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Abstract

DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant 

in plants, and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED 

METHYLTRANSFERASE (DRM) proteins; however its roles remain poorly understood. Here we 

characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly 

characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. 

CMT2 preferentially binds histone H3 lysine 9 (H3K9) dimethylation and methylates non-CG 

cytosines that are regulated by H3K9 methylation. We revealed the contributions and 

redundancies between each non-CG methyltransferase in DNA methylation patterning and in 

regulating transcription. We also demonstrate extensive dependencies of small RNA accumulation 

and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing 

mechanisms between these epigenetic factors. The results suggest that non-CG methylation 

patterns are critical in shaping the histone modification and small non-coding RNA landscapes.

INTRODUCTION

DNA methylation plays roles in different biological processes such as gene regulation and 

imprinting. In Arabidopsis thaliana, DNA is methylated in three cytosine contexts: CG, 
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CHG, and CHH (where H=A, T, or C)1. In mammals, DNA is primarily methylated in CG 

contexts, however, studies have uncovered the presence of non-CG methylation in certain 

cell types such as embryonic stem cells and brains cells2-7. In Arabidopsis, CG methylation 

is maintained by MET1, the plant homolog of DNMT1. CHG and CHH methylation are site-

specifically methylated by CMT3 and DRM28,9. CMT3 is controlled by histone H3 lysine 9 

(H3K9) methylation10-12. DRM2 is targeted to certain loci through an RNA-directed DNA 

methylation (RdDM) pathway involving 24-nucleotide small interfering RNAs (24nt-

siRNAs)1. Heterochromatin in Arabidopsis is enriched in both CG and non-CG methylations 

as well as H3K9 methylation and 24nt-siRNAs, however the relationships between each of 

these marks remain poorly understood.

The abundant non-CG methylation in plants compared to mammals may in part be explained 

by the presence of plant specific CMT genes. In addition to CMT3, the Arabidopsis genome 

encodes two other CMT genes: CMT1 and CMT2. CMT1 is expressed at low levels and is 

truncated in many Arabidopsis ecotypes13. CMT2 is expressed and is a putative DNA 

methyltransferase. A recent study performed whole-genome methylation profiling in cmt2 

mutants and found loss of CHH methylation predominantly at large TEs that were 

heterochromatic9. Genetic evidence suggested that the chromatin remodeler DDM1 in part 

allows access for MET1, CMT3, and CMT2 to heterochromatin9. However, the mechanism 

of CMT2 targeting to heterochromatin, the roles it plays, and its relationship with other 

DNA methyltransferases is not understood.

Here, we set out to characterize the roles of non-CG methylation. We first show that CMT2 

is a functional non-CG methyltransferase. CMT2 preferentially methylates unmethylated 

DNA in vitro, and methylates both CHG and CHH sites in vitro and in vivo. We find that 

CMT2 binds H3K9 methylation in vitro and that H3K9 methylation controls non-CG 

methylation through CMT2. We also uncover that the number of methyl groups on H3K9 

may influence CMT2 and CMT3 targeting. Given the identification of CMT2 as a functional 

methyltransferase, we generated all possible combinations of non-CG methyltransferase 

mutants, and examined the contributions and redundancies between each non-CG 

methyltransferase in DNA methylation patterning and gene silencing. While it is clear that 

24nt-siRNAs and H3K9 methylation guide non-CG methylation, we reveal extensive 

dependencies of both 24nt-siRNAs and H3K9 methylation patterning on non-CG 

methylation. This suggests that non-CG methylation plays a critical role in regulating these 

marks. Furthermore, we find elevated histone acetylation levels throughout sites that lose 

non-CG methylation. Our results provide insights into non-CG methylation targeting and 

will help to guide further studies of the biology of DNA methylation.

RESULTS

CMT2 strongly methylates both CHG and CHH sites in vitro

To examine whether CMT2 plays a role in methylating the genome, we performed whole 

genome bisulfite sequencing (BS-seq) in two different CMT2 T-DNA insertion mutants, 

cmt2-7 and cmt2-38. We found that global CHH methylation is substantially reduced, 

whereas CG and CHG methylation were largely undisturbed (Fig. 1a), consistent with a 

recent study9. For the rest of the study we focused in cmt2-7, which we confirmed to be a 
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null mutant by RT-PCR (Supplementary Fig. 1a). In contrast to cmt2 mutants, cmt3 mutants 

lost CHG methylation globally but only affected CHH methylation at limited sites in the 

genome8. Thus CMT2 and CMT3 appear to have different sequence preferences.

To understand the difference between the sequence specificity between CMT2 and CMT3 

we sought to examine CMT2 methyltransferase activity in vitro. To test if CMT2 could 

methylate DNA in vitro, we assayed whether CMT2 can methylate oligonucleotides of 

different methylation status. We used oligos that were unmethylated, oligos that were 

methylated in all sequences contexts on only one strand (hemimethylated), and as a negative 

control, oligos that were methylated in all sequence contexts in both strands (fully-

methylated) (see Online Methods)10. We found that CMT2 preferentially methylated 

unmethylated oligos compared to hemimethylated oligos in vitro (Fig. 1b). This was in 

contrast to CMT3, which preferentially methylated hemimethylated oligos.10 We further 

assayed sequence specificity of methylation by CMT2 and found that it did not methylate 

CG sites (Supplementary Fig. 1c). Rather, CMT2 strongly methylated both CHG and CHH 

sites (Fig. 1c). This was in contrast to CMT3, which substantially preferred to methylate 

CHG sites compared to CHH sites10 (Supplementary Fig. 1b). Hence the methyltransferase 

activity of CMT2 is distinct from that of CMT3 such that it preferentially methylates 

unmethylated DNA and effectively methylates both CHG sites and CHH sites in vitro. 

These findings are consistent with our in vivo studies (see below) showing that CMT2 not 

only mediates CHH methylation but also mediates CHG methylation.

CMT2 activity is mediated by H3K9 methylation

KRYPTONITE (KYP or SUVH4), SUVH5, and SUVH6 are the major H3K9 

methyltransferases in Arabidopsis11,12. We previously showed that loss of CHG methylation 

in kyp suvh5 suvh6 triple mutants mimicked the loss of CHG methylation in cmt3 mutants 

genome-wide8. However, extensive loss of CHH methylation was also observed in kyp 

suvh5 suvh6 but not in cmt3, suggesting that there must be another methyltransferase(s) 

methylating CHH sites8. About 86% of kyp suvh5 suvh6 CHH hypomethylated sites 

overlapped with cmt2 CHH hypomethylated sites, suggesting that H3K9 methylation 

regulates bulk CHH methylation through CMT2 (Fig. 2a and b). A smaller fraction of KYP 

SUVH5 SUVH6 regulated CHH sites overlapped with DRM2 target sites (Fig. 2a), which 

likely is explained by the dependency of Pol IV recruitment on H3K9 methylation through 

the histone binding protein SHH114,15. We performed chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) on H3K9me2 in wild type and kyp suvh5 suvh6 mutants, 

and confirmed that loss of CHH methylation in kyp suvh5 suvh6 was associated with loss of 

H3K9me2 (Fig. 2b).

Structural and functional work has suggested that the BAH and chromo domains of CMT3 

bind H3K9 methylation10. Because CMT2 and CMT3 proteins have very similar domain 

configurations (Supplementary Fig. 2a), we hypothesized that CMT2 may also recognize 

H3K9 methylation. To test this, we assayed binding of recombinant CMT2 protein to 

different histone modifications on a peptide array. Interestingly, we found preferential 

binding of CMT2 to H3K9 di- and trimethylated peptides (H3K9me2, H3K9me3), but less 

binding to H3K9 monomethylated (H3K9me1) peptides (Fig. 2c and Supplementary Fig. 
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2b), which was further confirmed by our ITC binding data (Fig. 2d). This data was in 

contrast to CMT3, which bound H3K9me1, -me2, and -me3 equally well (Fig. 2e)10. In 

addition, all the ITC binding curves yielded N values around 2, indicating that two histone 

tail peptides bind to each CMT molecule and that the dual recognition of methylated H3K9 

tails is therefore likely to be a general feature of chromomethylase family DNA 

methyltransferases.

The sensitivity of CMT2 to number of methyl groups on H3K9 in vitro led us to investigate 

whether this property influences the sites that CMT2 and CMT3 are targeted. To test this, 

we performed ChIP-seq on H3K9me1 and compared to H3K9me2. We did not analyze 

H3K9me3 since this mark is present at extremely low levels16 and is associated with active 

genes17, which are devoid of non-CG methylation. We compared sites that are regulated by 

both CMT2 and CMT3 to sites that where regulated by CMT3 but not CMT2 (see Online 

Methods). At sites regulated by both CMT2 and CMT3, there were higher levels of 

H3K9me2 compared to sites methylated by CMT3 but not CMT2 (Fig. 2f). Hence CMT2 is 

preferentially associated with H3K9me2 whereas CMT3 does not show such preference. 

This supports our finding that CMT2 binds H3K9me2 with a substantial preference over 

H3K9me1, whereas CMT3 can bind both H3K9me1 and H3K9me2 almost equally (Fig. 2c-

e)10. Our results indicate that the number of methyl groups on H3K9 may influence CMT 

protein targeting to the genome.

Interplays between non-CG methyltransferases in methylation

The finding that CMT2 plays an important role in maintaining CHH methylation levels in 

the genome led us to generate mutants containing all possible combinations of non-CG 

methyltransferase mutants. We crossed cmt2 to cmt3 and to drm1 drm2 double mutants 

(DRM1 is expressed only in female gametes18). We generated single nucleotide resolution 

maps of DNA methylation in the mutants by performing BS-seq. We first looked at non-CG 

methylation patterns over all TEs and chromosomes. We found that non-CG methylation in 

the genome was eliminated in drm1 drm2 cmt2 cmt3 quadruple mutants (Fig. 3a, b and 

Supplementary Fig. 3a, b). This indicated that DRM1 DRM2, CMT2, and CMT3 are 

collectively responsible for all non-CG methylation in the Arabidopsis genome. This finding 

enabled us to determine the contributions of each non-CG methyltransferases in DNA 

methylation patterning. We observed that both CHG and CHH methylation are redundantly 

regulated by all non-CG methyltransferases to a certain extent (Fig. 3a-d). This suggests that 

different pathways cooperate to regulate non-CG methylation patterning.

CMT2 and CMT3 methylate CHG sites in a redundant manner

CMT3 tends to methylate large TEs and sites distal to genes8,9. In cmt3 mutants, a strong 

but partial loss of CHG methylation occurs8,9 (Fig. 3a-d). We found that in cmt2 cmt3 (cmt2 

cmt3) double mutants there was stronger loss of CHG methylation than in cmt3 mutants 

(Fig. 3c, e-g and Supplementary Fig. 3b). These sites were non-overlapping with DRM2 

regulated sites (Fig. 3c). This suggests that while CMT2 preferentially methylates CHH 

sites, it also methylates CHG sites. This result is consistent with our finding that CMT2 can 

also methylate CHG sites in vitro (Fig. 1c). Hence while the main role of CMT2 is to 
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methylate CHH sites, CMT2 and CMT3 function partially redundantly to methylate CHG 

sites.

DRM2 target sites are methylated by both DRM2 and CMT3

DRM2 tends to methylate the edges of large TEs as well as small TEs that are proximal to 

genes 8,9. In drm1 drm2 mutants, loss of DNA methylation occurs in CHH contexts and to a 

lesser extent in CHG contexts8 (Fig. 3f). This suggests that a different methyltransferase is 

methylating CHG at DRM2 target sites. In cmt3 mutants, CHG methylation was partially 

reduced at DRM2 target sites, and in drm1 drm2 cmt3 mutants CHG methylation was nearly 

completely lost (Fig. 3f). Hence CMT3 also methylates DRM2 sites. There was almost 

complete loss of non-CG methylation at DRM2 sites in drm1 drm2 cmt3 mutants in the 

presence of a functional CMT2 (Fig. 3f). This suggests that CMT2 plays a very minor role at 

DRM2 target sites. Thus generally at DRM2 target sites, CMT3 and DRM2 methylate 

cytosines in CHG contexts, and DRM2 methylates cytosines in CHH contexts.

CMT2 and DRM2 mediate all CHH methylation in the genome

Mutations in CMT2 or DRM2 alone are not sufficient to eliminate CHH methylation in the 

genome (Fig. 3a-g). However, we found that drm1 drm2 cmt2 mutants essentially eliminated 

all CHH methylation in the genome (Fig. 3b, d-g). In fact, 99% of drm1 drm2 cmt2 cmt3 

CHH hypomethylated differentially methylated regions (DMRs) overlapped with drm1 drm2 

cmt2 CHH DMRs (Supplementary Fig. 3c). DRM2 and CMT2 methylate almost completely 

non-overlapping sites in the genome (Supplementary Fig. 3d). Hence a large proportion of 

heterochromatin can be divided into regions that are CMT2 targeted and those that are 

DRM2 targeted.

Relative H3K9me1 and 2 levels at CMT2 and DRM2 target sites

Our finding of CMT2 binding preferentially to H3K9me2 led us to compare H3K9me1 and 

H3K9me2 levels at CMT2 target sites and DRM2 target sites. We found that the relative 

levels of H3K9me2 to H3K9me1 were higher at CMT2 target sites compared to DRM2 

target sites (Fig. 3h). Furthermore, because DRM2 targets the edges of TEs8,9, we sought to 

examine the distributions of H3K9me1 and H3K9me2 over TEs. We found that H3K9me1 

was especially enriched at boundaries of TEs whereas H3K9me2 was enriched over the 

body of TEs (Fig. 3i). This H3K9me1/2 distribution was consistent with the distribution of 

sites methylated by DRM2 and CMT2 (Fig. 3i). These results are consistent with the fact 

that SHH1, a factor involved in recruiting RNA polymerase IV (Pol IV) to promote DRM2 

targeting, exhibits similar in vitro binding to H3K9me1, -me2 and –me3 as observed for 

CMT3 (Fig. 2e)10,14,15, whereas CMT2 preferably binds H3K9me2 (Fig. 2c, d). These 

results further suggest that the number of methyl groups on H3K9 may influence non-CG 

methyltransferase targeting.

CMT2, CMT3, and DRM2 cooperatively regulate TE expression

DNA methylation is implicated in transcriptional regulation. Because for the first time we 

possessed a mutant with largely normal levels of CG methylation but a complete lack of 

non-CG methylation, we were able to test the extent to which non-CG methylation regulates 
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expression of TEs and genes. We performed mRNA sequencing (mRNA-seq) on the 

different combinations of non-CG methylation mutants (Supplementary Fig. 4a). We 

defined TE derepression by using stringent cutoffs (see Online Methods), and only selected 

TEs that showed significant misregulation in two biological replicates. TE derepression was 

most prominent in mutants containing cmt3 mutations, suggesting that CMT3 plays the 

strongest role in transcriptional silencing of TEs among non-CG methyltransferases (Fig. 

4a). We found relatively minor upregulation of TEs in cmt2 mutants despite CMT2 

methylating a substantial proportion of the genome (Fig. 1a). This together with the fact that 

drm1 drm2 mutants alone or drm1 drm2 cmt2 mutants showed modest TE derepression 

defects (Fig. 4a) suggest that CHH methylation itself may not play a major role in TE 

silencing. However, when combining cmt3 mutations with cmt2 or drm1 drm2 mutations, 

we observed an increased number of TEs upregulated, suggesting that CHH and CHG 

methylation redundantly silence TEs (Fig. 4a). Notably, upon loss of all non-CG 

methylation in drm1 drm2 cmt2 cmt3 mutants, there was a large increase in the number of 

TEs upregulated (Fig. 4a and Supplementary Fig. 4a). In fact, there was a global increase in 

RNA-seq reads in heterochromatic regions in drm1 drm2 cmt2 cmt3 relative to wild type 

(Fig. 4b). Although both DNA type and retrotransposons were regulated by non-CG 

methylation, there was over-representation of DNA/Mariner, LINE/L1, LTR/Copia, and 

LTR/Gypsy transposons (Supplementary Fig. 4b and Supplementary Table 1). Hence, 

different non-CG methyltransferases cooperate to silence TEs in the genome. We next 

measured the changes in non-CG methylation levels associated with changes in TE 

expression. The degree of TE upregulation correlated with the degree of loss of non-CG 

methylation in the mutants, indicating that these TEs are indeed regulated by non-CG 

methylation (Fig. 4c). Hence non-CG methylation plays important roles in silencing TEs.

CMT3 and DRM2, but not CMT2, regulate protein-coding genes

DNA methylation also regulates expression of protein-coding genes. By applying the same 

stringent cutoffs as we did for TEs, we defined 166 protein-coding genes significantly 

upregulated and 117 genes down-regulated in drm1 drm2 cmt2 cmt3 mutants. Genes that 

became upregulated in drm1 drm2 cmt2 cmt3 mutants were substantially associated with 

high levels of non-CG methylation in wild type (Supplementary Fig. 4c), as well as non-CG 

DMRs in drm1 drm2 cmt2 cmt3 mutants (Fig. 4d) indicating that these genes are regulated 

by non-CG methylation. In contrast, genes down-regulated in drm1 drm2 cmt2 cmt3 mutants 

did not show association with non-CG methylation, suggesting that down-regulation of these 

genes is likely an indirect effect (Fig. 4d and Supplementary Fig. 4c). This result indicates 

that non-CG methylation primary acts as a repressor of transcription. Gene ontology analysis 

of genes upregulated in drm1 drm2 cmt2 cmt3 mutants indicated some association with 

response genes (Supplementary Fig. 4d); however, the list contained a variety of genes with 

different functions (Supplementary Table 2).

The fact that DRM2 targets sites proximal to genes suggests that it may function to regulate 

gene expression8,9. These sites are methylated by CMT3 and DRM2, but not CMT2 (Fig. 

3f). Consistent with this fact, gene upregulation was most prominent in drm1 drm2 cmt3 

mutants compared to any other combinations of mutants (Fig. 4e). In fact, drm1 drm2 cmt2 

cmt3 mutants did not show substantial increase in gene expression levels compared to drm1 
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drm2 cmt3 mutants (Fig. 4e). This is in contrast to our analysis of TEs (Fig. 4a). 

SUPPRESSOR OF drm1 drm2 cmt3 (SDC) is a gene redundantly regulated by DRM2 and 

CMT3, and is responsible for the developmental phenotypes of drm1 drm2 cmt3 mutants19. 

SDC was not more expressed in drm1 drm2 cmt2 cmt3 compared to drm1 drm2 cmt3 

mutants (Supplementary Fig. 4e), consistent with the morphological defects the plants 

exhibited (Supplementary Fig. 4f). Hence while TEs are cooperatively silenced by DRM2, 

CMT2, and CMT3, protein-coding genes are largely cooperatively regulated by CMT3 and 

DRM2 but not CMT2.

24-nt siRNAs and non-CG methylation at DRM2 target sites

DRM2 is guided by 24nt-siRNAs to target loci1. The biogenesis of 24nt-siRNA depends on 

Pol IV. However, at certain loci siRNA accumulation has also been shown to depend on 

downstream RdDM factors such as Pol V and DRM214,20-22. We sought to examine the 

extent to which siRNA accumulation depends on non-CG methylation by performing small 

RNA sequencing (smRNA-seq). We found that in drm1 drm2 cmt3 mutants there was strong 

loss of 24nt-siRNAs (Fig. 5a). This suggests that loss of non-CG methylation at these sites 

causes loss of 24nt-siRNAs. Loss of 24nt-siRNA at these sites was not observed in cmt2 

mutants, nor was the degree of loss substantially enhanced in drm1 drm2 cmt2 cmt3 mutants 

compared to drm1 drm2 cmt3 mutants (Fig. 5a), consistent with the finding that CMT2 

generally does not act at DRM2 target sites. Our results uncover an almost complete 

dependency of 24nt-siRNA accumulation on non-CG methylation at DRM2 target sites, 

suggesting a strong self-reinforcing loop mechanism.

24-nt siRNAs and non-CG methylation at CMT2 target sites

Upstream RdDM factors such as Pol IV are responsible for most 24nt-siRNA produced in 

the genome23-25. By analyzing ChIP-seq data on Pol IV14 we confirmed that Pol IV protein 

was physically enriched at CMT2 target sites (Supplementary Fig. 5a). Known upstream 

RdDM mutants such as dms4, pol iv, and rdr2, which strongly reduce 24nt-siRNA across the 

genome23-26, did not substantially reduce CHH methylation at CMT2 dependent sites 

(Supplementary Fig. 5b). In contrast, we observed that both drm1 drm2 cmt3 mutants and 

cmt2 single mutants had partial but consistent loss of 24nt-siRNA accumulation at CMT2 

target sites (Fig. 5b). There was substantially more loss of 24nt-siRNAs upon loss of all non-

CG methylation in drm1 drm2 cmt2 cmt3 quadruple mutants (Fig. 5b). This suggests that 

non-CG methylation partially regulates 24nt-siRNAs at these sites. While these 24nt-

siRNAs do not control non-CG methylation in cis, one possibility is that they target other 

elements in trans27, such as newly inserted TEs28. Our results suggest that there is an almost 

complete dependency of 24nt-siRNA on non-CG methylation at DRM2 target sites, and 

partial dependency of 24nt-siRNA on non-CG methylation at CMT2 target sites. As 

explored below, a possible mechanism for this dependency may be through H3K9 

methylation.

Non-CG methylation globally controls H3K9 methylation

Most non-CG methylation in the genome is regulated by H3K9 methylation (Fig. 

2)8,10,14,15. Although partially, H3K9 methylation has also been suggested to be dependent 
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on DNA methylation at certain loci, suggesting a self-reinforcing loop between DNA 

methylation and H3K9 methylation29-31. This self-reinforcing loop is likely mediated at 

least in part by the SRA domains of the H3K9 methyltransferases KYP, SUVH5, and 

SUVH6 that preferentially bind methylated DNA29. However, the extent of this dependency 

remains poorly understood. We performed ChIP-seq on H3K9me2 in wild type, drm1 drm2 

cmt2 cmt3 mutants, and the kyp suvh5 suvh6 triple H3K9 methyltransferase mutant. 

Strikingly, by analyzing the distribution of H3K9me2 across chromosomes we found strong 

loss of H3K9me2 in drm1 drm2 cmt2 cmt3 mutants (Fig. 6a). Inspection of the data on the 

genome browser confirmed loss of H3K9me2 in drm1 drm2 cmt2 cmt3 mutants (Fig. 6b and 

Supplementary Fig. 6a). In fact, the degree of loss of H3K9me2 in drm1 drm2 cmt2 cmt3 

mutants was as strong as in kyp suvh5 suvh6 mutants (Fig. 6a, b and Supplementary Fig. 6a). 

Loss of H3K9me2 in drm1 drm2 cmt2 cmt3 mutants occurred at both CMT2 targeted sites 

and DRM2 targeted sites, although the loss appeared stronger at CMT2 dependent sites (Fig. 

6c). Strong loss of 24nt-siRNA in drm1 drm2 cmt2 cmt3 mutants at DRM2 target sites (Fig. 

5a) is likely in part explained by loss of H3K9 methylation, since 24nt-siRNA accumulation 

is dependent on the H3K9 methylation binding protein SHH114,15. Our results indicate that 

non-CG methylation mediates genome-wide H3K9 methylation patterning.

24nt-siRNA accumulation is mediated by H3K9 methylation

Our finding of extensive self-reinforcing loops between H3K9 methylation and non-CG 

methylation in part provides an explanation for the self-reinforcing loop between 24nt-

siRNA accumulation and non-CG methylation. At DRM2 target sites, non-CG methylation 

is required for H3K9 methylation (Fig. 6c), which then regulates 24nt-siRNAs through 

SHH1 binding to H3K9 methylation. Consistent with this model, in kyp suvh5 suvh6 

mutants, there was a strong loss of 24nt-siRNAs at DRM2 target sites (Fig. 5a). At CMT2 

target sites, non-CG methylation is almost completely required for H3K9 methylation (Fig. 

6c). Consistent with the fact that H3K9me2 is lost to a similar extent in drm1 drm2 cmt2 

cmt3 and kyp suvh5 suvh6 mutants (Fig. 6a), we found similar degrees of loss of 24nt-

siRNA in drm1 drm2 cmt2 cmt3 and kyp suvh5 suvh6 mutants compared to wild type (Fig. 

5b). Hence it is likely that non-CG methylation controls H3K9 methylation which then 

regulates the biogenesis of 24nt-siRNA.

CG methylation and heterochromatic H3K9 methylation

Genome-wide elimination of CG methylation by mutation of the CG methyltransferase, 

MET1, resulted in loss of H3K9me2 at certain sites32,33, although the mechanism is not 

understood. We analyzed H3K9me2 ChIP data in wild type and met1 mutants34. As 

expected, we observed loss of H3K9me2 at certain sites in met1 mutants (Fig. 6d). However, 

we found that these were sites that also lost non-CG methylation in met1 mutants 

(Supplementary Fig. 6b). On the other hand, we did not observe genome-wide loss of 

H3K9me2 in met1 mutants as we found in drm1 drm2 cmt2 cmt3 mutants (Fig. 6d and 

Supplementary Fig. 6c). This suggests that H3K9 methylation is much more dependent on 

non-CG methylation than it is on CG methylation. While we cannot rule out the possibility 

that loss of H3K9me2 at certain sites in met1 mutants is directly due to loss of CG 

methylation, it seems likely that loss of H3K9me2 in met1 mutants is due to loss of non-CG 
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methylation at these sites. Our results suggest that non-CG methylation plays a dominant 

role in regulating H3K9 methylation patterning throughout the genome.

Loss of non-CG methylation induces histone hyperacetylation

Histone acetylation is associated with open chromatin and actively transcribed genes. Given 

the strong loss of the repressive histone mark H3K9me2 in drm1 drm2 cmt2 cmt3, we 

sought to examine the effects on genome-wide histone acetylation patterns. We performed 

ChIP-seq on H3K23 acetylation (H3K23ac) and H3 on wild type, drm1 drm2 cmt2 cmt3, 

and kyp suvh5 suvh6 mutants. As expected, H3K23ac was enriched in promoter regions of 

active genes in wild type (Supplementary Fig. 6d). We observed genome-wide increases of 

histone acetylation in drm1 drm2 cmt2 cmt3 mutants and kyp suvh5 suvh6 mutants at sites 

that lost DNA methylation (Fig. 6c, e and Supplementary Fig. 6e). Elevation of histone 

acetylation levels were not restricted to transcriptionally upregulated TEs and genes (Fig. 6e 

and Supplementary Fig. 6f), suggesting that this phenomenon cannot simply be explained by 

more transcription in the mutants. Consistent with the elevation in histone acetylation, we 

found substantial chromocenter decondensation in drm1 drm2 cmt2 cmt3 mutants 

(Supplementary Fig. 6g). Hence non-CG methylation is required to keep heterochromatin in 

a deacetylated and compacted state.

DISCUSSION

In this study we characterized a series of mutants affecting non-CG methylation including 

the poorly understood methyltransferase CMT2. This analysis has uncovered the roles of 

each non-CG methyltransferase in DNA methylation patterning and gene silencing. 

Furthermore, our finding of extensive cross talks between non-CG methylation and H3K9 

methylation provide insights into the mechanisms of cross talk between different silencing 

pathways. All data generated in this study can be visualized in a modified UCSC browser 

(http://genomes.mcdb.ucla.edu/AthBSseq/) along with other epigenomic datasets.

At DRM2 target sites, there is a self-reinforcing loop between non-CG methylation, H3K9 

methylation and 24nt-siRNAs (Fig. 7a). H3K9 methylation is required for CMT3 targeting 

to methylate CHG sites at a subset of DRM2 sites, as well as for DRM2 targeting through 

binding of SHH114, which methylates the remaining non-CG sites. SHH1 binding to H3K9 

methylation is required for 24nt-siRNA accumulation at a subset of DRM2 sites14. The 

24nt-siRNAs then directs DRM235. Our data suggest that DRM2 and CMT3 mediated non-

CG methylation is required for H3K9 methylation, which is in large part is mediated by 

KYP SUVH5 SUVH6. The H3K9 methylation then directs CMT3 and DRM2 pathways for 

non-CG methylation.

At CMT2 target sites, there is also a self-reinforcing loop between non-CG methylation, 

H3K9 methylation and 24nt-siRNAs (Fig. 7b). Our results suggest that both CMT2 and 

CMT3 mediate CHG methylation and CMT2 mediates CHH methylation at these sites 

through binding to H3K9 methylation. Non-CG methylation mediated by CMT2 and CMT3 

regulates H3K9 methylation mediated by KYP SUVH5 SUVH6. H3K9 methylation may 

then partially regulate 24nt-siRNAs produced at these sites through a similar mechanism 

that occurs at DRM2 target sites. Because these 24nt-siRNAs are also dependent on Pol 
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IV25,26, a speculation is that there may be H3K9 methylation readers other than SHH1 that 

recruit Pol IV to CMT2 sites. While these 24nt-siRNAs do not appear to play a major role in 

guiding DRM2 in cis, they might function to silence TEs in trans27,28.

In summary, our data demonstrate that the CMT2, CMT3, and DRM2 methyltransferases 

collaborate to control non-CG methylation, and participate in self-reinforcing loop 

mechanisms with H3K9 methylation and small RNAs to control gene silencing throughout 

the genome.

ONLINE METHODS

Plant Material

All mutant lines used in this study were in the Columbia ecotype background. drm1 drm2 

cmt3 and kyp suvh5 suvh6 mutants were previously described11,36. The cmt2 T-DNA allele 

used in this study was cmt2-7 (WISCDSLOX7E02) and cmt2-3 (SALK_012874). cmt2-7 

was used for subsequent crosses. Plants were grown under continuous light, and three-week-

old leaves were used for all experiments, except for small RNA sequencing (see below).

RT-PCR

Total RNA was extracted from leaves with Trizol, and treated with DNase I (Roche). cDNA 

was synthesized with oligo-dTs using Superscript II (Invitrogen). PCR was performed on 

CMT2 (JP10697: GAGAAATCCTAAAACGTCCG and JP10698: 

CAGCCCATTTCGTCACGAC) and ACTIN (JP2452: TCGTGGTGGTGAGTTTGTTAC 

and JP2453: CAGCATCATCACAAGCATCC).

Recombinant Protein Expression and Purification

The N-terminal fragment of Arabidopsis CMT2 (residues 1-503) did not show homology to 

any known domain, nor did it BLAST to any other plant species, and was not included. The 

N-terminal truncated CMT2 (residues 504 - 1295), including all the functional domains (the 

BAH domain, the chromodomain, and the DNA methyltransferase domain), was cloned into 

a self-modified vector which fuses an N-terminal hexa-histidine plus yeast sumo tag to the 

target protein. The recombinant plasmid was transformed into E. coli strain BL21(DE3) RIL 

(Stratagene). The cells were cultured in LB media at 37°C until OD600 reached 0.6. The 

media was subsequently cooled to 20°C and 0.25 mM IPTG was added to induce the protein 

expression overnight. The recombinant expressed protein was purified using a HisTrap FF 

column (GE Healthcare) followed by a Q FF column (GE Healthcare) and a Hiload 

Superdex G200 16/60 column (GE Healthcare). The purified protein was concentrated to 15 

mg/ml and was stocked in – 80°C for further using. The N-terminal truncated Arabidopsis 

CMT3 (residues 46-839), including all the functional domains (the BAH domain, the 

chromodomain, and the DNA methyltransferase domain), was cloned, expressed, and 

purified using the same protocol as CMT2.

Isothermal Titration Calorimetry

Isothermal titration calorimetry (ITC)-based binding experiments were conducted using a 

MicroCalorimeter iTC 200 instrument at 4 °C. Purified protein samples were dialyzed 

Stroud et al. Page 10

Nat Struct Mol Biol. Author manuscript; available in PMC 2014 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overnight against a buffer of 100 mM NaCl, 2 mM β-mercaptoethanol, and 20 mM HEPES, 

pH 7.5 at 4 °C. Then, the protein samples were diluted and the lyophilized peptides were 

dissolved with the same buffer. The titration was conducted according to standard protocol 

and the data was fitted using the program Origin 7.0.

DNA Methyltransferase Activity Assay

DNA methyltransferase assay was performed as previously described10 except that 2 µg of 

recombinant CMT2 protein was used. Oligos used for the assays are shown in 

Supplementary Table 3.

Histone Peptide Array

Thirty µg of recombinant CMT2 protein was screened on a MODified histone array slide 

following manufacturer instructions (Active Motif) using His antibody and was developed 

with Enhanced chemiluminescence (GE Healthcare). All analyses were performed using the 

manufacturer software (Active Motif).

Whole Genome Bisulfite Sequencing (BS-seq)

500 ng of genomic DNA was used to generate BS-seq libraries as previously described8,37. 

50-mer sequencing reads were analyzed. Identical reads were collapsed into single reads, 

and reads were mapped to the TAIR10 genome using BS-seeker by allowing up to 2 

mismatches. Fractional DNA methylation levels were computed by #C/(#C+#T). DMRs 

were defined exactly as previously described 8.

mRNA Sequencing

RNA was extracted from 0.1 g tissue using Trizol (Invitrogen). We performed mRNA-seq 

experiments on two biological replicates for each genotype tested. Libraries were generated 

and sequenced following manufacturer instructions (Illumina). Data were analyzed as 

previously described38. Reads were mapped to the TAIR10 genome using Bowtie39 by 

allowing up to two mismatches and only keeping reads that uniquely map to the genome. 

Genes and TEs were defined as deregulated in a mutant using a four-fold cutoff and a 

corrected p<0.01. Only genes and TEs that showed consistent deregulation in two 

independent experiments were defined as significantly deregulated. To avoid divisions with 

zero, elements with zero reads were assigned the lowest non-zero gene or TE expression 

values within each library.

smRNA Sequencing

Total RNA was extracted from 0.2 g of flowers using Trizol (Invitrogen). siRNAs were 

purified as previously described40 with the following modifications. To precipitate high 

molecular weight RNAs, 25% PEG was added to a final concentration of 12.5% instead of 

5% PEG. For small RNA purification from LMW RNA, SYBR® Gold was used to stain the 

gel. The gel was crushed using Gel Breaker Tubes (IST Engineering Inc), and the debris was 

filtered using 5 µm Filter tubes (IST Engineering Inc). The final elution of the RNA was 

done in 5 µL of nuclease-free H2O for subsequent generation of libraries for high throughput 

sequencing. Libraries were generated and sequenced following manufacturer instructions 
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(Illumina TruSeq Small RNA Sample Preparation Kits). Adapter sequences were clipped off 

before mapping. Reads were mapped to the TAIR10 genome using Bowtie39 by allowing no 

mismatches and only keeping reads that uniquely map to the genome. For the analyses, the 

smRNA counts were normalized to the size of each smRNA library by dividing to the 

number of reads to the number of total uniquely mapping reads of 21 bp in size.

Chromatin Immunoprecipitation (ChIP) Sequencing

One gram of tissue was ground in liquid nitrogen, and ChIP was performed as previously 

described14 using the following antibodies: H3K9me2 (Abcam 1220), H3 (Abcam 1791), 

H3K9me1 (Upstate 07-450), and H3K23ac (Millipore 07-355). Libraries were generated and 

sequenced following manufacturer instructions (Illumina). Reads were mapped to the 

TAIR10 genome using Bowtie39 by allowing up to two mismatches and only keeping reads 

that uniquely map to the genome. Reads mapping to identical locations were collapsed into 

one read. Two independent ChIP-seq experiments on biological replicates were performed 

on H3K9me2 and H3K23ac on wild type, drm1 drm2 cmt2 cmt3 and kyp suvh5 suvh6 

mutants, which led to the similar conclusions.

Chromocenter Compaction Assay

Chromocenter compaction assays were performed as previously described41 with the 

following modifications. Following post-fix, the slides were washed three times in PBS for 5 

minutes each. The nuclei were then stained and mounted in Vectashield mounting media 

with DAPI (Vector H-1200). At least 100 nuclei were analyzed for each genotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
In vitro activity of CMT2. (a) Fractional DNA methylation levels of cytosines in CG, CHG, 

and CHH contexts across chromosomes. Grey bars indicate pericentromeric 

heterochromatin. (b) CMT2 in vitro methylation activity on DNA of different methylation 

status. The values for unmethylated and hemimethylated DNA were normalized according 

to the number of available (i.e. unmethylated) cytosines. Error bars represent SD for two 

technical replicates. (c) CMT2 in vitro methylation activity on DNA of different methylation 

status. Sequence specificities of CMT2 were assessed. Error bars represent SD for two 

technical replicates.
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Figure 2. 
CMT2 is mediated by H3K9 methylation. (a) Percentages of kyp suvh5 suvh6 CHH 

hypomethylated 100 bp tiles overlapping with cmt2 and drm1 drm2 CHH hypomethylated 

tiles. (b) Average distribution of H3K9me2 and CHH methylation over previously defined 

kyp suvh5 suvh6 CHH hypomethylation DMRs. Middle region represents the DMR and the 

flanking regions were scaled such that they are the same lengths as the middle region. (c) 

CMT2 binding assay to different histone modifications on a peptide array. The yellow, red, 

and blue circles indicate peptides containing mono-, di-, and trimethylated H3K9me2 
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peptides, respectively. (d) ITC binding curves for complex formation between CMT2 

protein and H3K9me3, H3K9me2, H3K9me1, and unmodified H3 peptides. Kd values and 

the N values are listed as insert. (e) ITC binding curves for CMT3 protein. (f) Normalized 

H3K9me1 and H3K9me2 ChIP-seq reads in indicated regions are shown. Here and 

throughout, red lines, median; edges of boxes, 25th (bottom) and 75th (top) percentiles; error 

bars, minimum and maximum points within 1.5 × interquartile range; red dots, outliers.
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Figure 3. 
Dissecting contributions of non-CG methyltransferases in DNA methylation patterning. (a) 

Average distribution of CHG methylation in indicated genotypes over all TEs. TSS= 

transcription start site; TTS= transcription termination site. (b) Average distribution of CHH 

methylation in indicated genotypes over all TEs. (c) Heatmaps of CHG methylation levels 

within drm1 drm2 cmt2 cmt3 CHG hypomethylation DMRs. The columns represent the 

indicated genotypes, and the rows represent the DMRs. Rows were sorted by complete 

linkage hierarchical clustering with Euclidean distance as a distance measure. (d) Heatmaps 

of CHH methylation levels within drm1 drm2 cmt2 cmt3 CHH hypomethylation DMRs. (e) 

Boxplots of CHG and CHH methylation levels in cmt2 CHH DMRs. (f) Boxplots of CHG 

and CHH methylation levels in drm1 drm2 CHH DMRs. (g) Genome browser views of 
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CHG and CHH methylation in chromosome 1. Blue bars, TEs; Yellow bars, genes. (h) 

Boxplots of H3K9me2 levels relative to H3K9me1 in CMT2 target sites and DRM2 target 

sites. *P=6.5 × 10−224 by two-tailed Wilcoxon rank sum test. (i) Average distributions of 

H3K9me1 and H3K9me2 levels over long TEs. The log2 ratios of H3K9me1 and H3K9me2 

to H3 were plotted over TEs of greater than 2 kilobases in size. Distribution of drm1 drm2 

and cmt2 CHH hypomethylation DMRs are also shown for comparison (arbitrary scales).
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Figure 4. 
Non-CG methyltransferases cooperatively silence TEs and genes. (a) Number of TEs 

defined to be significantly upregulated in indicated genotypes. (b) Distribution of RNA-seq 

reads in drm1 drm2 cmt2 cmt3 relative to wild type. Wild-type DNA methylation levels are 

plotted in the top panel to indicate heterochromatic regions. (c) TE expression change in 

mutant relative to wild type and associated changes in CHG and CHH methylation levels in 

defined upregulated TEs are plotted. (d) Percentage of genes within one kilobase of drm1 

drm2 cmt2 cmt3 CHH hypomethylation DMRs. (e) Protein-coding gene expression levels of 
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genes defined to be upregulated in drm1 drm2 cmt2 cmt3 mutants. *Medians significantly 

different at a 95% confidence interval. **Medians not different at a 95% confidence 

interval.
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Figure 5. 
Relationship between non-CG methylation and 24nt-siRNA accumulation. (a) 24ntsiRNA 

levels in DRM2 target sites. 24nt-siRNA levels were normalized by the counts of 21nt-

siRNA levels for each genotype. (b) 24nt-siRNA levels in CMT2 target sites. 24nt-siRNA 

levels were normalized by the counts of 21nt-siRNA levels for each genotype.
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Figure 6. 
Relationship between non-CG methylation and H3K9 methylation. (a) Distribution of 

H3K9me2 relative to H3 over chromosomes. The graphs were shifted such that all the 

graphs aligned on the euchromatic arms. Grey bars indicate pericentromeric 

heterochromatin. (b) Genome browser views of DNA methylation, expression levels, and 

H3K9me2 in wild type, drm1 drm2 cmt2 cmt3, and kyp suvh5 suvh6 mutants in chromosome 

1. Blue bars, TEs; Yellow bars, genes. (c) Average distribution of H3K9me2 and H3K23ac 

relative to H3 over cmt2 and drm1 drm2 CHH hypomethylation DMRs. (d) Heatmaps of 
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H3K9me2 levels within drm1 drm2 cmt2 cmt3 mutant CHG hypomethylation DMRs. 

H3K9me2 was normalized to H3. Two wild-type H3K9me2 data are shown since H3K9me2 

data for met1 has a separate wild-type control34. (e) Genome browser views of DNA 

methylation, expression levels, H3K23ac, and H3K9me2 in wild type, drm1 drm2 cmt2 

cmt3, and kyp suvh5 suvh6 mutants in chromosome 1. Blue bars, TEs; Yellow bars, genes.
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Figure 7. 
Non-CG methylation pathways. (a) Non-CG methylation pathways at DRM2 target sites. 

See text for description. (b) Non-CG methylation pathways at CMT2 target sites. See text 

for description.
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