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Abstract Non-coaxiality occurs when the directions of the
principal plastic strain increments and the principal stresses
deviate. Extensive experimental data have now conclusively
shown that plastic flow in granular soils is non-coaxial par-
ticularly during loadings involving rotation of the princi-
pal stress directions. One way to integrate the effects of
non-coaxiality is by modifying the expressions for energy
dissipation and stress-dilatancy used in modeling plastic
deformation of granular soils. In this regard, the paper’s
main objective is to derive a non-coaxial version of Rowe’s
stress-dilatancy relation, thereby making it more general and
applicable to loadings involving principal stress rotation. The
paper also applies Rowe’s non-coaxial stress-dilatancy equa-
tion in the determination of the effects of principal stress
rotation in granular soils during simple shear loading condi-
tions. Previous experimental data from simple shear tests on
sand are used to validate the proposed non-coaxial version
of Rowe’s stress-dilatancy relation.
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1 Introduction

Coaxiality, which implies that the directions of the principal
plastic strain increments and the principal stresses coincide,
is a commonly used assumption in constitutive modeling of
geomaterials. Gutierrez and Ishihara [1] showed that conven-
tional plasticity models expressed in terms of the usual stress
and plastic strain increment invariants implicitly assume
coaxiality in the plastic flow rule. However, extensive exper-
imental data have now conclusively shown that plastic flow
in granular soils is non-coaxial particularly during loading
involving principal rotation. Since loading conditions in geo-
technical engineering invariably involve principal stress rota-
tion, non-coaxiality is an important aspect of constitutive
response of soils that needs to be considered. Non-coaxial-
ity has also important implications on the post-localization
response of granular soils as shown by Vardoulakis and Geor-
gopolous [2], and Gutierrez and Vardoulakis [3].

The first objective of this paper is to further examine the
effects of non-coaxiality on the stress-dilatancy response of
granular soils. This is done by deriving a non-coaxial ver-
sion of the stress-dilatancy relationship developed by Rowe
[4]. In this manner, Rowe’s stress-dilatancy relationship can
be made more general and applicable to loadings involving
principal stress rotation. Rowe’s stress-dilatancy relation is
one of the first rational attempts at characterizing the dilat-
ancy of granular soils and has been used in the formulation
of several constitutive models for granular soils [e.g. 5–8].
Another objective of the paper is to provide further exper-
imental justifications to the validity of the approach by [1]
in accounting for the effects of non-coaxiality in the stress-
dilatancy and energy dissipation of granular soils. To this
end, previous experimental data from simple shear tests on
sand will be re-analyzed and compared to the non-coaxial
version of Rowe’s stress-dilatancy relation.
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2 Non-coaxiality and energy dissipation in granular
materials

Before deriving the non-coaxial version of Rowe’s stress-
dilatancy relationship, it is worthwhile to first briefly review
the effects of non-coaxiality on the energy dissipation of
granular soils. Gutierrez and Ishihara [1] have shown that one
way to integrate the effects of non-coaxiality in the plastic
deformation of granular soils is by modifying the expressions
for energy dissipation and stress-dilatancy. Assuming that the
elastic strains are negligible, and the total and plastic strain
increments are the same (i.e., ε̇i j = ε̇

p
i j ), the rate of dissipated

energy Ẇ by a material under applied stress σi j and sub-
jected to a strain-rate ε̇i j is calculated as Ẇ = σi j ε̇i j . In two-
dimensional plane-strain conditions (ε̇zz = ε̇zx = · · · = 0),
the dissipated energy can be written in terms of the compo-
nents of the stress and strain-rate tensors as:

Ẇ = σi j ε̇i j = σxx ε̇xx + σyy ε̇yy + 2σxy ε̇xy (1)

Equation (1) is always correct as it calculates the dissipated
energy using stress and strain rate tensors that are referred
to a common coordinate system. However, this equation is
expressed in terms of the stress and strain increment tensors,
instead of invariants, and is not easy to use in constitutive
modeling.

If α is the orientation of the major principal stress σ1, and
β is the orientation of the major principal strain rate ε̇1, both
referred to the same y-axis, then the following are obtained
from the corresponding Mohr-circles for stress and strain
increment:

σx = s − t cos(2α), σy = s + t cos(2α),

σxy = t sin(2α) (2)

ε̇x = 1

2
v̇ − 1

2
γ̇ cos(2β), ε̇y = 1

2
v̇ + 1

2
γ̇ cos(2β),

ε̇xy = 1

2
γ̇ sin(2β) (3)

where

s = 1

2
(σ1 + σ3), t = 1

2
(σ1 − σ3) (4)

v̇ = ε̇1 + ε̇3, γ̇ = ε̇1 − ε̇3 (5)

tan 2α = 2σxy

σy − σx
, tan 2β = 2ε̇xy

ε̇y − ε̇x
(6)

Substituting Eqs. (2) and (3) in Eq. (1) yields the follow-
ing correct expression for the dissipated energy in terms of
invariants:

Ẇ = sv̇ + ct γ̇ , c = cos 2� (7)

where � is the non-coaxiality angle [1] equal to the differ-
ence between the principal stress and the principal strain-rate
directions:

� = |α − β| (8)

and c is the corresponding Gutierrez–Ishihara non-coaxiality
parameter [1]. In case of coaxial flow, � = 0 and c = 1.0,
and one obtains the coaxial expression for energy dissipation
that has been commonly used in constitutive modeling.

Assuming, as in Critical State Soil Mechanics [9], that the
energy dissipation in any state is the same as in critical state
(i.e., t = s ·sin φc, where φc is the critical state friction angle,
and v̇ = 0), then

Ẇ = sv̇ + c · t γ̇ = s · sin φcγ̇ (9)

Equation (7) yields the following stress-dilatancy relation-
ship for two-dimensional loading:

v̇

γ̇
= sin φc − c

t

s
(10)

In terms of the mobilized dilation angle ψ and the mobilized
friction angle φ, Eq. (10) can also be written as:

sinψ = sin φc − c sin φ (11)

sinψ = v̇

γ̇
= ε̇1 + ε̇3

ε̇1 − ε̇3
, sin φ = t

s
= σ1 − σ3

σ1 + σ3
(12)

In Eq. (11), the volumetric strain increment is contractive
when c sin φ < sin φc and dilative when c sin φ > sin φc.
It should be noted that recent publications on the behavior
of sands and sand-structure interfaces [e.g., 10–12] have dis-
cussed the issue of the uniqueness of stress-dilatancy rela-
tions. The need to introduce a state parameter to account for
the stress level and density dependency of the phase trans-
formation and the ultimate state (both characterized by zero
dilatancy condition) has been emphasized. For simplicity,
this is not considered here but could be easily implemented
in the proposed relations.

3 Non-coaxial version of Rowe’s stress-dilatancy
relation

Rowe [4,13] formulated a stress-dilatancy relationship for
granular materials of the following form:

K̇ = tan2
(
π

4
+ φµ

2

)
(13)

where φµ is the inter-particle friction angle and K̇ is the ratio
of the input work to output work, which in case of bi-axial
loading condition is equal to:

K̇ = −σ1ε̇1

σ3ε̇3
(14)

The work ratio K̇ can also be expressed in terms of the prin-
cipal stress ratio R = σ1/σ3 and the strain rate ratio D =
−ε̇3/ε̇1 as:
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K̇ = R

D
(15)

It is noted from Eq. (14) that the direction of shearing is along
the fixed direction of

(
π/4 − φµ/2

)
from the major principal

stress direction.
As pointed out by de Jong [14], Rowe’s derivation of

Eqs. (13)–(15) is based on a minimum energy principle
although Rowe presented no proof as to the validity of this
principle. Such a proof is essential because the energy func-
tion can be negative for frictional systems. Instead of using
an energy principle, de Jong [14] showed the validity of the
Rowe’s stress-dilatancy relation based on friction law alone.
Recently, Niiseki [15] re-derived Rowe’s equation based on
optimality theory. Niiseki showed that φµ on the plane of
maximum strength mobilization depends not only on min-
eral surface of particles but also on deformation mechanisms.
By relating the internal friction angle to the dilation angle,
Niiseki also pointed out that particle movement directions,
which are related to the strain rate directions, actually change
during strain hardening deformation.

Rowe derived Eqs. (13)–(15) assuming coaxiality of the
principal stress and principal strain increment directions.
However, as noted by [14], this assumption cannot be vali-
dated, and it is not necessary to restrict Rowe’s
stress-dilatancy relation only to coaxial conditions. To
account for non-coaxiality, De Jong [14] derived a version
of Rowe’s stress dilatancy relation in terms of the modified
work ratio K̇ ∗ defined as:

K̇ ∗ = R

D∗ = −σ1/σ3

ε̇x/ε̇y
= −σ1ε̇y

σ3ε̇x
(16)

where D∗ = − ε̇x/ε̇y is the modified strain rate ratio
expressed in terms of the strain rates ε̇x and ε̇y along the
x and y axes. The above equation is generally valid since ε̇x

and ε̇y represent strain rates along the σ1 and σ3 directions
which also coincide with the x and y axes in biaxial loading
condition. Although the shear strain rate ε̇xy on the x − y
axis is not zero, no work is done on ε̇xy since σxy = 0 on
the principal stress plane. The modified work ratio K̇ ∗ rep-
resents the ratio of the work done by the major and minor
principal stresses and is valid in case the principal stress and
principal strain increment directions deviate. The definition
of K̇ ∗ is more general than Rowe’s definition of the ratio of
input work to output work K̇ , which assumes the planes of
sample deformation do not deviate from the principal stress
planes.

Although Eq. (16) is valid in case of non-coaxiality, it can-
not be directly used to develop constitutive models since it is
expressed in terms of ε̇x and ε̇y , which are not invariant quan-
tities. In the following, an invariant and non-coaxial version
of Rowe’s stress dilatancy equation will be derived. Using
the non-coaxiality angle � (Eq. 8), the dissipated energy in

2D conditions (Eq. 1) can also be calculated as:

Ẇ = σ1ε̇1 cos2�+ σ1ε̇3 sin2�+ σ3ε̇3 cos2�+ σ3ε̇1 sin2�

(17)

The modified work ratio K̇ ∗ can be calculated as:

K̇ ∗ = σ1ε̇1 cos2�− σ1ε̇3 sin2�

−σ3ε̇3 cos2�+ σ3ε̇1 sin2�
(18)

Noting that ε̇3 is negative when ε̇1 is positive, both the numer-
ator and denominator are positive. From the Mohr’s circle of
stress and strain increment, one obtains

σ1

σ3
= tan2

(
π

4
+ φ

2

)
(19)

− ε̇3

ε̇1
= tan2

(
π

4
+ ψ

2

)
(20)

Substituting Eqs. (19) and (20) into Eq. (18), yields:

K ∗ = tan2
(
π

4
+ φ

2

) 1 + tan2� tan2
(
π
4 + ψ

2

)

tan2�+ tan2
(
π
4 + ψ

2

) (21)

Equation (21) can be transformed into:

K ∗ = tan2
(
π

4
+ φ

2

)
1 − sinψ∗

1 + sinψ∗

= tan2
(
π

4
+ φ

2

)/
tan2

(
π

4
+ ψ∗

2

)
(22)

where ψ∗ is the nominal dilation angle considering the
non-coaxiality effect, and

sinψ∗ = c sinψ (23)

Using, Niiseki’s [15] optimization technique,φ can be related
toψ∗, and using the condition that at the critical state,φ = φc

giving v̇ = 0 andψ∗ = 0, gives the following extended non-
coaxial version of Rowe’s stress-dilatancy:

tan

(
π

4
+ φ

2

)
= tan

(
π

4
+ φc

2

)
tan

(
π

4
+ ψ∗

2

)
(24)

Equation (24) can also be expressed in the following alter-
native forms:

sin φ = sin φc + sinψ∗

1 + sin φc sinψ∗ (25)

1 + sin φ

1 − sin φ
=

(
1 + sin φc

1 − sin φc

) (
1 + sinψ∗

1 − sinψ∗

)
(26)

sinψ∗ = c sinψ = sin φc − sin φ

(1 − sin φ sin φc)
(27)

Different from the conventional Rowe’s equation, the
nominal dilation angle ψ∗ = sin−1(c · sinψ) given in Eqs.
(24)–(27) takes the place of the conventional dilation angle
ψ , and is different from the dilation angle ψ due to the
non-coaxiality effects since c < 1.0 for non-coaxial flow.
Figure 1a, b illustrate the effects of non-coaxiality on the
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Fig. 1 Stress-dilatancy relationships from a Critical State Soil
Mechanics, and b Rowe, both as function of the non-coaxiality param-
eter c

Critical State Soil Mechanics and Rowe’s stress-dilatancy
relationships as expressed in Eqs. (11) and (27), respectively.
The stress-dilatancy relationships are plotted in the −v̇/γ̇
versus t/s axes for different constant values of the non-coax-
iality parameter c. As indicated above, positive values of
v̇/γ̇ correspond to contractive volumetric strain increment,
and negative values correspond to dilative strain increment.
As expected, the Critical State Soil Mechanics relationship
(Eq. 11) is linear, while Rowe’s relationship is curved in this

plot. For the same value of c, the Critical State Soil Mechanics
lines are steeper than the Rowe’s curves. The effect of the
parameter c is to lower the slope of the sinψ versus sin φ
curves for both relationships.

4 Comparison with experimental simple shear data

To show its validity, the non-coaxial version of Rowe’s stress
dilatancy relationship (Eqs. 24–27) is compared with exper-
imental data from direct simple shear (DSS) tests on sands.
Simple shear is one of the most common modes of deforma-
tion of granular materials. For instance simple shear condi-
tion is predominant during shaking of level grounds during
earthquakes when deformation is assumed to propagate ver-
tically from the bedrock in the form of shear waves. Materials
within localized failure zones also deform in simple shear.
Simple shear deformation can be simulated in element tests
using the direct simple shear (DSS) device, or the hollow
cylindrical torsional simple shear device.

A major difficulty in interpreting direct simple shear test
results is that the principal stress directions are not fixed but
they rotate during simple shear loading. As a result, the ori-
entations of the failure planes are not known and depend on
the degree of principal stress rotation. In simple shear test-
ing, principal stress rotation cannot be directly controlled
and only limited rotation can be achieved. To fully use lab-
oratory results from simple shear testing, it is therefore nec-
essary to quantify the effects of principal stress rotation on
the response of the material. In the following, the non-coax-
ial version of Rowe’s stress-dilatancy relationship will be
compared with experimental simple shear data on sand. The
comparisons will be made: (1) to validate the non-coaxial ver-
sion of Rowe’s stress-dilatancy relationship, and (2) to ana-
lytically investigate the effects of principal stress rotation and
non-coaxiality on the simple shear response of granular soils.

To use Rowe’s stress-dilatancy equation, it is necessary to
relate the parameters involved in the equation to those that are
used in simple shear loading. Figure 2 shows the stress and
strain conditions that are encountered in simple shear load-
ing. The soil sample is restrained from deforming laterally
(i.e., ε̇x = 0) and the sample is consolidated under vertical
stress σy . After consolidation, the sample is sheared under
a constant rate of shear displacement ε̇xy until the peak or
residual shear strength has been achieved. For drained test,
the vertical stress is usually kept constant (i.e., σ̇y = 0).
Undrained test is achieved by keeping the height of sample
constant (i.e. ε̇y = 0) which, because of zero lateral strains,
also keeps the sample volume constant.

The degree of shearing is measured by the shear stress
ratio σxy/σy or the direct simple shear friction angle φdss :

tan φdss = σxy

σy
(28)
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Fig. 2 a State of stress, and
b state of strain under simple
shear conditions
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Fig. 3 Mohr’s circle for state of stress in simple shear

From the Mohr-circle for stress (Fig. 3), the following rela-
tionship can be obtained between the plane strain friction
angle φ (Eq. 12), the simple shear friction angle φdss and the
principal stress direction α:

sin φ = tan φdss

sin 2α − cos 2α tan φdss
(29)

In addition to the evaluation of Eq. (28), the principal
stress direction α is also needed in the evaluation of the non-
coaxiality angle � (Eq. 8), which in turn is needed to deter-
mine the non-coaxiality parameter c in Eqs. (24)–(27). Oda
and Konishi [16], Oda [17], and Ochiai [18] developed a
simple expression for the degree of principal stress rotation
that occurs during simple shear loading. They arrived at an
expression which reads:

tan (φdss) = σxy

σy
= sin φc tan α (30)

This equation implies a straight-line relationship between
the simple shear stress ratio σxy/σy on a horizontal plane
and the tangent of the angle that σ1 makes with the vertical
axis. Equation (30) is compared with the simple shear exper-
imental data of Cole [19] in Fig. 4. As can be seen, Eq. (30)
provides a good approximation of the principal stress rota-
tion during simple shear loading of sands. The experimental
results show only slight differences in the degree of principal
stress rotation between the loose, medium dense and dense
samples.

The angle of non-coaxiality� is evaluated using the plas-
tic flow rule developed by Gutierrez et al. [20] for plastic flow
in the (σy −σx )/2 versus σxy stress rotation plane. This flow
rule is described in the Appendix, and gives the following
expression for the non-coaxiality angle:

� = α − ξ − 1

2
sin−1

(
sin φ

sin φp
sin (2α − 2ξ)

)
(31)

where φp is the peak friction angle, and ξ is the direction of
the principal stress increment σ̇1 measured from the y-axis.
This angle is defined as:

tan 2ξ = 2σ̇xy

σ̇y − σ̇x
(32)

To obtain an expression for the rotation of the principal stress
increment direction ξ , it is only necessary to note that the
stress increment vector should be tangential to stress path.
The equation of the stress path given in Eq. (30) in terms of
the stress ratio σxy/σy and the principal stress direction α
can be differentiated to obtain this tangent. First, Eq. (30) is
re-written in terms of 2α:
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Fig. 4 Principal stress rotation α as function shear stress ratio σxy/σy
from direct simple shear tests on Leighton–Buzzard sand

σxy

σy
= sin φc

(√
1 + tan2 2α − 1

tan 2α

)
(33)

Substituting Eq. (6), assuming a constant vertical stress (i.e.,
σ̇y = 0), and using Eq. (32), the principal stress direction ξ
can be obtained as:

tan 2ξ = −2σ̇xy

σ̇x
(34)

Combining Eqs. (33) and (34) gives the principal stress incre-
ment direction:

tan 2ξ = −2σ̇xy

σ̇x
= − sin φc

σy

σxy
= − sin φc

1

tan φdss
(35)

As can be seen, similar to angle α, the direction ξ only
depends on critical state friction angle φc, and the stress ratio
σxy/σy (or the simple shear friction angle φdss).

The above equations fully describe the parameters
required to derive the dilation angle ψ given in Eq. (27).
Given the simple shear stress ratio σxy/σy (or φdss), the
angles α and ξ are calculated from Eqs. (30) and (35) which
are then used to calculate the non-coaxiality angle� (Eq. 31)
and the non-coaxiality parameter c (Eq. 7). Also using φdss ,
the mobilized friction angle φ is calculated using Eq. (29).
Given the values of c and φ, the dilation angle ψ can be
calculated from Eq. (27).
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Fig. 5 Predicted and experimental data on non-coaxiality during sim-
ple shear deformation of Leighton–Buzzard sand. a dense, b medium
dense and c dense samples

The above equations are compared to the experimental
results obtained by Cole [19] from direct simple shear tests
on Leighton–Buzzard sand using Cambridge University’s
Mark 5 DSS apparatus. Details of the apparatus and test
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Fig. 6 Predicted and
experimental data on
stress-dilatancy during simple
shear deformation of
Leighton–Buzzard sand.
a dense, b medium dense and
c dense samples. Predictions
from both coaxial and
non-coaxial versions of Rowe’s
stress-dilatancy relation are
shown
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material are given in [19]. Comparisons of the non-coaxial
version of Rowe’s stress dilatancy relation are made with
loose, medium dense and dense samples of Leighton–Buz-
zard sand, all consolidated and sheared at constant vertical
stress of σy = 400 kPa.

The comparisons are made first to verify the validity of
the non-coaxiality angle� given in Eq. (31). Figure 5 shows
predicted and measured values of � as function of σxy/σy

for three densities of Leighton–Buzzard sand. As shown in
Fig. 4, the major principal stress rotated by about 50–60◦
as the samples are sheared to failure and residual conditions.
Due to the rotation, the major principal stress direction lagged
behind the major principal strain increment direction result-
ing in non-coaxiality. The degree of non-coaxiality is about
30◦ at the start of shearing, and gradually reduces to almost
zero as σxy/σy approaches failure condition.

As can be seen, Eq. (31) satisfactorily agrees with the
measured non-coaxiality angles obtained from direct simple
shear tests on Leigthon–Buzzard sand. Equation (31) also sat-
isfactorily reflects the decrease in � as the shear stress ratio
σxy/σy is increased. Note that the actual values of σxy/σy

from the experiments were used in the calculation of �. For
the test of the dense sample, significant strain softening was
observed causing σxy/σy to decrease after the peak shear
strength has been reached. As a result, the non-coaxiality
increased slightly as σxy/σy exceeds a value of about 0.6.

Figure 6 shows the predicted and measured stress-dilat-
ancy plots for the three densities of Leighton–Buzzard sand in
the −v̇/γ̇ versus t/s axes. Predictions from both the coaxial
and non-coaxial versions of Rowe stress-dilatancy relation
are shown. For the non-coaxial version, the stress-dilatancy
plots account for the variation in the non-coaxiality param-
eter c as the mobilized friction angle is increased, based on
the predicted variations of the non-coaxiality angle� shown
in Fig. 5. For the co-axial version, it is assumed that c = 1.0
for all values of φ.

As can be seen, both the coaxial and non-coaxial ver-
sions fit the experimental data at high values of mobilized
friction angle φ. At low friction angles (or for contractive
response), in general, the non-coaxial version fits the exper-
imental data better, particularly for the loose and medium
dense sands. For the loose and medium dense samples, the
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coaxial stress-dilatancy relation significantly deviates from
both the experimental and non-coaxial version at low friction
angle. For the dense samples, the difference between coax-
ial and non-coaxial versions is less significant. The devi-
ation between the coaxial and non-coaxial versions is due
to the fact that non-coaxiality induced a higher degree of
contraction at low friction angles than the nominal dilation
angle assuming coaxiality. As the mobilized friction angle is
decreased, the non-coaxiality angle approaches zero, and the
effects of non-coaxiality disappears.

5 Conclusions

The derivation of the non-coaxial version of Rowe’s stress-
dilatancy relationship was presented. The derivation followed
the previous approach used by Gutierrez and Ishihara [1]
in deriving a non-coaxial version of the Critical State Soil
Mechanics stress-dilatancy relation by incorporating the
Gutierrez–Ishihara non-coaxiality parameter c. Equations
relating the parameters in Rowe’s non-coaxial stress-dilat-
ancy relationship to simple shear loading conditions were
also derived. It was shown that the non-coaxial version agrees
with the experimental data on the simple shear dilatancy of
sands for contractive response at low values of mobilized
friction angle φ for loose and medium dense. In contrast, the
coaxial version significantly under predicts the experimental
dilatancy angles at low mobilized friction angles for loose
and medium dense sands. For the dense samples, the differ-
ence between coaxial and non-coaxial versions is less sig-
nificant. The difference between the coaxial and non-coaxial
versions is due to the fact that non-coaxiality caused by prin-
cipal stress rotation in simple shear loading induces a higher
degree of contraction at low friction angles than the nominal
dilation angle assuming coaxiality. The non-coaxiality angle
approaches zero as the mobilized friction angle is increased,
and consequently, the effects of non-coaxiality on dilatancy
becomes insignificant.

Appendix: Noncoaxiality angle due to principal stress
rotation

The angle of non-coaxiality angle � required to determine
the non-coaxiality parameter c in the stress-dilatancy rela-
tionships given in Eqs. (11) and (27) is evaluated using the
flow rule developed by Gutierrez et al. [20] for plastic flow
in the (σy −σx )/2 versus σxy stress rotation plane. This flow
rule is shown in Fig. 7. In this figure, the strain increment
components (ε̇y − ε̇x ) and 2ε̇xy have been superimposed
on the stress plane. Point A is the current stress point. The
failure surface is circular and centered at the origin of the
(σy − σx )/2 versus σxy axes. The distances O A and O B are

A

 B 

O

xyσ

 2ξ

 2α 2β

εy −εx

2 xyε

Failure surface 

Conjugate stress 
point

Current stress 
point

Stress
increment

Strain increment
direction

2∆

(σy −σx)/2

(      )
Fig. 7 Non-coaxial flow rule in the (σy −σx )/2 versus σxy stress rota-
tion plane

equal to the current shear stress t and the radius of the circular
failure surface, respectively. These distances can be related to
the current mean stress s, the mobilized friction angle φ and
the peak friction angle φp as follows:

O A = s sin φ and O B = s sin φp (36)

On the stress plane, a stress vector makes an angle equal
to 2α (Eq. 6) from the (σy − σx )/2 axis. Similarly, a stress
increment vector makes an angle equal to 2ξ (Eq. 32) from
the (σy − σx )/2 axis. On the strain increment plane, a strain
increment vector has a length equal to the plastic shear strain
increment γ̇ and makes an angle equal to 2β (Eq. 6) from
the (ε̇y − ε̇x ) axis. This plastic strain increment direction is
evaluated as the normal to the failure surface at the conjugate
point A which is the intersection of the failure surface and
the stress increment vector extended from the current stress
point. This flow rule is based on the experimental observa-
tions that plastic flow on the (σy − σx )/2 versus σxy stress
plane is dependent on the stress increment direction [20].
This flow rule should be contrasted with conventional plas-
ticity formulations where the plastic strain increment direc-
tion is evaluated at the current stress point independent of
the stress increment direction. Details of the flow described
in this appendix including the experimental verification are
given in [20].

From triangle OAB in Fig. 7, the following angles can be
obtained:

� O AB = π − (2ξ − 2α) (37)
� B O A = 2� (38)

2� = π − � O AB − � AB O (39)

123



Non-coaxial version of Rowe’s stress-dilatancy relation 137

Using the law of sines:

O A

sin � AB O
= O B

sin � O AB
(40)

� AB O = sin−1
(

O A

O B
sin � O AB

)
(41)

Substituting Eqs. (37) and (38) in Eq. (39):

� AB O = sin−1
(

sin φ

sin φp
sin(π + 2α − 2ξ

)
(42)

Substituting Eqs. (37) and (42) in Eq. (39) gives:

2� = 2α − 2ξ − sin−1
(

sin φ

sin φp
sin (π + 2α − 2ξ)

)
(43)

Simplifying the above equation results in the expression for
� given in Eq. (31).
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