithm with a self-calibrating approach,

although Cartesian calibration data can also be used. In the following sections, the theory

behind these methods will be described, and each reconstruction method will be

demonstrated on undersampled radial data.

Conjugate Gradient SENSE (CG SENSE)

SENSE-based reconstructions use the additional spatial encoding information from a multi-

coil array to reconstruct unaliased images in the image domain. SENSE describes a system

of equations that relates the coil sensitivities, gradient encoding, and acquired aliased pixels

to a vector of unaliased pixels. If the acceleration factor is less than the number of coils used

to acquire the images, this relationship is fully-determined and the unaliased pixels can be

reconstructed. For instance, if a data acceleration rate of two is used in a Cartesian scan,

aliasing occurs along the phase encoding direction, and two pixels in the image fold

together. However, if an eight-channel receiver coil is used to collect the data, there are

eight separate estimates for each pixel, which can be used to unfold the two aliased pixels

from each other. In this case, despite the data undersampling, each system of equations is

over-determined by a factor of four, which allows the reconstruction of unaliased images.

Additionally, the more over-determined the system of equations is, the better the

reconstruction results will be. The SENSE algorithm can be adapted for use with non-

Cartesian data (1,49) and is summarized in-depth below.

Theory and Implementation of CG SENSE—CG SENSE is based on the SENSE

algorithm, and is used to unfold aliasing artifacts resulting from undersampled non-

Cartesian data using explicit knowledge of coil sensitivity information (35). As mentioned

previously, the difficulty in performing non-Cartesian parallel imaging with a SENSE-based

reconstruction stems from the complex PSFs of undersampled non-Cartesian data and,

therefore, the complicated aliasing that must be unfolded. Theoretically, any of the image

pixels can be aliased with any other pixel, which makes the unfolding matrices extremely

large, as seen below. While the original mathematical concepts in SENSE still apply to non-
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Cartesian data, solving the unfolding problem directly would be extremely computationally

intensive. Thus, Pruessmann et al. proposed using the conjugate gradient (CG) algorithm as

an iterative approach for the reconstruction. The mathematical basis of this algorithm has

been previously described in references (1,39), and is summarized below.

The SENSE formulation uses a system of equations relating the object to be imaged (v), the

acquired k-space data (m), and the encoding matrix which transforms the image to k-space

(E):

[5]

The acquired data m has size ncnk, where nc is the number of coils and nk is the number of

sampled positions in k-space. The reconstructed image vector v has size N2, where N is the

matrix size of the image. The encoding matrix E accounts for all spatial encoding

information from gradients and coil sensitivities, and can be described as a combination of

the Fourier terms and sensitivity weighting from the array of coils:

[6]

where rp is the pth image pixel, kκ is the κth k-space value, and Cl(rp) is the coil sensitivity

of coil l at pixel rp. Note that the encoding matrix E is very large with size ncnk×N2.

In order to solve for the reconstructed image v in Equation 5, the system of equations must

be fully determined, such that ncnk≥ N2. If the data are fully-sampled (nk≥ N2), this

relationship is fully-determined, and an image can be generated even when using a single

coil for data collection. If m is undersampled to accelerate data acquisition and nk reduced to

nk/R, this system of equations can still be theoretically solved as long as the acceleration

factor is less than the number of coils used to acquire the data, such that ncnk/R≥ N2. While

a solution can be found for v if Equation 5 is exactly determined and ncnk/R = N2, the

solution for v will be improved if more data points are acquired and the system of equations

is overdetermined.

In order to solve for the reconstructed image using Equation 5, E must be inverted, which

would be difficult given the size of this matrix. For example, if 64 radial projections are

acquired with an eight-channel receiver coil for an image matrix size of 128×128, E would

be over determined by a factor of four. However, it would have size (8×128×64)×1282, and

a large number (∼1286) of operations would be necessary to directly solve for the image

pixels in v. This example illustrates why it is infeasible to directly apply the SENSE

algorithm to reconstruct undersampled non-Cartesian data. Thus, instead of performing a

direct inversion of the encoding matrix as in Cartesian SENSE, CG SENSE incorporates the

iterative conjugate gradient algorithm (50) to efficiently solve for the unaliased image.

While other iterative algorithms exist for solving large linear systems of equations, the CG

approach is attractive because it converges rapidly and does not necessarily require

regularization.
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To more easily formulate the CG SENSE reconstruction problem, a matrix F is introduced

to ‘undo’ the encoding, such that:

[7]

where F is the reconstruction matrix and Id is the identity matrix. An unaliased image can be

found by multiplying both sides of Equation 5 by the F matrix, which can be expressed by:

[8]

The reconstruction matrix F can be computed by using Equations 6 and 7 and a Moore-

Penrose inversion:

[9]

where ψ is the sampling noise matrix, which can obtained from noise measurement data as

described in reference (1). While this formulation gives the reconstruction matrix for the

optimal SNR reconstruction, the equations can be simplified by approximating the noise

matrix ψ by the identity matrix:

[10]

With this version of the reconstruction matrix, Equation 8 can be rewritten to avoid the

computationally inefficient matrix inversion:

[11]

This set of equations can now be solved using CG without the need to explicitly write out or

invert the E matrix. Instead, the function of the encoding matrix can be replicated applying

the Fourier transform and coil sensitivity matrices (or their inverses). Because the data in the

v matrix are non-Cartesian, the FFT cannot be used to transition between k-space and the

image domain. Thus, a gridding step or some additional interpolation must be performed so

that data are on a Cartesian grid prior to applying the FFT.

The CG SENSE reconstruction process can also be made more efficient by utilizing pre-

conditioning. Here, pre-conditioning involves including terms for density and intensity

compensation, which offer a better initial estimate of the image to reduce the number of

iterations which must be employed. Density compensation is applied by including a matrix

D, which is a diagonal matrix containing the values of the DCF, to account for differences in

the density of the sampling trajectory. Intensity compensation corrects for the sum-of-square

weighting that exists due to coil sensitivity variations. A diagonal matrix I containing the

inverse square-root of the coil weightings (known from the coil maps) is used to compensate

for these intensity differences. Including these terms to Equation 11 leads to the following

formulation:
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[12]

It is important to note that neither the D nor the I matrix must be employed for the CG

SENSE method; these matrices mainly serve to speed the convergence of the algorithm, but

CG SENSE can be employed without either or both terms (51).Two final considerations for

improving the efficiency of CG SENSE are proper initialization and regularization. An

initial guess for v must be selected to start the CG algorithm. Fewer iterations are required if

v is already a good estimate of the final image. One possible initial guess is the gridded

undersampled data. If pre-conditioning is performed, an image vector of zeros can also be a

good choice. Regularization is not a requirement for the CG SENSE reconstruction and was

not utilized in the initial implementation. However, the addition of a regularization term can

ensure convergence and improve the speed of convergence (52–56). Different regularization

algorithms can be utilized, including Tikhonov, weighted Tikhonov, total variation, or L1-

norm wavelet (57–60).

A summary of the CG SENSE algorithm is included below and is depicted in the diagram

shown in Figure 3. The following steps are taken to solve for the final reconstructed image

vector v:

1. The right side of Equation 12 is calculated by taking the acquired k-space data and

performing density compensation (if desired), gridding, and the Fourier transform

for each coil, multiplying by the complex conjugate of the coil sensitivities,

summing the multi-coil images together, and performing intensity correction. The

result is an estimate of the reconstructed image.

2. Within the CG algorithm, the reconstructed image from Step 1 is compared to the

initial guess image, and a residuum vector is calculated.

3. The residuum vector is used to compute a new estimate of (I−1v), and the left side

of Equation 12 is computed with this new estimate by performing intensity

correction, multiplying the image by coil sensitivity profiles, applying the Fourier

transform to each multi-coil image, and degridding the k-space data.

4. The original acquired k-space data is reinserted into estimated k-space for data

consistency, and the right side of Equation 12 is then recalculated using this new k-

space data as described in Step 1. The result is a new estimate of the reconstructed

image, and the result is fed into the CG algorithm.

5. The accuracy of the current approximation is estimated by calculating the

difference between the new estimate and the previous estimate, and Steps 2-4

continue until the stopping criterion is reached where the residuum is less than a

pre-determined accuracy measure (ε). This stopping criterion depends on several

factors, such as the acceleration factor, trajectory, noise level, coil array used, and

implementation of the reconstruction, and it can be determined empirically or

analytically (1,52).

6. Once the stopping criterion is reached, intensity correction is applied, yielding the

final unaliased image v.
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CG SENSE has also been implemented and provided in open-source form within the

Gadgetron image reconstruction framework (61), the image reconstruction toolbox (used in

this work) (28), and through educational online resources (62).

Demonstration of CG SENSE—In order to demonstrate the power of CG SENSE for

non-Cartesian parallel imaging, fully-sampled radial data were acquired in an axial slice in

the abdomen after administration of a single dose (0.1 mmol/kg) of gadobenate dimeglumine

(Multihance, Bracco Diagnostics Inc., Princeton, NJ). The radial data set was acquired

during a breath-hold with a matrix size of 192×192 and 200 projections with a FLASH

readout a 3T Siemens Skyra (Erlangen, Germany). Acquisition parameters include:

repetition time: 2.78ms, echo time: 1.19ms, FoV=350mm2, bandwidth: 1000 Hz/pixel, fat

saturation. Coil maps were calculated for the 16 coils using the adaptive combination

method (63).

The original fully-sampled data are reconstructed and shown on the left-hand side of Figure

4 for reference. The data were then retrospectively undersampled by a radial acceleration

factor of four, such that 67 of the 200 projections were used. This is equivalent to an

acceleration factor 4.5 with respect to the Nyquist criterion. As shown in Figure 4 center-

left, the undersampled data were used to generate an image in order to demonstrate the level

of aliasing at this acceleration factor.

A fully-sampled image was then reconstructed using the undersampled radial data and the

CG SENSE algorithm described above using the implementation available in (28). These

data were reconstructed using a zero image for initialization, no regularization, and four

iterations. Density compensation weights using the Voronoi method (29) were used for

preconditioning of the CG algorithm, and the NUFFT was performed using the image

reconstruction toolbox (21,28). As seen in Figure 4 center-right, the radial streaking artifacts

and noise amplification have largely been removed by CG SENSE. In order to demonstrate

the use of regularization in CG SENSE, the reconstruction was also performed with the

same reconstruction parameters described above with the addition of Tikhonov

regularization (a regularization parameter of 0.25 was selected empirically). This

regularization method is available within the open-source implementation (28). The

resulting reconstructed image can be seen in Figure 4 right; note that the regularization term

places more emphasis on the original data, resulting in a reconstruction which in this case

retains some streak artifacts but appears less blurry than the reconstruction without

regularization.

Strengths/Limitations of CG SENSE—CG SENSE has been used in many different

applications over the last decade, demonstrating that it is robust and easily applied to

different types of data. This algorithm does not require alterations based on the sampling

trajectory, which is simply supplied as an input to the algorithm for the gridding process.

Additionally, the output of the algorithm is a reconstructed Cartesian image where the coils

have been combined. Thus, no additional reconstruction steps, such as a NUFFT or coil

combination, are necessary after the parallel imaging algorithm is complete.
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While CG SENSE is a commonly-used parallel imaging reconstruction method, it does have

some limitations. One challenge when applying CG SENSE is the need for coil sensitivity

maps, which are required for all SENSE-based reconstructions. Accurate coil maps can be

difficult to obtain in certain applications, which can negatively impact the resulting image

quality. For example, it can be difficult to estimate coil sensitivity maps in image areas with

low signal, such as the lungs. Accurate coil sensitivity maps are also difficult to acquire in

applications where patient motion may occur. In these cases, the actual coils may move after

the pre-scan used to collect coil information, altering the coil sensitivity profiles and causing

errors in the sensitivity maps. These errors will manifest as residual aliasing artifacts in the

reconstructed image.

Another potential limitation of CG SENSE is that the stopping criteria for the iterative

reconstruction must be defined by the user. If too few iterations are performed, the

reconstructed images will exhibit residual aliasing artifacts. If too many iterations are

performed such that the residual vector essentially becomes noise, the algorithm will begin

to reconstruct the noise itself, increasing the noise level in the reconstructed image. One way

to tackle this challenge would be to output the image after each iteration and identify the

“best” reconstruction based on an image quality metric. Selection of the stopping criteria can

also be performed using an L-curve analysis (52).

Convergence of the reconstruction and selection of the stopping criteria can also be affected

by the use of regularization. For example, Tikhonov regularization can be combined with

CG SENSE to reduce noise amplification in reconstructed images (53). The drawback to

regularization is that it requires selection of an additional parameter that weights the

importance of this constraint in the reconstruction. Determining this regularization

parameter can be difficult, and selecting the wrong parameter can also lead to decreased

image quality.

Despite minor limitations, CG SENSE has been successfully used in many applications,

including cardiac imaging, coronary artery imaging, and functional MRI (1,64,65).

Additionally, this reconstruction can be implemented with GPUs to provide fast

reconstructions (61,66). Due to the iterative nature of CG SENSE and the ability to combine

this technique with additional constraints, CG SENSE has also been implemented in

conjunction with other reconstruction approaches, including compressed sensing and

spatiotemporal correlations (67–69).

Non-Cartesian GRAPPA

Just as CG SENSE is an extension of SENSE, non-Cartesian GRAPPA is a generalization of

GRAPPA (36) for reconstructing images from data acquired along undersampled non-

Cartesian trajectories. In this article, the term “non-Cartesian GRAPPA” will refer to a

whole collection of methods based on the general GRAPPA approach. In contrast to CG

SENSE, non-Cartesian GRAPPA methods are not iterative and do not require prior

knowledge of coil sensitivity profiles. Reconstruction is performed directly in k-space by

estimating missing data points as weighted linear combinations of known acquired points.

The GRAPPA weights implicitly contain information about the coil sensitivity profiles and

are determined using one or more fully-sampled training scans. A review of Cartesian
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GRAPPA will be presented before discussing how this technique can be adapted for non-

Cartesian trajectories.

Theory and Implementation of GRAPPA—In Cartesian GRAPPA, data are collected

line-by-line in k-space, and some phase encoding lines are skipped to reduce scan time.

Each missing data point, called a target point, is reconstructed by combining a kernel of

neighboring acquired points, the source points, with a set of coefficients called GRAPPA

weights. In matrix form, the reconstruction is written as:

[13]

where w is the matrix of GRAPPA weights, and S⃗targ and S⃗source are vectors of target and

source points. Both the geometry of the source point kernel and the GRAPPA weights are

shift invariant, which means that they can be applied throughout the undersampled k-space

(Figure 5 left).

Cartesian GRAPPA is said to be autocalibrating because the GRAPPA weights are

estimated using a fully-sampled, low spatial resolution dataset called the autocalibration

signal or ACS. Because many sets of both source and target points are known within the

ACS, a least squares estimate of the GRAPPA weights can be obtained by a pseudoinverse

operation:

[14]

The source point matrix has a size nrep × nknc, where nrep is the number of kernel

occurrences over k-space, nc is the number of coils, and nk is the size of the kernel. The

target matrix has a size nrep × nknc, making the weight set a matrix of nknc × nc. This

calibration equation is fully-determined when nknc ≥ nrep. However, when the calibration

equation is exactly determined or only slightly overdetermined, the GRAPPA weights can

be influenced by noise and the resulting image can contain residual aliasing artifacts. To

obtain a better estimate of the GRAPPA weights which is less affected by noise, it is

preferable for the calibration equation to be highly overdetermined. Thus the number of

kernel repetitions is generally much larger than the theoretical minimum for Cartesian

GRAPPA.

Theory and Implementation of Non-Cartesian GRAPPA—Several modifications

must be made to GRAPPA in order to reconstruct undersampled non-Cartesian data.

Whereas Cartesian sampling is uniform, non-Cartesian trajectories vary in the degree and

direction of undersampling across k-space. Different regions of k-space have differently

shaped GRAPPA kernels, so they no longer share the same GRAPPA weights (Figure 5

right). Each data point in a radial trajectory, for instance, will have a unique geometry of

source and target points in the GRAPPA kernel. This leads to two challenges. First, a large

number of GRAPPA weights must be determined, theoretically one for each target point.

Second, there is no clear way to calibrate these GRAPPA weights, as each geometry appears

only once even in a fully-sampled non-Cartesian dataset.
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The first implementation of GRAPPA for the radial trajectory resolved the calibration

problem by collecting a fully-sampled non-Cartesian dataset and dividing the k-space into

segments (2). Each segment is approximated as a small Cartesian grid that has its own set of

GRAPPA weights (Figure 6). Segments are selected to be large enough so there are

sufficient occurrences of the GRAPPA kernel to compute a stable estimate of the GRAPPA

weights for that particular area of k-space. Radial GRAPPA can only practically be used for

dynamic imaging since the calibration scan is already fully-sampled.

One disadvantage of the original non-Cartesian GRAPPA is that the reconstruction must be

formulated carefully for different non-Cartesian trajectories, depending on the symmetry of

the trajectory. Two techniques for non-Cartesian GRAPPA reconstruction of spiral

trajectories which are similar to the radial approach were introduced by Heberlein, et al. (47)

and Heidemann, et al (3). Other similar formulations have been described for 1D non-

Cartesian data (71) and zig-zag trajectories (72), and can in theory be developed for any

trajectory with an axis of symmetry. GRAPPA can be more easily used with BLADE/

PROPELLER trajectories, as these types of trajectories contain large patches of Cartesian

data which can be reconstructed using Cartesian GRAPPA. However, the GRAPPA weights

for PROPELLER data can also be rotated (73), thereby reducing the amount of calibration

data required.

One difficulty with the non-Cartesian GRAPPA methods described thus far is the choice of

segment size. Typically, large k-space segments are chosen to yield enough kernel

repetitions to ensure that the calibration equations are overdetermined. However, segments

that are too large can no longer be approximated as Cartesian, and the local GRAPPA

weights determined using such a segment will be inaccurate. On the other hand, if the

segment is too small, the number of kernel occurrences will also be small, and the

calibration equation may not be fully determined. Weight sets may be overly influenced by

noise in this situation, and there is danger of overfitting or “copying” calibration data into

the reconstructed images.

Through-time non-Cartesian GRAPPA introduced an improved calibration scheme to deal

with the challenge of segment size selection (4,5). Compared to previous algorithms where

k-space is divided into a few large segments, through-time non-Cartesian GRAPPA uses

very small segments or no segmentation at all. In order to obtain the numerous repetitions of

the kernels needed to determine the GRAPPA weights, multiple fully-sampled frames of

non-Cartesian data are acquired during a pre-scan or post-scan. Rather than moving the

kernel through a region of k-space to accumulate instances of known source and target

points, the kernel is moved through time (Figure 7 left). Because each target point has a

unique kernel geometry that is exactly repeated in every frame of the calibration dataset, this

calibration strategy leads to a more robust estimate of the weights.

A summary of non-Cartesian GRAPPA reconstruction is given below and depicted in Figure

7.

1. Collect one or more fully-sampled non-Cartesian datasets for calibration and an

undersampled non-Cartesian dataset to be reconstructed
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2. Repeat the following steps at each unacquired location in the undersampled k-

space:

a. Locate nearby acquired data points to use as source points in a local

GRAPPA kernel

b. Accumulate occurrences of the non-Cartesian GRAPPA kernel in the

calibration dataset using any of several options, including k-space

segmentation and through-time calibration

c. Obtain a least squares estimate of the non-Cartesian GRAPPA weights for

a particular location in k-space using Equation 14

d. Multiply source points in the undersampled data by the local GRAPPA

weights from step 2c to reconstruct a given target point

Code for the through-time radial GRAPPA method has been made available in an open-

source format: http://www.ismrm.org/mri_unbound/sequence.htm.

Demonstration of the non-Cartesian GRAPPA—To demonstrate the use of non-

Cartesian GRAPPA, free-breathing, non-EKG gated cardiac datasets were acquired along a

2D radial TrueFISP trajectory on a 3T Siemens Skyra with following scan parameters:

128×128 image size, 30 receiver channels, repetition time: 2.94ms, echo time: 1.47ms, FoV

300mm2, and spatial resolution 2.3×2.3×8mm3. A fully-sampled calibration scan was

acquired with 144 projections and 20 frames (scan time 8.5s). A separate fully-sampled scan

was performed with 144 projections and retrospectively undersampled to 16 projections

(acceleration factor R=12.6 with respect to Nyquist).

Two radial GRAPPA algorithms are demonstrated for comparison (Figure 8). First, the

original implementation of radial GRAPPA was performed using a single fully-sampled

frame from the calibration scan and a k-space segment spanning 64 readout points and 10

projections. Second, through-time radial GRAPPA was performed using all 20 frames from

the calibration scan and a k-space segment spanning 8 readout points and 4 projections.

These reconstruction parameters were chosen so that the number of kernel occurrences at

each location in k-space would be the same for both non-Cartesian GRAPPA

implementations. After reconstruction, the k-space data were density compensated using the

Voronoi method (29) and converted to individual coil images using the NUFFT. For

comparison, the undersampled data were directly gridded to the image domain to show the

extent of aliasing artifacts present in the original data.

Compared to the fully-sampled reference image, the directly gridded image shows severe

radial streaking artifacts that are largely removed by both radial GRAPPA reconstructions.

The image reconstructed by radial GRAPPA using a large segment size and a single

calibration frame still contains some residual aliasing and is slightly blurred. The segment

size was not optimized and may not yield the best image quality for this particular dataset. In

comparison, the image reconstructed by through-time radial GRAPPA is less corrupted by

residual aliasing and appears sharper.
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Strengths/Limitations of Non-Cartesian GRAPPA—Non-Cartesian GRAPPA

methods have several beneficial properties. They are not iterative, do not use view-sharing

or temporal filtering, and do employ model-fitting or make prior assumptions about the data.

For a given data reduction factor, the g-factors for non-Cartesian GRAPPA are generally

lower than for the Cartesian case (40). However, non-Cartesian GRAPPA implementations

that divide k-space into large segments cannot resolve aliasing artifacts when the

acceleration factor is high. It is also difficult to choose a proper segment size that yields

acceptable image quality. Segments that are too large can result in blurring, while segments

that are too small may cause noise enhancement. Additionally, unlike CG SENSE, non-

Cartesian GRAPPA techniques must be formulated carefully to accommodate different

sampling trajectories.

Through-time Non-Cartesian GRAPPA builds on previous methods with an improved

calibration scheme which removes the need for large calibration segments. Like CG SENSE,

it has been implemented for online, real-time reconstruction using GPUs and distributed

programming (74). Through-time calibration gives a more accurate estimate of GRAPPA

weights than previous approaches that divide k-space into large segments. Furthermore, it

can work with any trajectory; the reconstruction algorithm will simply need to be adjusted to

select the best source points for a given target point.

One drawback of non-Cartesian GRAPPA is the need for at least one, if not several, fully-

sampled training scans. However, the calibration can be performed even when the

underlying object is moving. For example, calibration for real-time cardiac imaging can be

acquired under free-breathing, non-gated conditions without degrading the reconstruction

(4). Nevertheless, there may be certain applications where the calibration scan is prohibitive,

and a self-calibrating method may be preferred at the cost of a slightly less accurate

reconstruction. For example, undersampled data may be acquired along interleaved

trajectories that are then merged in a sliding window manner to form a calibration dataset

with reduced temporal bandwidth (75,76). There are also methods that synthesize a full

calibration dataset from only the Nyquist sampled region at the center of k-space (77) or that

interpolate GRAPPA weights directly from undersampled data (78).

Non-Cartesian GRAPPA reconstructions can also be improved by using a specific sampling

pattern that modifies aliasing artifacts known as CAIPIRINHA (79,80). While this was

originally demonstrated with Cartesian data (79), this technique has been combined with

radial GRAPPA to achieve higher acceleration factors in multi-slice acquisitions (80).

SPIRiT

SPIRiT (Iterative Self-Consistent Parallel Imaging Reconstruction) (6) is a parallel imaging

method that can be applied to any trajectory, including non-Cartesian sampling patterns, and

has many similarities to both CG SENSE and non-Cartesian GRAPPA. SPIRiT relies on two

forms of consistency, namely data consistency and calibration consistency, and the SPIRiT

reconstruction is framed as a nonlinear optimization which can be solved by a variety of

methods. It also has the attractive property that the output is always a Cartesian k-space or a

Cartesian image, even though the undersampled data may be non-Cartesian.
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Theory of SPIRiT—SPIRiT reconstructs missing data by balancing two key constraints:

calibration consistency and data consistency (Figure 9). Calibration consistency is based on

the concept that each data point in k-space is correlated with nearby points through the coil

sensitivities. Whereas GRAPPA exploits this relationship to reconstruct missing target

points from acquired source points, SPIRiT generalizes this notion further. In SPIRiT, each

output data point in Cartesian k-space ideally can be expressed as a linear combination of

neighboring Cartesian source points over all coils. Mathematically, calibration consistency

is expressed as:

[15]

where x is a vector containing all Cartesian grid points from every coil and G is matrix of

coefficients, known as SPIRiT weights. One important distinction from the GRAPPA kernel

is that source points in SPIRiT include data that are synthesized during reconstruction and

not originally acquired.

As with Cartesian GRAPPA, the SPIRiT kernel is shift invariant and applies the same

weights over all of k-space. The SPIRiT weights are determined by accumulating kernel

occurrences within a fully-sampled Cartesian region of k-space, which is the ACS data for

SPIRiT. There are several options for acquiring calibration data. A small, Nyquist-sampled

Cartesian region may be collected together with the undersampled data or as a separate scan.

Another alternative is a self-calibrating approach where the densely sampled center of an

accelerated non-Cartesian trajectory is interpolated onto a rectangular grid.

Besides calibration consistency, the second key idea of SPIRiT is to ensure that the

reconstructed data agree with the raw undersampled data collected at the scanner. This

constraint is expressed as:

[16]

where D is an operator that transforms reconstructed Cartesian data values x to k-space

points y along the accelerated trajectory. When reconstructed Cartesian k-space data are

transformed back onto the undersampled trajectory using inverse gridding, the resulting

values should match the original raw data, provided the reconstruction is accurate. When the

undersampled trajectory is non-Cartesian, then D interpolates Cartesian data points onto a

non-uniform grid and can be implemented as convolution gridding (24).

Both calibration consistency and data consistency can be solved simultaneously as a

constrained optimization problem:

[17]

or, equivalently, in an unconstrained Lagrangian form:
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[18]

The parameter λ controls the balance between the two consistency constraints, where larger

values more heavily enforce calibration consistency and smaller values favor data

consistency. A value for λ that yields acceptable image quality can be chosen empirically or

analytically.

SPIRiT is flexible in that additional constraints Ri(x) can be applied to the reconstructed

data. For example, many medical images are sparse (i.e. the majority of data values are zero)

after applying a mathematical transform, such as a discrete wavelet transform (81,82).

SPIRiT can be formulated to favor solutions that also are sparse in a particular transform

domain. This type of constraint is enforced by minimizing the L1-norm of the data in the

transform domain. Another optional constraint is Tikhonov regularization to obtain a

reconstruction which is less influenced by noise.

There are several iterative methods available for solving the SPIRiT optimization. Projection

over convex sets (POCS) finds a solution that leaves the acquired data untouched, but image

quality can be degraded if too many or too few iterations are used. Conjugate gradient

descent is also well-suited to numerically solve the optimization since the gradient of the

objective function is known analytically

[19]

and the estimated solution is guaranteed to improve with each iteration.

Implementation of SPIRiT—SPIRiT reconstruction can be performed either directly in

k-space or in the image domain, and both approaches are depicted together in Figure 10.

Although the overall workflow for both techniques is similar, each has unique benefits and

drawbacks. The following discussion assumes that the accelerated scan uses an

undersampled non-Cartesian trajectory.

The k-space approach can be summarized in the following steps:

1. The algorithm is initialized with an estimate of the reconstructed Cartesian k-space,

x. One simple initialization is to directly grid the undersampled non-Cartesian data

onto a uniform grid.

2. With each iteration of CG descent, the following steps are performed

a. To enforce data consistency, the gridding operator D interpolates the

reconstructed Cartesian k-space data onto the undersampled non-Cartesian

trajectory. The difference between the resulting values and the acquired

undersampled data is y − Dx. This error metric is then gridded back to

Cartesian k-space using the adjoint of the gridding operator, giving D*(y −

Dx).
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b. To enforce calibration consistency, the operator G convolves the

synthesized Cartesian data with a kernel containing the SPIRiT weights.

The synthesized Cartesian k-space is subtracted from the result of this

convolution, which yields (G − I)x.

c. The operator G* convolves the result of step 2b with flipped and reordered

SPIRiT weights. The output of this step is (G* − I) (G − I)x.

d. The result from step 2c is weighted by λ, which controls the tradeoff

between data consistency and calibration consistency.

e. The data consistency error from step 2a and the calibration consistency

term from step 2d are added together. Their sum is the gradient of the

objective function, shown in Equation 19. This value is run through CG

descent, which returns an improved estimate of the reconstructed

Cartesian k-space.

3. Step 2 is repeated until a suitable stopping criterion is reached. The final result is a

fully-sampled Cartesian k-space.

From a practical standpoint, the interpolation kernel and SPIRiT kernel convolutions may be

computationally expensive to implement in k-space. One alternative is to perform SPIRiT

reconstruction using an image domain approach. The previously outlined steps can still be

followed with some modifications:

• The variable x now represents the reconstructed coil images and not the

reconstructed Cartesian k-space.

• The algorithm is initialized with an estimate of the uncombined coil images.

• The operator D now performs a NUFFT on the reconstructed coil images to obtain

non-Cartesian k-space data, and D* transforms undersampled non-Cartesian data to

their corresponding coil images.

• The operator G multiples coil images by the inverse FFT of the SPIRiT weights in

the image domain, and G* multiplies coil images by the inverse FFT of the flipped

and reordered SPIRiT weights.

In the original manuscript, open-source code was made available for SPIRiT and can be

found at: http://www.eecs.berkeley.edu/∼mlustig/Software.html(6).

Demonstration of SPIRiT—To demonstrate the capabilities of SPIRiT, a brain scan

using a T1-weighted BLADE acquisition was conducted on a 3T Siemens Skyra with the

following parameters: 256×256 image matrix, 30 receiver coils, repetition time: 2000ms,

echo time: 44ms, FoV 220mm2, and spatial resolution 0.9×0.9×4mm3. The fully-sampled

data were made up of 44 blades with 9 lines per blade. These data were retrospectively

undersampled such that each blade contained only 3 lines (lines 1, 5, and 9), yielding an

undersampling factor of R=4 within the blade. The undersampling factor with respect to a

Cartesian acquisition was approximately R=1.9 (132 total k-space lines for a 256 matrix).

SPIRiT weights were calibrated by gridding the fully-sampled BLADE data to Cartesian k-

space and using the center 30×30 region. The image domain approach was used as described
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above with a 7×7 SPIRiT kernel and Tikhonov regularization. To initialize the

reconstruction, density compensation was applied to the undersampled BLADE k-space data

using the DCF proposed by Pipe, et al. (23) before gridding to the image domain. The data

consistency and calibration consistency terms were weighted by setting λ = 10 in Equation

18, and conjugate gradient descent was run with 75 iterations.

Representative results from a single slice are shown in Figure 11. The image reconstructed

by directly gridding the undersampled data (center) is corrupted by radial streaking artifacts

and blurring when compared to the reference image (left); however, many of these artifacts

are removed after SPIRiT reconstruction (right). In this review, the SPIRiT reconstruction

parameters were chosen empirically, although it is also possible to do a more rigorous

optimization (for example, using L-curve analysis).

Strengths/Limitations—One major advantage of the SPIRiT framework is its flexibility.

Like CG SENSE, SPIRiT works with data sampled along arbitrary k-space trajectories, and

the output is always a Cartesian k-space or a Cartesian image, which does not require an

additional gridding step. SPIRiT also uses the encoding information provided by multiple

receiver channels efficiently. It enforces consistency with both calibration data and the raw

undersampled data over all of k-space, whereas non-Cartesian GRAPPA only imposes

consistency with the calibration data. SPIRiT also has the ability to remove noise from

reconstructed data using explicit regularization. Because the SPIRiT kernel spreads

information over a small area of k-space with each convolution, this has the effect of locally

averaging the data and removing noise after several iterations. Another advantage is the ease

of incorporating additional constraints. Some examples include regularization or L1-

minimization of the data in a transform domain, which can be useful for removing noise

while preserving useful image content. Nevertheless, the flexibility of SPIRiT can lead to

potential difficulties. It may not be obvious how to choose appropriate parameter values for

the optimization, which may have to be done empirically. An additional consideration is

deciding when to terminate the conjugate gradient descent, since SPIRiT may begin to fit

noise into the reconstructed images if too many iterations are used.

SPIRiT is relatively expensive computationally. In the k-space domain reconstruction, the

interpolation kernel and SPIRiT kernel convolutions may be costly to implement if large

kernel sizes are used. With the image domain reconstruction, multiplication by the inverse

FFT of the SPIRiT kernel is fast even for large kernel sizes, but there is the additional

burden of calculating the NUFFT each iteration. Computational complexity, however, is not

a permanent barrier. ESPIRiT is an efficient implementation of SPIRiT with L1-

minimization in the wavelet domain that performs an eigenvector decomposition of the

SPIRiT operator matrix (83). Clinically realistic runtimes of SPIRiT have been achieved by

using multiple GPUs and parallel computing (82).

Combined Cartesian/Non-Cartesian Methods

By using hybrid Cartesian / non-Cartesian 3D trajectories such as the stack-of-stars or stack-

of-spirals trajectories (Figure 12 left), data undersampling can potentially be performed in

all three spatial directions. While these trajectories are non-Cartesian in the kx-ky plane
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(usually radial or spiral), Cartesian encoding is performed along kz. One option for

undersampling is to skip kz encoding lines as shown in Figure 12 center left, and to

reconstruct the missing Cartesian data with standard Cartesian parallel imaging techniques

(84–86). While this type of reconstruction greatly simplifies the process, acceleration is

limited as it would be in standard Cartesian scanning. Another option is to accelerate the

data in only the non-Cartesian direction (Figure 12 center right). When this approach is

used, the 3D data can be reconstructed using one of the non-Cartesian parallel imaging

methods described above. Often a Fourier transform is first applied in the fully-sampled

Cartesian kz direction, which transforms the reconstruction from one large 3D problem to

many smaller 2D problems. The reconstruction is often significantly faster, although there

can be discontinuities between the 2D slices if iterative methods are employed.

Another potential 3D hybrid trajectory is that used in CAPR (87–90). Here, the read-out is

Cartesian along the kz direction, and the phase encoding positions usually lie along radial

projections in the kx-ky plane. Data are undersampled by using fewer phase encoding steps,

which effectively leads to radial undersampling. Reconstruction can be performed using a

non-Cartesian reconstruction technique as described above.

To realize the full acceleration potential of 3D stack-of-stars or stack-of-spirals trajectories,

data must be undersampled in both the Cartesian and non-Cartesian directions (Figure 12

right). Again, any of the above-mentioned methods can be used, but the reconstruction

problem must be formulated in three-dimensions. For this reason, these types of trajectories

are usually reconstructed using GRAPPA-type techniques, although iterative methods can be

used. Full 3D non-Cartesian trajectories such as the 3D radial or cones trajectories can also

be employed with non-Cartesian parallel imaging, although CG SENSE type reconstructions

are usually preferred for these types of data due to the difficulty generating the large number

of necessary non-Cartesian GRAPPA weights.

Potential Clinical Applications

Non-Cartesian parallel imaging is primarily used in applications which require a reduced

acquisition time. A shortened scan time can be used to image rapidly moving anatomy or

changing dynamics. Additionally, by shortening each individual scan, the total MRI exam

duration can be decreased, which can help improve patient compliance/comfort and decrease

exam costs (91).While non-Cartesian parallel imaging may be advantageous for general

MRI scanning, the most intriguing potential clinical applications are those that are only

possible with the use of very short acquisition times. Some examples of these applications

are discussed below, including cardiac MRI (CMR), MR Angiography (MRA), functional

MRI (fMRI), and Dynamic Contrast Enhanced (DCE) MRI.

While non-Cartesian parallel imaging could potentially enable more rapid scanning in

clinical settings, these reconstruction algorithms are not commonly used outside of a

research setting. There are several reasons for the lack of adoption of non-Cartesian parallel

imaging methods. The first is that most clinical scans are performed with Cartesian

acquisitions, due to the ease of reconstruction both with and without parallel imaging. With

the adoption of non-Cartesian trajectories by major scanner manufacturers, non-Cartesian
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parallel imaging may become more important. The second factor is the long reconstruction

times and potential need for calibration data. Because any increase in scan time or delays

between acquisition and reconstruction are clinically undesirable, these factors must be

mitigated before non-Cartesian parallel imaging can be widely adopted. However, self-

calibrating methods and rapid reconstructions using platforms including Gadgetron (61) or

GPUs (74,82,92) have accelerated both the data collection and image reconstruction times.

The final hurdle is the perceived lack of robustness and low acceleration factors which can

be achieved using non-Cartesian parallel imaging. However, given recent advances in these

algorithms, the potential for significantly faster scanning using non-Cartesian parallel

imaging may lead to clinical implementation of these techniques.

Nevertheless, there are a number of applications which could benefit from non-Cartesian

parallel imaging. Cardiac MRI is particularly difficult due to cardiac and respiratory motion.

Traditional methods for making images of the beating heart use EKG gating to acquire data

in a segmented fashion. In order to make images during each phase of the cardiac cycle, data

must be acquired over several heartbeats and a constant heart rate must be maintained.

Additionally, respiratory motion is an important consideration in cardiac MRI, and the

patient must hold his/her breath while the data are collected. However, with the advent of

non-Cartesian parallel imaging, real-time cardiac imaging can now be performed by using

acquisition times short enough to freeze cardiac and respiratory motion (4,5,93–100).

Myocardial perfusion is another difficult exam that could be improved by non-Cartesian

parallel imaging (68,69).

Another interesting application of non-Cartesian parallel imaging is for the acquisition of

MRA data. In MRA, high spatial resolutions are required to visualize small arteries, and

high temporal resolutions are required to capture images during arterial enhancement phases

before contrast reaches the veins. Thus, the high spatiotemporal resolutions afforded by

using highly accelerated data collection followed by a non-Cartesian parallel imaging

reconstruction can be beneficial in many applications including coronary MRAs

(86,101,102), peripheral MRAs (87–90), and intracranial MRAs (89,103).

Non-Cartesian parallel imaging can also be valuable in the acquisition of fMRI data. fMRI

methods measure changing Blood-Oxygen-Level-Dependent (BOLD) contrast to evaluate

neuronal activity. These acquisitions sample data with a high temporal resolution to capture

changes in the BOLD response, and they typically use an echo planar imaging (EPI)

readout. However, previous works have shown that non-Cartesian trajectories can be used to

increase sensitivity to BOLD contrast (104). fMRI acquisitions can also be implemented

with non-Cartesian parallel imaging to achieve improved image quality, resolution, and

volumetric coverage (64,105,106).

Dynamic Contrast Enhanced (DCE) MRI is another application where temporal resolution

requirements can be challenging to meet. In DCE MRI, time-resolved images are acquired

with a high temporal resolution to capture changes in signal intensity that are related to

changing concentration of gadolinium-based contrast agents. A pharmacokinetic model of

the contrast agent is used to quantify perfusion, permeability, and other physiological

parameters. Non-Cartesian parallel imaging can achieve the necessary high temporal
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resolutions while maintaining clinically relevant spatial resolutions and volumetric

coverage, as demonstrated in several applications (107–109).

Conclusion

This review describes how non-Cartesian parallel imaging can be used to reduce MRI data

acquisition times. Non-Cartesian sampling of k-space has many advantages, including

improved gradient efficiency that allows for faster k-space coverage and the opportunity to

collect the center of k-space with every line of data. These non-Cartesian trajectories can be

undersampled to further reduce acquisition times and reconstructed with specialized parallel

imaging algorithms. The combination of non-Cartesian trajectories and parallel imaging

reconstructions allow for larger accelerations and faster scan time than either technique

individually, which opens new opportunities for higher spatial and temporal resolutions in

many clinical applications.
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Figure 1.
Fully-sampled (top row) and undersampled (bottom row) Cartesian, radial, and spiral

trajectories.

Wright et al. Page 27

J Magn Reson Imaging. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Characteristic undersampling artifacts (top) and point spread functions (bottom) for several

non-Cartesian trajectories. The fully-sampled reference image and its point spread function

are shown on the far left. The other images show artifacts from an undersampled Cartesian

trajectory and its PSF (middle left), undersampled radial trajectory (middle right), and

undersampled variable density spiral trajectory (far right).
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Figure 3.
A summary of the CG SENSE algorithm, which reconstructs an image from undersampled

non-Cartesian data. Undersampled, multi-channel k-space data (m1, m2,…,mnc) are acquired

and fed into the algorithm. These data are density compensated, gridded, the inverse Fourier

transform calculated, and the multi-coil images are multiplied by the conjugate of the coil

sensitivities. The multi-coil images are summed and intensity corrected to produce a single

image, which is fed into the CG algorithm. The CG algorithm finds a new estimate for the

reconstructed image. If the reconstruction has not converged, intensity correction is applied,

the image is multiplied by the coil sensitivities, the Fourier transform is calculated, the data

are degridded, the original data replaced, and the next iteration begins. This process

continues until the reconstruction converges and a stopping criterion has been met. Once the

stopping criteria are met, intensity correction is applied, and the result is an unaliased image.
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Figure 4.
Left: Fully-sampled breathhold abdominal image generated using 200 projections. Center-

left: Reconstructed data retrospectively undersampled by a radial acceleration factor of 4 (50

projections) and gridded using NUFFT. Center-right: The corresponding CG SENSE

reconstruction. Right: The corresponding CG SENSE reconstruction with Tikhonov

regularization.
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Figure 5.
Left: Cartesian data undersampled by a factor of R=3, where with acquired data points as

filled black circles and missing points as white circles. An example 2×3 Cartesian GRAPPA

kernel is shown where source points are illustrated as filled blue circles, and target points as

empty circles outlined in red. Note that by collecting kernel repetitions in the fully-sampled

center patch of Cartesian k-space (the ACS region), the GRAPPA weights for this

arrangement of source and target points can be determined. Right: Radial k-space with an

acceleration factor of R=3. Three different 2×3 non-Cartesian GRAPPA kernels are shown;

note that the direction and distance between source and target points changes for each of the

kernels, so each kernel requires a unique set of non-Cartesian GRAPPA weights.
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Figure 6.
A fully-sampled radial k-space and an example segment which can be used to find the

GRAPPA weights for the specific kernel shape shown. Note that by sliding the kernel

through the segment (bottom left), a total of 12 kernel repetitions can be found for

calibration. (Right) The undersampled radial k-space, with the source and target points

corresponding to the GRAPPA kernel on the left-hand side of the figure. The data within

this segment can be reconstructed using the GRAPPA weights from the calibration segment

shown at left.

Wright et al. Page 32

J Magn Reson Imaging. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7.
A schematic of the non-Cartesian GRAPPA reconstruction. First, one or several fully-

sampled datasets are acquired for calibration. The weights for each geometry can be

determined using either k-space segmentation, through-time calibration, or a combination of

the two. These weights are applied to the undersampled data at the appropriate location to

reconstruct each target point. This process is repeated for each arrangement of source and

target points to recover the fully-sampled k-space.
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Figure 8.
Representative cardiac images from a non-gated, free-breathing cardiac scan. Data were

acquired with grid size 128×128 and 144 projections, and were retrospectively

undersampled to 16 projections(acceleration factor R=12.6 with respect to the Nyquist

limit). The fully-sampled image (top left) is shown along with the following reconstruction

methods: (top right) direct gridding of undersampled data, (bottom left) radial GRAPPA

with a k-space segment spanning 64 readout points and 10 projections, and (bottom right)

through-time radial GRAPPA calibrated with 20 frames and a k-space segment spanning 8

readout points and 4 projections.
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Figure 9.
Left: The SPIRiT kernel enforces calibration consistency. A 3×3 SPIRiT kernel is depicted

which is successively applied to every data point in the synthesized Cartesian k-space. At a

given k-space location, the value of the target point, outlined in red, is known for the current

iteration. The SPIRiT kernel multiplies source points, shown as filled blue circles, by a set

of coefficients and sums the results to yield an estimate of the target point. The iterative

process is terminated when the actual and estimated values are equal (within a specified

error metric). Right: Data consistency is evaluated by transforming the reconstructed

Cartesian data points back onto the undersampled non-Cartesian trajectory. Nearby points

from the synthesized Cartesian k-space (shown in purple) are used to interpolate the value of

a given point on the undersampled non-Cartesian trajectory, as indicated by the arrows. If

the result of this operation agrees with the data that was originally collected, then the

reconstruction is said to be consistent with the acquired data.
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Figure 10.
A flowchart for SPIRiT reconstruction. Reconstruction can be performed using either a k-

space domain or image domain approach, and both techniques are depicted. The first step is

to initialize the algorithm with an estimate of x, which is either a Cartesian k-space or

uncombined coil images. Next, the operator D samples x along points on the undersampled

non-Cartesian trajectory. The difference between this result and the original undersampled

data is called the data consistency error. Calibration consistency is assessed using the

operator G, which convolves the reconstructed Cartesian k-space with the SPIRiT kernel (k-

space domain approach) or multiplies the reconstructed coil images by the inverse FFT of

the SPIRiT kernel (image domain approach). The derivative of the objective function,

shown in Eq. 19, is computed as a sum involving both calibration consistency and data

consistency terms, and conjugate gradient descent returns an improved estimate of the

reconstructed Cartesian k-space or coil images for the next iteration. The algorithm

terminates when a suitable stopping criterion is met.
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Figure 11.
Left: Fully-sampled images are shown for a T1-weighted BLADE acquisition with 44 blades

and 9 lines per blade. Center: These data were retrospectively undersampled such that 44

blades with 3 lines per blade were used and are shown after a gridding reconstruction to

demonstrate the amount of aliasing artifacts. Right: The corresponding SPIRiT

reconstruction.
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Figure 12.
Left: Fully-sampled, 3D stack-of-stars trajectory. These trajectories use a non-Cartesian

trajectory in kx-ky plane and Cartesian encoding along kz. Center Left: Stack-of-stars

trajectory with Cartesian undersampling, where some kz encoding lines are skipped. Center

Right: Stack-of-stars trajectory with radial undersampling, where some projections are

skipped. Right: Stack-of-stars trajectory with Cartesian and radial undersampling, where

some kz encoding lines and some projections are skipped.
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