
 

MEASUREMENT SCIENCE REVIEW, Volume 14, No. 4, 2014 

 

 

 227 

�

�������		
�����
���
�������������
�
��������	����������

	�

����
��

���
����
�������

M. Hamar
 1,2

, V. Michálek,
 1,2

 A. Pathak
 3,4

 
1
Institute of Physics of Academy of Sciences of the Czech Republic, Joint Laboratory of Optics of Palacky University , 

2
Institute of Physics  of Academy of Sciences of the Czech Republic, 17. listopadu 12, 772 07 Olomouc, Czech Republic 

martin.hamar@upol.cz, vaclav.michalek@upol.cz 
3
RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of the Academy of Sciences  

of the Czech Republic, tr. 17. listopadu 50a, Olomouc, 77207, Czech Republic,  
4
Department of Physics, Jaypee Institute of Information Technology , A510, Sector562, Noida, UP5201307, India, 

anirban.pathak@gmail.com 

 
���� ��

���� ����
��	� �� 	���
� 
�����

���� ����������� ��� ���
� 
��� �������		
���� �
��
� ����	 � !�� ����
��� 
��� ��

��
��� ���� 
���

�"
	
���������������		
���������
	����
�������# � �$������������
�
��������	����� �������

��
�����	���
�
���������
��������
���	
����

���
����
��
�����	��

������������������� �!����������
��
�����

��
���
	�	

�������
�������
������

���������	����������
�
��

�����������	
���
������������
����	
����

��	 �����
�����

������	��
	������
�	
���������	������
�������
����������	
�

	

�	�

��� 
�
�� ����	� ��


��� ��� ����
����� %%&� ���	
��� ������� ��� 
�
��	�� ���
�	�����	� '(� ���	� � !�� �	��� )##*� ������� �	� 
���

��
��
���������
��	�
����
������	 �)
�������	�
��
�
�����

��
�����������	�������
������	������
����
���+���
������
�
���
�	����
���

)##*�������	 �

�
,������	-�������
�
��������	�����.����
����������	+���/����
��
.�+���
������
�
���� �

�

�

1.  INTRODUCTION 

HE CLASSICAL optics provide a powerful tool for 

investigation of properties of strong electromagnetic 

field. Specifically, the vectors of electric and magnetic 

field 0, % are well defined in the classical regime. Further, 

the uncertainties of the electromagnetic field vectors are 

mainly caused by the errors of measuring devices. However, 

in the small energy limit, the nature of light starts to become 

fuzzy. To be precise, values of the physical observables 

associated with an electromagnetic wave are no more 

deterministic and cannot be defined precisely. For example, 

the energy of light is uncertain and has to be characterized 

by the statistical formalism of quantum optics. The blurring 

nature of quantum optics defines the lowest  limit of 

measurement accuracy. On the other hand, quantum optics 

introduces non5classical states of light that are able to 

significantly suppress the fluctuations of the quantum noise. 

For this reason the non5classical light is frequently used in 

spectroscopy [1], interferometry [2], precision measurement 

[3], light5wave communications [4], [5], [6], visual science 

[7] and correlated photon radiometry [8], [9], [10], [11], 

[12]. The non5classical states have no counterparts in 

classical optics. The manifestation of non5classical light is 

mainly twofold, the squeezing [4] and non5classical photon 

statistics [13]. The non5classical state of light can be 

generated by a nonlinear optical phenomenon known as 

spontaneous parametric down5conversion, which is also 

referred to as parametric fluorescence [14], [15]. Detection 

of squeezed light is generally very difficult and requires 

homodyne detection [16]. The detection techniques such as 

photon number resolving detectors, using the fiber delay 

loops [17], or CCD cameras with image intensifiers are also 

used for detection of squeezed light [18], [19], [20]. Many 

operational criteria that are able to distinguish the classical 

and non5classical light were derived [21], [22], [15]. Most of 

them consider only one mode of the field [23] that is 

occupied mostly by one photon. A few of them were derived 

for two5modes single photon [24] and multi photon [25], 

field. We are interested in a specific criterion derived by Lee 

[26] for multimode and multi photon field. The  criterion is 

used here to investigate the non5classicality of multimode 

parametric fluorescence detected by CCD cameras with 

image intensifier. The specific attention is given to the 

higher5order squeezing [28]. Further, the non5classical 

nature of the measured data is utilized here to measure the 

quantum efficiency of the camera.  

 

2.  SUBJECT & METHODS 

Quantum optics distinguishes two principal states of light, 

the number state 〉|n  and the coherent state α . The 

number state 〉|n , also called the Fock state, was established 

as a consequence of the particle nature of light. This state 

reflects the experimental fact that the energy of the light can 

be changed only by multiples of minimum energy packet 5

 photon, En ~ nhν, where n = 1, 2, 3..., h is the Planck’s 

constant and ν  is the frequency of the electromagnetic field. 

Each mode of the electromagnetic field in number state is 

interpreted as harmonic oscillator which can be nicely 

described by quantum mechanics. The experiment like the 

blackbody radiation or photoelectric effect points us to this 

state of light. 

The coherent state 〉α|  was established by the quantum 

formalism applied to the radiation emitted by a classical 

monochromatic current. The electric field 102�. t  polarized 

in x5direction of light in coherent state is defined by the 

formula [29]  

T 
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The full description of coherent state is set by a complex 

number [29] 

 

������������������� PiXei +== θαα , ����������������������(2) 

 

where |α | is related to the amplitude of the field, θ  is closed 

to initial phase of the field, X and P are the quadratures of 

the field. The quadratures correspond to electric fields 

,),(E 1x 〉〈 t� 〉〈 ),(E 2x t� measured with time delay of quarter 

period. In quantum optics the standard deviations σx and σp 

of  the quadratures X and P are coupled by the uncertainty 

principle [30] 
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The standard deviations σx, σp of coherent state are equal 

σx = σp = 1/2 and fulfill the lowest limit of this inequality, 

σxσp = 1/4. The quadratures of coherent state can be plotted 

in phase5space diagram. The variables X and P do not 

commute and so the coherent state of the light cannot be 

plotted as a single point in phase space, but as blot 

parameterized by the distribution function. Mathematical 

formalism of quantum mechanics identifies three ways to 

calculate the distribution functions of quadratures of 

coherent state. The first one computes the Glauber5

Sudarshan P5function, the second one Q or Husimi function 

and the third one is the Wigner function. The electric field 

0(�,t) is given by the projection of the Wigner function into 

the X5axis of the phase space diagram [29]. Due to blurred 

distribution function of coherent state, the value of the 

electric field 0(�,t) is uncertain. The rate of fluctuations of 

the field is set by the standard deviation 

σE = (ħω/2ε0V)
1/2

 ~ σx. The energy of coherent state is 

uncertain, too. The probability of finding n photons in the 

field is described by the Poisson function [29] 
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where |α |
2
 corresponds to the average photon number 〉〈n of 

the field. The width of the energy distribution function 

causes the nonzero standard deviation of photon number, 

σn ≈ 〉〈n , what is demonstrated by shot5noise in optical 

detection. 

In spite of the fact that calculation methods of quadrature 

distribution functions were derived for coherent state, there 

are no restrictions to calculate all three functions also for the 

number state or for the sum of number states. Surprisingly 

for many states, titled as non5classical states, the distribution 

functions, mainly P and Wigner function, lost the 

probabilistic interpretations. The functions may become 

negative or P function may start to become more singular 

than δ function. The non5classical states do not have 

counterparts in classical optics. We distinguish three 

principal states of non5classical light, phase squeezed, 

amplitude squeezed and photon number squeezed states. 

The first one has phase uncertainty, the second one has the 

amplitude uncertainty smaller than coherent state. Last two 

states have the photon number uncertainties smaller than 

coherent state, which make them easier to detect. The 

observation of photodetection noise below the shot5noise 

limit is thus one of the ways how squeezed states are 

detected in the laboratory. 

The physically simplest detection technique of sub5

Poissonian light is the counting of photons per time period 
�t. We set the average number 〉〈n  and the standard 

deviation σn of photons detected per period �t, and then we 

calculate the Fano factor F 
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=

〉〈
=

nn

n
F n

2
)var( σ

�. ����������������������������(5)�

 

Fano factor is equal to one (F = 1) for coherent state, less 

than one (F < 1) for sub5Poissonian light and greater than 

one for super5Poissonian light (F > 1). This criterion can be 

applied only for photon statistics of single5mode radiations 

[26]. It was shown by Agarwal [27] that the two5mode field 

of coherent state is able to exhibit non5classical signature of 

its statistics in spite of the fact that Fano factor is 1 or 

higher. This effect is called the intramode antibunching. For 

these reasons Lee derived the criterion that concerns the 

non5classicality among many modes occupied by many 

photons [26]. Unfortunately, the criterion requires the field 

detection of each mode by individual sensor. For this reason 

we decided to take the simplest version of this criterion that 

concerns only two modes a, b of the fields that are occupied 

by many photons [25]  
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where !ln/!nn xx
l

x )()( −= , x = a,b and l > m is the order of 

non5classicality and 
)l(

b
)k(

a nn  is the two5mode factorial 

moment, which is proportional to the probability of 

simultaneous detection of l photon in b mode and k photon 

in a mode. Specifically, 
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k
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, ��������������(7) 

 
where P(na,nb) is the joint distribution function of two 

modes a, b, while each mode is detected separately. The 

negative value of Rab(l, m) is the sign of non5classicality of 

the detected light. For this reason we introduce the title 5 the 

non5classical signature 5 that is always associated with the 

negative value of Lee’s factor, Rab(l, m) < 0, of detected 

light. 
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The rate of correlations between photon numbers of two 

beams may be expressed as 
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where σ(n1, n2) = 〉〉〈〈−〉〈 2121 nnnn is the covariance of 

photon numbers of modes 1 and 2, and 〉〈 kn is the average 

photon number in the k5th mode (here k=1,2). The ratio 

G12 = 1 implies the absence of any correlation in photon 

numbers,  and G12 > 1 implies the existence of an inter5beam 

correlation in photon numbers. 

 

 
 

Fig.1.  The region of incidence of photon pairs generated by 

parametric fluorescence is well approximated by the cone behind 

the crystal. The rectangles indicate the position of detectors. 

 

3.  RESULTS 

In the present work we apply the criterion (6) for 

measurement of the multimode field detected by the two 

detectors. The letters a, b in (6), (7) are used here to 

distinguish the detectors in the rest of the paper. Question is, 

whether the criterion also works in this case. Firstly, we 

have investigated this problem by numerical simulations and 

then we have used this criterion to assess the non5

classicality of real experimental data.  

At the beginning, we applied the criterion (6) to assess the 

non5classical light generated by multimode parametric 

fluorescence [14] and detected by two detectors, Fig.1. The 

photon of the pump beam is split spontaneously into two 

photons with lower energy inside the nonlinear crystal. The 

photon pairs are correlated in momentum [31] and in the 

space. The coordinates of detection of signal and idler 

photons are centrally symmetric in a coordinate system with 

the z5axis being identical to the pump beam axis, Fig.1. The 

photon pairs which leave the crystal are emitted into space 

defined by the cone, Fig.1. The top of the cone is placed 

inside the crystal. The area of photons of the same 

wavelength is well approximated by the circle, centered on 

the z5axis, in any plane parallel to the output crystal plane. 

The total numbers of emitted photon pairs in the circular 

area randomly fluctuate, but the numbers ns, ni of photons 

emitted into opposite sectors ‘s’ and ‘i’ are correlated, 

ns = ni, Fig.1. The joint distribution function Psi(ns, ni) of 

multimode parametric fluorescence measured by two 

detectors placed in opposite sectors of the cone is [32] 
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where P(n,Msi) is the negative binomial distribution which  

can be written as 
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where 〉〈n  is the average number of photon pairs incident on 

the detection areas and Msi is the number of modes of the 

detected non5classical field.  

 

 
 

Fig.2.  Scheme of the numerical models considered a) the low 

quantum efficiency of detectors  and b) thermal dark5current noise. 

 
In our considerations, the source of classical light is 

represented by the thermal light generated by two light 

bulbs. The light of each bulb is detected separately by 

assigned sensors. The average value of photons incident on 

detectors is ,〉〈 sn 〉〈 in . In this case, the number of photons 

received by each detector is uncorrelated. The sensors detect 

the field with identical numbers Ms, Mi of modes 

(Ms = Mi = M). The joint photon number distribution 

P(ns, ni) of classical light in this particular case is given by 

the product of two negative binomial distributions (10)  

 

( ) ),(),(, iissis MnPMnPnnP = ,                    (11) 

 

where ,〉〈n Msi are substituted by ,〉〈 jn Mj, j = s, i.  

The effect of the low quantum efficiency of detectors was 

simulated by lossless beam splitters with the transmittances 

Tj, j = s, i, less than one, placed in front of the detectors, 

Fig.2.a). The joint distribution function of parametric 

fluorescence detected by sensors of low quantum 

efficiencies, Tj < 1, j = s, i, is  



 

MEASUREMENT SCIENCE REVIEW, Volume 14, No. 4, 2014 

 

 

 230 

( ) ( ) ( ),,1,

,

, ∑ ∑ ∏
∞

=

∞

=

−

=

−







=

ss ii

jjj

mn mn

issi
mnm

isj

issi nnPTT
m

n
mmPη �(12) 

 

where ms and mi are the numbers of signal and idler 

detection events of detectors generated by detection of ns 

and ni photons. The joint distribution function Pη(ms, mi)  of 

classical light detected by the sensors of low quantum 

efficiencies is simulated by the same formula (12), where 

Psi(ns,ni) is substituted by P(ns,ni) (11). The detector with 

quantum efficiency η = 100 % is simulated by setting the 

unit transmittance T = 1. On the contrary, setting the zero 

transmittance T = 0 simulates the detector with zero 

quantum efficiency η = 0 %.  

 
Table 1.  The statistical parameters accounted for joint distributions 

Psi , P of non5classical (Fig.3.a)) and classical (Fig.3.b)) light 

source detected by ideal and real detectors Pη,si , Pη (Fig.3.c), d)) as 

well as for  the resulting joint photon number distribution Psi
N 

(Fig.4.b)) given by simultaneous detection of non5classical and 

classical sources unaffected and affected Pη,si
N by losses. The last 

two columns collect the statistical parameters accounted for the 

joint photon number distribution Psi
σ of non5classical light source 

generated by fluctuated pumping detected by ideal and real Pη,si
σ 

detector, (Fig.5.a), b)). 

 
� Msi =  M = 20, Ts = Ti = T 

� Psi� Pη,si� P� Pη� Psi
N Pη,si

N Psi
σ� Pη,si

σ�

〉〈n  50 50 0 0 50 50 50 50 

〉〈
s

n  0 0 50 50 50 50 0 0 

〉〈
i

n  0 0 50 50 50 50 0 0 

)( 〉〈nrσ  0% 0% 0% 0% 0% 0% 50% 50% 

T 1 0.2 1 0.2 1 0.2 1 0.2 

〉〈 s,nη  50 10 50 10 100 20 51.3 10.3 

Fs 3.5 1.5 3.5 1.5 3.5 1.5 14.9 3.78 

Fi 3.5 1.5 3.5 1.5 3.5 1.5 14.9 3.78 

Rab(1,1) 50.0186 0.0500 0.0073 50.0150 

Rab(2,1) 50.0350 0.1000 0.0144 50.0252 

Rab(2,2) 50.0168 0.0476 0.0070 50.0111 

Rab(3,1) 50.0495 0.1500 0.0213 50.0329 

Rab(3,2) 50.0318 0.0952 0.0138 50.0196 

Rab(3,3) 50.0153 0.0454 0.0067 50.0089 

Rab(4,4) 50.0141 0.0434 0.0064 50.0075 

G12   1.0700 1.0000 1.0175  1.2900 

 

The distribution of parametric fluorescence Psi(ns, ni) takes 

the form of sharp diagonal, Fig.3.a), in contrast to 

distribution of two uncorrelated thermal sources P(ns, ni),  

Fig.3.b). The diagonal elongated shape of the distribution 

Pη,si(ms, mi) is still visible even when the non5classical light 

is detected by the sensors with low quantum efficiencies, 

ηi = ηs = 20 %, Fig.3.c). Unfortunately, the distribution 

Pη,si(ms, mi) of non5classical light became blurred for the 

distribution Pη(ms,mi) of thermal sources, Fig.3.d), which 

makes it harder to identify the non5classicality. Lee’s factor 

Rab(l,m) (6) calculated for distribution of parametric 

fluorescence, Fig.3.a), is negative for any order l, m unlike 

the uncorrelated thermal source, Fig.3.b), Table 1. The 

criterion (6) is satisfied also for any 〉〈n  and Msi despite 

reaching Rab(l, m) to zero with increasing of mean number 

〉〈n  of photon pairs and decreasing number of modes Msi, 

Fig.3.e). The non5classical signature of parametric 

fluorescence is stronger for lower intensities ( 〉〈n  < 2 ) than 

for higher. The field of multimode parametric fluorescence 

(Msi > 5) exhibits stronger non5classical signature compared 

to the single mode fields. This is in accordance with recent 

observations of Bondani [33]. The field of two uncorrelated 

balanced, 〉〈 sn = 〉〈 in , thermal beams has no signature of 

non5classicality, Rab(l, m) > 0, for any 〉〈n  and M. Classical 

field of only a few modes (M < 9) per beam exhibits the 

dependency of Rab(l, m) on the beam intensities 

〉〈 sn = 〉〈 in = ,〉〈n  Fig.3.f). The factor Rab(l, m) of multimode 

classical field (M > 9) is not affected by its intensity, 

Fig.3.f).  The mentioned character of the factor Rab(l, m) is 

also satisfied for any order of l and m.  

 

 
 

Fig.3.  Joint photon number distribution of non5classical a), c) and 

classical b), d) light source, 〉〈n = 〉〈 sn = 〉〈 in = 50, Msi = M = 20, 

accounted for ideal detectors (T = 1) a), b) and for real one 

(T = 0.2) c), d). Lee’s factor Rab(1,1) accounted for  parametric 

fluorescence e) and for two thermal sources f) as a function of 

intensities of the fields 〉〈n = 〉〈 sn = 〉〈 in  and the number of modes 

Msi, M (Ts = Ti = 1). 

 

Interestingly, the signature of the field, no matter if 

classical or non5classical, is not changed by the quantum 

efficiencies of the balanced (ηs = ηi) detectors, Table 1. This 

is very useful for measurement of quantum efficiencies of 
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balanced detectors. The idea is very simple. The light source 

of known irradiance Ie shines at the detector of known area 

S. The energy Ed of light detected by the sensor is  

 

 〉〈== nSIE ed   ηη ,                   (13) 

 

where η is the quantum efficiency of the detector. We 

expressed the total light energy incident at the detector 

thorough  the average photon number ,〉〈n  Ie S = 〉〈E  = 〉〈n . 

The key parameter is the precise knowledge of the number 

.〉〈n  The energy of the light is always detected by the 

imperfect (η < 100 %) detectors, and the precise value of the 

average photon number is mostly unknown.  

This problem can be� solved by using non5classical light 

source. The factor Rab(l,m) of the source is not affected by 

quantum efficiencies of balanced detectors and can be used 

for calibration of the light irradiance. The average photon 

number 〉〈n  can be derived from the known dependence of 

the  factor Rab
lm

),( Mn〉〈  on 〉〈n  and Msi, Fig.3.e), and by 

the measurement of the factor Rab(l,m) of non5classical light. 

The problem is equivalent to solving two equations with two 

unknowns� in mathematics.� Unfortunately, the analytical 

solution is not known and the problem has to be solved 

numerically, Fig.6.a). The first step of the procedure is to 

find the curve (dashed green line� Fig.6.a)) formed by the 

intersection of the horizontal plane (orange color shaded 

plane Fig.6.a)) with 3D surface  Rab
lm

),( Mn〉〈  (blue shaded 

surface Fig.6.a)). The horizontal plane is crossing the z5axis 

of graph Fig.6.a) in value Rab(l,m) given by the measurement 

of the light used for irradiance calibration.  This step has to 

be repeated separately for each order l, m. Next step is to 

find the projection of the curve (red�line Fig.6.a)) formed by 

the surface’s intersection into the x5y plane. The projection 

curves calculated for different order l, m are intersecting in 

one point [ 〉〈n , siM ], Fig.6.b), with coordinates defined by 

the average photon number 〉〈n  and the number siM  of the 

modes of the investigated non5classical light source. The 

quantum efficiency ηj of used detector is calculated by the 

formula 

 

s,ij,
n

n j,
j =

〉〈

〉〈
=  

ηη  ,                       (14) 

 

where ,〉〈 j,nη  j = s, i is the average value of photon number 

detected by an imperfect sensor (Tj < 1, j = s, i)  

 

( ) .s,ili,sjm,mPnn

l

ljsi,

j

jj, ===〉〈 ∑∑  , ,ηη       (15) 

 

We obtain 〉〈=〉〈 i,s, nn ηη  only for balanced detectors. The 

classical light cannot be used for calibration by this method, 

because the factor Rab(l,m) of classical source is independent 

of the intensity ,〉〈=〉〈=〉〈 is nnn Fig.3.f). The precision of 

the proposed method of measurement of quantum efficiency 

is dependent on the measurement errors of the factor 

Rab(l,m),  which is mostly given by the statistical errors. The 

statistical errors present in the estimation of the factor 

Rab(l,m) mostly depend on the size of the statistical 

ensemble. For ICCD applications, it is the number of images 

taken. Thus, the higher precision requires a higher number 

of images, what takes a longer times period over which the 

mean intensity of the non5classical light has to be carefully 

stabilized. Generally, the statistical errors present in the 

factor Rab(l,m)  are observed to increase with the orders l, m. 

The proposed method of measurement is designed only for 

detectors with almost equal quantum efficiencies.  

Any discrepancies in quantum efficiencies would lead to a 

change in the measured non5classical signature and as a 

consequence the calculated value of quantum efficiency will 

no longer be the correct one.  
 

 

 
 

 

Fig.4.  a) The dependence of the factor Rab(1,1) of parametric 

fluorescence ( 〉〈n = 50, Msi = 20) on transmittances Tj, j = s, i. b) 

Joint photon number distribution 
N

siP ,η of the mixture of non5

classical (Fig.3.a)) and classical (Fig.3.b)) light. c) The dependence 

of Rab(1,1) of the mixed non5classical ( 〉〈n = 50, Msi = 20) and 

classical signals (M = 100) on intensities of inhomogeneous noise 

〉〈 sn ≠ 〉〈 in . d) The dependence of the factor R,ab(1,1) on the 

relative intensity γ of uniform noise 〉〈 sn = 〉〈 in , (M = 100). The 

dependence of the relative threshold intensities of the noise 

(M = 100)  γ0
11 e) and γ0

44 f) on the number modes Msi and the 

intensity 〉〈n of the non5classical light. 
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The strongly unbalanced detectors are able to completely 

erase the non5classical signature of the field, Fig.4.a). The 

factor Rab(1,1) is lower than zero in the area delimited by 

dashed lines, Fig.4.a). If the difference between the quantum 

efficiencies ηs, ηi of the detectors exceeds the tolerable 

value (18 % for the case depicted in Fig.4.a)) the non5

classical signature is no longer visible. The tolerated 

difference is even lower for higher order of Lee’s factor 

Rab(4, 4) (solid lines Fig.4.a)). 

The non5classical light is mostly contaminated by a noise 

under experimental conditions. The noise is generated 

mostly by the extraneous light that reaches the detector (the 

scattered laser beam) and by the detector itself 5 the dark5

current noise (gain noise, circuit thermal noise). In the rest 

of the paper we consider  the dark5current noise as the only 

source of noise. The photon statistics of the parametric 

fluorescence affected by the noise contamination is 

simulated by the convolution of the joint distribution 

function Pη,si(ms, mi) of detected non5classical light (12) with 

distribution function P(ni,nj) of classical thermal light (11), 

that substitutes the dark5current noise   

 

( ) ( ) ( )∑ ∑
= =

−−=
s

s

i

i

c

m

c

m

issiiissis
N

si mmPmcmcP ccP

0 0

,, ,,, ηη ,��(16) 

 
where cs and ci are the detection events generated by the 

detection of ns and ni noise photons and n photon pairs. The 

detection of thermal light is not affected by the quantum 

efficiencies of the detectors (Tj = 1, j = s, i, Fig.2.b)). For 

simplicity, we consider the balanced detectors (η = ηs = ηi) 

affected by the noise with average photon number 

,〉〈 jn  j = s, i, uniformly distributed between the detectors 

( 〉〈 sn = 〉〈 in ). We define the non5classical signal to thermal 

noise ratio of mixed light sources, according to the relation 

 

i,sj,
n

nn j,j =
〉〈

〉〈−〉〈
=  

η

ηγ ,� �������(17) 

 

where 〉〈 j,nη  (15) is the average photon number of detected 

non5classical light, .nn i,s, 〉〈=〉〈 ηη  The signal to noise ratio 

γ is equal to minus one when the noise intensity is zero. If 

the intensities of the noise and non5classical light are equal 

then γ  is equal to zero. The value of γ  is positive while the 

intensity of the noise is greater than the intensity of non5

classical light.  

The joint distribution functions Psi
N
(cs, ci) of the mixture 

parametric fluorescence ( 〉〈n = 50, Msi = 20, Fig.3.a)) and 

thermal noise field ( 〉〈 sn = 〉〈 in = 50, M = 20, Fig.3.b)) are  

depicted in Fig.4.b). The additional uniform noise 

( 〉〈 sn 3 〉〈 in 3�50, M = 20 ) is able to erase the non5classical 

signature of parametric fluorescence ( 〉〈n = 50, Msi = 20), 

even for perfect detectors (Ts = Ti =1), as we can see from 

Table 1. (column title Psi
N
). We obtain the same result if the 

convolution (16), Table 1., column title Pη,si
N
 , is accounted 

for a mixture of the same sources as in the previous case, 

except both sources are now independently affected by the 

same losses before detection (Ts = Ti =0.2, 

〉〈 sn 3 〉〈 in 3� 〉〈n 310, distributions Pη,si(ms, mi), Pη(ni,nj), 

Fig.3.c), Fig.3.d)).  

The above described case can be viewed as an event of 

detection of non5classical light by real detectors 

(Ts = Ti =0.2) affected by the additional thermal noise 

( 〉〈 sn 3 〉〈 in 3�10). The non5classical signature of the same 

field ( 〉〈n = 50, Msi = 20) as before can now be erased by 

even a smaller amount of the noise ( 〉〈 sn 3 〉〈 in 3�10), while 

the low quantum efficiencies of detectors are accounted for. 

It is a crucial finding. The non5classical signature of the 

field is not affected by the drop of quantum efficiency of 

real noisy detectors if the dark5current noise� level is also 

proportionally decreased. Otherwise, the non5classicality 

vanishes due to noise. 

The thermal noise is usually hugely multimode M~100 in 

real detector devices, much more than we considered until 

now (M = 20). It is important to find the threshold noise 

level γ0
lm

 in real condition (M = 100) at which the factor 

Rab(l,m) becomes zero. It is much easier to solve this 

problem if the relations between the factor Rab(l,m) and the 

noise level γ  are known. The four examples of such 

dependencies are depicted in Fig.4.d). The black and grey 

lines are accounted for the correlated photon pair source 

with 〉〈n = 50 and 〉〈n = 15. The dashed and solid lines 

correspond to number of modes Msi = 1 and Msi = 20. The 

dependencies are  not  affected by the quantum efficiency of 

the detectors. The circle ( 〉〈n = 50, Msi = 20)  and diamond  

( 〉〈n = 15, Msi = 20) markers accounted for the T = 0.2, 

Fig.4.d) share the same curves as those accounted for the 

ideal detectors, T = 1 (solid lines). While the noise signal is 

weak (γlm
 < γ0

lm
), the impact of noise on non5classical 

signature field varies with the number of modes, even when 

the strength of the non5classical field remains the same. 

Lee’s factor Rab(l,m) of the mixture is independent of the 

number of modes Msi for noise intensities higher than the 

threshold (γlm
 ≥ γ0

lm
). In the limit for γlm

 >> γ0
lm

, the factor 

Rab reaches the value corresponding to classical signal 

(dashed dot line, M = 100, Fig.4.d)). The weak non5classical 

light requires a higher threshold noise level γ0
lm

 than the 

stronger one. The opposite is true if the relative noise level 

γ0
lm

 (17) is recalculated in absolute intensities of photon 

numbers n0
lm

, Table 2.  The threshold noise level γ0
11

 has 

significantly suppressed the dependency on the number of 

modes Msi, especially for weak intensities of non5classical 

signal, 〉〈n < 20, Fig.4.e). The threshold levels γ0
lm

 of higher 

orders are bigger for non5classical fields of a few modes 

Msi < 15, as compared to highly multimode fields, Fig.4.f).  

Unequally distributed noise, 〉〈 sn ≠ 〉〈 in , erases the non5

classical signature even for smaller noise level intensities as 

compared to that for uniformly distributed noise, Fig.4.c). 

The dashed line in Fig.4.c) delimits the area with negative 

factor Rab(1,1), the solid line delimits the area with negative 

Rab(4,4). The factor Rab(1,1) is observed to increase with 

intensity difference of noise channels. An additional 

increase of 9 photons of noise intensity in one arm can 

delete the non5classical signature for any initial intensity of 
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the balanced noise beams, Fig.4.c). The balanced noise 

beams with higher intensities are much more sensitive to 

noise inhomogeneity as compared to the beams with lower 

intensities, dashed and solid lines, Fig.4.c). The higher 

orders of Rab(l,m) are a little bit less influenced by 

unbalanced noise beams, solid line, Fig.4.c).  

 
Table 2.  The relative γ0

lm  and absolute n0
lm threshold levels of 

mixed non5classical light and thermal noise (M = 100), Fig.4.d). 

 

Nsi Msi� γγγγ4
55

� γγγγ4
65

� γγγγ4
66

� γγγγ4
75

� γγγγ4
76

� γγγγ4
77

� γγγγ4
88

�

1
 

0.44 0.65 0.86 0.85 1.05 1.21 1.45 
50 

20 0.41 0.42 0.43 0.43 0.44 0.45 0.47 

1 1.58 1.86 2.21 2.17 2.52 2.88 3.53 
15 

20 1.58 1.56 1.60 1.56 1.58 1.62 1.64 
 

Nsi Msi� n4
55

� n4
65

� n4
66

� n4
75

� n4
76

� n4
77

� n4
88

�

1
 

72.0 82.6 93.4 92.9 102 110 122 
50 

20 70.7 71.1 71.7 71.6 72.1 72.8 73.9 

1 38.7 42.9 48.2 47.6 52.9 58.3 67.9 
15 

20 38.7 38.4 39.0 38.5 38.7 39.3 39.6 
 

 

 

 
 

Fig.5.  Joint photon number distribution of non5classical signal, 

〉〈n = 50, Msi = 20 detected by a) ideal T = 1, and b) real T = 0.2  

detector, generated by fluctuated pumping, n( = 〉〈n , )( 〉〈nrσ = 

50 %. c) The dependencies of relative deviation σr (Rab(1,1)) (solid 

lines) and σr (Rab(4,4)) (dashed lines) of non5classical light  

( 〉〈n = 50, M = 20, T = 1, black color,  〉〈n = 10, M = 20, T  = 1, 

gray color) on size of relative standard deviation )( 〉〈nrσ of 

pumping intensity fluctuation n( = .n〉〈  The markers correspond to 

real detectors, T = 0.2. 

 

The last parameter that reasonably influenced the statistics 

of the measured joint photon number distribution is the 

fluctuation of the pumping beam intensity. The fluctuations 

of pumping beam are mostly governed by the normal 

Gaussian distribution. Under this consideration, the average 

number of photon pairs 〉〈n  (9) starts to fluctuate also. The 

generating function P(nj,M) (10) of joint distribution 

function Psi(ns,ni) (9) is no more defined by the negative 

binomial distribution and has to be calculated by the formula 
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where n( and )( 〉〈nσ  are the average value and standard 

deviation of photon pair number 〉〈n  affected by fluctuated 

pumping.  

 

We are interested in the impact of the intensity fluctuation 

to  factor Rab(l,m). For this reason, we introduce the relative 

standard deviation )( 〉〈nrσ  of the fluctuating average photon 

pair number 〉〈n   

 

( )
( )

.  100
〉〈

〉〈
=〉〈

n

n
nr σ

σ �������������������������(19) 

 

The modified joint distributions Psi
σ
, Pη,si

σ (9), (10), (12), 
of parametric fluorescence detected by ideal (T = 1, Fig.3.a)) 

and real (T = 0.2, Fig.3.c)) detector are depicted in Fig.5.a) 

and Fig.5.b). The non5classical signature of distributions 

Psi
σ
, Pη,si

σ is still significant, moreover, the global statistics 

was changed, Table 1. We considered the relative deviation 

)( abr Rσ  to monitor the changes in non5classical signature 

 

( ) ,
),(

),(),(
 100

mlR

mlRmlR
R

ab

abab
abr

−
=

σ

σ ��������������(20) 

 

where ),( mlRab

σ
and Rab(l,m) are Lee’s factors (6) of the 

light fields generated by the fluctuating and constant 

pumping. The non5classical signature is influenced just 

marginally by small fluctuation of pump power 

)( 〉〈nrσ  < 1 %, as we can see from the dependence of 

)( abr Rσ on the relative standard deviation of 1.2 〉〈nrσ  

Fig.5.c). The higher orders of non5classicality factor Rab 

(dashed lines in Fig.5.c)) increase nearly directly 

proportionally (dashed dot line) with size of pumping 

intensity fluctuation ).(σ 〉〈nr  The intensive parametric 

fluorescence (black lines in Fig.5.c)) is more sensitive to the 

pumping fluctuation than the weaker parametric 

fluorescence (grey lines in Fig.5.c)). The detector efficiency 

(T = 0.2 , circle and triangular markers in Fig.5.c)), does not 

modify the dependencies. 

 

4.  EXPERIMENT 

The theoretical findings were used for the measurement of 

the quantum efficiency of the CCD cameras with image 

intensifiers. As the source of non5classical light we used the 

parametric fluorescence as was suggested in the theory. The 
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photon pairs were generated in nonlinear BBO crystal of 

length 5 mm, pumped by the third harmonics pulsed of 

Ti:sapphire laser system. The pulse width of laser oscillator 

was 200 fs and repetition rate was 50 kHz. The central 

wavelength of laser oscillator was 840 nm. The central 

wavelength of the third harmonics was 280 nm. The pulse 

energy of the third harmonics was 45 nJ. We were able to 

generate tens of photon pairs per pulse by this system. The 

wavelength of detected pairs was about 560 nm. The vertex 

half angle of the cone was 12 degrees. Two regions of the 

cones, situated opposite to each other, were selected for the 

detection (picture placed to the left in Fig.6.d)). The first one 

5 idler part 5 was reflected to the detector by high reflective 

mirror. The second one 5 signal part 5 was impinged to the 

detector directly. The length of the signal arm was 13 cm. 

We used the CCD camera with  image intensifiers (ICCD) 

Andor iStar DH 7125185F563 as the detector in our 

experimental setup. We divided the detection plane into 

three sections, Fig.6.d). The first one and the second one 

detected the idler and signal photons. The third one was 

used for estimating the noise level. The balanced detection 

of the signal and idler photons was achieved by detection of 

photons emitted into both arms with the same detector 

(ICCD camera). The imperfections of balancing are caused 

by asymmetrical detection scheme. To speed up the data 

collection, we decreased the resolution by grouping 8×8 

pixels into one superpixel in the hardware of the camera. We 

placed the narrowband filter with bandwidth 14 nm 

(FWHM) in front of the camera to block parasite noise 

photons. The central wavelength of the filter was 560 nm. 

We focused our attention mainly on the detection of 

degenerate parametric fluorescence. The measurement took 

typically several hours. For this reason we actively 

stabilized the power of pumping beam by feedback loop and 

polarization attenuator. The rate of stabilized pump power 

fluctuation did not exceed 0.3 % rms. The exposure time of 

ICCD camera was set by the time interval between switch 

on and switch off of the camera intensifier. We achieved the 

best results for exposure time 7 ns. The moment of 

switching on was synchronized with the pulse of the pump 

laser.  

We usually obtained thousands of images at the end of the 

measurements (picture placed to the right in Fig.6.d)). The 

detection of photon corresponds to the white place of the 

image. We were interested in the rate of correlations of 

detection of both signal and idler photons. We selected the 

images with the same number combination of detection 

events cs, ci in the signal and idler detection section and 

subsequently we counted the overall frequency f(cs, ci) of 

these images according to the relation,  

 

( ) ( )
K

ccp
ccf is

is

,
, = ,                    (21) 

 

where p(cs, ci) is the number of selected images and K is the 

total number of all images. In the case of the source emitting 

the same number of photons into both arms, the overall 

frequency f(cs, ci) has only nonzero diagonal components, 

whereas the other components are equal to zero. The overall 

frequency f(cs, ci) counted from 1 million images is depicted 

in Fig.6.e). The statistics of the measured distribution 

f(cs, ci) is summarized in Table 3. The statistics of detection 

of events per strip is Super5Poissonian. Except for the non5

classicality factor Rab(4, 4), in all other cases f(cs, ci)  are 

found to be negative, Table 3.  

 

 
 

Fig.6.  a). The geometrical interpretation of solving two  equations 

for two unknowns. b) The graphical solution of the numerical 

procedure of finding average photon number 〉〈n  from the 

knowledge of the Rab(l,m), accounted for parametric fluorescence 

〉〈n = 50, M = 20, T = 1. c) Experimental setup used� for 

the measurement of photon statistics of parametric fluorescence. d) 

The image with registered photons after illumination by parametric 

fluorescence coming from 10 000 consecutive pump pulses (left) 

one pump pulse (right). e) Measured overall frequency f(cs, ci). f) 

The graphical solution of the numerical procedure of finding 

average photon number 〉〈n  accounted for experimental data. 

 

The graphical solution of the numerical procedure of 

finding average photon number 〉〈n  accounted for the 

experimental data (Table 3.) is depicted in Fig.6.f). The 

intersection points on the projected curves accounted for 

three orders (1,1), (2,1), (2,2) are placed close to each other. 

The other intersection points  are spread over a large area. 

This is caused by the slightly unbalanced transmittance of 

signal and idler arms together with the non5uniform 

spreading of the noise in the area of the CCD detector. The 

average value 〉〈n  of photon pairs was 〉〈n = 37.7 ± 0.2 and 

the number of modes 〉〈 siM = 13.7 ± 0.5. The quantum 

efficiency (14) for both signal and idler detection section 
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was 〉〈 sη = (24.2 ± 0.2) % and 〉〈 iη  = (24.7 ± 0.2) %. All 

resultant values of 〉〈n , Msi, ηs, ηi  were expressed by 

average values of coordinates of three closest intersection 

points and appropriate standard deviations. We got the same 

values of the quantum efficiencies ηs, ηi   as in our previous 

work [12].  

 
Table 3.  The statistical parameters accounted for the overall 

frequency  f(cs, ci ) depicted on Fig.6.e). 

 

� f(cs, ci)
�

[%] )( 〉〈nrσ  0.3 

〉〈 s,nη  9.3057 

〉〈 i,nη  9.1270 

Fs 1.0171 

Fi 1.0217 

Rab(1,1) 50.024122 

Rab(2,1) 50.044322 

Rab(2,2) 50.020925 

Rab(3,1) 50.055950 

Rab(3,2) 50.055950 

Rab(3,3) 50.033796 

Rab(4,4)   0.000462 

G12   1.027100 

 

5.  DISCUSSION  

We presented the model of detection of classical and non5

classical light. We tested the parametric fluorescence for one 

of Lee’s criteria of non5classicality. We show that the 

criterion is able to assess the non5classicality of the 

multimode field detected with only two sensors. The non5

classical signature of weak multimode parametric 

fluorescence is stronger than an intensive single mode one. 

Surprisingly, the non5classical signature of the field is not 

affected by the quantum efficiencies of balanced detectors, 

ηs = ηi < 100 %. Unfortunately, the relatively small 

unbalancing of the detector efficiencies vanishes the non5

classical signature. The non5classical light is much more 

resistant to thermal noise of the detectors, even for unequal 

spreading. The intensive and single mode non5classical light 

is more resistant to noise than the weak and single mode. 

The intensity fluctuation of the parametric fluorescence 

influences mostly the higher orders of non5classicality.  

 

6.  CONCLUSION 

We showed two possible applications of the non5classical 

light in metrology. The value of both the light irradiance and 

the quantum efficiency of detectors could be determined by 

the measurement of non5classical signature of the field. We 

used this method for measurement of the quantum efficiency 

of CCD camera with image intensifier. The method can be 

applied to detectors with low dark5current noise only. The 

sensitivity to noise increases as the detector quantum 

efficiency decreases. At present the method is developed 

only for balanced detectors with equal dark5current noise. In 

the future we will try to generalize the method for 

unbalanced detectors, too. 
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