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Abstract

DP-coloring (also called correspondence coloring) is a generalization of list coloring
that has been widely studied in recent years after its introduction by Dvořák and Postle
in 2015. The chromatic polynomial of a graph is an extensively studied notion in combi-
natorics since its introduction by Birkhoff in 1912; denoted P (G,m), it equals the number
of proper m-colorings of graph G. Counting function analogues of the chromatic polyno-
mial have been introduced and studied for list colorings: Pℓ, the list color function (1990);
DP colorings: PDP , the DP color function (2019), and P ∗

DP
, the dual DP color function

(2021). For any graph G and m ∈ N, PDP (G,m) ≤ Pℓ(G,m) ≤ P (G,m) ≤ P ∗

DP
(G,m).

A function f is chromatic-adherent if for every graph G, f(G, a) = P (G, a) for some
a ≥ χ(G) implies that f(G,m) = P (G,m) for all m ≥ a. It is not known if the list
color function and the DP color function are chromatic-adherent. We show that the DP
color function is not chromatic-adherent by studying the DP color function of Generalized
Theta graphs. The tools we develop along with the Rearrangement Inequality give a new
method for determining the DP color function of all Theta graphs and the dual DP color
function of all Generalized Theta graphs.

Keywords. DP-coloring, correspondence coloring, chromatic polynomial, DP color func-
tion, rearrangement inequality.
Mathematics Subject Classification. 05C15, 05C30, 05A20, 05C69

1 Introduction

In this paper all graphs are nonempty, finite, simple graphs unless otherwise noted. Gen-
erally speaking we follow West [36] for terminology and notation. The set of natural numbers
is N = {1, 2, 3, . . .}. For m ∈ N, we write [m] for the set {1, . . . ,m}. We write AM-GM
Inequality for the inequality of arithmetic and geometric means. Given a set A, P(A) is the
power set of A. If G is a graph and S,U ⊆ V (G), we use G[S] for the subgraph of G induced
by S, and we use EG(S,U) to denote the subset of E(G[S ∪ U ]) with at least one endpoint
in S and at least one endpoint in U . If u and v are adjacent in G, uv or vu refers to the edge
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between u and v. If e ∈ E(G), we write G · e for the graph obtained from G by contracting
the edge e.

In this paper, we will use the following version of the Rearrangement Inequality ([30])
several times.

Theorem 1 (Rearrangement Inequality). For k, n ∈ N, suppose that for each (i, j) ∈ [k]×[n],
x(i,j) is a nonnegative real number so that x(i,1) ≤ · · · ≤ x(i,n) for each i ∈ [k]. Let σi be an
arbitrary permutation of [n] for each i ∈ [k]. If k = 2, then

n
∑

j=1

x(1,n+1−j)x(2,j) ≤
n
∑

j=1

x(1,σ1(j))x(2,σ2(j)).

Furthermore, for any k ∈ N,
∑n

j=1

∏k
i=1 x(i,σi(j)) ≤

∑n
j=1

∏k
i=1 x(i,j).

Importantly, the first inequality in Theorem 1 doesn’t hold when k ≥ 3 (see e.g., [37]).
Throughout this paper whenever l < j, we take

∏l
i=j ai to equal 1.

1.1 DP-Coloring

In the classical vertex coloring problem we wish to color the vertices of a graph G with
up to m colors from [m] so that adjacent vertices receive different colors, a so-called proper
m-coloring. The chromatic number of a graph G, denoted χ(G), is the smallest m such that
G has a proper m-coloring. List coloring is a well-known variation on classical vertex coloring
which was introduced independently by Vizing [34] and Erdős, Rubin, and Taylor [13] in the
1970s. For list coloring, we associate a list assignment L with a graph G such that each
vertex v ∈ V (G) is assigned a list of available colors L(v) (we say L is a list assignment for
G). Then, G is L-colorable if there exists a proper coloring f of G such that f(v) ∈ L(v) for
each v ∈ V (G) (we refer to f as a proper L-coloring of G). A list assignment L is called a
k-assignment for G if |L(v)| = k for each v ∈ V (G). The list chromatic number of a graph
G, denoted χℓ(G), is the smallest k such that G is L-colorable whenever L is a k-assignment
for G. We say G is k-choosable if k ≥ χℓ(G). Note χ(G) ≤ χℓ(G), and this inequality may
be strict since it is known that there are bipartite graphs with arbitrarily large list chromatic
number (see [13]).

In 2015, Dvořák and Postle [12] introduced a generalization of list coloring called DP-
coloring (they called it correspondence coloring) in order to prove that every planar graph
without cycles of lengths 4 to 8 is 3-choosable. DP-coloring has been extensively studied over
the past 6 years (see e.g., [3, 4, 16, 18, 23, 24, 25, 26]). Intuitively, DP-coloring is a variation
on list coloring where each vertex in the graph still gets a list of colors, but identification
of which colors are different can change from edge to edge. Following [5], we now give the
formal definition. Suppose G is a graph. A cover of G is a pair H = (L,H) consisting of a
graph H and a function L : V (G) → P(V (H)) satisfying the following four requirements:

(1) the set {L(u) : u ∈ V (G)} is a partition of V (H) of size |V (G)|;
(2) for every u ∈ V (G), the graph H[L(u)] is complete;
(3) if EH(L(u), L(v)) is nonempty, then u = v or uv ∈ E(G);
(4) if uv ∈ E(G), then EH(L(u), L(v)) is a matching (the matching may be empty).
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Suppose H = (L,H) is a cover of G. We refer to the edges of H connecting distinct parts
of the partition {L(u) : u ∈ V (G)} as cross-edges. An H-coloring of G is an independent
set in H of size |V (G)|. It is immediately clear that an independent set I ⊆ V (H) is an
H-coloring of G if and only if |I ∩ L(u)| = 1 for each u ∈ V (G). We say H is m-fold if
|L(u)| = m for each u ∈ V (G). An m-fold cover H is a full cover if for each uv ∈ E(G),
the matching EH(L(u), L(v)) is perfect. The DP-chromatic number of G, χDP (G), is the
smallest m ∈ N such that G has an H-coloring whenever H is an m-fold cover of G.

Suppose H = (L,H) is an m-fold cover of G. We say that H has a canonical labeling if it
is possible to name the vertices of H so that L(u) = {(u, j) : j ∈ [m]} and (u, j)(v, j) ∈ E(H)
for each j ∈ [m] whenever uv ∈ E(G). 1 Now, suppose H has a canonical labeling and G
has a proper m-coloring. Then, if I is the set of H-colorings of G and C is the set of proper
m-colorings of G, the function f : C → I given by f(c) = {(v, c(v)) : v ∈ V (G)} is a bijection.
Also, given an m-assignment L for a graph G, it is easy to construct an m-fold cover H′

of G such that G has an H′-coloring if and only if G has a proper L-coloring (see [5]). So,
χ(G) ≤ χℓ(G) ≤ χDP (G).

1.2 The DP Color Function and Dual DP Color Function

In 1912, Birkhoff introduced the chromatic polynomial of a graph in hopes of using it
to make progress on the four color problem. For m ∈ N, the chromatic polynomial of a
graph G, P (G,m), is the number of proper m-colorings of G. It is well-known that P (G,m)
is a polynomial in m of degree |V (G)| (see [7]). For example, P (Kn,m) =

∏n−1
i=0 (m − i),

P (Cn,m) = (m − 1)n + (−1)n(m − 1) whenever 2 n ≥ 3, and P (T,m) = m(m − 1)n−1

whenever T is a tree on n vertices (see [36]).
The notion of chromatic polynomial was extended to list coloring in the early 1990s. If

L is a list assignment for G, we use P (G,L) to denote the number of proper L-colorings of
G. The list color function Pℓ(G,m) is the minimum value of P (G,L) where the minimum
is taken over all possible m-assignments L for G. It is clear that Pℓ(G,m) ≤ P (G,m) for
each m ∈ N since we must consider the m-assignment that assigns the same m colors to
all the vertices in G when considering all possible m-assignments for G. In general, the list
color function can differ significantly from the chromatic polynomial for small values of m.
However, for large values of m, Wang, Qian, and Yan [35] (improving upon results in [11]
and [33]) showed: If G is a connected graph with l edges, then Pℓ(G,m) = P (G,m) whenever
m > (l − 1)/ ln(1 +

√
2). It is also known that Pℓ(G,m) = P (G,m) for all m ∈ N when G is

a cycle or chordal (see [19] and [20]).
A fundamental open question on the list color function asks whether the list color function

of a graph and the corresponding chromatic polynomial stay the same after the first point at
which they are both nonzero and equal. Let G be the set of all finite, simple graphs. We say
a function f : G × N → N is chromatic-adherent if for every graph G, f(G, a) = P (G, a) for
some a ≥ χ(G) implies that f(G,m) = P (G,m) for all m ≥ a.

Question 2 ([19]). Is Pℓ chromatic-adherent?

1When H = (L,H) has a canonical labeling, we will always refer to the vertices of H using this naming
scheme.

2When considering graphs with multiple edges or loops, one should note that this formula for the chromatic
polynomial of a cycle also works for C1 and C2.
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In 2019, two of the authors (Kaul and Mudrock in [15]) introduced a DP-coloring ana-
logue of the chromatic polynomial in hopes of gaining a better understanding of DP-coloring
and using it as a tool for making progress on some open questions related to the list color
function [15]. Since its introduction in 2019, the DP color function has received some atten-
tion in the literature (see e.g., [1, 10, 14, 17, 27, 29]). Suppose H = (L,H) is a cover of graph
G. Let PDP (G,H) be the number of H-colorings of G. Then, the DP color function of G,
PDP (G,m), is the minimum value of PDP (G,H) where the minimum is taken over all possible
m-fold covers H of G. A similar tool for studying enumerative aspects of DP coloring was
recently introduced [27]; specifically, the dual DP color function of G, denoted P ∗

DP (G,m),
is the maximum value of PDP (G,H) where the maximum is taken over all full m-fold covers
H of G. 3 It is easy to show that for any graph G and m ∈ N,

PDP (G,m) ≤ Pℓ(G,m) ≤ P (G,m) ≤ P ∗
DP (G,m).

Note that if G is a disconnected graph with components: H1,H2, . . . ,Ht, then PDP (G,m) =
∏t

i=1 PDP (Hi,m) (an analogous result holds for the dual DP color function). So, we will only
consider connected graphs from this point forward unless otherwise noted.

The list color function and DP color function of certain graphs behave similarly. However,
for some graphs there are surprising differences. For example, similar to the list color function,
PDP (G,m) = P (G,m) for every m ∈ N whenever G is chordal or an odd cycle [15]. On the
other hand, unlike the list color function, it is well-known that PDP (G,m) does not necessarily
equal P (G,m) for sufficiently largem. Indeed Dong and Yang [10] recently generalized a result
of Kaul and Mudrock [15] and showed that if G is a simple graph that contains an edge e
such that the length of a shortest cycle containing e is even, then there exists an N ∈ N such
that PDP (G,m) < P (G,m) whenever m ≥ N . Nevertheless, while introducing the DP color
function, Kaul and Mudrock asked the analogue of Question 2 for the DP color function.

Question 3 ([15]). Is PDP chromatic-adherent?

We will see below that the answer to Question 3 is no.

1.3 Summary of Results

We answer Question 3 by studying the DP color function of Generalized Theta graphs. A
Generalized Theta graph Θ(l1, . . . , ln) consists of a pair of end vertices joined by n internally
disjoint paths of lengths l1, . . . , ln ∈ N. When n = 3, Θ(l1, l2, l3) is simply called a Theta
graph. From this point forward, we will always assume that the lengths of the paths of a
Generalized Theta graph are listed such that: if l1, . . . , ln don’t all have the same parity, then
there exists some r ∈ [n] − {1} such that l2, . . . , lr have the same parity which is different
from that of l1, lr+1, . . . , ln.

It is easy to prove that χDP (Θ(l1, . . . , ln)) = 3 whenever n ≥ 2. It is also well-known
(see [8]) that if G = Θ(l1, . . . , ln), then for each m ≥ 2,

P (G,m) =

∏n
i=1((m− 1)li+1 + (−1)li+1(m− 1))

(m(m− 1))n−1
+

∏n
i=1((m− 1)li + (−1)li(m− 1))

mn−1
.

3We take N to be the domain of the DP color function and dual DP color function of any graph.
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Generalized Theta graphs have been widely studied for many graph theoretic problems (see
e.g., [6, 9, 13, 21, 22, 28, 31]), and they are the main subject of two classical papers on
the chromatic polynomial [8] and [32] which include the celebrated result that the zeros of
the chromatic polynomials of the Generalized Theta graphs are dense in the whole complex
plane with the possible exception of the unit disc around the origin (by including the join of
Generalized Theta graphs with K2 this extends to all of the complex plane). Recently, exact
formulas for the DP color function of all Theta graphs were determined, and it was shown that
when G = Θ(l1, . . . , ln), there is a polynomial p(m) and N ∈ N such that PDP (G,m) = p(m)
whenever m ≥ N (see [14]).

In Section 2 we develop some elementary tools for analyzing the DP color function of
a Generalized Theta graph. These tools allow us to establish a sufficient condition for
PDP (G,m) = P (G,m) when G is a Generalized Theta graph. This sufficient condition ulti-
mately allows us to find two examples of graphs that demonstrate the answer to Question 3
is no.

Theorem 4. If G is Θ(2, 3, 3, 3, 2) or Θ(2, 3, 3, 3, 3, 3, 2, 2), then PDP (G, 3) = P (G, 3) and
there is an N ∈ N such that PDP (G,m) < P (G,m) for all m ≥ N .

Interestingly, Theorem 4 contains the only examples that we know of that demonstrate
that the answer to Question 3 is no. So, the following question is natural.

Question 5. For which graphs G do there exist, a, b ∈ N with χ(G) ≤ a < b, PDP (G, a) =
P (G, a), and PDP (G, b) < P (G, b)?

We do not even know whether there are infinitely many Generalized Theta graphs that
satisfy the conditions of Question 5. Since little is known about the enumerative aspects of
DP coloring Generalized Theta graphs, we continue by studying the DP color function and
dual DP color function of Generalized Theta graphs.

In Section 3 we show how the tools we developed in Section 2 along with the Rearrange-
ment Inequality give us an elementary way to derive the formulas for the DP color function
of all Theta graphs.

Theorem 6. Let G = Θ(l1, l2, l3), where l1 = mini∈[3] li ≥ 1 and li ≥ 2 for each i ∈ {2, 3}.
(i) If the parity of l1 is different from both l2 and l3, then PDP (G,m) = P (G,m) for all

m ∈ N.
(ii) If the parity of l1 is the same as l3 and different from l2, then for m ≥ 2:

PDP (G,m) =
1

m

[

(m− 1)l1+l2+l3 + (m− 1)l1 − (m− 1)l2 − (m− 1)l3+1 + (−1)l2+1(m− 2)
]

.

(iii) If l1, l2, and l3 all have the same parity, then for m ≥ 3:

PDP (G,m) =
1

m

[

(m− 1)l1+l2+l3 − (m− 1)l1 − (m− 1)l2 − (m− 1)l3 + 2(−1)l1+l2+l3
]

.

Finally, in Section 4 we build on some of the ideas in Section 3 and completely determine
the dual DP color function of all Generalized Theta graphs.

2 The DP Color Function is not Chromatic-adherent

We begin this Section by establishing some conventions and notation that will be used for
the remainder of this paper. Whenever H = (L,H) is anm-fold cover of G and P ⊆ V (H), we
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let N(P,H) be the number of H-colorings containing P ⊆ V (H). Suppose G = Θ(l1, . . . , ln).
We will always assume n ≥ 2, l1 = mini∈[n] li ≥ 1, and li ≥ 2 for each i ∈ [n] − {1}. The
endpoints of the paths that make up G will always be called u and w. When H = (L,H)
is a full m-fold cover of G, we always suppose L(v) = {(v, j) : j ∈ [m]} for each v ∈ V (G).
Furthermore, we let Gi be the u,w-path of length li used to form G and Ri = V (Gi). We
let Hi = (Li,Hi) where Li is L with domain restricted to Ri and Hi is the graph defined by
H[
⋃

v∈Ri
L(v)]−EH (L(u), L(w)) if l1 = 1 and i 6= 1, and H[

⋃

v∈Ri
L(v)] otherwise. It is easy

to see that Hi is a full m-fold cover of Gi.
We are now ready to present two lemmas that will be of fundamental importance through-

out the paper.

Lemma 7. Let G = Θ(l1, . . . , ln). Let H = (L,H) be a full m-fold cover of G where m ≥ 2.
Then

PDP (G,H) =
∑

(i,j)∈[m]2

n
∏

k=1

N({(u, i), (w, j)},Hk ).

Proof. Notice PDP (G,H) =
∑

(i,j)∈[m]2 N({(u, i), (w, j)},H). Let A = {(u, j1), (w, j2)} where

j1, j2 are fixed elements of [m]. We will show that N(A,H) =
∏n

i=1 N(A,Hi). Notice
that if (u, j1)(w, j2) ∈ E(H), then N(A,H) = N(A,H1) = 0. So we can assume that
(u, j1)(w, j2) /∈ E(H). Let Ii be the set of all Hi-colorings of Gi that contain A, and let I be
the set of all H-colorings of G that contain A. If Ik is empty for some k ∈ [n], then it is easy
to see that I must also be empty; hence,

∏n
i=1 N(A,Hi) =

∏n
i=1|Ii| = 0 = |I| = N(A,H).

So, suppose that Ii is nonempty for each i ∈ [n]. Let f :
∏n

i=1 Ii → I be the function given by
f((I1, . . . , In)) =

⋃n
i=1 Ii. It is easy to check that

⋃n
i=1 Ii is an independent set of size |V (G)|

in H. Clearly, f is a bijection. As such, N(A,H) = |I| =∏n
i=1 |Ii| =

∏n
i=1N(A,Hi).

Lemma 8. Let G = Θ(l1, . . . , ln). Let H = (L,H) be a full m-fold cover of G where m ≥ 2.
Let (i, j) ∈ [m]2. For k ∈ [n], if there is a path in Hk connecting (u, i) and (w, j) consisting
of only cross-edges of Hk, then

N({(u, i), (w, j)},Hk ) =
(m− 1)lk + (−1)lk(m− 1)

m
.

Otherwise,

N({(u, i), (w, j)},Hk ) =
(m− 1)lk − (−1)lk

m
.

Proof. For k ∈ [n], since Gk is a tree, Hk has a canonical labeling. Let rk and r′k be the
permutations of [m] that produce a canonical labeling when (u, i) is renamed to (u, rk(i))
and (w, j) is renamed to (w, r′k(j)). Notice rk(i) = r′k(j) if there is a path in Hk connecting
(u, i) and (w, j) consisting of only cross-edges of Hk, and rk(i) 6= r′k(j) otherwise. If l1 =
1, let e be an edge with endpoints u and w that is distinct from the edge uw ∈ E(G1);
otherwise, let e = uw. For each k ∈ [n], let Mk be the graph with V (Mk) = V (Gk) and
E(Mk) = E(Gk) ∪ {e}. Let M ′

k = Mk · e, where we do not remove multiple edges or loops
upon contraction and where the vertex obtained from contracting e is v. Notice Mk = Clk+1

and M ′
k = Clk . When there is a path in Hk connecting (u, i) and (w, j) consisting of only

cross-edges of Hk, N({(u, i), (w, j)},Hk ) is the number of properm-colorings of M ′
k that color
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v with rk(i). Thus, N({(u, i), (w, j)},Hk ) = P (Clk ,m)/m = ((m− 1)lk + (−1)lk(m− 1))/m.
When there is not a path in Hk connecting (u, i) and (w, j) consisting of only cross-edges of
Hk, N({(u, i), (w, j)},Hk ) is the number of proper m-colorings of Mk that color u with rk(i)
and w with r′k(j). Thus, N({(u, i), (w, j)},Hk ) = P (Clk+1,m)/(m(m − 1)) = ((m − 1)lk −
(−1)lk)/m.

Lemma 8 implies the possible values of N({(u, i), (w, j)},Hk ) are one apart; specifically,
the possible values are:

(

(m− 1)lk − (−1)lk
)

/m+(−1)lk and
(

(m− 1)lk − (−1)lk
)

/m. Also,
Lemmas 7 and 8 allow us to establish a sufficient condition for PDP (G,m) = P (G,m) when
G is a Generalized Theta graph.

Lemma 9. Let G = Θ(l1, . . . , ln). For any m ≥ 3, if

P (G,m) =

⌈

m2
n
∏

i=1

(

(

(m− 1)li + (−1)li(m− 1)

(m− 1)li − (−1)li

)1/m(
(m− 1)li − (−1)li

m

)

)⌉

,

then PDP (G,m) = P (G,m).

Proof. For some m ≥ 3, suppose that H = (L,H) is a full m-fold cover of G such that
PDP (G,H) = PDP (G,m). By Lemma 7, we know that
PDP (G,H) =

∑

(i,j)∈[m]2
∏n

k=1N({(u, i), (w, j)},Hk ). By the AM-GM inequality and the
fact that PDP (G,m) is an integer, it follows that

PDP (G,m) ≥











m2





n
∏

k=1

∏

(i,j)∈[m]2

N({(u, i), (w, j)},Hk )





1/m2










.

Now, suppose l ∈ [n]. Let H ′
l be the spanning subgraph of Hl that consists of only the

cross-edges of Hl. Since Hl has a canonical labeling, we know that H ′
l is the disjoint union

of m paths of length ll. Consequently, by Lemma 8, N({(u, i), (w, j)},Hl ) = ((m − 1)l +
(−1)l(m − 1))/m for precisely m ordered pairs (i, j) in [m]2, and N({(u, i), (w, j)},Hl ) =
((m− 1)l − (−1)l)/m for all other ordered pairs in [m]2. Thus,











m2





n
∏

k=1

∏

(i,j)∈[m]2

N({(u, i), (w, j)},Hk )





1/m2










=









m2

(

n
∏

i=1

(

(

(m− 1)li + (−1)li(m− 1)

m

)m(
(m− 1)li − (−1)li

m

)m(m−1)
))1/m2









.

So, if the hypotheses of the Lemma are satisfied, we have PDP (G,m) ≥ P (G,m), and the
result follows.

The final ingredient for the proof of Theorem 4 is a result from [14] 4.

4Theorem 10 is also implied by the main results in [10].
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Theorem 10 ([14]). Suppose G = Θ(l1, . . . , ln).
(i) If there is a j ∈ {2, . . . , n} such that l1 and lj have the same parity, then there is an

N ∈ N such that PDP (G,m) < P (G,m) for all m ≥ N .
(ii) If l1 and lj have different parity for each j ∈ {2, . . . , n}, then there is an N ∈ N such

that PDP (G,m) = P (G,m) for all m ≥ N .

We are now ready to prove Theorem 4.

Proof. We will prove the result when G = Θ(2, 3, 3, 3, 2) (the proof in the other case is
similar). First, note that P (G, 3) = (62)(183)/64 + (62)(63)/34 = 258. Next, notice that if
(l1, l2, l3, l4, l5) = (2, 3, 3, 3, 2), then

⌈

9

5
∏

i=1

(

(

(2)li + (−1)li(2)

(2)li − (−1)li

)1/3(
(2)li − (−1)li

3

)

)⌉

=

⌈

9

(

65

32 · 93
)1/3 (

32 · 93
35

)

⌉

= 258.

So, by Lemma 9, we have that PDP (G, 3) = P (G, 3). Also, Theorem 10 implies there is an
N ∈ N such that PDP (G,m) < P (G,m) for all m ≥ N .

3 Theta Graphs and the Rearrangement Inequality

In this Section we show how we can use the Rearrangement Inequality along with the tools
developed in Section 2 to give an elementary proof of Theorem 6. We begin with a technical
lemma that follows from the Rearrangement Inequality by an extremality argument.

Lemma 11. Suppose xi,j is a non-negative integer for each i ∈ [3] and j ∈ [m2] where m ≥ 3.
For each i ∈ [3], suppose ni = xi,1 = · · · = xi,m ≤ xi,m+1 = · · · = xi,m(m−1) ≤ xi,m(m−1)+1 =
· · · = xi,m2 = ni + 1 for some ni ≥ 0, and n1 ≤ n2, n3. Let N = |{j ∈ [m2] : x1,j = n1}| ∈
{m,m(m− 1)}. Suppose f is a permutation of [m2] defined by f(j) = m2 + 1− j and g is a
permutation of [m2] defined by

g(j) =

{

m2 + j −N if j ∈ [N ]

j −N otherwise.

For any permutations σ1 and σ2 of [m2],

m2

∑

j=1

x1,jx2,f(j)x3,g(j) ≤
m2

∑

j=1

x1,jx2,σ1(j)x3,σ2(j).

Proof. For any permutations σ1 and σ2 of [m2], let M(σ1, σ2) = |{q ∈ [m2] : x1,q =
n1, x2,σ1(q) = n2}|+ |{q ∈ [m2] : x1,q = n1, x3,σ2(q) = n3}|.

Among all permutations of [m2], σ1 and σ2, that minimize
∑m2

j=1

(

x1,jx2,σ1(j)x3,σ2(j)

)

,
choose γ1 and γ2 such that M(γ1, γ2) is as small as possible.

Suppose there exist a, b ∈ [m2] such that x1,a = n1, x1,b = n1 + 1, x2,γ1(a) = n2, and
x2,γ1(b) = n2+1. Then let γ′1 be defined such that γ′1(a) = γ1(b), γ

′
1(b) = γ1(a), and γ′1 equals
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γ1 otherwise. We calculate

m2

∑

j=1

(

x1,jx2,γ1(j)x3,γ2(j)
)

−
m2

∑

j=1

(

x1,jx2,γ′

1
(j)x3,γ2(j)

)

= x1,ax3,γ2(a)(x2,γ1(a) − x2,γ′

1
(a)) + x1,bx3,γ2(b)(x2,γ1(b) − x2,γ′

1
(b))

= n1x3,γ2(a)(n2 − n2 − 1) + (n1 + 1)x3,γ2(b)(n2 + 1− n2)

= (n1 + 1)x3,γ2(b) − n1x3,γ2(a) = n1(x3,γ2(b) − x3,γ2(a)) + x3,γ2(b)

≥ n1(n3 − n3 − 1) + n3 ≥ 0.

By the choice of γ1 and γ2,
∑m2

j=1

(

x1,jx2,γ1(j)x3,γ2(j)
)

−∑m2

j=1

(

x1,jx2,γ′

1
(j)x3,γ2(j)

)

= 0.

However, M(γ′1, γ2) = M(γ1, γ2)−1 which is a contradiction. Since a similar contradiction can
be reached if we assume there are a, b ∈ [m2] such that x1,a = n1, x1,b = n1+1, x3,γ2(a) = n3,
and x3,γ2(b) = n3 + 1, we know that if N = m and x1,a = n1, then x2,γ1(a) = n2 + 1 and
x3,γ2(a) = n3 + 1. Similarly, we know that if N = m(m − 1) and x2,γ1(a) = n2 + 1 or
x3,γ2(a) = n3 + 1, then x1,a = n1. We will now prove the desired result when N = m and
when N = m(m− 1).

SupposeN = m. Without loss of generality, assume γ1([m]) = γ2([m]) = [m2]−[m(m−1)].
Then

m2

∑

j=1

x1,jx2,γ1(j)x3,γ2(j) =





m
∑

j=1

n1(n2 + 1)(n3 + 1)



 +





m2

∑

j=m+1

x1,jx2,γ1(j)x3,γ2(j)





=





m
∑

j=1

n1(n2 + 1)(n3 + 1)



 + (n1 + 1)





m2

∑

j=m+1

x2,γ1(j)x3,γ2(j)





= mn1(n2 + 1)(n3 + 1) + (n1 + 1)





m2

∑

j=m+1

x2,γ1(j)x3,γ2(j)





≥ mn1(n2 + 1)(n3 + 1) + (n1 + 1)





m(m−1)
∑

j=1

x2,m(m−1)+1−jx3,j



 (Rearrangement Inequality)

= mn1(n2 + 1)(n3 + 1) + (n1 + 1)

m2

∑

j=m+1

x2,f(j)x3,g(j) =

m2

∑

j=1

x1,jx2,f(j)x3,g(j)

as desired.
Now, suppose N = m(m − 1). We know that if x1,a = n1 + 1, then x2,γ1(a) = n2

and x3,γ2(a) = n3. Without loss of generality, assume γ1([m
2] − [m(m − 1)]) = γ2([m

2] −
[m(m − 1)]) = [m]. Then a calculation along the lines of the previous case shows that
∑m(m−1)

j=1 x1,jx2,γ1(j)x3,γ2(j)+
∑m2

j=m(m−1)+1(n1+1)n2n3 ≥ n1

(

∑m(m−1)
j=1 x2,f(j)x3,g(j)

)

+m(n1+

1)n2n3, which is the desired inequality.

We now introduce some terminology that will be useful in proving Theorem 6. Suppose
that x = (x1, . . . , xm2) satisfies n = x1 = · · · = xm ≤ xm+1 = · · · = xm(m−1) ≤ xm(m−1)+1 =
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· · · = xm2 = n+1 for some n ≥ 0. We say x is odd if exactly m of its coordinates are n, and
we say x is even if exactly m of its coordinates are n + 1. These terms allow us to refer to
the parity of x.

The following reformulation of Lemma 11 will be useful in proving Theorem 6.

Lemma 12. Suppose xi,j is a non-negative integer for each i ∈ [3] and j ∈ [m2] where m ≥ 3.
For each i ∈ [3], suppose ni = xi,1 = · · · = xi,m ≤ xi,m+1 = · · · = xi,m(m−1) ≤ xi,m(m−1)+1 =
· · · = xi,m2 = ni + 1 for some ni ≥ 0, and n1 ≤ n2, n3. Let xi = (xi,1, . . . , xi,m2) for each
i ∈ [3]. For each i ∈ [3], if xi is odd, let si = ni and oi = ni + 1, and if xi is even, let
si = ni + 1 and oi = ni. Let h1 be a permutation of [m2] such that x1,h1(j) = s1 whenever
j ∈ [m] and x1,h1(j) = o1 otherwise. We now define two more permutations h2 and h3 of
[m2].

(i) If the parity of x1 is different from both x2 and x3, then for each i ∈ {2, 3}, let hi be
a permutation of [m2] such that xi,hi(j) = si whenever j ∈ [m] and xi,hi(j) = oi otherwise.

(ii) If the parity of x1 is different from x2 and the same as x3, then let h2 be a permutation
of [m2] such that x2,h2(j) = s2 whenever j ∈ [m] and x2,h2(j) = o2 otherwise, and let h3 be
a permutation of [m2] such that x3,h3(j) = s3 whenever j ∈ [2m] − [m] and x3,h3(j) = o3
otherwise.

(iii) If x1, x2, and x3 have the same parity, then let h2 be a permutation of [m2] such that
x2,h2(j) = s2 whenever j ∈ [2m]− [m] and x2,h2(j) = o2 otherwise, and let h3 be a permutation
of [m2] such that x3,h3(j) = s3 whenever j ∈ [3m]− [2m] and x3,h3(j) = o3 otherwise.

Then, using the notation of Lemma 11,

m2

∑

j=1

x1,h1(j)x2,h2(j)x3,h3(j) =

m2

∑

j=1

x1,jx2,f(j)x3,g(j).

In particular, for any permutations σ1, σ2 of [m2],

m2

∑

j=1

x1,h1(j)x2,h2(j)x3,h3(j) ≤
m2

∑

j=1

x1,jx2,σ1(j)x3,σ2(j).

Proof. Define f , g, and N as in Lemma 11. We consider six cases corresponding to the
parities of x1, x2, and x3 in (i), (ii), and (iii).

For (i), for suppose x1 is even, x2 is odd, and x3 is odd. Then we have the following:

x1,h1(j) =

{

n1 + 1

n1

, x2,h2(j) =

{

n2

n2 + 1
, x3,h3(j) =

{

n3 if j ∈ [m]

n3 + 1 if j ∈ [m2]− [m];

x1,j =

{

n1

n1 + 1
, x2,f(j) =

{

n2 + 1

n2

, x3,g(j) =

{

n3 + 1 if j ∈ [m(m− 1)]

n3 if j ∈ [m2]− [m(m− 1)].
Therefore, we obtain

m2

∑

j=1

x1,h1(j)x2,h2(j)x3,h3(j) =

m
∑

j=1

(n1 + 1)n2n3 +

m2

∑

j=m+1

n1(n2 + 1)(n3 + 1)
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= m(n1 + 1)n2n3 +m(m− 1)n1(n2 + 1)(n3 + 1)

=

m(m−1)
∑

j=1

n1(n2 + 1)(n3 + 1) +
m2

∑

j=m(m−1)+1

(n1 + 1)n2n3

=

m2

∑

j=1

x1,jx2,f(j)x3,g(j).

The other possibility for (i) is that x1 is odd, x2 is even, and x3 is even. The details of
the proof are similar to the previous case and are given in Appendix A.

For (ii), first we suppose x1 is even, x2 is odd, and x3 is even. Then we have:

x1,h1(j) =

{

n1 + 1

n1

, x2,h2(j) =

{

n2 if j ∈ [m]

n2 + 1 if j ∈ [m2]− [m];

x3,h3(j) =

{

n3 + 1 if j ∈ [2m]− [m]

n3 if j ∈ [m] ∪
(

[m2]− [2m]
)

;

x1,j =

{

n1

n1 + 1
, x2,f(j) =

{

n2 + 1 if j ∈ [m(m− 1)]

n2 if j ∈ [m2]− [m(m− 1)].

We also have N = m(m− 1), and so

x3,g(j) =

{

n3 if j ∈ [m(m− 2)] ∪
(

[m2]− [m(m− 1)]
)

n3 + 1 if j ∈ [m(m− 1)]− [m(m− 2)].

Therefore, we obtain

m2

∑

j=1

x1,h1(j)x2,h2(j)x3,h3(j)

=
m
∑

j=1

(n1 + 1)n2n3 +
2m
∑

j=m+1

n1(n2 + 1)(n3 + 1) +
m2

∑

j=2m+1

n1(n2 + 1)n3

= m(n1 + 1)n2n3 +mn1(n2 + 1)(n3 + 1) +m(m− 2)n1(n2 + 1)n3

=

m(m−2)
∑

j=1

n1(n2 + 1)n3 +

m(m−1)
∑

j=m(m−2)+1

n1(n2 + 1)(n3 + 1) +

m2

∑

j=m(m−1)+1

(n1 + 1)n2n3

=

m2

∑

j=1

x1,jx2,f(j)x3,g(j).

The other possibility for (ii) is that x1 is odd, x2 is even, and x3 is odd. The details of
the proof are similar to the previous case and are given in Appendix A.
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Finally, turning our attention to (iii), we suppose x1, x2, and x3 are all even. Then we
have the following:

x1,h1(j) =

{

n1 + 1 if j ∈ [m]

n1 if j ∈ [m2]− [m];

x2,h2(j) =

{

n2 + 1 if j ∈ [2m]− [m]

n2 if j ∈ [m] ∪
(

[m2]− [2m]
)

;

x3,h3(j) =

{

n3 + 1 if j ∈ [3m]− [2m]

n3 if j ∈ [2m] ∪
(

[m2]− [3m]
)

;

x1,j =

{

n1 if j ∈ [m(m− 1)]

n1 + 1 if j ∈ [m2]− [m(m− 1)];

x2,f(j) =

{

n2 + 1 if j ∈ [m]

n2 if j ∈ [m2]− [m].

We also have N = m(m− 1), and so

x3,g(j) =

{

n3 if j ∈ [m(m− 2)] ∪
(

[m2]− [m(m− 1)]
)

n3 + 1 if j ∈ [m(m− 1)]− [m(m− 2)].

Therefore, we obtain

m2

∑

j=1

x1,h1(j)x2,h2(j)x3,h3(j)

=

m
∑

j=1

(n1 + 1)n2n3 +

2m
∑

j=m+1

n1(n2 + 1)n3 +

3m
∑

j=2m+1

n1n2(n3 + 1) +

m2

∑

j=3m+1

n1n2n3

= m(n1 + 1)n2n3 +mn1(n2 + 1)n3 +mn1n2(n3 + 1) +m(m− 3)n1n2n3

=
m
∑

j=1

n1(n2 + 1)n3 +

m(m−2)
∑

j=m+1

n1n2n3 +

m(m−1)
∑

j=m(m−2)+1

n1n2(n3 + 1) +
m2

∑

j=m(m−1)+1

(n1 + 1)n2n3

=
m2

∑

j=1

x1,jx2,f(j)x3,g(j).

The other possibility for (iii) is that x1, x2, and x3 are all odd. The details of the proof
are similar to the previous case and are given in Appendix A.
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We are now ready to show that each formula in Theorem 6 is a lower bound on the DP
color function of the appropriate Theta graph.

Lemma 13. Let G = Θ(l1, l2, l3) and H = (L,H) be a full m-fold cover of G where m ≥ 3.
(i) If the parity of l1 is different from both l2 and l3, then PDP (G,H) ≥ P (G,m).
(ii) If the parity of l1 is different from l2 and the same as l3, then

PDP (G,H) ≥ 1

m

[

(m− 1)l1+l2+l3 + (m− 1)l1 − (m− 1)l2 − (m− 1)l3+1 + (−1)l2+1(m− 2)
]

.

(iii) If l1, l2, and l3 all have the same parity, then

PDP (G,H) ≥ 1

m

[

(m− 1)l1+l2+l3 − (m− 1)l1 − (m− 1)l2 − (m− 1)l3 + 2(−1)l1+l2+l3
]

.

Proof. We begin by using Lemmas 7 and 8 to find a formula for PDP (G,H) to which we
can apply Lemma 12. For each k ∈ [3] and (i, j) ∈ [m]2, let sk,(i,j) = N({(u, i), (w, j)},Hk ).
Consider some k ∈ [3] and (i, j) ∈ [m]2. By Lemma 8, we know that

sk,(i,j) =
(m− 1)lk + (−1)lk(m− 1)

m
=

(m− 1)lk − (−1)lk

m
+ (−1)lk (1)

if there is a path in Hk from (u, i) to (w, j) consisting only of cross-edges of Hk, and

sk,(i,j) =
(m− 1)lk − (−1)lk

m
(2)

otherwise. In particular, notice that Equation (1) holds for exactly m choices of (i, j) ∈ [m]2;
whereas, Equation (2) holds for the remaining m(m− 1) choices of (i, j) ∈ [m]2.

For each k ∈ [3], let nk = min(i,j)∈[m]2 sk,(i,j). Notice that, for each (i, j) ∈ [m]2, either
sk,(i,j) = nk or sk,(i,j) = nk + 1. Moreover, we have sk,(i,j) = nk for either m or m(m − 1)
choices of (i, j) ∈ [m]2, while sk,(i,j) = nk + 1 for the remaining m(m − 1) or m choices,
respectively, of (i, j) ∈ [m]2.

Now, let β : [m]2 → [m2] be the function defined by β(i, j) = m(i − 1) + j for each
(i, j) ∈ [m]2. Notice that β is bijective and hence has an inverse β−1 : [m2] → [m]2. By
Lemma 7,

PDP (G,H) =
∑

(i,j)∈[m]2

s1,(i,j)s2,(i,j)s3,(i,j) =

m2

∑

ℓ=1

s1,β−1(ℓ)s2,β−1(ℓ)s3,β−1(ℓ).

If we let sk,ℓ = sk,β−1(ℓ) for each k ∈ [3] and ℓ ∈ [m2], then we can alternatively write

PDP (G,H) =
m2

∑

ℓ=1

s1,ℓs2,ℓs3,ℓ.

For each k ∈ [3], let ρk : [m2] → [m2] be any permutation of [m2] such that for each
ℓ1, ℓ2 ∈ [m2] with ℓ1 < ℓ2, we have sk,ρk(ℓ1) ≤ sk,ρk(ℓ2). Furthermore, let xk,ℓ = sk,ρk(ℓ) for
each ℓ ∈ [m2]. By definition, for each ℓ1, ℓ2 ∈ [m2] with ℓ1 < ℓ2, we have xk,ℓ1 ≤ xk,ℓ2.
Moreover, notice that xk,1 = · · · = xk,m = nk and xk,m(m−1)+1 = · · · = xk,m2 = nk + 1.
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Finally, notice that ρk is bijective, and so it has an inverse ρ−1
k : [m2] → [m2]. Using this

notation, we may write

PDP (G,H) =

m2

∑

ℓ=1

s1,ρ1(ℓ)s2,ρ2(ρ−1

2
(ρ1(ℓ)))

s3,ρ3(ρ−1

3
(ρ1(ℓ)))

=

m2

∑

ℓ=1

x1,ℓx2,ρ−1

2
(ρ1(ℓ))

x3,ρ−1

3
(ρ1(ℓ))

.

If we let σ1, σ2 : [m2] → [m2] be the permutations of [m2] defined by σ1(ℓ) = ρ−1
2 (ρ1(ℓ)) and

σ2(ℓ) = ρ−1
3 (ρ1(ℓ)) for each ℓ ∈ [m2], then we can alternatively write

PDP (G,H) =

m2

∑

ℓ=1

x1,ℓx2,σ1(ℓ)x3,σ2(ℓ).

Define xk, hk, sk, and ok for each k ∈ [3] as in Lemma 12. By Lemma 12,

PDP (G,H) ≥
m2

∑

ℓ=1

x1,h1(ℓ)x2,h2(ℓ)x3,h3(ℓ). (3)

Now, we claim for each k ∈ [3],

sk =
(m− 1)lk − (−1)lk

m
+ (−1)lk =

(m− 1)lk + (−1)lk(m− 1)

m
(4)

and

ok =
(m− 1)lk + (−1)lk+1

m
. (5)

To see why these formulas hold, consider the case where lk is even and the case where lk is
odd separately. Suppose that lk is even. Then we have

sk,(i,j) =
(m− 1)lk − (−1)lk

m
+ 1

for exactly m choices of (i, j) ∈ [m]2, and

sk,(i,j) =
(m− 1)lk − (−1)lk

m

for the remaining m(m− 1) choices of (i, j) ∈ [m]2. Therefore, we have

nk =
(m− 1)lk − (−1)lk

m

and

xk,ℓ =

{

nk if ℓ ∈ [m(m− 1)]

nk + 1 if ℓ ∈ [m2]− [m(m− 1)].
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It follows by definition that xk is even, so that

sk = nk + 1 =
(m− 1)lk − (−1)lk

m
+ (−1)lk and ok = nk =

(m− 1)lk − (−1)lk

m
.

The proof for the case lk is odd follows similarly. The details are given in Appendix B.
We are now ready to prove Statements (i), (ii), and (iii). For Statement (i), suppose that

the parity of l1 is different from that of both l2 and l3. Then, for each k ∈ [3], we have

xk,hk(ℓ) =

{

sk if ℓ ∈ [m]

ok if ℓ ∈ [m2]− [m].

So,

PDP (G,H) ≥
m2

∑

ℓ=1

x1,h1(ℓ)x2,h2(ℓ)x3,h3(ℓ) =

m
∑

ℓ=1

s1s2s3 +

m2

∑

ℓ=m+1

o1o2o3

= ms1s2s3 +m(m− 1)o1o2o3.

For Statement (ii), suppose that the parity of l1 is different from that of l2 and the same
as that of l3. Then we have

xk,hk(ℓ) =

{

sk if ℓ ∈ [m]

ok if ℓ ∈ [m2]− [m]

for k ∈ [2] and

x3,h3(ℓ) =

{

sk if ℓ ∈ [2m]− [m]

ok if ℓ ∈ [m] ∪
(

[m2]− [2m]
)

.

So,

PDP (G,H) ≥
m2

∑

ℓ=1

x1,h1(ℓ)x2,h2(ℓ)x3,h3(ℓ) =

m
∑

ℓ=1

s1s2o3 +

2m
∑

ℓ=m+1

o1o2s3 +

m2

∑

ℓ=2m+1

o1o2o3

= ms1s2o3 +mo1o2s3 +m(m− 2)o1o2o3.

For Statement (iii), suppose that l1, l2, and l3 all have the same parity. Then, for each
k ∈ [3], we have

xk,hk(ℓ) =

{

sk if ℓ ∈ [km]− [(k − 1)m]

ok if ℓ ∈ [(k − 1)m] ∪
(

[m2]− [km]
)

.

So,

PDP (G,H) ≥
m2

∑

ℓ=1

x1,h1(ℓ)x2,h2(ℓ)x3,h3(ℓ)
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=
m
∑

ℓ=1

s1o2o3 +
2m
∑

ℓ=m+1

o1s2o3 +
3m
∑

ℓ=2m+1

o1o2s3 +
m2

∑

ℓ=3m+1

o1o2o3

= ms1o2o3 +mo1s2o3 +mo1o2s3 +m(m− 3)o1o2o3.

Finally, substituting the formulas 4 and 5 for sk and ok into the three lower bounds that
we just obtained yields the appropriate formula after some algebraic simplification.

Having established the appropriate lower bounds, we are now ready to complete the proof
of Theorem 6.

Proof. Since G contains a cycle, PDP (G, 1) = PDP (G, 2) = 0. So, the result holds when
m = 1, 2. Therefore, throughout this proof we suppose thatm ≥ 3. Notice that if the parity of
l1 is different from both l2 and l3, then we know from Lemma 13 that PDP (G,m) ≥ P (G,m).
Since we also know that PDP (G,m) ≤ P (G,m), Statement (i) follows.

For the remaining two statements, we will construct a full m-fold cover H = (L,H) of
G with an appropriate number of H-colorings. For each i ∈ [3], suppose the vertices of Ri

written in order are: u, vi,1, . . . , vi,li−1, w. In the case l1 = 1, R1 has no internal vertices. Let
G′ = G−{v2,l2−1w, v3,l3−1w}. SupposeH′ = (L,H ′) is an m-fold cover of G′ with a canonical
labeling. Begin constructing edges of H by including all the edges in E(H ′). The remaining
edges between L(v2,l2−1) and L(w), and between L(v3,l3−1) and L(w), will be specified below.

Let σ : [m] → [m] be the permutation of [m] given by σ(j) = (j (mod m)) + 1. Suppose
l3 has the same parity as l1 and l2 has different parity than l1. Complete the construction
of H by including {(v2,l2−1, j)(w, j) : j ∈ [m]} ∪ {(v3,l3−1, j)(w, σ(j)) : j ∈ [m]} in E(H).
By Lemma 8, for each k ∈ [2] we have N({(u, i), (w, j)},Hk ) = ((m − 1)lk + (−1)lk(m −
1))/m when i = j and N({(u, i), (w, j)},Hk ) = ((m− 1)lk − (−1)lk)/m otherwise. Again by
Lemma 8, we have N({(u, i), (w, j)},H3) = ((m − 1)l3 + (−1)l3(m − 1))/m when j = σ(i)
and N({(u, i), (w, j)},H3) = ((m− 1)l3 − (−1)l3)/m otherwise. Thus, by Lemma 7,

PDP (G,H) =
∑

(i,j)∈[m]2

3
∏

k=1

N({(u, i), (w, j)},Hk )

= m

(

(m− 1)l1 + (−1)l1(m− 1)

m

)(

(m− 1)l2 + (−1)l2(m− 1)

m

)(

(m− 1)l3 − (−1)l3

m

)

+m

(

(m− 1)l1 − (−1)l1

m

)(

(m− 1)l2 − (−1)l2

m

)(

(m− 1)l3 + (−1)l3(m− 1)

m

)

+ (m2 − 2m)

(

(m− 1)l1 − (−1)l1

m

)(

(m− 1)l2 − (−1)l2

m

)(

(m− 1)l3 − (−1)l3

m

)

=
1

m

(

(m− 1)l1+l2+l3 + (m− 1)l1 − (m− 1)l2 − (m− 1)l3+1 − (−1)l2(m− 2)
)

.

Suppose l2 and l3 have the same parity as l1. Complete the construction of H by including
{(v2,l2−1, j)(w, σ(j)) : j ∈ [m]}∪{(v3,l3−1, j)(w, σ

2(j)) : j ∈ [m]} in E(H) 5. By Lemma 8, for

5Throughout this document, whenever σ is a permutation of [m] and k ∈ N, we write σk for σ ◦ · · · ◦ σ,
where σ appears k times. Moreover, we write σ0 for the identity map on [m].
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each k ∈ [3] we have N({(u, i), (w, j)},Hk ) = ((m−1)lk +(−1)lk(m−1))/m when i = σk−1(j)
and N({(u, i), (w, j)},Hk ) = ((m− 1)lk − (−1)lk )/m otherwise. Thus, by Lemma 7,

PDP (G,H) =
∑

(i,j)∈[m]2

3
∏

k=1

N({(u, i), (w, j)},Hk )

= m

(

(m− 1)l1 + (−1)l1(m− 1)

m

)(

(m− 1)l2 − (−1)l2

m

)(

(m− 1)l3 − (−1)l3

m

)

+m

(

(m− 1)l1 − (−1)l1

m

)(

(m− 1)l2 + (−1)l2(m− 1)

m

)(

(m− 1)l3 − (−1)l3

m

)

+m

(

(m− 1)l1 − (−1)l1

m

)(

(m− 1)l2 − (−1)l2

m

)(

(m− 1)l3 + (−1)l3(m− 1)

m

)

+ (m2 − 3m)

(

(m− 1)l1 − (−1)l1

m

)(

(m− 1)l2 − (−1)l2

m

)(

(m− 1)l3 − (−1)l3

m

)

=
1

m

(

(m− 1)l1+l2+l3 − (m− 1)l1 − (m− 1)l2 − (m− 1)l3 + 2(−1)l1+l2+l3
)

.

4 The Dual DP Color Function of Generalized Theta Graphs

In this Section we show how the ideas we have developed thus far can be used to completely
determine the dual DP color function of all Generalized Theta graphs. In particular, we prove
the following theorem.

Theorem 14. Let G = Θ(l1, . . . , ln), where n ≥ 2, l1 = mini∈[n] li ≥ 1, and li ≥ 2 for
each i ∈ [n] − {1}. If l1, . . . , ln do not all have the same parity, let t = max{i ∈ [n] :
(l1 − li) mod 2 = 1}; otherwise, let t = 1. Let m ≥ 2. For each i ∈ [n], let

ni =















(m− 1)li − (−1)li

m
if li is even

(m− 1)li + (−1)li(m− 1)

m
if li is odd.

If li is even, let si = ni + 1 and oi = ni. If li is odd, let si = ni and oi = ni + 1. Let
S =

∏

i∈[n] si and O =
∏

i∈[n] oi. Then

P ∗
DP (G,m) =

mS
∏t

i=2 si

t
∏

i=2

oi +m(m− 2)O +
mO
∏t

i=2 oi

t
∏

i=2

si.

It is worth mentioning that Theorem 14 implies that when t = 1, P ∗
DP (G,m) = P (G,m)

(There is an analogous result for the DP color function; specifically, see Statement (i) of
Theorem 10.). The proof of Theorem 14 uses a lemma that follows immediately from the
second part of the Rearrangement Inequality.
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Lemma 15. Let n,m ≥ 2. Suppose xi,j is a non-negative integer for each i ∈ [n] and
j ∈ [m2]. For each i ∈ [n], suppose ni = xi,1 = · · · = xi,m ≤ xi,m+1 = · · · = xi,m(m−1) ≤
xi,m(m−1)+1 = · · · = xi,m2 = ni + 1 for some ni ≥ 0. Then for any permutations σ1, . . . , σn
of [m2],

m2

∑

j=1

n
∏

i=1

xi,σi(j) ≤
m2

∑

j=1

n
∏

i=1

xi,j.

We are now ready to show that each formula in Theorem 14 is an upper bound on the
dual DP color function of the appropriate Generalized Theta graph.

Lemma 16. Let G = Θ(l1, . . . , ln) and H be a full m-fold cover of G. Then, using the same
notation as Theorem 14,

PDP (G,H) ≤ mS
∏t

i=2 si

t
∏

i=2

oi +m(m− 2)O +
mO
∏t

i=2 oi

t
∏

i=2

si.

Proof. We begin by using Lemmas 7 and 8 to find a formula for PDP (G,H) to which we
can apply Lemma 15. For each k ∈ [n] and (i, j) ∈ [m]2 let sk,(i,j) = N({(u, i), (w, j)},Hk ).
Consider some k ∈ [n] and (i, j) ∈ [m]2. By Lemma 8, we know that

sk,(i,j) =
(m− 1)lk + (−1)lk(m− 1)

m
=

(m− 1)lk − (−1)lk

m
+ (−1)lk (6)

if there is a path in Hk from (u, i) to (w, j) consisting only of cross-edges of Hk, and

sk,(i,j) =
(m− 1)lk − (−1)lk

m
(7)

otherwise. In particular, notice that Equation (6) holds for exactly m choices of (i, j) ∈ [m]2,
whereas Equation (7) holds for the remaining m(m− 1) choices of (i, j) ∈ [m]2.

For each k ∈ [n], let nk = min(i,j)∈[m]2 sk,(i,j). Notice that for each (i, j) ∈ [m]2, either
sk,(i,j) = nk or sk,(i,j) = nk + 1. Moreover, we have sk,(i,j) = nk for either m or m(m − 1)
choices of (i, j) ∈ [m]2, while sk,(i,j) = nk + 1 for the remaining m(m − 1) or m choices,
respectively, of (i, j) ∈ [m]2.

Now, let β : [m]2 → [m2] be the function defined by β(i, j) = m(i − 1) + j for each
(i, j) ∈ [m]2. Notice that β is bijective and hence has an inverse β−1 : [m2] → [m]2. By
Lemma 7,

PDP (G,H) =
∑

(i,j)∈[m]2

n
∏

k=1

sk,(i,j) =
m2

∑

ℓ=1

n
∏

k=1

sk,β−1(ℓ).

For each k ∈ [n], let ρk : [m2] → [m2] be any permutation of [m2] such that for each
ℓ1, ℓ2 ∈ [m2] with ℓ1 < ℓ2, we have sk,β−1(ρk(ℓ1)) ≤ sk,β−1(ρk(ℓ2)). Furthermore, let xk,ℓ =
sk,β−1(ρk(ℓ)) for each ℓ ∈ [m2]. By definition, for each ℓ1, ℓ2 ∈ [m2] with ℓ1 < ℓ2, we have
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xk,ℓ1 ≤ xk,ℓ2. Moreover, notice that 0 ≤ nk = xk,1 = · · · = xk,m ≤ xk,m+1 = · · · =
xk,m(m−1) ≤ xk,m(m−1)+1 = · · · = xk,m2 = nk + 1. By Lemma 15, we have

PDP (G,H) =

m2

∑

ℓ=1

n
∏

k=1

sk,β−1(ℓ) ≤
m2

∑

ℓ=1

n
∏

k=1

xk,ℓ. (8)

We now consider two cases: (1) l1 is even and (2) l1 is odd. First, consider case (1). If
t = 1, then l1, . . . , ln are all even, and so we have sk = nk + 1, ok = nk, and

xk,ℓ =

{

ok if ℓ ∈ [m(m− 1)]

sk if ℓ ∈ [m2]− [m(m− 1)]

for each k ∈ [n]. Thus, Inequality (8) becomes

PDP (G,H) ≤
m2

∑

ℓ=1

n
∏

k=1

xk,ℓ =

m(m−1)
∑

ℓ=1

n
∏

k=1

xk,ℓ +

m2

∑

ℓ=m(m−1)+1

n
∏

k=1

xk,ℓ

=

m(m−1)
∑

ℓ=1

n
∏

k=1

ok +

m2

∑

ℓ=m(m−1)+1

n
∏

k=1

sk = m(m− 1)O +mS.

So, assume t > 1. Then, l1, lt+1, . . . , ln are even and l2, . . . , lt are odd. Hence, for each
k ∈ {1, t + 1, . . . , n}, we have sk = nk + 1, ok = nk, and

xk,ℓ =

{

ok if ℓ ∈ [m(m− 1)]

sk if ℓ ∈ [m2]− [m(m− 1)].

For each k ∈ {2, . . . , t}, we have sk = nk, ok = nk + 1, and

xk,ℓ =

{

sk if ℓ ∈ [m]

ok if ℓ ∈ [m2]− [m].

Thus, Inequality (8) becomes

PDP (G,H) ≤
m2

∑

ℓ=1

n
∏

k=1

xk,ℓ =
m
∑

ℓ=1

n
∏

k=1

xk,ℓ +

m(m−1)
∑

ℓ=m+1

n
∏

k=1

xk,ℓ +
m2

∑

ℓ=m(m−1)+1

n
∏

k=1

xk,ℓ

=
m
∑

ℓ=1

(

o1

n
∏

k=t+1

ok

t
∏

k=2

sk

)

+

m(m−1)
∑

ℓ=m+1

n
∏

k=1

ok +
m2

∑

ℓ=m(m−1)+1

(

s1

n
∏

k=t+1

sk

t
∏

k=2

ok

)

=
mO

∏t
k=2 ok

t
∏

k=2

sk +m(m− 2)O +
mS

∏t
k=2 sk

t
∏

k=2

ok.

Next, we consider case (2). If t = 1, then l1, . . . , ln are all odd, and so we have sk = nk,
ok = nk + 1, and

xk,ℓ =

{

sk if ℓ ∈ [m]

ok if ℓ ∈ [m2]− [m]
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for each k ∈ [n]. Then substituting these values of xk,ℓ into Inequality (8), as done in the
previous case, gives us the required expression.

So, assume t > 1. Then, l1, lt+1, . . . , ln are odd and l2, . . . , lt are even. Hence, for each
k ∈ {1, t + 1, . . . , n}, we have sk = nk, ok = nk + 1, and

xk,ℓ =

{

sk if ℓ ∈ [m]

ok if ℓ ∈ [m2]− [m].

For each k ∈ {2, . . . , t}, we have sk = nk + 1, ok = nk, and

xk,ℓ =

{

ok if ℓ ∈ [m(m− 1)]

sk if ℓ ∈ [m2]− [m(m− 1)].

Then substituting these values of xk,ℓ into Inequality (8), as done in the previous case,
gives us the required expression.

Having established the appropriate upper bounds, we are now ready to complete the proof
of Theorem 14.

Proof. First, notice that if t = 1, then mS+m(m−1)O = P (G,m) ≤ P ∗
DP (G,m). Thus, the

desired result holds when t = 1, and we may now assume that t > 1. We will construct a full
m-fold cover H = (L,H) of G with an appropriate number of H-colorings. For each k ∈ [n],
suppose the vertices of Rk written in order are u, vk,1, . . . , vk,lk−1, w. In the case l1 = 1, R1

has no internal vertices. Let G′ = G − {vk,lk−1w : k ∈ [n] − {1}}. Suppose H′ = (L,H ′) is
an m-fold cover of G′ with a canonical labeling. Begin the construction of H by including all
the edges in E(H ′). The remaining edges between L(vk,lk−1) and L(w) for each k ∈ [n]−{1}
will be specified below. Note that for each k ∈ [n], sk = ((m− 1)lk + (−1)lk(m− 1))/m and
ok = ((m− 1)lk − (−1)lk)/m.

Let σ : [m] → [m] be the permutation of [m] given by σ(j) = (j (mod m)) + 1. Complete
the construction of H by including

⋃

k∈[n]−[t]{(vk,lk−1, j)(w, j) : j ∈ [m]} and
⋃

k∈[t]−{1}{(vk,lk−1, j)(w, σ(j)) : j ∈ [m]} in E(H). It follows from Lemma 8 that for each

k ∈ {1, t+1, . . . , n} we have N({(u, i), (w, j)},Hk ) = ((m−1)lk+(−1)lk(m−1))/m = sk when
i = j and N({(u, i), (w, j)},Hk ) = ((m−1)lk−(−1)lk)/m = ok otherwise. Again by Lemma 8,
for each k ∈ {2, . . . , t} we have N({(u, i), (w, j)},Hk ) = ((m− 1)lk + (−1)lk(m− 1))/m = sk
when j = σ(i) and N({(u, i), (w, j)},Hk ) = ((m − 1)lk − (−1)lk)/m = ok otherwise. Thus,
by Lemma 7,

PDP (G,H) =
∑

(i,j)∈[m]2

n
∏

k=1

N({(u, i), (w, j)},Hk )

=
m
∑

i=1

n
∏

k=1

N({(u, i), (w, i)},Hk ) +
m
∑

i=1

n
∏

k=1

N({(u, i), (w, σ(i))},Hk )

+
∑

i∈[m]
j∈[m]−{i,σ(i)}

n
∏

k=1

N({(u, i), (w, j)},Hk )
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=

m
∑

i=1





∏

k∈{1,t+1,...,n}

N({(u, i), (w, i)},Hk )
∏

k∈{2,...,t}

N({(u, i), (w, i)},Hk )





+

m
∑

i=1





∏

k∈{1,t+1,...,n}

N({(u, i), (w, σ(i))},Hk )
∏

k∈{2,...,t}

N({(u, i), (w, σ(i))},Hk )





+
∑

i∈[m]
j∈[m]−{i,σ(i)}

n
∏

k=1

ok

=

m
∑

i=1





∏

k∈{1,t+1,...,n}

sk
∏

k∈{2,...,t}

ok



+

m
∑

i=1





∏

k∈{1,t+1,...,n}

ok
∏

k∈{2,...,t}

sk





+m(m− 2)O

=
mS

∏t
k=2 sk

t
∏

k=2

ok +
mO

∏t
k=2 ok

t
∏

k=2

sk +m(m− 2)O.
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A Proof of Lemma 12

In this section, we give the details of the remaining cases of this proof.
Continuing with (i), suppose x1 is odd, x2 is even, and x3 is even. Then we have the

following:

x1,h1(j) =

{

n1

n1 + 1
, x2,h2(j) =

{

n2 + 1

n2

, x3,h3(j) =

{

n3 + 1 if j ∈ [m]

n3 if j ∈ [m2]− [m];

x1,j =

{

n1

n1 + 1
, x2,f(j) =

{

n2 + 1

n2

, x3,g(j) =

{

n3 + 1 if j ∈ [m]

n3 if j ∈ [m2]− [m].
Therefore, we obtain

m2

∑

j=1

x1,h1(j)x2,h2(j)x3,h3(j) =
m
∑

j=1

n1(n2 + 1)(n3 + 1) +
m2

∑

j=m+1

(n1 + 1)n2n3
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=
m2

∑

j=1

x1,jx2,f(j)x3,g(j).

Continuing with (ii), we suppose x1 is odd, x2 is even, and x3 is odd. Then we have:

x1,h1(j) =

{

n1

n1 + 1
, x2,h2(j) =

{

n2 + 1 if j ∈ [m]

n2 if j ∈ [m2]− [m];

x3,h3(j) =

{

n3 if j ∈ [2m]− [m]

n3 + 1 if j ∈ [m] ∪
(

[m2]− [2m]
)

;

x1,j =

{

n1

n1 + 1
, x2,f(j) =

{

n2 + 1 if j ∈ [m]

n2 if j ∈ [m2]− [m].

We also have N = m,

and so

x3,g(j) =

{

n3 + 1 if j ∈ [m] ∪
(

[m2]− [2m]
)

n3 if j ∈ [2m]− [m].

Therefore, we obtain

m2

∑

j=1

x1,h1(j)x2,h2(j)x3,h3(j)

=

m
∑

j=1

n1(n2 + 1)(n3 + 1) +

2m
∑

j=m+1

(n1 + 1)n2n3 +

m2

∑

j=2m+1

(n1 + 1)n2(n3 + 1)

=
m2

∑

j=1

x1,jx2,f(j)x3,g(j).

Continuing with (iii), suppose x1, x2, and x3 are all odd. Then we have the following:

x1,h1(j) =

{

n1 if j ∈ [m]

n1 + 1 if j ∈ [m2]− [m],

x2,h2(j) =

{

n2 if j ∈ [2m]− [m]

n2 + 1 if j ∈ [m] ∪
(

[m2]− [2m]
)

,

x3,h3(j) =

{

n3 if j ∈ [3m]− [2m]

n3 + 1 if j ∈ [2m] ∪
(

[m2]− [3m]
)

,

x1,j =

{

n1 if j ∈ [m]

n1 + 1 if j ∈ [m2]− [m],
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and

x2,f(j) =

{

n2 + 1 if j ∈ [m(m− 1)]

n2 if j ∈ [m2]− [m(m− 1)].

We also have N = m, and so

x3,g(j) =

{

n3 + 1 if j ∈ [m] ∪
(

[m2]− [2m]
)

n3 if j ∈ [2m]− [m].

Therefore, we obtain

m2

∑

j=1

x1,h1(j)x2,h2(j)x3,h3(j)

=

m
∑

j=1

n1(n2 + 1)(n3 + 1) +

2m
∑

j=m+1

(n1 + 1)n2(n3 + 1) +

3m
∑

j=2m+1

(n1 + 1)(n2 + 1)n3

+
m2

∑

j=3m+1

(n1 + 1)(n2 + 1)(n3 + 1)

= mn1(n2 + 1)(n3 + 1) +m(n1 + 1)n2(n3 + 1) +m(n1 + 1)(n2 + 1)n3

+m(m− 3)(n1 + 1)(n2 + 1)(n3 + 1)

=

m
∑

j=1

n1(n2 + 1)(n3 + 1) +

2m
∑

j=m+1

(n1 + 1)(n2 + 1)n3

+

m(m−1)
∑

j=2m+1

(n1 + 1)(n2 + 1)(n3 + 1) +
m2

∑

j=m(m−1)+1

(n1 + 1)n2(n3 + 1)

=

m2

∑

j=1

x1,jx2,f(j)x3,g(j).

B Proof of Lemma 13

To complete the proof of the claim for each k ∈ [3],

sk =
(m− 1)lk − (−1)lk

m
+ (−1)lk =

(m− 1)lk + (−1)lk(m− 1)

m

and

ok =
(m− 1)lk + (−1)lk+1

m
,

suppose that lk is odd. Then we have

sk,(i,j) =
(m− 1)lk − (−1)lk

m
− 1
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for exactly m choices of (i, j) ∈ [m]2, and

sk,(i,j) =
(m− 1)lk − (−1)lk

m

for the remaining m(m− 1) choices of (i, j) ∈ [m]2. Therefore, we have

nk =
(m− 1)lk − (−1)lk

m
− 1

and

xk,ℓ =

{

nk if ℓ ∈ [m]

nk + 1 if ℓ ∈ [m2]− [m].

It follows by definition that xk is odd, so that

sk = nk =
(m− 1)lk − (−1)lk

m
+ (−1)lk

and

ok = nk + 1 =
(m− 1)lk − (−1)lk

m
.
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