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Abstract: This thesis presents a part of the proof of that there is no chaos in three
dimensional autonomous quadratic systems of four terms with one nonlinear term and
without constant terms. The first step of the proof is identifying equivalent systems from all
possible systems by the 3rd order permutation group and as a result 138 unequivalent
patterns are found(refer to appendix A). And then for the solvable systems we show how
to solve them. Some of the nonsolvable systems turn out to be 2nd order autonomous
systems and they are resolved by analyzing the monotonicity of the solutions and/or using
the Poincaré-Bendixon theorem. The main and difficult part of the proof is to prove that the
nonsolvable 3rd order systems have no chaos. This thesis introduces a general theory of
analyzing the behavior of the solutions of higher dimensional autonomous systems(n =3)
qualitatively in the phase space. Some sufficient conditions for systems to have no chaos
are concluded by this theory. We also found out that there is a very close relation between
coupled loops and the properties of the positive bounded limit sets and chaotic behaviour of
a system. Because of limited time, only the seven dissipative nonsolvable 3rd order
patterns are studied in this thesis. As an application of the theory, we proved in this thesis
that three of them have no chaos. Two of the remaining four have coupled loops and thus
the behavior of these two patterns is determined. The last two can be resolved by
analyzing the monotonicity of the solutions. A system known to have chaos is also
analyzed by this theory and this is a typical example of a chaotic system with coupled loops
and with more than one positive bounded limit set.
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Chapter 1. Introduction

Up to now, chaotic behaviour has been found in many simple three dimensional
autonomous dynamical systems. The well known examples are the Lorenz attractor[1]
and the Rossler attractor[2]. J. C. Sprott showed in his paper[3] that chaotic behaviour
can occur in even simpler three dimensional autonomous systems. Here the simplicity
refers to the algebraic representation rather than to the physical process described by the
equations. All of the systems discussed in Sprott's paper are quadratic systems and
characterized by five terms with two quadratic nonlinear terms or six terms with one

“quadratic nonlinear term. In 1995, J. Heidel conjectured [4] that there is no chaos in three
dimensional autonomous quadratic systems of five terms with one nonlinear term or of
less than five terms with any number of nonlinear terms.

The difficulty of solving a differential equation analytically is that there is no straight
forward way to find the flows for the given vector fields. In other words, there is no
general way to determine whether any two points in the phase space are on the same
solution or not. Numerical methods are a powerful tool in solving differential equations.
However, it is usually hard to determine if a numerical scheme works for a particular
problem. Actually, there is no general definition for chaos mathematically. Chaotic
behaviour is found in practice either by finding a solution numerically, or by calculating
the Lyapunov exponents or calculating the dimension of the strange attractor of a system.
It is still hard to say exactly when a particular system is chaotic, but in general systems
with any one of the following properties -are not chaotic: (i) there are sufficient analytic
solutions for the system (or the system is integrable); (ii) each solution of a system is
either a limit cycle or a critical point or it asymptotically goes to a limit cycle or a fixed
point or it is eventually monotone; (iii) the system is a linear system or can be linearized.

We are interested in what the simplest chaotic system is and what is the simplest
nonlinearity which can cause chaos. The systems in the conjecture are simple nonlinear
systems which consist of systems of five terms with one quadratic nonlinear term and
systems of four terms with one, two, three or four quadratic nonlinear terms and systems
of three terms with one, two or three quadratic nonlinear terms. In this thesis, only
systems of four terms with one quadratic nonlinear term and without constant terms are
studied. The reason we start from this point is that almost all the three-term systems and
four-term systems with constant terms are easy to resolve.

The thesis consists of three parts. The first part is chapter 2. In this chapter , all the

systems except the nonsolvable systems are resolved by giving the analytic solutions of



the systems. The second part is chapter 3. It gives a proof that there is no chaos in the
systems each of which turns out to be a 2nd order autonomous system by analyzing the
monotonicity of the solutions and/or using the Poincaré-Bendixon theorem. The third
part is chapter 4 and chapter 5. In chapter 4 a general theory of analyzing the global
behavior of higher dimensional autonomous systems 1is introduced by the author. The
benefit we get from this theory will be seen in chapters 4 and 5. In chapter 5 an example

given in Sprott's paper which has chaos is analyzed by this theory.



Chapter 2. Three Dimensional Autonomous Systems in S[4;1;0]

Quadratic systems are the simplest systems of all the nonlinear dynamical systems.
However there are still a huge number of systems that belong to this type. Here a
classification of quadratic systems will be given. The general form of an n-dimensional
quadratic system is:

x=f(x)=a+Y b x,+ Y, Z; C, i XiX; (2.0)

where x €R" is a real n-dimensional phase space variable, f=(f,...,f ) is an n-
dimensional second degree polynomial, and a, b and ¢ are real n-dimensional coefficient
vectors.
Definition2.1.1 S[p;q;r] is the set of systems in the form (2.0) with p terms on the right
hand side, q of them are quadratic terms and r of them are constant terms.
Definition2.1.2 Considering the distribution of p, ¢, r in each dimension,
SI(Pys-s P, ) (Gyseo500)s (1155 )), SI(Pys--s £, )3(G5--59,)5 7] and S[(p,,...,p,)iq;r] are

n

defined as subsets of S[p;q;r] where p= z;l’w q= z:;]qi and r= Zizlr,. and
there are p, terms, g, quadratic terms and r; constant terms on the right hand side of f..
Notation We denote S[(p,,...,p,);q;0] and S[(p,,..., p,).(q,,---.9,);0] as S[(p,,...,P,):q]
and S[(p,,.--»P,);(q,>----q,)] respectively
The systems that are studied in this thesis are three-dimensional S[4;1;0] systems., and
(X,,X,,X3) =(X,y,2), and (f,,f,,f;)=(f,g,h). :
2.1 The Total Number of 3-D Systems in S[4;1;0]
It can be verified that
S[4;1;0] = S[(2,1,1);1;0]w S[(1,2,1);1;0] U S[(1,1,2);1;0]
S[(2,1,1);1;0] = S[(2,1,1);(1,0,0)]u S{(2,1,1);(0,1,0)] v S[(2,1,1);(0,0,1)]
S[(1,2,1);1;0] = S[(1,2,1);(1,0,0)] w S[(1,2,1);(0,1,0)] U S[(1,2,1);(0,0,1)]
S[(1,1,2);1;0] = S[(1,1,2);(1,0,0)]w S[(1,1,2);(0,1,0)] v S[(1,1,2);(0,0,1)]
All possible f(x,y,z)'s, g(X,y,z)'s and h(x,y,z)'s of the above 9 subsets of S[4;1;0] are:
1. S[(2,1,1);(1,0,0)]
X= ax’+bx, ax?+by, ax >+bz, ay>+bx, ay >+by, ay > +bz, az > +bx, az’ +by,
az > +bz, axy+bx, axy+by, axy+bz, axz+bx, axz+by, axz+bz, ayz+bx,
ayz+by, ayz+bz
y= CX, Cy, CZ
Z= IX, Iy, IZ

2. S[(2,1,1);(0,1,0)]



Xx= ay+bz, ay+bx, az+bx
y= cx?, cyz, cz?, CXy, €XZ, CyZ
Z= TIX, Iy, IZ
3. S[(2,1,1);(0,0,1)]
X= ay+bz, ay+bx, az+bx
y= CX, Cy, CZ
7= rx°7, ry2, rz?, IXy, IXZ, Iyz
4. S[(1,2,1);(1,0,0)]
X= ax?, ay?, az’, axy, axz, ayz
y= bz+cy, by+cx, bz+cx
Z= IX, Iy, IZ
5. S[(1,2,1);(0,1,0)]
X= ax, ay, az
y= bx2+cx, bx 2+cy,bx 2 +cz, by >+cx, by > +cy, by > +cz, bz >+cx, bz’ +cy,
bz +cz, bxy+cx, bxy+cy, bxy+cz, bxz+cx,bxz+cy,bxz+cz, byz+cx,
byz+cy, byz+cz
Z= IX, Iy, IZ
6. S[(1,2,1);(0,0,1)]
X= ax, ay, az
y= bz+cy, by+cx, bz+cx
z= 1X°, 1y, 1Z2°, IXy, IXZ, 1yZ
7. S[(1,1,2);(1,0,0)]
x= ax?, ay?, az’, axy, axz, ayz
y= bx, by, bz
Z= Cy+IZ, Cy+IX, CZ+IX
8. S[(1,1,2);(0,1,0)]
X= ax, ay, az
y= bx?, by?, bz?, bxy, bxz, byz
Z= CY+HZ, Cy+IX, CZ+IX,
9. S[(1,1,2);(0,0,1)]
X= ax, ay, az
y= bx, by, bz
Z= CX’HIX, CX 241y, CX > +1Z, cy’ +1X, Cy * +1y, ¢y > +1Z, cZ° +1X, CZ° +1y,

cz+rz, CXY+IX, CXy+HY, CXY+IZ, CXZ+IX, CXZ+TY, CXZ+IZ, CyZ+TX,



CyZ+ry, CYyZ+1Z
where a, b, ¢, r are arbitrary nonzero constants and we call each possible combination of
f(x,y,2), g(x,y,,2), h(x,y,z) a pattern regardless of the constants a, b, ¢, r.

For example the system:

X = axy + bx
y=cz
Z=r1Yy

is a pattern in S[(2,1,1);(1,0,0)]

Theorem 2.1.5 The number of all the possible patterns in S[4; 1; 0] 1s 810.
Proof: The possible patterns in S[(2,1,1);(1,0,0)] 1s 18 x3x3=162;

in S[(2,1,1);(0,1,0)] is 3x 6 x3=54; in S[(2,1,1);(0,0,1)] is 3 x3 x 6=54;

in S[(1,2,1);(1,0,0)] is 6 x 3 x3=54; in S[(1,2,1);(0,1,0)] is 3 x 18 x 3=162;
in S[(1,2,1);(0,0,1)] is 3x3 x6=54; in S[(1,1,2);(1,0,0)] is 6 x3x3=54;

in S[(1,1,2);(0,1,0)] is 3x 6 x3=54; in S[(1,1,2);(0,0,1)] is 3 x3 x18=162.
Thus the possible patterns inS[4; 1; 0] is 162X 3+ 54 %6 =810 .

Studying 810 systems one by one is a lot of work. Fourtunately the systems can be
classified by the 3rd order permutation group There will be approximately one sixth of
the 810 patterns left which are not equivalent by the permutation group. The parameters
a, b, c of a system can be transformed to all ones or partly ones by a scalar
transformation.

2.2 Eliminating Equivalent Patterns by the 3rd Order Permutation Group

Definition2.2.1: The 3rd order permutation group G consists of six 3 by 3 matrices
P, G, i=1,...,6:

1 0 0 010 00 1
P,=|0 1 0 P,={1 0 0 P,=/0 1 0
00 1 00 1 1 0 0
1 0 0 010 00 1
P,=|0 0 1 P,={0 0 1 P,=(1 0 0
010 1 00 010

Theorem 2.2.2 (é) There is a one-to-one correspondence between the patterns in
S[(2.1.1);1] and the patterns in S[(1,2,1);1] by the transformation P, and none of the
patterns in either S[(2,1,1);1] or S[(1,2,1);1] can be transformed to each other by P, . (b)

There is a one-to-one correspondence between the patterns S[(2,1,1);1] and the patterns



in S[(1,1,2);1] by the transformation P, and none of the patterns in either S[(2,1,1);1] or
S[(1,1,2);1] can be transformed to each other by P,.

Proof: (a) P, acting on one pattern is equivalent to switching x and y in the pattern. We
can see that after switching x and y in S[(2,1,1);1], the patterns in S[(2,1,1);(1,0,0)]
become exactly the patterns in S[(1,2,1);(0,1,0)], the patterns in S[(2,1,1);(0,1,0)] become
exactly the patterns in S[(1,2,1);(1,0,0)] and the patterns in S[(2,1,1);(0,0,1)] become
exactly the patterns in S[(1,2,1);(0,0,1)]. And this tells us that there is a one-to-one
correspondence between S[(2,1,1);1] and S[(1,2,1);1]. It is clear that after switching x
and y in the patterns in S[(2,1,1);1], the pattern has to become one of those in
S[(1,2,1);1]. So it can't remain in S[(2,1,1);1] Similarly after switching x and y, patterns
in S[(1,2,1);1] can't can't remain in S[(1,2,1);1]. The proof of (b) is similar to the proof of
(a).

With the above linear equivalence we can choose any one of the three subsets
S[(2,1,1);11, S[(1,1,2);1] or S[(1,2,1);1] of S[4;1;0] and ignore the other two. Here we
choose S[(2,1,1);1]. In S[(2,1,1);1] we have:

Theorem2.2.3 The patterns in S[(2,1,1);(0,1,0)] and the patterns in S[('2, 1,1);(0,0,1)] and
in S[(2,1,1);(1.0.0)], the patterns in (2.2.1) and in (2.2.2), the patterns in (2.2.3) and in
(2.2.4), and the patterns in (2.2.5) and in (2.2.6) have a one-to-one correspondence by P,
and none of the patterns in any of (2.2.1), (2.2.2), (2.2.3), (2.2.4), (2.2.5), (2.2.6),
S[(2,1,1);(0,1,0)] or S[(2,1,1);(0,0,1)] are equivalent by P,.
X= ax’+by, ay’+bx, ay *+by, ay > +bz, axy+bx, axy+by, axy+bz, ayz+by
y= CX, cy, CZ 2.2.1)
Z= 1X, 1y, IZ
and
X= ax’+bz, az’+bx, az’+bz, az > +by, axz+bx, axz+bz, axz+by, ayz+bz
y= CX, CY,CZ (2.2.2)
Z= IX, Iy, IZ
and the patterns
X= ax’+bx, ayz+bx
y= cCy, Cz (2.2.3)
Z= 1X
and
X= ax’+bx, ayz+bx
y= cx (2.2.4)



= 1Z, Iy
and the patterns
X= ax’+bx, ayz+bx
y= cy (2.2.5)

and
X= ax’+bx, ayz+bx
y= cz (2.2.6)
Z= I1Z

Proof: The proof is similar to the proof of Theorem 2.2.2.

Similarly we can eliminate the patterns (2.2.2), (2.2.4), (2.2.6), in S[(2,1,1);(0,0,D].
Corollary 2.2.4 The biggest subset of S[4;1;0] in which all the patterns are not
equivalent under the permutation group consists the following 138 patterns:

(a) X= ax’+by, ay >+bx, ay >+by, ay > +bz, axy+bx, axy+by, axy+bz, ayz+by
y= CX, Cy, CZ
Z= IX, 1y, IZ
(b) X= ax’+bx, ayz+bx
y= CX, Cy, CZ
Z= IX
(c) X= ax’+bx, ayz+bx

y= cy
z= 1y, 1Z
(d) X= ax?+bx, ayz+bx
y= cz
z= 1y

(e) x= ay+bz, ay+bx, az+bx
y= cx’,cy’, cz?, cxy, cxz, Cyz
Z= r1X, Iy, IZ.

Proof: The patterns in S[(2,1,1);(1,0,0)] that are not listed in theorem 2.2.3 are:

X= ax’+bx, ayz+bx X= ax’+bx, ayz+bx X= ax’+bx, ayz+bx
y= ¢x , y= cz and y= cy
2= IX = 1Yy Z= 1z

We can see that each of these patterns becomes itself after exchanging y and z in it. This
‘six patterns plus the patterns in S[(2,1,1);(0,1,0)] and the patterns in (2.2.1), (2.2.3),



(2.2.5) are exactly what is listed in this theorem. The total number of these patterns is
8X3X3+2x3 X 142X 1 X242 x1x 143 x6x3=138.

Most of the 138 patterns are solvable. We classify the solvable patterns into 6 types
according to the way that is suitable for solving the system. The patterns that can be
solved directly by separation of variables belong to type I. Some patterns are either first
order linear equations or second order linear equations and they are type II. Systems of
type III are the 1st order Ricatti equations. The solutions of type IV systems are elliptic
functions and type V are a form of Rayleigh equations that are solvable. Each of the
above pattern will be either solved in the next section except for the very easy ones or the
ones that have a formula solution. There is one more type of patterns whose solution is
obvious and so the solution will be listed in Appendix A directly and they are type S. For
the nonsolvable patterns, they are type VI if they are essentially 2nd order autonomous
systems and type VII if they are either 3rd order nonlinear autonomous systems or 2nd
order nonlinear and nonautonomous systems. All the 138 patterns are listed in appendix
A which tells the type of the system, their solvable forms if they are solvable, their
equivalent scalar form if they are not solvable or it is hard to determine their sovability.

2.3. Scalar Transformations

The parameters a, b, ¢, r in each of the above 138 patterns can be eliminated or
partly eliminated by a scalar transformation x=aX, y=8Y, z=yZ, t=0T, for
nonsolvable cases, we require that ¢>0, because in some systems with chaotic behavior
when t— o , the chaotic behavior may disappear when f — —eo. Here are three
exapmles of the transformations:
Example 1. System (24) can be transformed by a scalar transformation T to a system

without parameters:

X = axy+ bx X=xy+x
y:cx _— _').)=x
z=ry Z=y

Proof: Let x=aX, y=BY, z=yZ,t=6T then
d_ddr_1d dx_ dX_adf dy_pd¥ di_ydz
dt dT dt 6dT’° dr dt &8dT" dt &6dT’ dt 64T
and thus we have:



(o dX
6 dT
Bdy _
Sdr
Yaz _
SdT

since this is a solvable system, set daff=1, éb=1

252 = qafXY + baX

coX

rBY

or

X _ 5aBXY + 5bX
dar
<£ _ 5caX

ir B

az _orB .,

| dT Y

bca=1’ @=1
Y

then a=b*/(ac), B=b/a, y=r/a and 6=1/b

Example 2. System (8) can be transformed by a scalar transformation T to a system with

one parameter:

x =ayz+bx
y=cy LN
Z=rx

-

) b
X=yz+—x
C
y=Yy
l2=x

Proof: Letx=aX,y=BY,z=yZ,t=06T then
d_ddr_1d dv_ dX_odX dy_BdY di_ydZ
dt dT dt 84T’ dt dt 8dT’ dt &dT’ dt §8dT

and thus we have

(o dX (
QAX _ \ByYZ +boX aX _ 0aBY vy 4 spx
6 dT dT o
<Eﬂ=cﬁy or <£=5CY
6 dT ar
Ziz_. =roX ..ci.Z_ = 67'0{ X
6 dT ar v
since 8b. and Oc can not be 1 at the same time if b#c, without loss of generality, since
this is a solvable system , we make dc=1 and set %afs 7/=1 , 5ra=1’
a 14

then a =cy/r,f=c"/ar,y=y,6=1/c.
Example 3. System (54) can be transformed by scalar transformations T, to systems

without parameters:
i=ay’ +hx

T, .
y=cz —_— y=2z

Z=rx



Letx=aX,y=BY,z=yZ,t=06T then
d_ddr_1d d_ dX_ad & _pdy d_ydz

- = - 7_—a_ ’ 3 - —
dt dT dt 6dT dt dt 6dT dt 6dT dt 6dT

e ( 2
adX _ aB’Y” + baX ax _ daf Y2 +b6X
6 dT dT o
<é£:c’}/z or <£=Z§“CZ
6 dT dr B
Yaz _ raX dz _ ora X
) . SaB? .
Since this is a nonsolvable system, to assure d >0, set -=1, bd=1 if b>0
o
Yo or

(b6=-1, if b<0), Fc=1, 9% _1 and we get T.= { & =-b’/(ac’t?), B =-b’/(acr),
Y

y=-b*/(ac’r), §=1/bifb>0(-1/b, if b< 0)}

In all that followed, we will express the scalar transformation as T={ ,3,7,6 }. And
for each necessary scalar transformation we will give the transformation T={ &, 3, 7,6 }
directly, not the procedure of finding the T.

2.4 Solvable Systems

101 patterns out of the 138 patterns have analytic solutions and thus there is no chaos
in these systems. In this section we will give solutions of all of them unless there is a
general formula solution for them.

2.4.1 Type I: Separation of Variables
The general form of the equation can be represented as:
Fi(x)g(Mdx + f,(x)g,(y)dy =0

28 out of the 101 patterns can be solved by separation of variables. Except the four
marked by * in the table in the Appendix A, whose solitions depend on several integréls
that have no compact forms, all the rest can be solved completely. Here we will give
solutions of three of them which are fairly complicated and then list the integrals that the
solutions of the above four patterns depend on.

1. Consider system (138):

xX=ay+bz
y=cyz
=7z

There is no chaotic solution in this system.

10



y A
Proof: z = rz = z(t) = Ae", Y = cAe" = di(lny) =cAe”" = Iny= e +mB
y t r

cA
__.en

=y=Be" |,

cA ,

—

andthus x =aBe’™ +bAe"”
Ao cA Aen
or  x(t)= j(aBe +bAe" Ydt+C=——¢" + aBje T dt+C
¥

A
Let s= «“a , ds=cAe"dt = rsdt,

¥

A B e
then x(f)=<Ze" + “—jf—ds +C
4 R)

/ 2 3
thus x(¢) = ————e +§ Ins+s+ a + a +...|+C
r r 2x2! 3x3!

cA cA
(_ert)Z (__er!)3
A, 9B ln(ﬂ)+rt+—cée"+ L +-—L +...|+C
r r r r 2x2! 3% 3!
\

where A, B, C are integral constants.
2.Consider the system (24):

X =axy+bx
y=cx
Z=ry

There is no chaotic solution in this system.
Proof: From examplel in section 2.3, system (24) can be transformed to: x = xy + x,

y=x,z2=Yy.

. X 1
thus x=xy+x y=x:>x=§y2+y+A,

£11:—1-y +y+A = t+B= J—Zdz———
da 2 y +2y+2A
Case (a): If A< —;— by appendix B(3), then
iepo L |y+1-+1-24
VI-24 |y+1++/1-24|
Let A'=+1-2A
1-A’
@l) I 2"2 50 | then
y+1+A
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1+ ANV B + A7 — 1

aarpy Y+H1-— A’ _
ey I B
o _ (1 +A')A,eA’(t,+B) ((1 +AI)eA’(t+B) +AI_ I)AIeA’(I-i-B)
x(t) = y(t) = [— A +B (l—eA'(’+3))2

dt

I+ A)e P A" -1
o) = J'( )

1 A (r+B)
Let s=1-e"®" ds=—Ae"®"ds then
2AI _ 14
29y = -[ 2y ¢
A's(1-5)
2 ) 1
In +
1+A” 1-s5s A'Inl-s5)+C
thus  z()==2In(1- "2y 4 (3V1-24 + D@+ B)+C

@2): 1t 274 0, then

y+1+A’
B y+1—-A’
y+1+ A’
_ . 3 (1 + A/)A/eA'(HB) ((1 + A/)eA’(HB) + A — I)A,eA'(,_,,B)
. = X(t) - y(t) B 1- eA,(HB) + (1 _ eA’(t+B))2
X0 =y = —A0+ ANt (A =1 (1+ AN P) AT
=)= 1+ A B 1+ eA’(t+B))2
Let s=1+ eA'(B+t), ds = A/eA’(B+t)dt
2A" — 1+A’ A,—I A’+1
Z(S)=—J. al )dS-l—C = In o Ins+C
A’s(s—1) A’ s—1 A’

thus z(d)=2In(I+e""" Y4+ (1-~/1-24)t+B)+C
Case (b):If A > % then

2 y+1 \/ -1
t+B= arctan or 1) =+2A—-1tan +B
VA1 V2A-1 Y= —, UrB)

thus  x(t) = y(t) = %seez(———“z‘;_l(m B))

z2(t) =2A - jta (— (t+B))dt+C 21n sec(—';—_l(t+B)) +C

, then

t+B=- 2 or y(t)=—1——2—
y+1 t+B

Case(c): If A=

I\)Ir—*

12



x(t) = and z(t)=-t—-2In|t+B|+C

(t+ B)’
where A, B and C are integral constants.

3. Consider system (136):

X =ax+by
y=cyz
=71z

There is no chaotic solution in this system.

cA
—€
Proof: z=rz=z=Ae",y=cyAe” = y=Be’
Yy Y. y
and X=ax+bBe’
cA n Ac .

thus (xe™) =e “(bBe’ ) or x = bBe" j e dit+C.

where A, B and C are integral constants.
) 2

1
Considering system (109), z = (ﬂyZ + ﬁ)3 , y(B) = c(é_r. v+ ﬁ)a
2c c 2¢ c
and thus
3, 4 3A r=t+C, (24.1.1)
c(=—y* +)3
2c c

where C is an integration constant. And x = ax + by, thus x(¢) depends on the inverse
relation of (2.4.1.1). Systems (110) and (111) are similar to system(109). The three
systems are also two dimensional autonomous systems and thus the behaviour of the
solutions of these systems can also be analyzed by the method in chapter 3.

2.4.2 Type II: Linear Systems

The general form of the nth-order linear ordinery differetial equations can be
represented as:

YW x) + a, ()Y V(X)) + -+ @ (0)Y (%) + g () (%) = @(x)
where al.(x),i =0,1, 2,...,n—1, is continuous functions.

43 out of the 138 pqtterns turned out to be linear ODEs. 29 of them are 1st order linear
ODEs, 8 6f them are 2nd order linear OEDs with constant coefficients and 6 of them are
2nd order linear ODEs with variable coefficients. There is a general method to solve the
first two kinds of the equations. For the last 6 patterns, we will solve one by one in this
section , since there is not a general method to solve them.

1. Consider system (8):

13



X = ayz+bx
y=cy
Z=1rz

There is no chaotic solution in this system.
. . 1. . 1.
Proof: y=cy=> y=Ae", x=-2,x=—7=
r r
Z—bz—arAe“z =0 (24.2.1)

From Appendix B(4) this equation belongs to the general form:
d’y dy .pAx
W+aa+(ﬁe +6)y—0

where o =-b, 3 =arA, A =c, 6 =0, the general solution of (2.4.2.1) is:

z(t)—ez[CJ [ZVarA ff] voy (2x/arA e%’ﬂ’ v—___\M—l_bl

C - A T oc
_dz(t)
x(t) = i

e i

Sl

J C‘Yv+l

where J,and Y, are Bessel functions and A, C|, C, are integral constants.

2. Consider System (32):

VG, [2«/arA j CJVﬂ(Z\/arA
c

x = axz + by
y=cx
=1z

There is no chaotic solution in this system.
Proof: The scalar transformation T transforms (32) to a simpler form:

x=xz+b'y, y=x, 2=z where b'=b—:
: r
and —{ —l,B—£ =L,6=l},z'=z=>z(t)=Ae'=>
r a r
§—Ae'y—~b'y=0 (2.4.2.2)

equation (2.4.2.2) belongs to form (5) in Appendix B:
FL(x)y"(x)+ f,(x)y (x)+ fo(x)y=0

t A2 2t A t
where f,(x)=-b, f,(x)=-A¢€, f,(x)=1, f(x)=—b—7e +—2—e

14



A !
and let y(t) = u(t)e?

2
u”(t)— A—ez’ —ée' +b u(@)=0 (2.4.2.3)
4 2
equation (2.4.2.3) is the canonical form (6) in Appendix B:
Y'(x) = (ce™ + Be™ + y)y(x) =0

2
where l=l,a=%,ﬁ=—%,y=b,kf\/3,
—Vbu(t)

after the transformtion n() =e¢', w(n) =17 , we have
7 ’ A2 A

nw”(m) + (1+2+/b Jw' () + (== n+ W) =0 (2.4.2.4)
And equation (2.4.2.4) belongs to the general form (7) in Appendix B:

(a,x+b)y"(x)+ (a,x + b)Y (x) + (a,x + by)y(x) =0 (2.4.2.5)

2
where @, =1,b,=0,a, =0, b =1+2+/b, a, =_AT’ b, =§
_ 2
Let D? = a® —daga, = A, h=2"% - & atmy=2ah+a =47 6=——2_=_ 1
2a, 2 A(h) A
2
U= _b_ 0, B(h) = b,h> +bh+b, = A—(1+2«/5)+é, &= il -A’n,
a, 2 2 o
., Bh) 1 - , -

= 5(1+2«/E+A Y, b = (a,b, — ab))a;” = 1+2-/b
then the general solution of the equation (2.4.2.5) can be written as:

A?

w(n) = e7l‘(%(1 +24b + A7), 1+2+/b; — A’n)
here I'(a',b';&) is an arbitrary solution of the degenerate hypergeometric equation:
xy"(x)+(b—-x)y’—ay=0
n(r) = ¢, In(w(m) = In(n~"®) == Vbu(r) In(n()) = - Vbru(r)

A2

—_L =__1_ 2 l -1 . A2t
u(t) = In(w(n)) %tln(e r(2(1+2«/E+A ), 1+2+/b; — A%"))

/bt
1 ATZ 1 4 2 ge’
thus y(t):—ﬁln(e F(5(1+2«/5+A ), 1+2+/b; — A%e"))e

A'Z

A,
x(H)=y(t) = ——\%% ln(e?l"(%(l +24/b+ A ), 1+24/b; — Aze’))e? }

3. Consider the system (33):

15



x=ayz+bz
y=cx
-

There is no chaotic solution in this system.

1 1
Proof: z=rz = z(t) = Ae”. x=—y = x = —¥ thus
c

c
y—aAe"y—cbe” =0 (2.4.2.6)

Let w =y then (2.4.2.6) becomes
w—aAe"w—cbe” =0 - (24.2.7)

Then the solution of (2.4.2.7) is:

@A A
wit)=e’ (je r che"dt+ B) ,
aA

1 1 Ser o B
thus x = —w(t) = —e (je r" chedt + B)
C C

. a g _ah
and thus the solution of y(t)=y(r) = [(e " ( [e ™" cbemdr+ Bydr+C
4. Consider the system (44):

Xx=ayz+bz
y=cy
a2=rx

There is no chaotic solution in this system.

Proof: y=cy= y(t)=Ae“, x =lz'=>

-
Z—r(aAe” +b)z=0 (2.4.2.8)
since the equation ( 2.4.2.8) belongs to canonical form:
Y7(x)+ (ae* —b)y(x)=0 (2.4.2.9)

the general solution of equation (2.4.2.9) is:

¥(x)=CJ, ;(2Nae?) + C,Y, ;(2Vae?)
where J, and Y, are Bessel function. let ¢ =1, & = —raA, f = rb. Then the solution of
equation (2.4.2.8) can be written as

! . L
«t)=CJ, ;(2N-raAe*) + C,Y, (2N -raAe?)

(=200 = l—g;{ClJ (2+/-raAe’)+C,Y, ,, (2+/-rade?))
r

r 2+rb

5. Consider the system (135):
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XxX=ay+bz
y=cxz
i=rz
There is no chaotic solution in this system.
Proof: 7 =rz = z(t) = Ae", ¥ = ay + rbAe" =
X—acAe"x —rbAe"” =0 (2.4.2.10)
(2.4.2.10) can be solved by the variation of parameters. First we find the solution x,(#) of

the homogeneous equation:

¥—acAe"x =0 (2.4.2.11)
(2.4.2.11) belongs to a cononical form y”(x) + ae™y(x) = 0, its general solution can be
written as:
e T r 5
y(x)=GCJ, (——— e?)

where J, and Y|, are Bessel function. Then the solutlon x,(t) of (2.4.2.11)is:
x, (1) = Cx, (1) + C, x,(t)

’ rn ' rt
where x,(t)=J,(2 —acd acA
’

e?), x,(1) =Y, (2 e?)

thus a particular solution of (2.4.2.10) is

x, (1) = 1(t)j ‘()bA "t + x, (1) [ - e"dt

where W) = %, W,(t) = -Y,, Wz(t) = JO
and thus the general solution of (2.4.2.10) is x(z) = x,(t) + x,(?)

2.4.3 Type I1I. First-order Riccati equations
The general first-order Riccati equation can be written as:

(1) + pt)x + q(t)x*(t) = (1), =3; (2.4.3.1)
where p(t) and q(t) are arbitrary functions. Now let x(¢) = ﬂ—— and we get the
: q(@)y(1)
second order linear o.d.e :
1)+ (p(r) - qE ;)wm PO W(t) = (2.432)

Six patterns out of the138 patterns turn out to be first order Riccati equations. Here we
are gonig to solve patterns (37) and (61), patterns (43), (45), (69), and (77) are similar to
pattern (37).

1. Consider system (37):
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x =ax’>+by
y=cy
Z=rx
There is no chaotic solution in this system.
Proof: y=cy = y= Ae”, then x—ax®>=bAe”
This is a first order Riccati equation (2.4.3.1) with p(¢) = 0, g(¢) = —a, and @(¢) = bAe”
v
t

let x(t)=- thus we have
a

w(t)—abAe“y(t)=0 (2.4.3.3)
This is a second order linear equation with variable coefficients. From [10], the
solution of (2.4.3.3) is:

A= 2+/—abA
]l[(t) = CIJO(%(?C‘/Z) + CZYO(_———C—F‘—{)—eCI/Z)
and thus
2+/—abA 2+/—abA ..,
LG, (=222 e) 4 G Yo (2 e)]
Ho=-7 N N abA
a Cv]JO( a ect/2)+C2Y0( a .ect/2)

2(t) = J.x(t)dt+B = J—l%dt+B . v+B
a a

where C;, C, and B are integral constants. .

2. Consider system (61):

x = ax’ + by
y=cz
Z=ry

There is no chaotic solution in this system.
- : i —r r ri r _Jr
Proof: y=cz,z=ry = y=Ce™ +C,e™V™, 7= C,,}—e‘/_” - CZ\/:e Vet
' c c

and thus x—ax’ =b(Ce"™ + C,e™™)
this is a 1st order Riccati equation with
p(t) =0, g(t) = —a, and @(t) = b(Ce*™ + C,e™™™)
after the transformation
x(1) = ——ljl(—[)
ay(t)

we have

18



W(t)—ab(Ce'™ + C,e ™) y(t) =0 (2.4.3.4)
where C, C, and B are integral constants. This is a linear system with variable
coefficients. and thus there is no chaos in this system. But we couldn't find the analytic
solution to (2.4.3.4).

2.4.4 Type IV: Elliptic Equations
Lemma2 4.4.1 The following identity is true

dw
- ,/ ) (2.4.4.1)
\/(1—w2)(1—k2w2 L/(y a)(y - ﬁ)(y Y)
Proof: The transformation: w? = —— 4 Lk = B- transforme the left hand side of
y— 7 o — 7’

(2.4.4.1) to the right hand side.
1. Consider systems (23)

x=ay’ +by
y=cx
z=ry
There is no chaotic solution in this system.
Proof: lji'= ay® +by = yy = acy*y + bcyy
:%)’3 =%cy3 +b2 YV +A =y= +\[2Ty +bcy’ +2A
or t+B= - dy (2.4.4.2)

i\[_3—_y3 + bcy2 +2A
where 23ﬁ y* + bey? + 2 A can always be factored as (y— a)(y —B)(y — ), from Lemma

2.4.4.1, (2.4.4.2) can be expressed by the Elliptic function of the first kind.

dw
VA= w1 - kPw?)
where w? = a— ﬁ }’
y=7
thus \/2ac *+bcy’ +2A

and z can be expressed by the inverse relation of (2.4.4.2) as:
z= J' ry(t)dt+C

where A and C are integral constants.
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2. Consider the system (60)

x =ayz+bz
y=cz
zZ=rx

There is no chaotic solutions in this system.
dy

Proof: Likewise, we have y = r?a y> +rby+ A and t+C=J-
i\/%r Y +rby* +2Ay+ B

x=1 @y 4 by+2) and 2 =jrxdt+C=jl(ﬁy2+by+§)dt+c.
c 2 r c 2 r

2.4.5 Type V: The Rayleigh Equations
Some systems come up with a form of the Rayleigh equation:
Y'(x)+a(y) +By=0
which has the general solution:

1
x=C,t oc_[[Claze’z"y +[3(-21-— ay)] 2dy.

1. Consider the systems (13)
x=ax’+by
y=cx
Z=rx
There is no chaotic solution in this system.
Proof: X = ax’ +by,y =cx =

§—Zy' —bcy=0 (2.4.5.1)
C

which is the Rayletgh equation of the above form with

o= —E,ﬂ = —bc
c

and thus the solution to (2.4.5.1) is
-2 1
r= G (-2 —bec+ Sy dy 2= Dy A and x= 15,
C C 2 c c c

The procedure of solving systems (21) and (26) are similar to this.
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Chapter3 Proof of the Nonsovable 2nd Order Autonomous Systems

13 out of the 138 patterns turn out to be 2nd order autonomous systems. We will prove
in this chapter that there is no chaos in these systems by analyzing the monotonicity of all
solutions in each system and/or by using the Poincaré-Bendixon theorem.
3.1 Preliminaries

Consider a general autonomous vector field

x = f(x) x eR" 3.1.1)

where f(x) is C", r 2 1. The solution of (3.1.1) that passes through the point x, at t=¢,
is denoted by x(t, #,, x,). The solutions of (3.1.1) form a one parameter family of
C’, r 21, diffeomorphisms of the phase space. This is refer to as a phase flow or a flow
denoted as ¢(z,x) or ¢,(x).
Definition3.1.1 A point x, isa fixed point or a critical point of (3.1.1) if f(x,)=0.
Definition3.1.2 A set S — R" is said to be invariant under the vector field (3.1.1) if
forany x, € § att=t, we have x(t, t,, x,)€ S forall teR.If =0 then S is refer to as

positively invariant set, for negative time, as a negatively invariant set. The symbol

.M is understood to be a positively invariant compact set in the phase space.[6]
Definition3.1.3 A point x, eR" is called an w [limit point of x eR", denoted as

a)(x); if there exists a Sequence {t}, t,— oo, such that
o(t,,x) = x,
an o limit point is defined similarly by taking a sequence {¢}, t, = —oo. The set of all
o limit points of a flow is called the @ limit set. The o limit set is similarly defined[6].
Theorem3.1.4(Poincaré-Bendixon) Let M be a positively invariant region for the
vector field containing a finite number of fixed points. Let p € M, and consider (p).
Then one of the following possibilities holds.
1) @(p) is a fixed point;
i1) (p) is aclosed orbit;
iii) @(p) consists of a finite number of fixed points p,,..., p, and orbits ¥ with
o(y) = p;, and @(y) = p;.
Proof: Refer to [6].

Theorem3.1.5 If an autonomous differential equation x = f(x), x e R" has a saddle at
X,, then there are precisely two trajectories that tend to x, as t — oo, that together with x,

form a smooth curve tangent at x, to the line of eigenvectors with negative eigenvalues(the
stable direction) and precisely two trajectories that tend to x, as ¢ — oo, that together with
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x, form a smooth curve at x, to the line of eigenvectors with positive eigenvalue(the

unstable direction)
Proof: Refer to [6].
Thoerem3.1.6 Suppose the solutions of a system (3.1.1) which are not fixed points are
monotone in a connected region. Then for a solution, one of the following possibilities
holds:

i) the solution approaches to one of the fixed points or approaches asymptotically to an
orbit on the boundary of the region as ¢t — +co.

ii) the solution goes to infinity as t — +oo, if there is no boundary in the direction that the
solution develops
iii) the solution reaches the boundary of the region at some later time.
Proof: Obvious.
Corollary3.1.7Suppose the solutions of a system (3.1.1) which are not fixed points are
monotone in a connected region. Then for a solution, one of the following possibilities
holds:

i) the solution approaches to one of the fixed points or approaches asymptotically to an
orbit on the boundary of the region as t — —oo.

ii) the solution goes to infinity as ¢ — —eo, if there is no boundary in the direction that the
solution develops from. .
1ii) the solution comes from the boundary of the region at some earlier time.
Proof: Obvious.
3.2 Proof by the Poincaré-Bendixon Theorem
1. Consider system(7)

X =ayz+bx
y=cx
Z=rx

There is no chaotic solution in this system.
Proof: The system can be transformed to x = yz+ x, y = x, Z = x by the scalar

b’ b* b*
transformation T={ ¢ = —, f=—, y=—, 6§ = — } if b>0.
acr ar ac b
Thus y=x,z=x=
y=z+A (3.2.1)

where A is a constant. Substitute (3.2.1) into the first equation of the system leads to a 2nd

order system about x and z with an arbitrary constant A:
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A A’
X=x+Az+7 =(z+5)2+x——

4 (3.2.2)
=X
(3.2.2) will be resolved in 3 cases here:
(a) If A=0, then system (3.2.2) becomes:
. 2
{f=x+z (3.2.3)
Z=x

As shown in Fig3.2.1(a): The horizontal isocline L1 = {(x, z): x+z‘2 =0} and the
vertical isocline L2 = {(x, z): x = 0} intersect at P1={(x,z): x = 0,z = O} which is the fixed
point of this system. The fixed point cuts L1 into two parts L1(1)= {(x,z):x + 22 =0,z> 0}
on which x =0and 7z <0 and L1(2)= {(x,z):x+2z> =0,z < 0} on which x=0and z<0
and cuts L2 into two parts L2(1) = {(x,z):x =0,z>0} on which x>0and =0 and
L2(2) ={(x,2):x =0,z <0} on which x>0and z=0. The complement set of the
isoclines in the phase plane are four disjiont regions each of which are connected and
satisfy Q1={ (x,2):x<0,2>0,x+2z">>0} on which x>0,7<0, Q2={(x,2):x>0} on
which x>0,z>0, Q3={(x,2):x<0,x+ 72 <0 } on which x<0,z<0 and Q4=
{(x,2):x<0,z<0,x+z>>0} on which x>0, z2<0 . Thus in each of the connected sets
P1, L1(1), L1(2), L2(1), L2(2), Q1, Q2, Q3, Q4, shown in Fig. 3.2.1(a), the solutions
are monotone.

From the monotonicity of the solutions in each of the above connected monotone
regions, the possible paths of the solutions starting from each of the sets are: 1. The
solutions start from any point on L1(1) will get to Q3. 2. The solutions start from any point
on L1(2) will get to Q4. 3. The solutions start from any point on L2(1) will get to Q2. 4.
The solutions start on L2(2) will get to Q2. 5. The solutions start from any point in QI
will either reach L1(1) or L2(1) or will approach P1.6 . The solutions start from any point
in Q2 will approach positive infinity in both directions as ¢ — . 7. The solutions start
from any point in Q3 will remain in Q3 as ¢ — oo or reach L1(2) at some later time. 8. The
solutions start from any point in Q4 will reach L2(2) at some later time. The diagram of the
above possible paths is shown in Fig3.2.1(b). From the diagram we can see that there is

no loop in the diagram which means that all solutions are eventually monotone.

(b) If A>0, then system (3.2.2) becomes:
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: Al ?
— + — + —_—
¥=ErT) Hx- (3.2.4)

i=Xx
- - . - 4],
Similarly, as shown in Fig.3.2.1(c) the horizontal isoclinc L1={(x, z): (z-+ 2) +

A2
X - e =0} and the vertical isocline L2 = {(x, z): x = 0} intersect at P1= {(x,z):x =0,

{(x,2):x =0,z = —|A|} and P2={(x,z): x =0,z =0} which are the fixed points of system

(3.2.4). The two fixed points cut L1 into three parts L1(1)= {(x,z): (z+|—1;1|)2 +x —
A® . . 1A, A’
e =0,x<0,z>0} on which x=0and z <0 and L1(2)={(x,2): (z+?) +x——4—- =0,

2

x>0} onwhich x=0and z >0 and L1(3)={(x,2): (z +%)2 + x——AZ— =0,x<0,z<0}
on which x = 0 and z < 0 and cut L2 into three parts L2(1)= {(x,z):x = 0,z > 0} on which
x>0and z=0 and L2(2)={(x,2): x=0,-A<z< 0} on which x>0and Z=0. and
L2(3) ={(x,z):x =0,z < —A} on which x>0and z=0. The complement set of the

isoclines in the phase plane are five disjiont regions each of which are connected and satisfy
2

Q1={ (x,z):x<o,z>o,(z+|’2i|)2+x~%->0} on which ¥>0,z<0, Q2={(x,2):x>0,

2 A2

(Z+%)2+x—%>0}onwhich x>0,z2>0, Q3={ (x,z):x>0,(z+|2il)2+x—7<0}

2
on which X%<0,z>0, Q4={(x,z):x<0,z<0,(z+l;i|)2+x—%—>0} on which

x>0,z<0, and Q5={(x,z2):x <0, (z+%)2 +x—A72<O} on which x<0, z<0 Thus
in each of the connected sets P1, P2, L1(1), L1(2), L1(3), L2(1), L2(2), L2(3),Q1, Q2,
Q3, Q4 and QS5, as shown in Fig.3.2.1(c), the solutions are monotone . “

From the monotonity of the solutions in each of the above connected sets, the possible
paths of the solutions starting from each of the sets are: 1. The solutions start from any
point on L1(1) will get to Q5. 2. The solutions start from any point on L1(2) will get to
Q2 when z>-A/2 or Q3 when z<-A/2. 3. . The solutions start from any point on L1(3) will
get to Q4. 4. . The solutions start from any point on L2(1) will get to Q2. 5.. The
solutions start from any point on L2(2) will get to Q5. 6.. The solutions start from any
point on L2(3) will get to Q2. 7. The solutions start from any point in Q1 will reach
L1(1) or L2(1) or approach to P2. 8. The solutions start from any point in Q2 will reach
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L1(2) at some later time or approach positive infinity in both x and y directions as ¢ — oo.
9. The solutions start from any point in Q3 will reach L1(2) or L2(2) at some later time or
approach to P2. 10.. The solutions start from any point in Q4 will reach L2(3) at some
later time. 11. The solutions start from any point in Q5 will remain in Q5 as t — oo or
reach L1(3) at some later time. The diagram of the above possible paths is shown in
Fig3.2.1(d). Except the loops all the solutions are eventuallly monotone. From Fig.3.2.1
(d) we can see that there are two possible loops in the diagram. The loop (Q3, L1(2), Q2)
is not possible because all the solutions from Q3 through L1(2) to Q2 will go to infinity.

For the loop (Q5, L1(3), Q4, L2(3), Q2, L1(2), Q3, L2(2)), it is helpful to calculate the
eigenvalues of the linearized system at the fixed point P2:

The linearization of (3.2.4) at P2 is x = x +|A|z, Z = x. The eigenvalues for this linear

_1+4/1+4]4] _1-1+44]
- 2

system are A, —#>0, A, <0, thus P2 is a saddle of the

linearized system.

From theorem3.1.5 and the monotonicity of the solutions in Q3, there exists a solution
in Q3 that tend to P2 as ¢ — oo and from corollary3.1.7 this solution come from a point P3
on the boundary L1(2) of Q3 where -A/2<z<0. From P3 five cases could happen for this
solution as t goes backward.

i) the solution either tend to P1 as t — —e from Q2 , as shown in Fig. 3.2.2(a) or
ii) goes back to a point P4 on L.1(3) at some earlier time and then it could:

(a) come from a point P5 on L1(1) shown in Fig. 3.2.2(b) or

(b) tend to P2 as ¢t — —oo shown in Fig. 3.2.2(c) or

(c) come from a point P5 on L2(2) shown in Fig. 3.2.2(d) or

(d) or tend to P1 as t — —eo in QS shown in Fig. 3.2.2(e).

In case (i) all solutions either tend to P1 or P2, or goes to infinity monotonically in regions
Q3 or Q2. In case(ii-a) this solution and the curve segment P5-P2 form a bounded region,
all the solutions in this region remain in this region as ¢ — co. From poincaré-Bendixon
theorem, there is no chaotic solutions in this region. And other solutions go to infinity
monotonically in regions Q3 or Q2. In case (ii-b) the solution is a homoclinic orbit. This
orbit plus P2 is a closed curve. Inside the curve is a bounded region. The solutions in this
region remain in this region as ¢ — oo. From the Poincaré-Bendixon theorem there is no
chaotic solutions in this region. Similarly other solutions go to infinity monotonically in Q2
or Q3. In case (ii-c) except the solutions that tend to the fixed points or are fixed points

themselves, all other solutions go to infinity. Similar situations happen to csae (ii-d).
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(c) If A<O, then the system is
Al A’
*=mT) e (3.2.5)
Z=x

The situation is similar to that of (b). The monotone regions and the monotone diagram are
shown in Fig. 3.2.1(e) and Fig.3.2.1(f).

When b<0, it can be rcsolved similarly. Thus therc is no chaos in this system. The
situations in systems(9), (19), and (97) are similar to that of this system.
2. Consider system(94):

x=ax+by
y = cxy
Z=rx

There is no chaotic solution in this equation

Proof: The system can be transformed to x=y+x, y=xy, Z=x by the scalar
2

. 1.
transformation T={ o = 3, B = f__’ Yy = f, 6 = —} if a>0.
c bc c a
y=xy,2=x=z=Iny+C, Then we consider the second order system x=x+y,

y=Xxy.

The horizontal isocline L1={(x,y):x+y =0} and the vertical isoclines L2={(x, y):
x=0} and L3 ={(x, y): y=0} intersect at P1=LIn(L2uv L3)= {(x,y):x=0,y= 0}
which is the only fixed point of this system. Simillar to the procecure of system (7). On
L1(1) = {(x,y):x + y=0,y >0} the monotonicity is x=0, y<0; On L1Q2)={(x,y):
x+y =0,y <0} the monotonicity is x=0, y<0; L2(1)={(x,y):x=0,y<0}:x<0,y=0;
L2(2) = {(x,y):x =0,y > 0}: x>0, y=0; L3(1) = {(x,y):y =0,x < 0}: x<0, y=0; L3(2)=
{(x,¥):y=0,x>0}: x>0, y=0;. The complement set of the isoclines in the phase plane
are six disjoint regions each of which are connected and satisfy Ql={(x,y):
x<0,y>0,x+y<0} onwhich x<0, y<0, Q2={(x,y):x <0,y>0,x+ y> 0 }on which
x>0,y<0, Q3={(x,y):x>0,y>0} on which x>0,y>0 , Q4={(x,y):x<0,y<0}
on which x<0,y>0, Q5={(x,y): x>0,y<0,x+y>0} on which x<0,y<0 and
Q6={(x,y):x>0,y>0.x+y>0} on which x>0, y<0 Thus in each of the connected
sets P1, L1(1), L1(2), L2(1), L2(2), L3(1), L3(2), Q1, Q2, Q3, Q4, Q5, Q6 the solutions
are monotone, as shown in Fig.3.2.3(a).

From the monotonity of the solutions in each of the above connected sets, the possible
paths of the solutions starting from each of the sets are: 1. The solutions start on L1(1) will
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get to Ql. 2. The solutions start on L1(2) will get to Q5. 3. The solutions start on L2(1)
will get to Q4. 4. The solutions start on 1L.2(2) will get to Q3. 5. The solutions start on
L3(1) will remain in L3(1), 6. The solutions start on L3(2) will remain in L3(2). 7. The
solutions start in Q1 remain in Q1 as £ — co. 8. The solutions start in Q2 will approach P1
as t — oo or reach L1(1) or L2(2) at some later time. 9 .The solutions start in Q3 will
remain in Q3 as ¢ — oo .10. The solutions start in Q4 will remain in Q4 as t — .11 .
The solution start from QS5 will reach L.2(1) at some later time. 12 . The solutions start
from Q6 will remain in Q6 as ¢ — o> or reach L1(2) at some later time. The diagram of the
above possible paths is shown in Fig3.2.3(b). From the diagram we can see that there is
no loop in the diagram which means that all solutions are eventually monotone. The
situation when a>0 can analyzed similarly. Thus there is no chaos in this system.

Q2 .
/7 LI1Q)
Q X
L
N Q6
@ L2 Li@ \
Q5
Fig.3.2.3(a) Directions of the vector fieldin ~ Fig.3.2.3(b) Possible paths of all the
different regions in the phase plane - solutions of the system

3.3 Proof of Some 2nd Order Monotonic Systems

There are eight systems which are eventually monotone in the phase plane among the
138 patterns.. The analysis is based on the fact that for any differentiable function f(x),
x€la,b]cR, if f’(x)>0, then f(x) increases; if f’(x)=0, then f(x)=constant; if
f’(x) <0, then f(x) decreases.
Lemme3.3.1: For the 2nd order system: x—x =y, y=x, 3¢, such that , x(¢),y(¢)
incerase as ¢ > ¢t,and tend to infinite or a constant C as ¢t — oo

Proof: x—x=y>= :id;(xe") =y,
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casel. suppose Iz, y(1) =0, if ¢ €[#,,+ o) then

g;(xe") =0, x(t)e”' = C,= x(t)= Ce', C is a constant, thus x(z) — o, as t —> oo,

case2. suppose —(y(?) =0) i.e. V>0, > 1, y(1)#0, ast €(7,,7T,), g;(xe") =y* >0,

thus x(#)e”" increases, and x(f) — oo, as t — oo. thus Jt, such that y(¢) = x(t) > 0, then
¥(2) increases as t > t, thus y(z) — oo oraconstant C, as t — . Take 7, = max{z,z,}.

1. Consider system (22):

x=ay’ +bx
y=cx
z=ry
show that x(t), y(t) and z(t) go to infinity or some constants respectively as ¢ — oo.
Proof. the scalar transformation: 7 = {& = —b—;, = b—z, Y= ﬂ, o= l} b>0
ac ac ac b

transforms (22) to x = y* + x,y = x,z = y Its equivalent scalar equation is: j—y—y* =0 .
By Lemma3.3.1. x(t) and y(t) go to infinity or constants as t — oo .

casel. y(z) — oo, as t — oo. then 3¢, such that 7(#) = y(¢) > 0 as t €[t,,o0) z(t) increases
and z(z) > o or C, ast — oo,

case 2. y(t) = C, as t — oo. if C>0 then 3¢, such that O<y(t)<C as ¢ > t,, and thus z(z)
tend to positive infinity or constant C,, ast — oo. if C<0 then ¢, such that y(t)<0 as
IfC<0, 32, >0, y(t) <0, and increase, as t>1t, z(¢)=y() <O0.thus z(¢) tend to
negative infinity or constant C,.

System (14) and (27) are completely the same as system (22), refer to the Table of
¥ b br 1

appendix A. For system (14), scalar transforation: 7 = {—, » —» —} when b>0,
ac® ac ac® b
transforms (14) to x =y*+x, y=1x, z = x, thus z(¢) = y(¢) + A,. For system (27), the
3 2
scalar transforation: T={o = b—2 B = b— Y = arbitrary, 8 = 219—} when b>0 transforms
ac ac

2N to x=y"+x, y=x, 2= 0z, thus z(t) = Ae”™. The other case b<0 for the systems

above can be resolved by the method introduced in chapter 4.

2. Consider system (85):

X =ax+by
y = cx?
Z=rx
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show that x(t), y(t) and z(t) go to infinity or certain constants respectively as ¢ — oo.

. az a3 a2r
Proof: The scalar transformation: T ={ot=—,8 =—,y =——,
bc bc bc

(85)to x = x+y, y = x2, 7 = x. Its equivalent scalar equation is: ¥ — x — x> = 0, which is
Y, ¥y q q

o= l} a>0 transforms
a

same as that in Lemma 3.3.1, thus x(¢) — oo, or a constant as ¢t — oo.

For y = x2:

casel(a). x(t) = oo, as t — co. 3t, such that x(¢#) >0 as ¢ > ¢,, thus y(¢) = x°(#) >0, and
thus y(t) — o or constant C,, ast — oo.

casel(b). x(t) > C,ast — o. If C>0,. Jz, such that O<x(t)<C as t>¢, thus
y(#) = x*(t) > 0, y(t) = o or a constant C, ast = If C<O0, then 3z, such that
x(t)<Cas t>t, ,y(t)=x>(t) >0, thus y(t) — o« or constant C,,as t — oo.

For z(t) = x(1):

caseZ(a). x(t) = oo, as t —> oo. Similar to casela, z(#) — o= or constant C, as t — oo.
case2(b). x(t) = C, as t — oo.If C>0, Similar to caselb for C>0: z(#) — o or constant
C,, as t— oo If C<O0, then 3t; such that x(t)<C as t>t;, ,z(t) = x(¢)<0, thus

z(t) — —ooor constant C;, ast —> oo,

Systems(103) and (121) are completely the same as system (85), refer to the Table of

3 2
a> a a’r 1

appendix A. For system (103), the scalar transforation: T = {—,——2—,7,—
bc bc” bc a

(103) to 5c=x+y,y=x2,z'=y, Like the proof of system (85), x(¢), y(¢)

}, transforms

and z(¢) go to infinity or certain constant C, as t — oo.
2 3
. 1
For system (121), the scalar transformation:T={c = a_, B = —a—l, Y, 0=—}, o= £,
bc cb a a

transforms (121)to x=x+y, y = x%, 7z = oz, thus z(t) = Ae” Refer to system (22).
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Chapter4. Global Analysis in Higher Dimensional Phase Space

The idea of qualitatively describing the solutions of differential equations that can not
be solved analytically first came from Henri Poincaré. Poincaré and Bendixon studied
two dimensional autonomous systems deeply around 1900 and concluded the Poincaré-
Bendixon theorem for the qualitative behaviour of solutions in a bounded region in
which there are a finite number of fixed points. Thus the labyrinth (complicated) cases
can occur only when there are an infinite number of disjoint fixed point sets in a bounded
region or there exist unbounded solutions. The two dimensional autonomous cases are
much simpler than higher dimentional systems because each solution is a boundary of
other solutions and the solutions can never reach this boundary since solutions never
intersect in an autonomous system. However for three or higher dimensional systems the
projection of the solutions onto a plane can intersect in any way. In this chapter a theory
of higher dimensional phase space is developed and some examples that applying this
theory are given.

4.1 The Main Results of the Theory

Lemmad4.1.1 Given a system(3.1.1), the monotonicity of a solution at x must be in one of
N=3"=3" C2"* ways, where N,=C2"* k=1,..n is the number of
monotonicities where there are exactly k dimensions that satisfy x, =..=x =0,
1< <..<i <n.

Proof: The monotonicity of a solution at point x is determined by the signs of x,,...,x,.
For each dimension x;, the sign of X, could be positive, zero or negative. Suppose there
are k zeros among x;, i=0, ..., n. Then there are C,f ways to choose the k

)'c.p =0,p=1,...,k from x;, i =1,...,n. For each of the Cf ways, The possible signs for

!

the rest n-k dimensions is 2"*. Thus all the possible monotonicities when there are
exactly k %, =0,p=1...k is N, =C;2"", k=1,....n. When k goes from 0 to n, all the

possible monotonicities are covered By Newton's binomial formula N =3"=
n k~yn—k
> Ci2v k.

Definition 4.1.2 Given a system (3.1.1), if the phase space can be cut in to a finite
number of point sets Q.,i =1,...,m that satisfy the following conditions:

(1) In each of the point sets, the solutions are monotone in one of the 3" ways.
(ii) Qir\Qj =@, i#]j
(iii) Q,u...uQ, = R" “4.1.1)

32



(iv) Q,,i = 0...m are connected sets
Q,,i=0...m, is called a monotone region of system (3.1.1), the set W={Q,,...,Q } is~
called the monotone region set of system (3.1.1), the conditions (4.1.1) are called
monotone conditions for system (3.1.1).
Definitiond.1.3 The monotonicity of Q,,i =0...m is denoted by Q.,(0,,,0,,,...,0,,)
i=1,....m whefe
+1 or + if x>0
c,,=3-1 or — if x, <0 (4.1.2)
0 if x, =0

If there is no subscript for € or there are more than one €2, then the monotonicity of the
€(s) at dimension x, is denoted by o ,.
Definition4.1.4 A diagram with Q,,...,Q_ of system(3.1.1) as nodes and an arrow from
Q; to Q; if it is possible for a solution starting from €, to approach or reach Q; by the
monotonicity of the solution in £, can be obtained. This diagram is called
the monotone diagram of system (3.1.1).
Definition4.1.5 A loop T = <Qil >Q, >..> Q,.p > Qi1> is a closed path in the monotone
diagram, where Q, > €, = means that there is an arrow from Q, to €, . And we
denote the point set of the union of Q,,...,€; as I =€Q, U...LQ, .
Definition4.1.6 A loop TI'; of system(3.1.1) is éalled an isolated loop if for any loop T,
i#j of system (3.1.1) I, "I} =&; Two loops I';, I'; where i j are coupled if
| e Fj #; I'and T jo L# ] are truely coupled if there exist a solution x=x(t, 0, x,)
X, € R* of system (3.1.1) for any T>O0, there exist ¢,z,>T such that x(7,,0,x,)eTI;
x(1,,0,x,) ¢ I'; and x(#,,0, x,) € I'}; otherwise they are not truely coupled.
Theorem4.1.7 For the system (3.1.1) and its monotone region set W, if there is no loop
in the system, then there is no chaos in the system.
Proof: f(x) is continuous and the number of monotone sets in W is finite. Consider a

solution starting from £2;, it either leaves this region at some later time or remain in this

region as ¢ — +eo. This solution is monotone in the latter case. If the solution leaves this
region and passed through 1 regions €2; ,...,€2; , since there is no loop in the system thus

thus Q Q.

Qa2 Ji
os system (3.1.1) and it has to remain in €, and thus this solution is eventually

are different. 1 has to be less than the total number of monotone regions

monotone. Because the solution is any solution and the monotone region is any monotone

region. thus any solution in this system is eventually monotone.
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Lemma 4.1.8 For a loop in system(3.1.1), if o, , =+1(or—1) in the monotone region
Q. and o,

I Ja.k
monotone region €2, in which &; , =0 in the loop.

= —1(or +1)in the nomotone region sz, Then there must be a third

Proof: Since the solutions in the loop that go from €; to Q, x, has to change from

positive (negative) to negative(positive) and f(x) is a continuous function, the solution
has to pass to another monotone region £, in the loop where x,=0or o, , =0.

Theoremd.1.9 For the system (3.1.1), if Q is a monotone region which connect to every
monotone region in a loop I', then the relations of the monotonicities of x, (k=1,...,n) in
I'* and the monotonicity of x, in Q are:
() if o,=+1& -1&0 in I jthen o,=0in Q
(i)if o,=+1&0 in I ;then o,=+1 or O in Q
(i) if 0,=-1&0 in I ,then o,=-1 or 0 in Q
@(v) if o,=+1 in I’ jthen o,=+1 or 0 in Q
(v) if o,=-1in I'’ ,then ¢,=-1 or 0 in Q
(vi) if o,= 0 in I’ then o,=+1 or —1or 0 in Q
proof: (i) Because f(x) is continuous and € is connected with any monotone regions in
the loop I', o, #—1(or+1) in Q. Thus the only possibilyty for o ,=0.
The proof of (ii)-(vi) is similar to this proof.
Corollary 4.1.10 For a system (3.1.1), if €2 is a monotone region which connect to every
monotone region in the loop 1 = <Qil >Q, >.>Q > Qi,> if o,=+1 & -1,k=1,..., n,
in the loop, then Q is a fixed point set.
4.2 General Steps of Analyzing Higher Dimensional Autonomous Systems

For a given system (3.1.1) there is a general procedure to find out all of the monotone
regions that satisfy the monotone conditions (4.1.1). Let G={(x):f,(x)=0} ,G,={(x):
f,(x)=0}, ..., G,={(x):f (x)=0}.
Stepl Find the complement set of G, U G,U...UG,: —(G, U G,U...UG,) and name each
of the connected sets as :Q,,...,le .The solutions in each of the regions €,,...,Q are

m
monotone in one of the 2" ways.

Step2 For k=1..n—1, for each way of choosing k from n find the point sets
(Gilm...mGik)—(uG,),(l;tij,l=l,...,n;j=1..k) ,for each k the solutions have

N, = Cf2"™* ways of monotonicity, and name each connected subset obtained in which

..... my °
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Step3 Find the fixed point set G, N G,N...NG, and name each of the connected subset as

For a system (3.1.1) where n=3, for convenience we will name the three dimensional
connected monotone regions as Vi ; name the two dimensional connected monotone
regions as Si(j), where Si is a connected surface that satisfies an algebraic equation, Si(j)
is a connected monotone regions on Si.; name one dimensional regions as Li(j), where Li
is a connected region that satisfies a certain algebraic equation, Li(j) are connected
monotone regions on Li where i,j (<m) are integers.

4.3 Analysis of 3 systems of type VII by Global Analyzing Method in Three
Dimensional Phase Space.
1. Consider system(54)

X = ay” +bx

y=cz

Z=1X
There is no chaos in this system.
proof: System(54) can be reduced to

x=y'-x,y=22=x 4.3.1)
by a scalar transformation:
T ={a =-b*/(ac’),B = -b* / (acr),y = b* / (ac’r), 8 = -1/ b}. b<0

So all we need to do is to analyze (4.3.1).
The monotone regions can be obtained as follows:
S1={(x,y,z) | y*-x=0}, S2={(x,y,z) | z=0}, S3={(x,y,z) | x=0}
L1=S1nS2={(x,y,z) | z=0,x=y"}, L2=Slﬁ‘S3={(x,y,z) I x=0,y=0} and L3=S21S3
={(x,y,z) | x=0,z=0}, P=S1nS2nNS3={(x,y,z) | x=0,y=0,z=0} and L1 L2 =L1NL3
=L.2NL3=P.

All the monotone regions of the system are listed here:

1. P={(x,y,z) | x=0,y=0,z=0}, x=0, y=0,2z=0;

. L1(D={(x,y,2) | z=0, y*-x=0, y<0}, x=0, y=0,z>0
.L1(2)={(x,y,z) | z=0, y*-x=0, y>0}, x=0, y=0,2>0
. L2(1)={(x,y,z) | x=0,y=0,z<0},x=0, y<0,z=0

. L22)={(x,y,z) | x=0,y=0,z>0},x=0, y>0,z=0

. L3(D)={(x,y,z) | x=0,2=0,y<0},%x>0, y=0,z=0
.L3(2)={(x,y,z) | x=0,z=0,y>0},x>0, y=0,z=0
.SI(D={(x,y,2) | y*-x=0, y<0,z<0},x=0, y<0,z>0

o <IN e Y I N S
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9. Sl(2)={(x,y,z) | yz-x=0, y>0,z<0},x=0, y<0,z>0
10. S1(3)={(x,y,z) | y*-x=0, y<0,z>0},x=0, y>0,2>0
11.51(4)={(x,y,z) | y*-x=0, y>0,z>0},%x=0, y>0,z>0
12, S2(1)={(x,y.z) | z=0, yz-x>0, x>0, y<0},x>0, y=0,72>0
13. S2(2)={(x,y,2) | z=0, y*-x<0}, x<0, y=0,2>0
14. S2(3)={(x,y,z) | z=0, y*-x>0, x>0, y>0}, x>0, y=0,z>0
15.S2(4)={(x,y,z) | z=0, x<0}, x>0, y=0,z<0
16 S3(1)={(x,y,z) | x=0, y<0, z<0}, x>0, y<0,z=0
17.83(2)={(x,y,z) | x=0, y>0, z<0}, x>0, y<0,z=0
18. S3(3)={(x,y,z) | x=0, y<0, z>0}, x>0, y>0,z=0
19. S3(4)={(x,y,2) | x=0, y>0, z>0}, x>0, y>0,2z=0
20. V1={(x,y,z) | y*-x>0, z<0, x>0, y<0}, x>0, y<0,z>0
21. V2={(x,y,z) | y*-x<0, z<0, x>0}, x<0, y<0 ,z>0
22. V3={(x,y,z) | y2-x>0, z<0, x>0, y>0}, x>0, y<0,z>0
23. Va={(x,y,z) | y*-x>0, z>0, x>0, y<0}, x>0, y>0 ,z>0
24. V5={(x,y,z2) | y2-x>0, z<0, x>0, y>0}, x<0, y>0,z>0
25. V6={(x,y,z) | y*>-x>0, z>0, x>0, y>0}, x>0, y>0,2>0
26. V7={(x,y,z) | z<0, x<0}, x>0, y<0,z<0
27. V8={(x,y,2) | z>0, x<0,}, x>0, y>0,z2
The monotone regions of this system is shown in Fig4.3.1(a). To obtain the monotone
diagram, for each of the monotone regions, we'll find all the monotone regions that

connect to it and then analyze the possibility for the solutions start from the monotone
region to reach its nearby monotone regions. First we denote N[ €2.] as the set of all the

monotone regions that connect with Q, where Q,, i=1..., m is any monotone region of
the system:

1. N[P]={L1(1),...,V8}, all of the rest monotone regions in this system are connected to
P, the solution start from P will stay in P, because it is a fixed point; '

2. N[L1(D]={P, S1(1), S1(3), S2(1), S2(2), V1, V2, V4, V5} , the solutions start from
L1(1) can only develop along the straight line {(X,y,z)| x=X,, y= y,} which is on S1(1)
and S1(3) and because z is strictly incresing on L1(1), thus the solutions start from this
region reach S1(3).

3. N[L1(2)]={P, S1(2), S1(4), S2(2), S2(3), V2, V3, V5, V6}, similarly solutions start
from this region reach S1(2).
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4. N[L2(1)]={P, S1(1), S1(2), S3(1), S3(2), V1, V2, V3, V7},the solutions start from
L2(1) can only develop along the straight line {(x,y,z)l x=0, z=z,} which is on S3(1) and
S3(2) and because y is strictly decresing on L2(1), thus the solutions start from this
region reach S3(1).

5. N[L2(2)]={P, S1(3), S1(4), S3(3), S3(4), V4, V5, V6, V8}, similarly solutions start
from this region reach S3(4).

6. N[L3(1)]={P, S2(1), S2(4), S3(1), S3(3), V1, V4, V7, V8}, the solutions start from
L3(1) can only develop along the straight line {y= y,, z=0} which is on S2(1) and S2(4)
and because x is strictly incresing on L3(1), thus the the solutions start from this region
reach S2(1).

7. NIL3(2)]={P, S2(3), S2(4), S3(2), S3(4),V3, V6, V7, V8}, the solutions start from
L3(2) reach S2(3).

8. N[S1(1))]={P, L1(1), L2(1), V1, V2}, the solutions start from this region develop only
on the surface x=Xx,, because y is decreasing, thus the solutions start from this region
reach V1.

9. N[S1(2)]={P, L1(2), L2(1), V2, V3}, similarly the solution start from this region reach
V2. .

10. N[S1(3)]={P, L1(1), L2(2), V4, V5}, similarly the solutions start from this region
reach V5.

11. N[S1(4)]={P, L1(2), L2(2), V5, V6}, similarly the solutions start from this region
reach V6.

12. N[S2(1)]={P, L1(1), L3(1), V1,V4}, the solutions start from this region develop only
on the surface y=y,, because z is increasing the solutions reach V4.

13. N[S2(2)]={P, L1(1), L1(2), V2, V5}, similarly the solution start from this region
reach V5.

14. N[S2(3)]={P, L1(2), L3(2), V3, V6}, similarly the solutions start from this region
reach V6.

15. N[S2(4)]={P, L3(1), L3(2), V7, V8}, similarly the solutions start from this region
reach V7. .

16. N[S3(1)]={P, L3(1), L2(1), V1, V7}, the solutions start from this region can only
develop on the surface z=z, and because X,>0 the solutions reach V1.

17. N[S3(2)]=(P, L2(1), L3(2), V3, V7}, similarly thc solutions start from this region
reach V3.
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18. N[S3(3)]={P, L2(2), L3(1),, V4, V8} similarly the solutions start from this region

reach V4.

19. N[S3(4)]={P, L2(2), L3(2), V6, V8}, similarly the solutions start from this region

reach V6.

20. N[V1]={P, L1(1), L2(1), L3(1), S1(1), S2(1), S3(1)}, the solution start from this

region can not reach L2(1) , L3(1),S3(1) or P because x is increasing in this region, they

can not reach S1(1) from 8, the solutions can reach S2(1) because z is increasing in this

region, and it is also possible for the solutions start from this region to reach L1(1).

21. N[V2]={P, L1(1), L1(2), L2(1), S2(2), S1(1), S1(2)}, the solutions start from this

region can reach any regions connected to it except S1(2).

22. N[V3]={P, L1(2), L2(1), L3(2), S1(2), S2(3), S3(2)}, the solutions start from this
“region can not reach P, L2(1),L3(2), S3(2) because x is increasing in this region, and they

can reach any other regions connected to them.

23. N[V4]={P, L1(1), L2(2), L3(1), S1(3), S2(1), S3(3)}, the solution start from this

region can not reach P, L2(2), L3(1), S3(3) because x is incfeasing in this region, they can

not reach L1(1), S2(1) either because z is increasing. V4 can reach S1(3) because x and y

are increasing.

24. N[V5]={P, L1(1), L1(2), L2(2), S1(3), S1(4), S2(2)}, the solutions start from this

region can not reach P, L1(1), L1(2) S2(2) because z is increasing in this region, they can

not reach S1(3) either, they can reach S1(4) and L2(2).

25. N[V6]={P, L1(2), L2(2), L3(2), S1(4), S2(3), S3(4)}, The solutions start from this

regionit is not possible to reach P, L.2(2),L.3(2),S3(4) because x is increasing they cano't

reach L1(2),S2(3) because z is increasing and from 11 they can not reach S1(4), thus the

solutions in this region will remain in this region.

26. N[V7]={P, L2(1), L3(1), L3(2), S2(4), S3(1), S3(2)}, the soltions start from this

region can not reach P, L3(1), L3(2), S2(4) because z is decreasing, they can reach S3(!),

S3(2), L2(1).

27. N[V8]={P, L2(2), L3(1), L3(2), S2(4), S3(3), S3(4)}, The solutions start in this

region can reach any of the regions that connect to it.

The monotone diagram is shown in Fig4.3.1(b). we can see that there is no loop in this

system. thus from theorem 4.1.7, there is no chaos in the system.
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Fig. 4.3.1(a) Monotone regions of system (54)
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Fig. 4.3.1(b) Monotone diagram of system (54)
The case when b>0 can be proved similarly.

2. Consider system(115)

X = ayz

y=bx+cy

Z=1X
There are possible coupled loops in the system.
Proof: System(115) can be reduced to

X=yZy=X-y,Z=X 4.3.2)-

by a scalar transformation T = {a = —c® / (abr),8 = c? / (ar),¥ =c? /(ab),8 = -1/ c}. c<0
So all we need to do is to analyze (4.3.2).
The monotone regions can be obtained as follows:
S1={(x,y,z) | y=0}, S2={(x,y,z) | z=0}, S3={(x,y,z) | x-y=0}, S4={(x,y,z) | x=0}.
L1=S1nnS2={(x,y,z) | y=0,2=0},L2=S1 " S3={(x,y,z) | x=0,y=0}=S1"S4, and
L3=S2NS3={(x,y,z) | z=0,x-y=0},L4=S2NS4={(x,y,z) | x=0,2z=0}=S3 " S4
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P=(S1uUS2)S3nS4={(x,y,z) | x=0,y=0,2=0} and
L1nL2=L1NnL3=L1NnL4=L2NL3=L2NL4=L3NL4=P.
All the monotone regions of the system are listed here:

1.
-L1(1)={(x,y,2) 1 y=0,2=0,x<0}, x=0, y<0,2<0

O 00 9 N i = W N

W W BN N NN DN N N DN DN = om e e e e e e e
— O W 00 N NN W= O WO 00NN DW= O

P={(x,y,z) | x=0,y=0,2z=0} x=0, y=0,2z=0

L1(2)={(x,y,2) | y=0,2=0,x>0}, x=0, y>0,2>0

. L2(D)={(x,y,z) | x=0,y=0,z<0}, x=0, y=0,z=0
. L2(2)={(x,y,z) | x=0,y=0,z>0}, x=0, y=0,2z=0
.L3(1)={(x,y,2) | x=y,z=0,x<0}, x=0, y=0,2z<0
. L32)={(x,y,z) | x=y,z=0,x>0}, x=0, y=0,2z>0
. L4(D)={(x,y,z) | x=0,2=0,y<0}, x=0, y>0,z=0
. L42)={(x,y,z) | x=0,z=0,y>0}, x=0, y<0,z=0

.S1(D)={(x,y,z) 1 y=0, x<0, z<0}, x=0, y<0, z<0
.S1(2)={(x,y,z) | y=0, x>0, z<0}, x=0, y>0, z>0
. S13)={(x,y,z) | y=0, x<0, z>0}, x=0, y<0, z<0
. S1@)={(x,y,z) | y=0, x>0, z>0}, x=0, y>0, z>0
. S2(1)={(x,y,z) | z=0, x<0, y<0,x-y>0}, x=0, y>0,
. S2(2)={(x,y,2) | z=0, x<0, y<0,x-y<0}, x=0, y<O,
. S2(3)={(x,y,z) | z=0, x<0, y<0,x-y>0}, x=0, y<O0,
. S2(4)={(x,y,z) | z=0, x>0, y<0,x-y>0}, x=0, y>0,
. S2(5)={(x,y,z) | z=0, x>0, y>0,x-y>0}, x=0, y>O0,
. S2(6)={(x,y,z) | z=0, x>0, y>0,x-y<0}, x=0, y<O0,

z<0
z2<0
z<0
z>0
z>0
z>0

. S3(D)={(x,y,z) | x-y=0,x<0,y<0,z<0}, x>0, y=0,z<0

. S3(2)={(x,y,z) | x-y=0,x>0,y>0,z<0}, x<0, y=0,2z>0
. S3(3)={(x,y,z) | x-y=0,x<0,y<0,z>0}, x<0, y=0,z<0
. S3(4)={(x,y,z) | x-y=0,x>0,y>0,z>0}, x>0, y=0,z>0

. S4(D)={(x,y,2) | x=0, y<0,z<0}, x>0, y>0,z=0
. S4(2)={(x,y,z) | x=0, y>0,z<0}, x<0, y<0,z=0
. S4(3)={()£,y,z) | x=0, y<0,z>0}, x<0, y>0,z=0
. S4(4)={(x,y,z) | x=0, y>0,z>0}, x>0, y<0,z=0

. V1={(x,y,z) | x<0, y<0, >0, x-y>0}, x<0, y>0 ,2<0

. V3={(x,y,2) | x<0, y>0, z>0}, x>0, y<0,z<0
. Va={(x,y,z) | x>0, y<0, z>0}, x<0, y>0,2z>0
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32. V5={(x,y,z) | x>0, y>0, z>0, x-y>0}, x>0, y>0,2>0
33. V6={(x,y,z) | x>0, y>0, z>0, x-y<0}, x>0, y<0,z>0
34. V7={(x,y,z) | x<0, y<0, z<0, x-y>0}, x>0, y>0,z<0
35. V8={(x,y,z) | x<0, y<0, z<0, x-y<0}, x>0, y<0,z<0
36. Vo9={(x,y,z) | x<0, y>0, z<0}, x<0, y<0,z<0
37. V10={(x,y,z) | x>0, y<0, z<0}, x>0, y>0,z>0
38. V11={(x,y,z) | x>0, y>0, z<0, x-y>0}, x<0, y>0,z>0
39. V12={(x,y,z) | x>0, y>0, z<0, x-y<0}, x<0, y<0,z>0
The monotone regions of this system is shown in Fig4.3.2(a). The monotone diagram

of this system is shown as Fig4.3.2(b). From Fig.4.3.2(c) it can be recognized that there
are three possible loops ', =(V1>82(1) > V7> S4(1) > V10 > §4(2) > V4 > 54(3) > V1)

[, =(V1>533)>V2>S822)>V8>S3(1)> V7> S4(1) > V10 > 54(2) > V4 > 54(3)
>V1) and T, =(V7>S4(1)>V10>S1(2)> V11> $3(2) > V12 > §4(2) > V9 > S1(1)
> V8 > §3(1) > V7)The numerical solutions start from each three dimensional regions

V1-V12 is obtained by Maple, but no coupled loops was found. which might be truely
coupled. The case c>0 can also be analyzed by this method.
3. Consider system (116)
X = ayz
y =bz+cy
Z=rX
There are possible coupled loops in this system
Proof: System (116) can be transformed to
X=Yyz,y=2-Y,Z2=X (4.3.3)
by the scalar transformation
T ={o =-c*/(abr®),f =c?/(ar),y = —c’ / (abr),8 = -1/ ¢} c<O.
The monotone regions can be obtained as follows:
S1={(x,y,z) | y=0}, S2={(x,y,z) | z=0), S3={(x,y,z) | z-y=0}, S4= {(x,y,z) | x=0}
L1=S1nS2={(x,y,z) | y=0,z=0},S1S3=L1, L2=S1 nS4={(x,y,z) | x=0,y=0},
S2NS3=L1,L3=S2 "S4={(x,y,z) | x=0,2z=0},L4=S3"S4 ={(x,y,z) | z-y=0,x=0}
P=(S10US2)"S3 nS4={(x,y,z) | x=0,y=0,z=0} and
L1NnL2=L1NL3=L1nL4=L2NL3=L2NL4=L3NL4=P.
All the monotone regions of the system are listed here:
1. P={(x,y,z) | x=0,y=0,z=0} x=0, y=0,z=0
2. L1(1)={(x,y,z) | y=0,z=0,x<0}, x=0, y=0,z<0
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3 L12)={(x,y,2) | y=0,2=0,x>0}, x=0, y=0,z>0
4. L.2(D)={(x,y,z) | x=0,y=0,z<0}, x=0, y<0,z=0
5. L2(2)={(x,y,z) | x=0,y=0,2>0}, x=0, y>0,2=0
6. L3(1)={(x,y,z) | x=0,2=0,y<0}, x=0, y>0,2z=0
7. L3(2)={(x,y,z) | x=0,2=0,y>0}, x=0, y<0,z=0
8. L4()={(x,y,z) | x=0,z-y=0,y<0}, x>0, y=0,z=0
9. L42)={(x,y,z) | x=0,z-y=0,y>0}, x>0, y=0,2=0

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

S1(D={(x,y,z) | y=0, x<0, z<0}, x=0, y<0, z<0
S1(2)={(x,y,z) | y=0, x<0, z>0}, x=0, y>0, z<0
S1(3)={(x,y,z) | y=0, x>0, z<0}, x=0, y<0, z>0
S1(d)={(x,y,z) | y=0, x>0, z>0}, x=0, y>0, z>0
S2(DH)={(x,y,z) | z=0, x<0, y<0}, x=0, y>0, z<0
S2(2)={(x.y,z) | z=0, x<0, y>0}, x=0, y<0, z<0
S2(3)={(x,y,z) | z=0, x>0, y<0}, x=0, y>0, z>0
S2(4)={(x,y,z) | z=0, x>0, y>0}, x=0, y<0, z>0
S3(DH={(x,y,z) | z-y=0,x<0,y<0,z<0},i x>0, y=0,z<0
S3(2)={(x,y,z) | z-y=0,x<0,y>0,2>0}, x>0, y=0,2<0
S3(3)={(x,y,z) | z-y=0,x<0,y<0,z<0}, x>0, y=0,2>0
S3(d)={(x,y,z) | z-y=0,x>0,y>0,2>0}, x>0, y=0,2>0
S4(D={(x,y,z) | x=0, z-y<0,y<0,z<0}, x>0, y<0,z=0
S4(2)={(x,y,z) | x=0, z-y>0,y<0,z>0}, x>0, y>0,z=0
S4(3)={(x,y,2) | x=0, z-y>0,y<0,z>0}, x<0, y>0,2=0
S4(4)={(x,y,z) | x=0, z-y<0,y<0,z>0}, x<0, y<0,2=0
S2(5)={(x,y,z) | x=0, z-y<0,y>0,z>0}, x>0, y<0, z=0
S2(6)={(x,y,2)Ix=0, z-y<0,y>0,z>0}, x>0, y>0, z=0
Vi={(x,y,z) | x>0, z-y<0,y<0, z<0}, x>0, y<0,z2>0
V2={(x,y,z) | x>0, z-y>0,y<0, z<0}, x>0, y>0,2>0
V3={(x,y,z) | x>0, z-y>0,y<0, z>0}, x<0, y>0,2>0
Va={(x,y,z) | x>0, z-y>0,y<0, z<0}, x>0, y<0,z>0
V5={(x,y,2) | x>0, z-y<0,y>0, z>0}, x>0, y<0,2>0
Vo6={(x,y,z) | x>0, z-y>0,y>0, z>0}, x>0, y>0,z>0
V7={(x,y,z) | x<0, z-y<0,y<0, z<0}, x>0, y<0,2<0
V8={(x,y,z) | x<0, z-y>0,y<0, z<0}, x>0, y>0,z<0
Vo={(x,y,z) | x<0, z-y>0,y<0, z>0}, x<0, y>0,z<0
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Fig. 4.3.3(a) Monotone regions of system(116)
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37. V10={(x,y,z) | x<0, z-y<0,y>0, z<0}, x<0, y>0,z<0
38. V11={(x.y,z) | x<0, z-y<0,y>0, z>0}, x>0, y<0,z<0
39. V12={(x,y,z) | x<0, z-y>0,y>0, z>0}, x>0, y>0,z<0
The monotone regions of this system are shown in Fig4.3.3(a). The monotone diagram

of system(116) is shown in Fig4.3.3(b). From Fig. 4.3.3(c) it can be recognized that there
are three possible loops I, = (Vl >S533)>V2>523)>V3>543)> V9> S1(2) >

V12> 8§3(2) > V11> 82(2) > V10 > S1(1) > V7> S41) > V1), TI,=(V2>52(3)>V3
> S4(3)> V9> 52(1)> V8> S4(2)>V2) and T, =(V1>S33)>V2>S523)>V3>
S4(3)> V9> LI(1) > SI(1) > V7 > S4(1) > V1 which might be truely coupled. The
numerical solutions start from each three dimensional regions V1-V12 is obtained by

Maple, but no coupled loops was found. The case ¢c>0 can also be analyzed by this
method.
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Chapter 5.An Example Known to Have Chaotic Behaviour
In this chapter we are giong to study system B in sprott’s paper by the method
introduced in chapter 4.
System B in Sprott's paper:
X=yz
y=x-y
z=1-xy
The monotone regions are based on the following surfaces:
S1={(x,y,z): y=0}, S2={(X,y,z): z=0}, S3={(Xx,y,z):x-y=0}, S4={(x,y,z):1 —xy=0, x>0,
y>0}, S5={(x,y,z): 1-xy=0, x<0,y<0};
The monotone regions of this system are:
1. P1={(x,y,z): x=y=1, z=0}: x=y=2=0
. P2={(x,y,2): x=y=-1, z=0}: x=y=2=0
. P3={(x,y,z): x=0, y=0, z=0}: x=0, y=0,z>0
.L1(1)={(x,y,z): y=0, z=0, x<0}:x=0, y<0,z>0
.L1(2)={(x,y,z): y=0, z=0, x>0}:%x=0, y>0,z>0
. L2(D)={(x,y,z): x=0, y=0, z<0}:x=0, y=0,z>0
. L2(2)={(x,y,z): x=0, y=0, z>0}:x=0, y=0,2z>0
.L3(D),={(x,y,z): x=y, z=0, x>1}:%=0, y=0,z<0
. L3(2)={(x,y,z): x=y, z=0, O<x<1}:x=0, y=0,z>0
10 L3(3)={(x,y,2): x=y,z=0, —1<x<0}: x=0, y=0,z>0
11.L34)={(x,y,2): x=y, z=0, x<-1}:x=0, y=0,z<0
12. L4(1)={(x,y,z): 1 -xy=0, z=0, O<x<1, y<1}:x<0, y=0,z=0
13. L4(2)={(x,y,z): 1 —xy=0, z=0, x>1, O<y<1}:x>0, y=0,z=0
14. L5(1)={(x,y,z): 1-xy=0, z=0, — 1<x<0, y<-1}:x>0, y=0,z=0
15. L5(2)={(x,y,z): 1-xy=0, z=0, x< -1, — 1<y<0}:x<0, y=0,z=0
16. L6(1)={(x,y,z): x=y=1, z<0}:x=0, y<0,z=0
17. L6(2)={(x,y,z): x=y=1, z>0}:x=0, y>0,z=0
18. L7(1)={(x,y,z): x=y=-1, z<0}:x=0, y>0,z=0
19. L72)={(x,y,z): x=y=-1, z>0}:x=0, y<0,z=0
20. S1(1)={(x,y,z): y=0, x<0, z<0}: x=0, y<0,z>0
21. S1(2)={(x,y,z): y=0, x>0, z<0}: x=0, y>0,2:>0
22. S1(3)={(x,y,z): y=0, x>0, z>0}: x=0, y>0,z>0
23. S1(4)={(x,y,z): y=0, x<0, z>0}: x=0, y<0,z>0

O 00 N O L A W N
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24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43,
44,
45,
46.
47,
48,
49,
50.
51.
52.
53.
54.
55.
56.
57.

S2(1)={(x,y,2): z=0, y>0, x —y<0, 1 —xy>0}: x=0, y<0,z>0
S2(2)={(x,y,z): z=0, y>0, x —y<0, 1 —xy<0}: x=0, y<0,z<0
S2(3)={(x,y,z): z=0, y>0, x —y>0, 1 —xy<0}: x=0, y>0,z<0
S2(4)={(x,y,z): z=0, y>0, x —y>0, 1 —xy>0}: x=0, y>0,z>0
S2(5)={(x,y,z): z=0, y<0, x —y>0, 1 —xy>0}: x=0, y>0,z>0
S2(6)={(x,y,z): z=0, y<0, x —y>0, 1 —xy<0}: x=0, y>0,z<0
S2(7)={(x,y,z): z=0, y<0, x —y<0, 1 —xy<0}: x=0, y<0,z<0
S2(8)={(x,y,z): z=0, y<0, x —y<0, 1 —xy>0}: x=0, y<0,z>0
S3(D)={(x,y,z): x=y, y>1, z<0}: x<0, y=0,z<0

S3(2)={(x,y,z): x=y, O<y<l1, z<0}:x<0, y=0,2>0
S333)={(x,y,z): x=y, y>1, z>0}: x>0, y=0,2<0

S3(4)={(x,y,z): Xx=Y, 0<y<1,-z>0} :x>0, y=0,2>0
S3(5)={(x,y,2): x=y, —1<y<0, z<0}: x<0, y=0,z>0
S3(6)={(x,y,2): x=y, y<—-1, z<0}: x>0, y=0,2<0
S3(7N={(x,y,2): x=y, —1<y<0, z>0}: x<0, y=0,z>0
S3(8)={(x,y,z): x=y, y<-1, z>0}:x<0, y=0,z<0
S4(1)={(x,y,z): 1 —xy=0, y>1, z<0, x<1}:x<0, y<0,z=0
S4(2)={(x,y,z): 1 —xy=0, O<y<l1, z<0, x>1}:x<0, y>0,z=0
S4(3)={(x.,y,2): 1 —xy=0, y>1, 50, x<1}:%>0, y<0 ,z=0
S4(4)={(x,y,z): 1 —xy=0, O<y<l1, z>0, x>1}:x>0, y>0,z=0
S5(D)={(x,y,z): 1 —xy=0, —1<y<0, z<0, x<-1}:x>0, y<0,z=0
S5(2)={(x,y,z): 1 —xy=0, y<—-1, z<0, —1<x<0}: x>0, y>0,2=0
S5(3)={(x,y,z): 1 —xy=0, —1<y<0, z>0, x<-1}:x<0, y<0,z=0
S5(4)={(x,y,2): 1 =xy=0, y<-1, z>0, —1<x<0}: x<0, y>0,z=0
Vi={(x,y,2): y>0, z<0, x —y<0,1 —xy>0}: x<0, y<0 ,2>0
V2={(x,y,z): y>0, z<0, x-y<0, 1 —xy<0}:x<0, y<0,z<0
V3={(x,y,z): y>0, z<0, x —y>0, 1 —xy<0}: x<0, y>0,z<0
V4={(x,y,z): y>0, z<0, x —y>0, 1 —xy>0}: x<0, y>0,z>0
V5={(x,y,z): y>0, z>0, x —y<0, 1 —xy>0}: x>0, y<0,z>0
V6={(x,y,z): y>0, z>0, x —y<0, 1 —xy<0}: x>0, y<0,z<0
V7={(x,y,2): y>0, z>0, x —y>0, 1 —xy<0}: x>0, y<0 ,z<0
V8={(x,y,z): y>0, >0, x —y>0, 1 —xy>0}: x>0, y>0,z>0
VI={(x,y,z): y<0, z<0, x —y<0, 1 -xy>0}: x>0, y<0,z>0
V10={(x,y,2): y<0, z<0, x —y<0, 1 —xy<0}: x>0, y<0,z<0
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Fig. 5.1.1(b) Monotone diagram of system of Sprott B.



58. V11={(x,y,z): y<0, z<0, x —y>0, 1 —xy<0}: x>0, y>0,z2<0
59. V12={(x,y,z): y<0, z<0, x —y>0, 1 —xy>0}: x>0, y>0,z>0
60. V13={(x,y,2): y<0, z>0, x —y<0, 1 —xy>0}:x<0, y<0,z>0
61. V14={(x,y,2): y<0, z>0, x —y<0, 1 —xy<0}: x<0, y<0.z<0
62. V15={(x,y,z): y<0, z>0, x —y>0, 1 —xy<0}:x<0, y>0,z<0
63. V16={(x,y,z): y<0, z>0, x —y>0, 1 —xy>0}: x<0, y>0,z2>0

By the monotone regions from 1 to 63 we found, the paths of all the possible solutions
are shown in Fig.5.1.1(b), detailed discussions are not given here. From Fig5.1.1(b), we
can see that every of the 16 three dimensional monotone regions is in at least one loop
and every loop is coupled with one or more other loops. A numerical solution is shown in
Appendix C. From the numerical solution we can see that the solution switch from aroun
one fixed point to the other. Both fixed points have the same eigenvalues: —1.3532,
0.1766+1.2028 i, 0.1766 —1.2028:. Fom Sprott B some special properties for a system
with chaos can be concluded:

(1) There exist more than one loops with four three dimensional monotone regions
which are coupled and there is always one component whose monotonicity does not
change in each loop.

(2) Each loop with chaotic behavior has at least two 3-dimensional monotone regions
that join other loops

(3) There must exist complex eigenvalues with nonzero imaginary part for the fixed
point of its linearized system.

Sprott B is a simple 3-dimensional system with chaotic behavior. we believe that the

chaotic behavior has close relation with the loops in a system.
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Chapter 6.Conclusion and Future

This thesis proved that there is no chaos in any of the 3-D autonomous dissipative
systems in S[4;1;0] except possibly systems (115) and (116). These two systems are
both characterized by posessing coupled loops. There has not been a general way to
determine the behaviour of coupled loops in this theory. The method to analyze the
behaviour of higher dimensional autonomous dynamical systems introduced in this
thesis is a beginning. Creating a monotone diagram is a lot of work, yet this procedure is
algorithmic and so a computer program can be made to create the monotone diagram for
each system. It is likely that chaos is due to certain configurations of loops. Subsequent
work include further study of loops in a system and we are expecting an exciting result in

this theory and we will continue working on the conjecture.
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Appendix A. Table of the Sovability of the 138 Patterns
A.1 Classification of the Systems:
* I: Solvable by seperation of variables(28 patterns)
The general form of the equations that can be solved by seperation of variables can
be written as:
fi(x) g (ydx + f,(x)g,(y)dy =0
* II. nth order linear systems
The general form of nth-order linear ordinery differetial equations can be written as:
YW (X)) +a, ()Y (x) + -+ @ ()Y (x) + ay (x)y(x) = @(x),
where ai(x),i =1,2,...,n—1,are continuous functions.
I.1. 1st order linear ODE(29 patterns)
I1.2. 2nd order linear ODE with constant coefficients(8 patterns)
I1.3. 2nd order linear ODE with variable coefficients(6 patterns)

III. Ist order Riccati equation(6 patterns)
The general first-order Riccati equation can be written as:

() + p)x+qt)x* @) = @), v =%

where p(t) and g(t) are arbitary functions.
« IV. Solution can be expressed by elliptic integrals(3 patterns)

The first kind of elliptic integal can be written as:

x dx ,
Feb=, (EESTETSoN e

V. Rayleigh Equations(3 patterns)
The general form of the; Rayleigh equations is
Y'(x)+ fO(x)+g(y(x) =0
* VI. 2nd order nonlinear autonomous ODE(13 patterns)
Some of them can be transformed to the general form of Lienard equations:
Y (x)+ fF(r()y' (x)+g(y(x) =0
or the general form of Abel equations of the 2nd kind:
Y)Y (x) = y(x) = f(x)
VII. 3rd order nonlinear autonomous ODE or 2nd order nonlinear nonautonomous
ODE(24 patterns)
S: The solution is listed in the table(18 patterns)

[ ]
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A.2 Table A: A List of the 138 Patterns
Table A List of the 138 patterns

No. Systems Solvable Form / Scalar Equation Sol.?| Type
Lo Tx=ax?+bx, y=cx, z=rx | x = ax’+bx y |1
2. |x=ax’+bx, y=cy, z=r1x | x =ax’+bx y I
3. | x=ax®+bx, y=cz, z=rx | X =ax’+bx y I
4 | x=zax*+bx, y=cy, z=ry | x = ax® + bx,y = Ae" y |1
5. | x=ax®+bx, y=cy, z=1z | x = ax> +bx,y = Ae®,z = Be" y |1
6. x=ax’+bx, y=cz, z=r1y | X =ax’ +bx y |1
7. X =ayz+bx, y=cX, Z=1X | X = bx+aAz+(ac/r)z*, z=1X n \4!
8. | x=ayz+bx, y=cy, Z=1X | Z—bz—raAe®z=0, y = Ae" y |IL3
9. [x=ayz+bx, y=cz, 2=1x | y=cz, z=(ar/2c)y’ +bz+ A n | VI
10. [ x=ayz+bx, y=cy, z=1y | x—bx = (ar / c)Be* (Be®" — A) y |1L1
11. X=ayz+bx, yzcy’ 7 =17 X_bx___aABe(c+r)t’ yerct y II.1
12. VX =ayz+bx, y=cz, 2=1y | x—bx =|rc|(a/ 2c)(Ce"™ - C,e¥ey2 | ¥ | IL1
I3. ' x=ax®>+by, y=cx, z=1x | §=(a/c)y’ +bcy y |V
4. | s =ay’+bx, y=cx, z=1x | x =ay’ +bx, y =cx n VI
IS | x=ay’+by, y=cx, 2=1x | cx’ =(2a/3)y’ +by’ + A y [S
16. | x=axy+bx, y=cx, 2=1X| cx=(a/2)y*+by+A,y=(c/nz+B| ¥ |S
17. 1 x=axy+by, y=cx, Zz=r1x| 2cx—2cb[ln(x+b/a)] = ay? + A y S
18. | x=ay’+bz, y=cx, z=rx | 3cx*> =2ay’ +(3br/c)y> +6bAy +6A| ¥ | S
19. | x=axz+by, y=cx, z=r1x | x=(ad/c)xy+aAx +by, y=cx n VI
20. | x=ayz+bz, y=cx, z=r1x | 3c2x? = 2ary’ +3(acA + br)y’ y S
+6cbAy+6¢cB, z=(r/c)y+A

2L [ x=ax>+by, y=cx, z=r1y | ¥ =(a/c)y*+bcy y |V
22. | x=ay’+bx, y=cx, z=r1y | x =ay’+bx, y=cx n | VI
23. | x=ay’+by, y=cx, z=ry | 3cx* =2ay’ +3by’ + A y [V
24. | x=axy+bx, y=cx, Zz=r1y [y =(ca/2)y’ +cby+A y |1
25. | x=axy+by, y=cx, z=1y | 2cx—2cb[In(x+b/a)]=y? + A y |(I*
26. | x=ax’+by, y=cx, z=1z | ¥ =(a/c)y’ +bcy, z= Ae" y |V
27. X=ay’+bx, y=cx, z=1z | X =ay’+bx, y =cx, z= Ae" n \4!
28. | x=ay’+by, y=cx, z=r1z | 3cx’ =2ay’ +3by’ + A, z = Ae" y |[S
29. | x=axy+bx, y=cx, 2=12 | y=(ca/2)y’ +cby +A y |1
30. [ x=axy+by, y=cx, z=12 | 2cx—2cb[In(x +b/a)] = y>* + A y |1
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Table A Continued

No. Systems Solvable Form / Scalar Equation Sol.2[ Type
3L 1 x=ay’+bz, y=cx, z=1z | § = acy® + Abce" n | VI
32. | x=axz+by, y=cx, z=12 j—aAe"y —cby =0, z = Ae" y IL3
33, | x=ayz+bz, Y=cx, 2=1Z i —aAe"y —cbAe™ =0, z = Ae" y |[1L3
34. l x=ay’+bz, y=cx, 2=r1y | Z—(ca/r)z* —cbrz=0 n | VI
35 | x=axz+by, y=cx, z=ry | Z—azi—cbz=0 n | VI
36. | x=ayz+bz, y=cx, z=r1y | Z—aczz—cbrz =0 n VI
37 [ x=ax’+by, y=cy, z=1x | x = ax® + bAe", y = Ae® y |1
38. | x=ay’+bx, y=cy, z=r1x | x—bx = aA%™ y |ILI
39. | x= ay’+by, y=cy, z=r1x | x=(aA’/2c)e* +(bA/c)e" +B y S
40. [ x=axy+bx, y=cy, 2=1X | x = (aAe® +b)x, y = Ae" y |1
41. | x=axy+by, y=cy, Zz=1x | x = aAe"x +bAe", y = Ae" y 1.1
42. | x=ay’+bz, y=cy, z=1x | Z—r1bz = arA%* y |12
43. | x=axz+by, y=cy, 2=1x | z—(a/2)z> = tbAe® +B y |
44. | x=ayz+bz, y=cy, 2=1X | 7—1(aAe” +b)z =0, y = Ae® y |13
4. | x=ax’+by, y=cy, z=1y | x=ax’ +bAe®, z=(r/c)+B y 11
46. | x=ay’+bx, y=cy, z=r1y | x—bx =aA%>, y=(c/1)z+B y IL1
47. I x=ay’ +by, y=cy, z=r1y | x =(aA?/2c)e’ +(bA /c)e” +B y |S
48. | x=axy+bx, y=cy, Zz=1y | X = (aAe” +b)x, y = Ae® y I
49. [ x=axy+by, y=cy, 2=1y | x =aAe“x +bAe", z=(r/c)+B y |11
S0. 1 x=ay’+bz, y=cy, z=1y | x=(aA?/2c)e* + (brA/c*)e” y S
+bBt+C, y=Ae*,z=(rA/c)e” +B
Sl | x=axz+by, y=cy, 2=1y | x—(a/c)(rAe +cB)x = brAe® y |11
S2. | x=ayz+bz, y=cy, z=1y | x = (arA® / 2c?)e™ y |[S
+(@AB/c—bra/c’)e” +bBt+C
33. | x=ax’+by, y=cz, z=rx | Z—(2a/r)zZi—rcbz =0 n | VI
4. | x=ay’+bx, y=cz, z=1x | y—by—cray’ =0 n [ VII
35 [ x=ay’+by, y=cz, 2=1x | ¥ - bery—cray’ =0 n | VI
56. | x=axy+bx, y=cz, z=r1x | §—ayjy—by=0 n [ VI
57. | x=axy+by, y=cz, z=1x | y—ayy—bcry =0 n | VI
38 | x=ay*+bz, y=cz, 2=1x | y—acry—rby> =0 n | VI
59. | x=axz+by, y=cz, z=1x | y—-(a/c)yy—becry=0 n [ VI
60. [ x=ayz+bz, y=cz, z=1x |[§y=(ar/2)y’ +bry+A y | IV
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Table A Continued

No. Systems Solvable Form / Scalar Equation Sol.?| Type
6T [Xoax by, Yoor o1y | f—ax = BCe™ 100 y [
62. % = ay2 +bx, y =cz, 7= ry | x—bx = a(cle\/rct + Cze—«/rct)z y I1.1
63 | x=ay’+by, y=cz, z=1y | x=(aC’e?™ —aC,%e>™ +2bCe"™ | ¥ |5
—2bC,e™™) / 24/rc +2aCCt +B
64. | x=axy+bx, y=cz, 2=1y | x = (aC,e"™ +aC,e ™ + b)x y |1
65. | x=axy+by, y=cz, z=1y | % = (C,e"™ +C,e "™ )(ax +b) y
66. | % = ay’+bz, y=cz, z=1y | x = a(C,e’™ +C,e V)’ y S
+(b/c)Wre(Ce’™ - Ce ™™
67. [ x=axz+by, y=cz, 2=1y | % = (a/c)rc(Ce™ — Cpe™™)x y |11
+b(Cie"™ +C,e™'™)
68. | x=ayz+bz, y=cz, 2=1y |y=Ce™ +Ce "™, y |1
z = (Vrc/c)(Ce’™ - Ce™™)
69. | x =ax®+ by, y=cz, Zz=rz | X =ax’+(bcA/r)e" +bB y I
70. | x=ay’+bx, y=cz, z=1z | x—bx =a((cA/r)e" +B)’ y |11
7L | x=ay*+by, y=cz, 2=1z | x =a(cAe" /r+B)* +b(cAe" /r+B) | ¥ |1
72. | x=axy+bx, y=cz, z=1Z | x = (acAe" / r+aB +b)x y |1
73. | x=axy+by, y=cz, 2=1z | x = a(cAe" /r+B)x+b(cAe" /r+B)| ¥ | IL1~
74 x= ay’+bz, y=cz, z=1z | X =a(cAe" /r+B)’ +bAe" y I
75. | k=axz+by, y=cz, 2=12 | % = aAe"x + b(cAe" / r+B) y IL1
(76 [k =ayz+bz, y=cz, 2=12 | x = Ae"(acAe" /1 +aB +b) y |1
71 | x=ax*+by, y=cy, z=r1z | x = ax’ +bAe®, y = Ae®, z = Be" y 11T
78. | x=ay’+bx, y=cy, z=r1z | x—bx = aA%> y |ILl
79- | x=ay*+by, y=cy, z=rz | x =(aA’/2c)e’ +bAe® /c+B y |S
80. | x=axy+bx, y=cy, z=1z | x = (aAe® +b)x y |1
8l. | x=axy+by, y=cy, Z=r1z | x = aAe“x + bAe" y IL.1
82. | x=ay’+bz, y=cy, z=1z = (aA’ /2c)e’* + bAe" /r+B y |S
83. [ x=axz+by, y=cy, 2=1Z | X = aBe"x + bAe" | y | IL1
84. | x=ayz+bz, y=cy, 2=1Z | x = aABe™" /(r+c)+bBe" /r+C | ¥ | S
83. X =ax+by, y=cx’, z=1x | X = ak + bcx? n \4!
86. | x=ax+bz, y=cx?, z=rx | X—ak—-brx=0 y |12
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Table A Continued

No. Systems Solvable Form / Scalar Equation Sol.?| Type
87. [ x=ay+bz, y=cx’, z=1x | X = brx +acx’ y [V
88. [ x=ax+by, y=cy?, z=rx | X=ax—b/(ct+A) y |1IL1
89. | x =ax+bz, y=cy’, z=1x | X—ax—brx=0 y IL2
9. | x=ay+bz, y=cy?, z=r1x | X—brx = ac/(ct+A)> y |2
9. [ x=ax+by, y=cz’, z=1x | Z—az—cbrz> =0 n | VI
92. | x=ax+bz, y=cz’, 2=1x |Z—az—brz=0 y 1.2
9. | x=ay+bz, y=cz?, 2=1x | Z—az—carz’ =0 n | VI
94. | x =ax+by, y=cxy, Z2=1x | X = ax + cxx — cax’ n \4!
95. [ x=ax+bz, y=cxy, 2=1X | X —ax—brx = 0, y = Ae‘/"” y IL.2
96. [ x=ay+bz, y=cxy, z=1X | x2 =2aAe“*/c+bz’/r+B y |S
97. | x=ax+by, y=cxz, 2=1X | x—ax = bcz’ /2r+bA, z = 1x n | VI
98. | x=ax+bz, y=cxz, z=1x |Z—az—brz=0 y .2
99. | x=ay+bz, y=cxz, z=r1x | x> = acz’ / 3r + bz’ + 2Az + 2B, y |S
y=cz’ /2r+A
100.| x =ax+by, y=cyz, Zz=1x | Z—ai—czi+cazz=0 n | VI
101.] x=ax+bz, y=cyz, z=1x |Z—azi—-brz=0 y |12
102.] x=ay+bz, y=cyz, 2=1X | 7 —czi—1bz+cbrz’ =0 I viI
103.] x=ax+by, y=cx?, z=ry | Xx—ak—cbx>=0 n | VI
104] x =ax+bz, y=cx?, z=1y | X—aX—crbx’ =0 n | VI
105.| % = ay + bz, y=cx?, z=r1y | X—acxx—crbx’* =0 n VII
106.] x =ax+by, y=cy?, z=ry | X—ax=—b/(ct+B) y |ILI
107.] x =ax+bz, y=cy?, z=r1y | Xx—ax = (br/c)ln(—-1/ A(ct +B)) y |11
108./ 5 =ay+bz, y=cy?, z=ry | X=—a/(ct+B) y |1
+(br /c)In(-1/ A(ct + B))
109 x =ax+by, y=cz?, z=r1y | y=c((3r/2c)y> +3A/c)*”? y [
HO.| g =ax+bz, y=cz?, z=1y | x—ax = b((3r/2c)y> +3A/c)"” y I*
y =c((3r/2c)y* +3A/c)*”
ULl g =ay+bz, y=cz?, z=ry | x =ay+b((3r/2c)y’ +3A/c)" y I*
y =c((3r/2c)y* +3A /c)*”?
12.] x=ax+by, y=cxy, z=1y X—(a+cx)x+cax’ =0 VI
113.] x=ax+bz, y=cxy, z=1y | X—(a+cx)k+caxx =0 n | VI
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Table A Continued

No. Systems Solvable Form / Scalar Equation Sol.?| Type
114 x=ay+bz, y=cxy, z=ry | (cax+br)X = n [ VI
(ac’x” + brex + cax)¥ = 0

151 x=ax+by, y=cxz, z=r1y | xX — (ax + )X + ax> = crx’x + crax’ n | VI
116.] x=ax+bz, y=cxz, Z=1y | ¥ —a¥ = crxx — crax’ n | VI
I x=ay+bz, y=cxz, 2=1y | 2% — 33 —acz’2—cbrz’ =0 I VI
118. x=ax+by, y=cyz, 2=r1y | x =ax+by, z=cz’/2+T1A y |11
119.] x=ax+bz, y=cyz, 2=1y | x=ax+bz, 2=cz®/2+IA y |IL1
120.} x=ay+bz, y=cyz, z=r1y X = ay + bz, z2=cz>/2+1A y I
21 x =ax+by, y=cx’, 2=r1z | X =ax+bcx’, z= Ae" n [ VI
122. x=ax+bz, y=cx?, z=r1z | Xx—ax =bAe" y IL.1
123. X=ay+bz, y=cx’, z=rz | X —acx® = bAe™ n Vil
124.1 x —ax+by, y=cy?, z=1z | X=ax—b/(ct+A) y |IL1
125 x = ax + bz, y=cy’, z=r1z | X = ax+bAe" y I1.1
126. X=ay+bz, y=cy’, z=1z | x=—(a/c)n(t+B/c)+bAe" /r+C | ¥ S
127. x=ax+by, y=cz’, z2=1z | x—ax= bcA%> /2r+bB y |11
128.] x =ax+bz, y=cz?, 2=1z | x—ax = bAe" y IL1
1291 x=ay+bz, y=cz?, z2=1z | x =acA%™ /4r’ +bAe" /r+aBt+C| ¥ S
130.] x=ax+by, y=cxy, 2=1z | % = ax +cxx — cax’ n | VI
131, x=ax+bz, y=cxy, 2=1Z | x—ax = bAe" y II.1
132.] x=ay+bz, y=cxy, 2=12 | % = cxx —cbAe"x + brAe" n VI
133.] x=ax+by, y=cxz, z=1Z | ¥ = ax + bcAe"x y |13
134 x=ax+bz, y=cxz, Z2=1Z | x = ax + bAe" y | 11
135. x=ay+bz, y=cxz, Z2=1Z | % = acAe"x + rbAe" y |3
136.f x=ax+by, y=cyz, 2=1Z | = ax + bBe“A/"*" y |1
137. x=ax+bz, y=cyz, 2=1Z | x = ax + bAe™ y 1
138.] x=ay+bz, y=cyz, z=r1z y I

. t
x = aBe ™' 4 pAe"

Note: * means that the integration is not easy.
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Appendix B. Formulas

2 3
(ax)” (@)
2x2! 3x3!

Q). J.e?dx = Inx+ax+

ax 1 ax ax .
(2).J i" dx = — [- jn_l + aJ jn_l dxj, n 2 2 integer.

1 1 ln[Zax+b—Vb2—4ac

J, if b —4ac >0

3). dx =
j‘CDC?+b)C+C \Vb? —dac |\ 2ax+b+b* —4dac

2
N L if b2 — 4ac < 0
ax“+bx+c NI \[4ac—b2
J-Tl——dx=— ! , if b* —4ac=0
ax“+bx+c 2ax+b

(4). The cononical form of a special 2nd order o.d.e. is:
d—2y+aﬂ+(ﬁelx+6)y =0
dx? dx

The general solution is:

M[GJV(ﬁe%]+CZY{2\[B e%ﬂ, v————a2_45

Ny B _
y=e A A

where J, and Y, are Bessel functions.

(5). A homogeneous linear equation of the 2nd order has the form:
F2()y"(x)+ f1(x)Y (x)+ fo(x)y=0

Assuming:
Y PCIN
y(x) = u(x)e > 2%
there results from equation (B.1) the canonical (or normal) form
u’(x)+ f(x)u(x)=0
fo() - l(f,(x) z_ l_d_(M
fo(x) 4 fr(x) 2dx fy(x)

(6). The equation (B.2) is an another canonical form:
Y (%)= (ce®™ + Be™ + y)y(x) =0

N,

, where k =

where f(x)=

)

After the transformation: z(x)=e™, w(z) =z

Azw”(2) + A2 2k + Dw’(2) — (az + B)w(z) =0
(7). The general form:
(a,x+ b))y’ (x)+(ax+ b))y (x)+ (a,x + by)y(x) =0
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(B.2)

(B.3)

P eq. (B.3) becomes:

B.4)



where a,,b,,i =0,1,2 are arbitrary constants. Let

D= —daga, h=2"% Ah)=2ah+a, o =——2
2a, A(h)
b x—u . _Bh -
U= —a—z. B(h)=b,h* +bh+b,, &= G 4= A’ B = (a,h, —ah,)a;’

Then the solution of the equation (B.4) can be written as:
y(x)=e"T(a, b; &)

here I'(a, b; £) be an arbitrary solution of the degenerate hypergeometric equation:
xy"(x)+(b—x)y’' —ay=0

(8). The canonical form:
Y'(x)+(ae” —b)y(x)=0

the general solution of the equation is:

y(x)=CJ, ;(2Nae?)+ G,Y, ; (2 ae?)
where J, and Y, are Bessel function.

(9) The cononical form y”(x)+ ae™y(x) = 0 has the general solution : .

A A
y(x)= C110(¥3 2+ CzYo(ée 2)

where J, and Y, are Bessel functions
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Appendix C. Numerical solutions of some chaotic systems
1. Sprott B

sprott-B.ms
> with(DEtools);

> fhn:=[diff(x(t),t)=y*z,
> diff(y(t),t)=x-y,
> diff(z(t),t)=1-x*y];
Jhn = g;X(t) =zy,§y(t) =x —y,g;Z(t) =1-xy|
> DEplot(fhn,[x,y,z],990..1000,{[0,1.6,1,1]},stepsize=0.1);

casel: ¢0..100,step=0.01

1
13 1
23
31
32 . . « +
1x0 -1 22 > 1 y(J -1 2

‘case2: =0..1000,step=0.1
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2. Sprott N
> with(DEtools);

> fhn:=[diff(x(t),t)=-2*y,
> diff(y(t),t)=x+z*z,
> diff(z(t),t)=1+y-22];
Jhn = 2x(t)=-2y gy(t)=x+22 QZ(f) =1 “’_22]
o > ot "ot
> DEplot(fhn,[x,y,z],0..1000,{[0,-1.1,0.2,0.1]},stepsize=0.1);

casel: =0..1000,step=0.1 [0,-1.1,0.2,0.1]
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3. Lorenz system

> with(DEtools);

> fhn:=[diff(x(xi),xi)=-sigma*x+sigma'y,
> diff(y(xi),xi)=-x*z+r*x-y,

> diff(z(xi),xi)=x"y-b*z];

Shn :=[—a%x(&)=-10x+ IOy,-éagy(ﬁ)z-xzﬁ-ZSx——y,—a%z(ﬁ)::xy—gz]
> sigma:=10:
> b:=8/3:
> r:=28:

> DEplot(fhn,[x,y,z],0..100,{[0,1,0,1]},stepsize=0.01);
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4. Rossler system

> with(DEtools);
> a:=0.1:
> b:=1.5:
> ¢:=0.3:

> fhn:=[diff(x(t),t)=-y-z,
> diff(y(t),)=x+a‘y,
> diff(z(t),t)=b+x*z-c*z]; .
Jhn '=[éx(t)=—y-—z g—y(t)zx-i- 1y, —a—z(t) =154+xz-32z
"ot 4 > ot S o ' o
> DEplot(fhn,[x,y,2},0..100,{[0,1,0,1]},stepsize=0.01);
casel: a=0.05, b=0.5 ¢=0.3

»sd l.‘&‘t\;.-

227
1.57
]
1]
j -
0.5% : —
1 05 0 05 1

case2: a=04,b=25,c=10

15 10 5 0 -5 -10 -15
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