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Abstract. A pair of forward and backward diffusion equations is considered. In
the forward equation, boundary values appear in the differential equation, and in the
backward equation, boundary values are related to average values of the solution in the
interior of the domain. The forward equation can be regarded as a diffusion approxima-
tion to a type of birth-death process with returns to the interior, or as a heat equation
in one dimension where heat flowing out from the boundaries is returned to the interior.
Existence and uniqueness theorems are proved, and some properties of the associated
eigenvalues and eigenfunctions are deduced. An expression for the steady-state solution
is obtained. Some information on the goodness of the diffusion approximation is also
obtained.

1. Introduction. In [3], the second author studied a birth-death process with two
boundaries. When the number of states becomes very large, the governing system of
ordinary differential equations can be replaced by a single partial differential equation, the
so-called diffusion approximation. For the equations in [3], the diffusion approximation
takes the form

dr[ ' ' 2 dx*( ' ' P8x[ ' '
G+ T2l" IP' /„\ dlP i 1

F'l(x)-(0,t)-F'r(x)-(1,t) 0 < x < 1, r > 0,

where F'L and F'R are derivatives of probability distribution functions and where the
solution must satisfy the boundary conditions <p(0, r) = y(l,r) = 0. If Fl or Fr has
discontinuities, the corresponding derivative in (1.1) gives rise to a discontinuity condition
on dip/dx which is described more precisely in Sec. 2. Equation (1.1) could also describe
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a one-dimensional heat flow in which heat flowing out from the left and right boundaries
is returned to the interior according to distribution functions Fl and Fr respectively.

The presence of the boundary values of dip/dx at x = 0 and x = 1 in (1.1) produces
an equation of a type that seems not to have been considered in the literature. A special
case of (1.1) was solved in [2], The main object of this paper is to study the existence,
uniqueness, and properties of solutions of (1.1) and its adjoint. Because both steady-
state and time-dependent solutions are of interest in some applications, it is useful to
examine the properties of the eigenvalues and eigenfunctions of the ordinary differential
equation which is obtained from (1.1) by separating variables or by use of the Laplace
transform. The convergence of the residue expansion that results from inversion of the
Laplace transform has been established in [12].

We refer to (1.1) as the forward problem. The adjoint to (1.1), which we refer to as
the backward problem, is associated with transition probabilities for the solution of a
stochastic differential equation with jump returns from the boundary. Further details of
this connection may be found in Mansourati's thesis [12]. Because of biorthogonality re-
lations between eigenfunctions of the forward and backward problems, the eigenfunctions
of the backward problem figure in the solution of the forward problem. Consequently we
study the two problems together.

In the case of the backward problem, there have been investigations of similar prob-
lems. The earliest instance appears to be in a paper by Wilder [14]. Of the recent
literature, the work of Cole [6], Day [7], and Friedman [10] is close. Friedman's work
[10] might initially appear to include some of our results. However, in order to establish
existence and uniqueness of a solution, Friedman had to make an assumption on Fi and
Fr which would always be violated when Fl and Fr are probability distribution func-
tions. We avoid Friedman's condition by using a different method to establish existence
and uniqueness.

In a general way, our discussion can be regarded as a development of one of the threads
in Feller's classic papers [8, 9]. A recent paper on another type of diffusion process with
jump returns to the interior is that of Baccelli and Fayolle [1].

After explaining the connection with birth-death processes in Sec. 2, we establish the
existence and uniqueness of solutions of the forward and backward problems in Sec. 3.
In Sec. 4 we deduce some facts about the eigenvalues and eigenfunctions associated with
the problem. In Sec. 5 we give two examples and in Sec. 6 we compare some results
obtained from the diffusion approximation with exact results for a birth-death process
with a finite number of states.

2. Diffusion approximation to a birth-death process. In [3] Campbell treats a
birth-death process which is governed by the system of ordinary differential equations

= nLkpi + \pk-i ~ (A + n)pk + HPk+\ + XRkPm (k = 1,. -., m), (2.1)
CLT

where we define Po(t) = pm+i(r) = 0. We interpret Pa-(t) as the probability that the
system is in state k (k = 1,2,..., m) at time r. Births occur at rate A and deaths
occur at rate /i, where A and /i are positive constants. If the system is in state 1 and
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a death occurs, it moves to state k with probability Lk, and if the system is in state m
and a birth occurs, it moves to state k with probability Rk- Thus Lk > 0, Rk > 0, and
^2 Lk = Rk = 1- It is these boundary conditions at states 1 and m that distinguish
this from a conventional birth-death process.

This process could describe an inventory in which the supplier holds a "fire sale" to
dispose of stock if the warehouse is full or buys from another supplier when the warehouse
is empty. It could describe a buffer at a node in a communications network, where some
messages are removed and sent by an alternate route when the buffer fills, and where
messages from other buffers are brought in for alternate routing whenever the buffer
becomes empty. Other applications are possible.

When the number of states m is large, the system of ordinary differential equations
can be approximated by a partial differential equation. Some idea of the goodness of the
approximation involved can be obtained from [2], where a special case of (2.1) is solved
and the corresponding partial differential equation is also solved. Additional results on
this question appear in Sec. 6. For a more general discussion of diffusion approximations,
see [5, 11, 13].

Let (m + 1)_1 = Ax, Xk = kAx, Pfc(r) = <p(xk,r)Ax, and define
rn m

FT(x) = J2 LkH^x - Xfc)> F%(*) = E R*H(X - Xfc)'
fc=l k= 1

where H denotes the unit step function (H{x) = 0 for x < 0 and H(x) = 1 for x > 0) so
that F™ and are the probability distribution functions corresponding to (L\,..., Lrn)
and (i?i,..., Rm) • If we write

AF?(xk) = F?(xk) - = Lk

and similarly for AF^ , and recall that po(r) = pm+i(r) = 0, (2.1) becomes

— = A(Ax)2M^±kll I 2<P(X^ T) + <P(xk-\, t)]
dr 1 ' (Ax \2

- (A - + ujAx)'2^™^^ ~^°'r)l
1 Ax Ax Ax

„ A T?V} (nr.i.\ \ir
— A(Ax)x2 AF%{xk) [<p(l,T) - <p{Xm,T)\

Ax Ax
(2.2)

In the diffusion approximation we replace the difference quotients by derivatives, A(Ax)2
and /i(Ax)2 by cr2/2, and (A — fj)Ax by (3. We assume that, as m —> oo, F™ and Fr:
approach limits Fi and Fr which are absolutely continuous with bounded derivatives fi
and Jr except at a finite number N (possibly zero) of interior points (i = 1, 2,..., AT)
where F]J jumps by an amount p, and Fr jumps by an amount 7j. The diffusion approx-
imation then gives

^P(X T)=al^(x T) — fl—(x t)
dr[ ' ' 2 dx2[' ' P8x[' '

<J
+ ~22 r d(P,n \ 1 ^

/,W-(°,r)-/fl(a:)-(!,r)
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for all x e (0,1) except x = aj,..., a/v. For notational convenience, we define ao = 0,
a/v+i = f, and assume a, < a,-+i for each i. Because po and prn+i vanish, we have
boundary conditions

y(0,r) = <p(l,r) = 0. (2.4)

At points where F/. or Fn is discontinuous, replace tp{xii+\,t) — tp(xk,r) by

^(xA.,r) Ax,
OX

recognize that dip/dx will be discontinuous there, and rewrite (2.2) as

\ A—— = XAx
or

^(x+ r)9xl • j ax1 ' ' (A — //,)Ax^(x+, r)
OX

+ /.lAxAF}"(x)^(0, r) - AAxAF^(x)^(l, r).

Multiply by Ax, make the above replacements for A (Ax)2, etc., let Ax —* 0, and get at

.r) - f£<«r.r) +«^(0,r) - „&(!. r) - (2.5)
The forward problem is to find a function ip with domain {(x,r) : 0 < x < l,r > 0}

which is such that
(i) <p(x,r) is a continuous function of x for each r and a continuous function of r for

each x,
(ii) on each strip {(x, r) : a,- < x < a,-+i,r > 0}, i = 0,1,..., N, <px{x, t), ipxx(x, r),

and tpT (x, r) (where subscripts denote partial derivatives) are continuous functions
of x for each r and of r for each x,

(iii) ipx(x, r) has right and left limits, <px(af, r) and ipx(aj~, r) at o,, for i = 1, 2,. .., TV,
(iv) <px(x,T) has a right limit (px(0,T) at 0 and a left limit <px{l,r) at 1,
(v) <p(x, 0) = ipa(x), where ipo is a given initial function,

(vi) ip{x, t) satisfies (2.3)—(2.5).
In addition to the forward problem we consider the associated backward problem: to

find a function 'l> which, together with the derivatives <!>,., and <I>r, is continuous on
the same domain {(x, r) : 0 < x < 1, r > 0}, and which satisfies

d<b a2 d2<J> (J'l>
+ (L'6)

$(0,t)= f *(Z,T)dFL(0, (2.7)./()
$(l,r)= [ *(£,T)dFM£)- (2-8)

J o

As was mentioned in the Introduction, boundary conditions like (2.7) and (2.8) have
been considered before [6, 7. 10, 14]. However, our existence and uniqueness results seem
to be new. For a probabilistic interpretation of the backward problem, see Mansourati's
thesis [12].
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Equation (2.2) can be simplified by putting

t = ct2t/2, u> = f3/a2,

and letting

V(x, t) = exp[a;"i — cox\Lp ( x, — ) , (2.9a)

/n(x) - c^'fLix): /i(x) = ew(1 x)fR(x), (2.9b)

Pi = e-"aiPi, ft = eu(1"ai)7i, (2.9c)

Fo(x) = r e-°* dFL(0, Fx{x) = [X e-'(1 ^ dF«(£).
JO Jo

With this notation, the forward problem becomes

/'Jo

(2.10)

<9^ <92K dV

V(0,i) = V(l,t) = 0, (2.12)
V(x,0) = Ko(®), (2.13)

and
14(a+, *) - Vx(a~, t) + PlVx(0, t) - ft Vx(1, t) = 0, (2.14)

for i = 1,2
Similarly, we simplify (2.6) by setting

U(x,t) — exp[u)~t + ljx)Q fx, ^77^ . (2.15)

This gives the new form of the backward problem

dU _d2U
dt dx1 '

U(0,t) = [ U(x, t) dF0(x), (2.17)

(2.16)

U(l,t)= I U(x,t) dFi(x), (2-18)

and
U(x,0) = Uo(x). (2.19)

Note that, in view of (2.10), when Fi and Fr are probability distribution functions it
is not possible that both inequalities -fo(l) < 1 and F[ (I) < 1 hold, no matter what the
sign of u. This fact prevents us from applying Friedman's [10] existence theorem to our
problem.

We sometimes refer to (2.11)—(2.14) and (2.16)—(2.19) as the scaled forward and back-
ward problems respectively.
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3. Existence and uniqueness of solutions. The basic idea that we use to solve
either the forward or backward equation is to find the solution first on the boundaries
x — 0 and x = 1. Once the solution and its derivatives are known on the boundaries, the
well-known theory of the one-dimensional heat equation provides the solution everywhere.
We treat the scaled problems in this section, beginning with the slightly simpler backward
problem (2.16)-(2.19).

If (2.17) and (2.18) are replaced by the conditions

U(0,t) = W>(t), U(l,t) = b1(t), (3.1)

where &o and b\ are continuous, then the unique bounded solution of the heat equation
(2.16) satisfying (3.1) and (2.19) is [4]

r 1 ft
U(x,t) = J G(x,£;t)U0{£)d£, - 2 J — (x, t - r)60(r) dr

Jq

rt 80
+ 2 I — (x - 1, t - t)6i(t) dr,

(3.2)

where

G(x, £; t) = 2 e n ™2t sin(n7rx) sin(ri7r£)
1=1 (3.3)

= 0(x-£,t) -6(x + £,t),
+ OC

6(x,t) — K(x + 2m,t), t > 0, (3.4)

and

K{x't) = ^mexp{~^}, t>0■ (3,5)

In order to obtain equations for b() and bi, we integrate (3.2) with respect to dFo and
dF\ and use (2.17) and (2.18). If U, as given by (3.2), is a solution of (2.16)-(2.19), then
bo and bi must satisfy the pair of integral equations

1 rt
bj(t) = Qi{t) + y^ / Mij{t-T)bj{T)dT, (3.6)

i=o Ji>
for i = 0,1, where we set

Gl{t) = Jo U* dF^x^
rl 86

/ 96
— (x - t) dFi(x),

/I
— {x - 1 ,t) dFi(x).

We show first that the pair of Volterra integral equations (3.6) has a solution (60,6i)
and then verify that, for this bo and b\, U in (3.2) is the desired solution. Some care is
needed because of the singular behavior of K as t —> 0.
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Lemma 3.1. If Uq is bounded and measurable and if Fq and Fx are absolutely continuous
with bounded derivatives fo and f\ except at the interior points ai, 02, • • •, a/v where they
have finite jumps, then Ql (i = 0,1) is continuous for t > 0 and

lim Qi{t)= [ U0(x)dFi(x). (3.7)
t->o+ Jo

Moreover, if Uo is nonnegative, Q, is nonnegative.
Proof. If

h(x, t) = f G(x,£;t)U0(QdZ
Jo

then it is well known [4] that h is continuous for t > 0 and that

lim h(:r, t) = Uo(x).
t-> 0+

Thus (3.7) follows from the dominated convergence theorem. Nonnegativity follows from
the fact that ft, as a solution of the heat equation with nonnegative initial data, is known
to be nonnegative. □

Lemma 3.2. If F0 and F] are as described in Lemma 3.1, then Mij is continuous for
t > 0 and tl/2Afij(t) is bounded as t —» 0+. Moreover, Afij is nonnegative.

Proof. Continuity for t > 0 follows from the uniform convergence of the series (3.4)
and a corresponding one for the derivative. For 0 < x < 1, it is clear that only one term
in the series can be badly behaved as t —> 0. We have

d0 x
-2^(M) = 2^3/2 exph^A4*)] + Ro{x,t),

where i?(l is the sum of the terms for m / 0 in the derivative of (3.4). Integration with
respect to dF^x) on (0,1) and the change of variables u = x/y/2t yields

2 rl/V2t
Nio(t) = —j= / «exp[—u2/2]fl(V2tu) du + o(t)Vnt Jo

as t —> 0. Note that jumps in Fi occur at points ai which are bounded away from zero.
It follows that contributions from these jumps are o(t) and only the contribution from ft
can affect the behavior near t = 0. Since fi is, by hypothesis, bounded, it follows that
tl/2Nio[t) is bounded as t —> 0+. An exactly similar calculation shows that tl!2Nii(t) is
bounded.

As noted earlier, G(x,^,t) > 0 for 0 < x,£ < 1. In view of (3.3), this implies that, for
x G (0,1) and t > 0,

lim +
OX ^^0+ 2^

and from this Nio > 0. Also, by (3.4) and (3.5), 8 is an even function of x. so that
ff (^ — 1, t) > 0 for x £ (0,1). Consequently Mn >0. □
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Lemma 3.3. Under the hypotheses of Lemma 3.1, there exists a unique continuous
solution of the pair of integral equations (3.6) for t > (). If Uq is nonnegative, both
and b\ are nonnegative.

Proof. The proof is almost a standard successive approximation proof, slightly com-
plicated by the mild singularity of the kernel functions. Let

i ft

b{"\t) = Qi(t) + f Xij{t - t)6j" "(r) cir, (3.8a)
3=0 J°

b\0)(t) =Gi{t), (3.8b)

for i — 0,1 and n = 1,2,.... Then
n 1" 1 pi

b\"\t) = g,(t) +J2J2 - r)Gj(r) dr, (3.9)
; -n J0

where

m=1 j=o

r(n+1)/+\ _ / \r n „urW/C (() = L Mk(t-r)^>(r)dr, n > 1,
i.—i\ J ok=0

U^(t)=K0(t).

Using Lemmas 3.1 and 3.2, we obtain an estimate

l

j=o

for 0 < t < T, where

f A/il7')(t_r)^(T)dr
JO

7V2 (2k\Ztn)'
W1<c(t) ^±TT' (3-10)

fc = max sup (tl/2Afij(t)),
i,j'e{0.1} 0<«<i

c = max sup Gi{t),
• £{0,1} o<t<T

and r denotes the gamma function. From (3.10) it follows that the sequence b " of (3.9)
converges uniformly on any interval [0,T]. Thus there are limits bo(t) and bi(t) that
satisfy (3.6). Uniqueness is easily demonstrated. By Lemma 3.2, TV*. > 0 for each m,
and consequently it is evident from (3.9) and Lemma 3.1 that 6o and b\ are nonnegative
if t/o is nonnegative. □

Theorem 3.4. If Uq is bounded and measurable and if F0 and F\ are as described in
Lemma 3.1, the scaled backward problem (2.16) (2.19) has a unique solution. If Uq is
nonnegative, the solution is nonnegative.

Proof. Let U be defined by (3.2) where (60, bi) is the solution of (3.6) which exists by
Lemma 3.3. By the standard theory of the heat equation, U satisfies (2.16) and (2.19).
It is also known [4] that

(*t O/Q

lim —2 / —(x,t — T)b(T)dT = b(t), for t > 0, (3-11)
*->o+ Jo &x
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and
rt qq

lim —2 / —(x,t — T)b(T)d,T = 0, for t > 0, (3-12)
Z—i- J0 ox

and that G(0,£;£) = G(l,£;i) = 0. From this we easily obtain

lim U(x,t) = bo(t), lim U(x,t) =
x—►O4' x—>\~

so that (2.17) and (2.18) are also satisfied.
Uniqueness is shown by using Lemma 3.3 to show that U(0, t) and U(l,t) are uniquely

defined and then by using the standard theory of the heat equation to show that U is
defined elsewhere by (3.2). Nonnegativity when Uq is nonnegative follows from the
nonnegativity of bo and b\ (Lemma 3.3), and from the nonnegativity of G, —9x(x, t), and
6x(x — 1, t) (see the proof of Lemma 3.2). □

The forward problem. (2.11)—(2.14), is treated in an analogous manner. We discuss
those aspects that differ from the earlier treatment. Let

V(x,t)= f G(%,S-,t)Vo(QdZ
J o

dr

dr

/o

+ [ V'o(t) [ G(x,£\t - T)dFo(i)
Jo IJo

+ [ (t) [ G(x,£]t — t) dF\{£)
J 0 Uo

G(x,^t)V0(Od^

+ [ ipo (t) [ G(x,£;t - r)/0(O^ + Y^;G(x,a,;i - t)
Jo |7o i=i

+ [ i>\{T) f G(x,^t-T)fi(^)d^ + y2qiG(x,ai;t-T)
Jo JO •_!

(3.13)

dr

dr,

where G is defined by (3.3)—(3.5), Vq is the initial function in (2.13), and ipo and tp\ are
to be determined so that (2.11)—(2.14) is satisfied.

For V as defined by (3.13), straightforward calculations using the properties of G show
that, if ipo(t) and ip\{t) are continuous for t > 0 and are 0(£-1,/2) as t —> 0+, then

V(0,t) = V(l,t)=0, V(x,0+) = Vo(x)

and, for a* < x < a^+i, t > 0,

Vt(x,t) = Vxx{x,t) + fQ(x)i/>o(t) + fi(x)ipi{t). (3.14)

Furthermore, for reasons similar to those discussed in the proof of Lemma 3.2, the only
terms of (3.13) that contribute to discontinuities of Vx at x — aj are those involving
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G{x,ay,t — t). In fact,

Vx(af,t) - Vx(aJ, t)
rt

\Pjtpo(t) + qj-ipi(T)][dx(0+ ,t - r) - 0x(O~,f - r)] dr (3.15)

= -\pji>o(t) +

where we have used (3.11) and the fact that 0(x,t) is even in x, so that 9x(x,t) is odd
in x. We see that (3.14) and (3.15) become (2.11) and (2.14) if tpoit) = Vx(0,t) and
ipi(t) = -Vx{l,t).

To find equations determining ^o and ipi, differentiate (3.13) once with respect to x
and set x = 0 and x = 1. Then ipo and ip\ must satisfy

1 rt
= Hi(t) +Y] Mij (t — t )ipj (3.16)

>0
j=0

where, for i, j = 0,1,

and

/"J 0
«<(<) = (-1)' / Gx(i,bt)Vo{Od£

= iy f Gx(i,bt)dFj(Z).
Jo

Analogously to our earlier discussion, we can prove the following results.

Lemma 3.5. If Vo is bounded and measurable, then H, is continuous for t > 0 and
tlt2Hi{t) is bounded as t —> 0+. If Va is nonnegative, then TCt is nonnegative.

Lemma 3.6. If F0 and F\ are as described in Lemma 3.1, then Mij is continuous for
t > 0 and t1/2Mij(t) is bounded as t —» 0. Furthermore, Mij is nonnegative.

Lemma 3.7. Under the hypotheses of Lemmas 3.5 and 3.6, there exists a unique solution
of the pair of integral equations (3.16) which is continuous for t > 0 and is ()(t~l/2) as
t —> 0. If Vo is nonnegative, both and l are nonnegative.

The proofs are analogous to the proofs of Lemmas 3.1-3.3 and are omitted. Some
further details are available in [12].

Theorem 3.8. If Vo is bounded and measurable and if F0 and F\ are as described in
Lemma 3.1, the scaled forward problem (2.11) - (2.14) has a unique solution. If Vo is
nonnegative, the solution is nonnegative.

Proof. Let V be defined by (3.13) where (%l>o,ipi) is the solution of (3.16). By the
discussion leading up to (3.14) and (3.15), all that we need to establish is that Vx(0,t) =
ipo(t) and Vx(l,t) = —ipi(t). But differentiation of (3.13), substitution of x = 0 and
x — 1, and comparison with the right side of (3.16) shows that this is true. Uniqueness
and nonnegativity follow in the same way as in Theorem 3.4. □

Clearly, Theorems 3.4 and 3.8 establish existence and uniqueness of solutions <p and
<1> of the original forward and backward problems (2.3)-(2.8) with their associated initial
conditions.
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4. Eigenvalues and eigenfunctions. Define differential operators Ma and La for
each complex number a, by

Ma[v\(x) = v"(x) - a2v(x) + fo(x)v'(0) - fi(x)v'(l)

La\u\{x) = u"(x) — a2u(x),

where the domain of Ma is the set

D = {v : v continuous on [0, continuous on each open interval (aj,ai+i)

and v' satisfying v'(af) — v\a~) = qiv'( 1) — Piv'(O) for i = 1,..., N;

v(0) = u(l) = 0}

and the domain of La is the set C2[0,1] of functions with continuous second derivatives
on [0,1]. Define also the functionals Bo and B\ by

Bk[u\ — u(k) — ( u(x)dFk(x), k = 0,1.
Jo

If we attempt to solve the scaled forward problem (2.11)—(2.14) by the method of
separating variables or by the Laplace transform method, we are led to the forward
eigenvalue problem

Ma[v] = 0, v e D.

Similarly, associated with the scaled backward problem (2.16)—(2.19) is the backward
eigenvalue problem

La[u] = 0, B0[u] = Bi[u] = 0.

In this section we show that the eigenvalues are the same for the two problems, that
eigenfunctions corresponding to distinct eigenvalues are biorthogonal, and that for any
eigenvalue a2, the eigenspaces for the two problems have the same dimension. For the
original forward problem, (2.3)—(2.5), we obtain more information about the eigenvalues
and the steady-state solution.

We begin with the version of Green's formula given by

Lemma 4.1. If v e D and u £ C2[0,1], then

/ u(x)Ma[v\(x) dx — / v(x)La[u](x) dx
Jo Jo (4.1)

= u'(l)Si[«] - v'(0)JBo[u].

The proof follows in the usual way from integration by parts on each interval (a*, dj+1).
To solve the backward eigenvalue problem, first replace a by a and note that the

general solution of La[u] = 0 is

u(x) = A cosh ax H sinh ax, (4-2)
a
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where for a = 0 we use the limiting value as a —> 0. Application of the conditions
Bk[u\ = 0 yields

AB0 [cosh ax] + BB()[a~l sinh ax] = 0 (4.3)

ABi[coshax\ + BB\[a~l sinh ax] = 0. (4-4)

The determinant of (4.3), (4.4) is

A(a) = J5o[coshax]B\ [a-1 sinh ax] — .Bo[a_1 sinh ax]i?i [cosh ax]. (4-5)

Thus if A(a) = 0, a2 is an eigenvalue and (4.2)-(4.4) determine the eigenfunctions.
Clearly A (a) is an entire function of a; thus it has only a finite number of zeros inside
any finite circle. Since A(— a) = A(a) and A (a) = A(a), a is a zero if and only if —a
and a are zeros. In particular, eigenvalues a2 occur in conjugate pairs.

To solve the forward eigenvalue problem, we use (4.1) to determine the derivatives
i/(0) and u'(l) of an eigenfunction v. Once these values are known, we can find v easily.
That is, knowing v(0) = 0 and knowing t/(0) and u'(l) we can solve Ma[v] = 0 on (0, ai).
Then continuity gives v(a^) = u(aj~) and the jump condition gives v'(a^~), once t/(aj~)
is known. With these values the differential equation is solved on (01,02), and so on.
If u'(0) = v'(l) = 0, we obtain the trivial solution. To get the conditions on t/(0) and
f'(l), let a2 be an eigenvalue and let v be an eigenfunction. Apply (4.1) twice, once
with u(x) = coshaa: and the second time with u(x) = (sinh ax)/a (so that in each case
La[u] — 0), to get

—v'(0)Bq[coshaa;] + v'(l)B\ [coshax] = 0 (4.6)

and
—v'(0)Ba[a~l sinh ax] + [ct"1 sinh ax] =0. (4-7)

These equations, as equations for (—1>'(0),w'(l)), are the transposes of (4.3), (4.4). If
A(a) ^ 0, there is only the trivial solution; if A(a) = 0 and the rank of the matrix is
one, each of (4.3), (4.4) and (4.6), (4.7) has one linearly independent solution, and if the
rank is zero, each pair of equations has two linearly independent solutions. Thus we have
proved

Theorem 4.2. The forward and backward eigenvalue problems have the same eigenval-
ues. If a2 is an eigenvalue, the number of linearly independent solutions of the forward
problem equals the number of linearly independent solutions of the backward problem.

Biorthogonality of eigenfunctions also follows immediately from (4.1), as follows:

Theorem 4.3. Let v be an eigenfunction of the forward problem with eigenvalue a2
and let u be an eigenfunction of the backward problem with eigenvalue (32. If a2 7- f32,

I
Proof. Since

1
u(x)v(x) dx = 0.

La[u] = Lp[u\ + (/J2 - a2)u = (f32 - a2)u,
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and Ma[v\ — 0, substitution in (4.1) gives

(a2 — 02) f v(x)u(x) dx = 0,
Jo

from which the result follows. □
Biorthogonality of the eigenfunctions associated with the original forward and back-

ward problems (2.3)—(2.8), also with weight function one, follows easily from (2.9) and
(2.15), or directly from the differential equations (2.3) and (2.6).

For expansion theorems and stability theorems, we often need bounds on eigenvalues.
A coarse bound is given by

Theorem 4.4. Under our general hypotheses about the functions Fq and F\, the zeros
of A (a) all lie in some strip —a < Re(a) < a and the eigenvalues a2 lie in a half-plane
Re(a2) < a2.

Proof. A little algebra shows that

aA(a) = sinh a — / sinh a(l — x) dFo(x) — / sinhaia: oLFi(:r)
Jo J o

+ / sinh a(y — x) dFo(x) dF\(y).
Jo Jo

Recall that the jump-points, if any, of F0 and i*\ are bounded away from 0 and 1, so that
the measures dF0(x) and dF\{x) are of the form fo(x) dx and /i(x) dx, with bounded /o
and /i near the values x = 0 and x — 1. Thus, if we let a = ai + ia2,

lim [2e_QaA(a)] = 1.
ai —>oc

Consequently there is a positive number a such that A (a) ^ 0 for a\ > a. Since
A (—a) = A (a), it follows that A(a) ^ 0 for a\ < —a, and the zeros lie in the strip
—a < ai < a. □

Theorem 4.4 holds whenever F0 and F\ have the properties listed in Lemma 3.1,
i.e., they are absolutely continuous with bounded derivatives except at a finite number of
points in the open interval (0,1), where they may have finite jumps. However, when they
are also related to probability distribution functions by (2.10), more precise information
is available. In this case it is more useful to deal with the unsealed equations.

Theorem 4.5. Consider the following eigenvalue problem associated with the backward
problem (2.6)-(2.8) on [0,1] where Fi and Fr are probability distribution functions:

2
^-$"(2) + (3$\x) — q2<I>(x), (4.8a)

$(0) = f $(x) dFL(x), (4.8b)
Jo

fJo
$(1)= / $(x)dFR(x). (4.8c)
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Zero is an eigenvalue associated with the constant eigenfunction and, if a2 is any eigen-
value, Re(a2) < 0.

Proof. For a2 = 0, direct calculations using the fact that

f dFL(x) = f dFR(x) = 1
Jo Jo

show that the only solution of (4.8) is the constant function.
Next, given an arbitrary eigenfunction 3>, we show that |$| has a maximum at some

interior point c in the interval (0,1). Since |$| is continuous on [0,1], it reaches its
maximum on [0,1]. If the maximum is achieved only at 0 or 1, or both, then |3>(x)| <
|$(0)| or |$(a;)| < |$(1)|, or both, for all x 6 (0,1). Assuming that the first inequality
holds, we have the following contradiction:

|$(0)| = ['mdFuo < [ Mo\dFL{z)
Jo J (0,1)

<[ \m\dFL(a) = \m\-
J(0,1)

The strict inequality follows from the assumption that Fl has jump discontinuities at
interior points only. A similar contradiction may be deduced from the inequality involving
1. Therefore, there exists an interior point c where |$| reaches its maximum.

Now, multiplying (4.8a) by the complex conjugate implies that

2 2
y [$$" + |$'|2] - y |$'|2 + = a2|$|2. (4.9)

If $ satisfies (4.8a) and is constant, the first and second derivatives would be zero and,
consequently, a2<3>(x) = 0. If a 0, then <i> = 0 which, by definition, cannot be
an eigenfunction. Thus, there are no constant eigenfunctions associated with nonzero
eigenvalues. Now, at x = c, we have

|$(c)|2>0, and

Since
~Mx)\2 = 2[Re(^')](x),

we have [Re($$')](c) = 0. Moreover, since

-^|$(x)|2 = 2Re[$$" + |$f ](x),axz

we have Re[$$" + |$'|2](c) < 0. Thus, taking the real part of (4.9) at x = c implies that
Re (a2) <0. □

Since zero is an eigenvalue for the backward problem, it is also an eigenvalue of the
forward problem. The corresponding eigenfunction, called the steady-state solution, is
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often important in applications. A steady-state solution is a continuous function g on
the interval [0,1] that vanishes at the end-points and that satisfies

g"{x) - 2ug'(x) + [fL(x)g'{0) - fR{x)g'{ 1)] = 0 (4.10a)

on each open interval (at, di+1) for i = 0,1,..., N, and that satisfies

9'{af) ~ 9'{<h)+Pig'( 0) = 0 (4.10b)

for i = 1,2,N, where to = /3/a2.

Theorem 4.6. Define functions L and R by

L(x)= I' e2"(x~V[l - FL(0}dti (4.11)
Jo

R(x)= f e2^x-S]FR(0<lZ. (4.12)
Jo

and

Then g0, defined by
g0(x) = L(x)R(l) - L(l)R(x), (4.13)

is a steady-state solution. Moreover, go(x) > 0 for each x in [0,1].
Proof. It is straightforward to verify that go satisfies (4.10). Also,

L(x)R(y) - L(y)R(x) = [" dV f ^e2^+y~^m)FR(v) - Q(v)Fr(0},
Jo J 0

where
Q(x) = 1 -Fl(x).

Using the antisymmetry of the integrand about the line 77 = £, we have, for y > x,

L(x)R(y) - L(y)R(x) = f drj f d^e2^+y~^m)FR(V) - Q(r,)FR^)}.
Jx Jo

Since, for 77 > £,Q(£) > Q(rf) and FR(rf) > FR(£), the integrand is positive. Hence the
integral is positive for y > x. The particular case y = 1 yields the result go(x) >0. □

Positivity of go(x) means that <?0 can be normalized and converted into a probability
density function.

5. Examples. To illustrate the theory, we discuss two examples briefly. The first
example corresponds to the diffusion problem where Fi and FR each concentrate their
masses at x = 1/2. In this example the birth rate is not necessarily equal to the death
rate; so we do not assume that to = (3/cr2 = 0. When lo = 0 we have the case treated
in [2]. The second example corresponds to uniform distributions on [0,1] with no jumps
and with u> = 0.
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Example 1. Let Fl(x) = H(x — and Fr(x) = H(x — ̂ ), where H denotes the
unit step function as before. Then the eigenfunction problem associated with the original
forward problem (2.3)-(2.5) is

Y Wi.x) - 2cV(x)] = a2<p(x),

V' Q+) - f' Q") = ¥>'(!) - ¥>'('0)j
v(o) = v(i) = o,

while the eigenfunction problem for the backward problem (2.6)-(2.8) is

2
~[^"{x) + 2u&(x)\ = a2$(x),

m = $ (0 = $(i)-
If to ^ 0, the eigenvalues are simple. It can be verified that the eigenvalues and eigen-
functions separate naturally into two sets, which we label with superscripts (1) and (2),
as follows:

(411)2 = Y{-^n2 -u2) (n= 1,2,...),

^(x) =
ewa:[l - ( —l)"e-"/2]sin27rnx, 0 < x <

e^(®-i) [i _ (—i)™ea;/2] sin 2-jrnx, \<x<\,

= e~UJX sin27rnrr,

and

(a4^)2 = (—87r2n2 — Airnu)i)a2 (n = 0, ±1, ±2,...),

e"1 sinh(w - 4nni)x, 0 < x < A,/<-j\ f Ks Olixiiycc TC/t IVV J -JO , \J O/ _N n)

ipii) (x) = < .
1 eUI sinh(w — 47rra)(l — x), \ < x < 1,

^2)(s) = e-l4n7rx.

As u; —> 0, the eigenvalues (a42')2 and (a;^)2 merge with (a^)2. The end result for
co> = 0 is the two sets of eigenvalues and eigenfunctions:

(a^)2 = -27r2(2n + l)2cr2 (n = 1,2,...),

(x) = sin 2(2n + l)irx,

<l>^(x) = sin2(2n + l)7rx,
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and

(42))2 = o,

<Po\x) = |
0 < x < |,

X, i < X < 1,

$oHx) = 1.
("n ))2 =-8n27r2cr2 (n= 1,2,....),

,,, ., f sin4n7rx, 0 < x < i,
w={o,

i sin4n7rx, | < x < 1,

<j>^2,1)(x) = sin4n7rx,

$^2'2^(x) = cos4ri7rx.

Thus the eigenspaces corresponding to eigenvalues (an2"*)2, n = 1,2,..., have dimension
2.

Example 2. Let Fl{x) = Fr(x) = x and let oj = 0. Then Fo = Fl, F\ = Fr, and
we can use (4.2)-(4.7). From (4.5) the eigenvalues are zeros of

... 2 a ( a 2 a\
Ala) = — smh — cosh smh — .K ' a 2 V 2 a 2 J '

multiplied by <j2/2. The eigenvalues and eigenfunctions again separate into two sets:

(an])2 = -2n27T2<T2 (n= 1,2,...),

<PnH:E) = sin2n7rx,

$^(x) = sin2n7rx,

and
(«i2))2 = -(/3n)2cr2/2 (n = 0,1,2,...),

where 0o, Pi, 02, ■ ■ ■ are the nonnegative solutions of

, 0 Ptan — = —2 2
arranged in increasing order with 0q = 0,

V?o2)(x) = ®(1 ~x),

<^2)(x) = 1,

</4J(x) = sin(/?„x/2)sin(/?„[l - x]/2) (n = 1,2,...),

$^2)(x) = cos0n ^x - ^ (n = 1,2,...).
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6. Accuracy of diffusion approximation. One motivation for studying these
equations was that they represent, in some sense, an approximation to (2.1) when the
number of states is large. In this section we compare the steacly-state solution go(x)
given by (4.13) with the steady-state solution of (2.1). We also compare the eigenvalues
and eigenfunctions of Example 1, Sec. 5, with the eigenvalues and eigenvectors of the
appropriate special case of (2.1). The comparisons provide some evidence that, in cases
where (2.1) cannot be solved explicitly, solutions of (2.3)-(2.5) can be used to give good
approximations.

(a) Steady-state solutions. To begin, note that integration by parts in (4.11) and (4.12)
yields the expressions

2loL(x) = e2uJX - 1 - [ [e2^-® - 1] r//•',.(£) (6.1)
Jo

and
2uR(x) = [ [e2"<*-«)-l]dFR(£), (6.2)

Jo
where we assume to ^ 0. Now replace Fl and Fr in (6.1) and (6.2) by FJn and F^, the
discrete distribution functions which are used in (2.2), and denote the resulting functions
by Lm and Rm, so that

2uLm{x) = e2"x - 1 - ]T Ljie2^-^ - 1] (6.3)
{£j<x}

and
2wRm{x) = Rj[e2u(x~ij) ~ 1]- (6.4)

{SjS®}
Now write £,• = j/{m + 1), let x —> Xk = k/(m + 1) from the left, and define

w = ^~. (6.5)
m + 1

Then
fe-i

2ujLm{x~) = e2kw - 1 '> - 1] (6.6)

j-i

and
fe-i

2uRm{xl) = ^ Rj[e2{k-J)w - 1], (6.7)
i=i

where k G {0,1,... ,m + 1} and empty sums are defined to be zero. Corresponding to
(4.13), we put

= Lm(xk)Rm( 1) - Lm(l)Rm(x~). (6.8)

To complete the correspondence between steady-state solutions of (2.1) and (2.3)-(2.5)
we recall that our assumptions about A and /x could be written in the form

A (m) a2
lim —

m—>oo (m + l)2
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and
lim A(m| ""(m) =D.

m—*oo m + 1

Prom this, a standard calculation shows that

m-fl

lim
m—*oo

A (m)
Am).

2uj- e ,

— sa e2w,/(m+1) = e2lu

so that, for large m,

where is defined by (6.5).
If we replace e2®" by (A//u) in (6.6)-(6.8) and do the necessary algebraic simplifications,

we find that the resulting expression for is just the same (apart from a normalizing
constant and necessary adjustments to notation) as the component of the steady-state
solution of (2.1) which is to be found in [3, Eq. (13)]. Thus, replacement of F'i and Fr
by the corresponding discrete distribution functions, replacement of e2w/(m+1) by A//z,
and evaluation of go(x) at points k/(m + 1), fc = 0, l,...,m+l, give the corresponding
steady-state solution in the discrete case.

(b) Example 1 and the corresponding discrete case. We consider the special case of
(2.1) where the number of states to is replaced by 2N + 1, where N is an even number,
and where Ln = Rn = 1, with the other Lk and Rk equal to zero. This means that
returns are always to the midpoint, just as in the diffusion of Example 1. The solution
of this problem is given in [2]. As in Example 1 the eigenvalues and eigenvectors divide
naturally into two sets. There are N eigenvalues

rl1' = -A - n + 2v/Vcos ^ (n = 1,2,..., N),

and N + 1 eigenvalues

, . o 7rn , 2tt n ( N
rn = —2(A -I- fj.) sin" — — — i(A — ix) sm —  I n = 0, ±1,.. . , ± —n v ; N + 1 N +1 \ ' ' ' 2

For n <C N we approximate the sine and cosine by Taylor series to order (N + 1)~2,
getting

r{n}« -(Vx-M2 -

and
7r2n2 , 2nn

r.(2)«-2(A + M)——-2-i{\-ri-(N + l)2 v N + 1'

For large N, the approximations for A and imply that

A«Af«0^«2a2(./V + l)2, \-n*20{N + l),

and, after a little algebra, that

2
(Vx 2
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With these replacements, r^1' and rJi2' become the same as the eigenvalues (c*n^)2 and
(ctn^)2 of Example 1. Thus, the diffusion approximation gives good estimates of the
lower (i.e., n N) eigenvalues.

The comparison of eigenvectors resembles the comparison that was done for the steady-
state solutions. We provide some detail for the first N components of the eigenvectors
corresponding to r„ ' • The situation for the other N + 1 components and for the eigen-

(2) .vectors corresponding to rn is essentially the same. The first N components of the right
eigenvector are [2, Eq. (11)]

Mk) = e-^+1"^[(—1)" - e^+D-] sin k = l,...,N,

while the 2N + 1 components of the left eigenvector are [2, Eq. (12)]

knn$„(k) = (~l)ne{N+l~k)w sin
N + 1'

where w = |ln(A//x). If we now write xk for k/(2(N + 1)) and, for the reasons given
earlier in this section, replace w by u>/(2(N + 1)), we get

<Pn(k) = '(ifc), 0<Xfc<^,

and
$„(*) - (-l)new/2$W(s*), 0 < xk < 1.

Thus, evaluation of the eigenfunctions tpn and $n at the points = k/(2(N + 1))
yields, up to multiplying constants, the components of the right and left eigenvectors
respectively in [2], Unlike the situation with eigenvalues, this result does not depend on
any assumption that n <C N.

References
[1] F. Baccelli and G. Fayolle, Analysis of models reducible to a class of diffusion processes in the

positive quarter plane, SIAM J. Appl. Math. 47, 1367-1385 (1987)
[2] P. G. Buckholtz, L. L. Campbell, R. D. Milbourne, and M. T. Wasan, Analysis of transient

behaviour of certain processes with return to a central state, J. Appl. Probab. 20, 61-70 (1983)
[3] L. L. Campbell, Transient analysis of birth-death processes with two boundaries, Canad. J. Stat.

13, 123-130 (1985)
[4] J. R. Cannon, The one-dimensional heat equation, Encyclopedia of Mathematics and its Appl.,

vol. 23, Addison-Wesley, Reading, MA, 1984
[5] S. Chaimsiri and M. S. Leonard, A diffusion approximation for bulk queues, Management Sci. 27,

1188-1199 (1981)
[6] R. H. Cole, General boundary conditions for an ordinary linear differential system, Trans. Amer.

Math. Soc. Ill, 521-550 (1964)
[7] W. A. Day, A decreasing property of solutions of parabolic equations with applications to ther-

moelasticity, Quart. Appl. Math. 41, 468-475 (1983)
[8] W. Feller, The parabolic differential equations and the associated semi-group of transformations,

Ann. Math. 55, 468-519 (1952)
[9] W. Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc. 77, 1-31 (1954)

[10] A. Friedman, Monotonic decay of solutions of parabolic equations with nonlocal boundary condi-
tions, Quart. Appl. Math. 44, 401-407 (1986)



DIFFUSION EQUATIONS RELATED TO BIRTH-DEATH PROCESSES 443

[11] P. W. Glynn, Diffusion approximations, in Stochastic Models, Chapter 4, edited by D. P. Heyman
and M. J. Sobel, North-Holland, New York, 1990

[12] Z. G. Mansourati, Non-classical diffusion equations related to a class of birth-death processes with
two boundaries, Ph.D. Thesis, Queen's University at Kingston, January, 1990

[13] G. Pujolle, Reseaux de files d'attente: Methode des diffusions, Editions Hommes et Techniques,
Paris, 1980, pp. 41-72

[14] C. E. Wilder, Expansion problems of ordinary linear differential equations with auxiliary conditions
at more than two points, Trans. Amer. Math. Soc. 18, 415-442 (1917)


