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Ferroptosis is a recently defined form of regulated cell death, which is biochemically and morphologically distinct from traditional
forms of programmed cell death such as apoptosis or necrosis. It is driven by iron, reactive oxygen species, and phospholipids that
are oxidatively damaged, ultimately resulting in mitochondrial damage and breakdown of membrane integrity. Numerous cellular
signaling pathways and molecules are involved in the regulation of ferroptosis, including enzymes that control the cellular redox
status. Alterations in the ferroptosis-regulating network can contribute to the development of various diseases, including cancer.
Evidence suggests that ferroptosis is commonly suppressed in cancer cells, allowing them to survive and progress. However, cancer
cells which are resistant to common chemotherapeutic drugs seem to be highly susceptible to ferroptosis inducers, highlighting
the great potential of pharmacologic modulation of ferroptosis for cancer treatment. Non-coding RNAs (ncRNAs) are considered
master regulators of various cellular processes, particularly in cancer where they have been implicated in all hallmarks of cancer.
Recent work also demonstrated their involvement in the molecular control of ferroptosis. Hence, ncRNA-based therapeutics
represent an exciting alternative to modulate ferroptosis for cancer therapy. This review summarizes the ncRNAs implicated in the
regulation of ferroptosis in cancer and highlights their underlying molecular mechanisms in the light of potential therapeutic
applications.
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FACTS

● Ferroptosis is a unique, iron-dependent, oxidative form of
regulated cell death.

● Ferroptosis is frequently suppressed in cancer supporting its
growth and progression.

● Ferroptotic rich regulatory network is essentially modulated
by ncRNAs.

● NcRNA-based therapeutics targeting ferroptosis is a promising
novel anti-cancer therapy.

OPEN QUESTIONS

● What is the relationship between ncRNAs, ferroptosis and
other forms of regulated cell death in cancer?

● Are individual ncRNAs potential molecular markers of
ferroptosis that could be used in living cells and tissues?

● What are the optimal delivery systems of novel ncRNAs-
therapeutics, particularly for efficient intracellular uptake and
controlled release?

● Would potential combination of available drugs with novel
ncRNA-therapeutics modulating ferroptosis result in an
improved cancer treatment?

INTRODUCTION
Non-coding RNAs: master regulators of cellular processes
Non-coding RNAs (NcRNAs) are a miscellaneous group of non-
coding transcripts with limited protein-coding potential that
perform important cellular functions through different molecular
mechanisms [1]. Initially, it was thought that they are functionally
irrelevant. However, as a myriad of functional ncRNAs were
identified and characterized, the central dogma of proteins being
the functional end product of gene expression has drastically
changed [2].
Broadly spoken, they can either be subdivided into short and

long ncRNAs (a general cut off value is 200 nucleotides in length),
or subdivided due to their biological roles [3]. Three major classes
of functional ncRNAs are short microRNAs (miRNAs), long ncRNAs
(lncRNAs), and circular RNAs (circRNAs). Depending on their
intrinsic features, they may show tissue- and/or disease-specificity
and may be detected in all body fluids making them interesting
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for their potential utilization as biomarkers [4]. In addition, ncRNAs
are frequently deregulated in various diseases, including cancer
[5]. In many instances their involvement in drug resistance in
cancers has been reported [6–9]. Thus, targeting of ncRNAs might
be a promising therapeutic option to modulate drug resistance-
promoting pathways in cancer cells and improve the outcome of
patients [10].

Ferroptosis: the molecular mechanisms of a recently identified
form of cell death
Ferroptosis is an iron-dependent, oxidative form of cell death that
is biochemically and morphologically different from other types of
regulated cell death [11–13]. Ferroptosis is caused by excessive
oxidative destruction (peroxidation) of lipids in the cellular
membranes. The process relies on iron, reactive oxygen species
(ROS), and phospholipids containing polyunsaturated fatty acids
(PUFAs) [14–16].
Lipid peroxidation occurs when a bisallylic hydrogen atom,

located between two carbon–carbon double bonds, is removed
from the PUFAs in the membrane phospholipids. The result is
formation of a carbon-centered phospholipid radical, phospholipid
peroxyl radical, and phospholipid peroxides, a form of lipid ROS.
Phospholipid peroxides can react with iron to generate free alkoxyl
and peroxyl radicals [17]. The requirement of iron in this form of
cell death inspired the term ferroptosis [12]. If not converted to its
corresponding alcohol, phospholipid peroxides, together with
phospholipid free radicals, promote further phospholipid peroxide
formation via the processes of hydrogen removal and reaction with
oxygen. It is the unrestrained lipid peroxidation that is considered
to be the hallmark of ferroptosis [18].
Some first hints of ferroptosis-like death have been observed in

the middle of 20-th century in studies investigating metabolism

and neuronal cell death. The earliest reports attributed ferroptosis
either to other forms of regulated cell death, or it was not
recognized as being biologically significant. It was not interpreted
as sufficient evidence for a distinct cell death until early 2000s
when the Stockwell lab conducted screening of lethal compounds
in RAS-transformed cancer cells. They identified erastin and RAS
synthetic lethal 3 (RSL3) as inducers of non-apoptotic, iron-
dependent cell death preventable by iron chelators and lipophilic
antioxidants [19, 20]. The following findings, including the
mechanism of action of erastin and RSL3, lead to the idea of a
unique regulated cell death form. The term ferroptosis was
introduced in 2012, and, thus, the field of ferroptosis research is
rather officially young [12]. Despite being frequently cited as a
new type of cell death, ferroptosis may actually be considered the
oldest and evolutionary most conserved form of regulated cell
death owing to its simple molecular requirements of iron and
oxygen. In fact, ferroptosis-like death has been observed in less-
complex species including protozoa, prokaryotes, fungi and plants
[21–24].

Ferroptosis initiation and regulation
Lipid peroxidation can be initiated by non-enzymatic and
enzymatic processes [25]. The non-enzymatic process is triggered
by Fenton reaction, where iron and hydrogen peroxide react
toward free radical formation and propagation of lipid peroxida-
tion [15]. Numerous enzymes were implicated in the regulation of
ferroptosis and are outlined in Fig. 1. Some of the key enzymes are
described below.

Ferroptosis antagonists
Glutathione peroxidases (GPXs) protect cells from oxidative stress,
and hence ferroptosis [14–16]. In fact, GPX4 is the main enzyme

Fig. 1 Ferroptosis mechanisms. Ferroptosis can be initiated by non-enzymatic and enzymatic processes. The non-enzymatic process includes
Fenton reaction, where iron and hydrogen peroxide react and form free radicals. Various enzymes and proteins drive ferroptosis via increasing
iron availability and enhancing free radical formation (CYP450, HO-1, HIFs), and performing important roles in biosynthesis and oxidation of
PUFAs (ACSL4, LPCAT3, ALOX). In contrast, ferroptosis is suppressed by several enzymes and cofactors with antioxidant functions (GPX4, GSH,
FSP1, CoQ10, BH4) and system xc

- cystine/glutamate antiporter (SLC7A11 and SLC3A2) that import cystine which is necessary for the
biosynthesis of antioxidant enzymes. Consequences of ferroptosis are various harmful breakdown products (e.g., MDA and 4-HNE), modified
and oxidized proteins (e.g., reparatory ESCRT-III), damaged mitochondria and eventual disruption of membrane integrity. MDA,
malondialdehyde; 4-HNE, 4-hydroxy-2-nonenal; TfR1, transferrin receptor 1; PUFAs-OOH, polyunsaturated fatty acid peroxides; ROS, reactive
oxygen species; PROM2, prominin 2; system xc-, cystine/glutamate antiporter; SLC7A11, solute carrier family 7 member 11; SLC3A2, solute
carrier family 3 member 2; ESCRT-III, endosomal sorting complexes required for transport-III; Fe, ferrum (iron); ACSL4, acyl-CoA synthetase
long-chain family member 4; LPCAT3, lysophosphatidylcholine acyltransferase 3; ALOX, lipoxygenase; CYP450, cytochrome P450; GPX4,
glutathione peroxidase 4; GSH, glutathione; BH4, tetrahydrobiopterin; CoQ10, coenzyme Q10; FSP1, ferroptosis suppressor protein 1; FTH1,
ferritin heavy chain 1; FTL, ferritin light chain; NRF2, nuclear factor E2-related factor 2; IREB2, iron-responsive element binding protein 2; HIFs,
hypoxia-inducible factors; HO-1, heme oxygenase-1. Created with BioRender.
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catalyzing the reduction of phospholipid peroxides to its
corresponding phospholipid alcohol. This selenoprotein is regu-
lated by a number of ncRNAs including miR-101-3p, miR-324-3p,
lncPVT1, circCDK14, circKDM4C, and circDTL [26–32]. In addition,
cofactor of GPX4 is glutathione, an antioxidant that uses cysteine
for its synthesis [14–16]. In addition to the intracellular synthesis
from methionine and glucose, and the interconversion of cysteine
and homocysteine through intermediate cystathionine (transsul-
furation pathway), cysteine can be imported from the environ-
ment [15]. The oxidized form (cystine) is imported by the system
xc

- cystine/glutamate antiporter (see also Fig. 1). Subunits of this
transmembrane protein complex are solute carrier family 7
member 11 (SLC7A11) and solute carrier family 3 member 2
(SLC3A2) [33]. Numerous ncRNAs regulate the expression of
SLC7A11, including miR-375, miR-214-3p, miR-5096, LINC00618,
P53RRA, OIP5-AS1, circPVT1, circEPSTI1 [34–41].
Cyst(e)ine-GSH-GPX4-system xc

- is considered as the main
antagonist of ferroptosis. Ferroptotic death via inhibition of
system xc

- and GPX4 can be induced by the compounds erastin
and RSL3 [19, 20]. While RSL3 impairs GPX4 activity directly, erastin
inhibits cystine import into the cell and thereby indirectly affects
GPX4 activity. Erastin additionally targets voltage-dependent ion
channels inducing mitochondrial dysfunction [19, 20]. RSL3 and
erastin are frequently used in experimental approaches to induce
ferroptosis.
Several other opposing mechanisms of ferroptosis have been

described. Ferroptosis suppressor protein 1 (FSP1) reduces lipid
peroxidation and ferroptosis by reducing the oxidized form of
coenzyme Q10, ubiquinone, to yield ubiquinol, which then
reduces lipid radicals and prevents propagation of lipid peroxida-
tion [42]. Tetrahydrobiopterin (BH4) protects phospholipids from
oxidative degradation by acting as an antioxidant and aids
ubiquinone synthesis [43]. In addition, FSP1 may also indirectly
reduce lipid peroxidation via regeneration of vitamin E, another
strong antioxidant of lipids [44]. There is evidence that vitamin E
(and possibly selenium) supplementation may promote cancer
development [45]. FSP1 is indirectly upregulated by miR-4443, and
several transcription factors including nuclear factor E2-related
factor 2 (NRF2) [46, 47]. NRF2 is an important transcription
activator that regulates various genes involved in metabolism,
inflammation, mitochondrial respiratory, proliferative and trans-
port processes [48]. In particular, NRF2 is crucial for cell survival
during the oxidative stress. In addition to FSP1, it promotes the
expression of several other negative regulators of ferroptosis, such
as ferritin heavy chain 1 (FTH1), SLC7A11, and cystathionine β-
synthase (CBS) (Fig. 1) [49–51]. Radical-trapping antioxidants
ferrostatin 1 and liproxstatin 1 are useful in experimental studies
to suppress ferroptosis [52].

Ferroptosis agonists
Acyl-CoA synthetase long-chain family member 4 (ACSL4) and
lysophosphatidylcholine acyltransferase 3 (LPCAT3) are essential
drivers of ferroptosis (Fig. 1) [53]. ACSL4 is the important enzyme
in lipogenesis. It catalyzes the reaction between long-chain PUFAs
with coenzyme A to produce long-chain fatty acyl-CoA esters.
These products are re-esterified into phospholipids by LPCAT3
enzyme, thus enhancing the incorporation of long-chain PUFAs
into lipids and membranes [53]. MiR-23a-3p, miR-424-5p, and
NEAT1 post-transcriptionally suppress, while circKDM4C upregu-
lates expression of ACSL4 [32, 54–56]. Furthermore, reports
suggest that certain arachidonate lipoxygenases (ALOXs) may
contribute to ferroptosis via stereotactic insertion of oxygen in
PUFAs [15], while lipoxygenase inhibitors act as radical-trapping
antioxidants (Fig. 1) [15, 57, 58]. MiR-7-5p and miR-522 are known
repressors of ALOX12 and ALOX15, respectively [59, 60]. Interest-
ingly, Pseudomonas aeruginosa secretes lipoxygenases that can
induce oxidation of membrane lipids of human red blood cells
and induce ferroptosis in bronchial epithelial cells, a finding

particularly important for cystic fibrosis patients who are
susceptible to this bacterium [21, 22].
In addition, cytochrome P450 oxidoreductase may initiate lipid

peroxidation by reducing ferric iron (Fe3+) to ferrous iron (Fe2+), a
reaction that is crucial for the Fenton reaction and lipid
peroxidation (Fig. 1) [61]. Although phospholipid peroxides may
interact with both forms of iron, ferrous iron is likely to be more
important since ferric iron has poor solubility and bioavailability in
cells [14].

Consequences of ferroptosis
Some of the main end products of this process are two omega-6
fatty acids, toxic 4-hydroxy-2-nonenal (4-HNE) and mutagenic
malondialdehyde (MDA) (Fig. 1) [62]. Consequences of ferroptosis
include formation of various secondary lipid peroxide breakdown
products, modification and oxidation of proteins, and eventual
breakdown of membrane integrity. Morphologically, ferroptotic
cells have small mitochondria with increased mitochondrial
membrane densities, reduced or vanishing mitochondrial cristae,
and rupture of the outer mitochondrial membrane [52]. In
addition, ferroptotic death may induce cell membrane rupture,
release of intracellular content such as damage-associated
molecular patterns (DAMPs), inducing sterile inflammation and
can therefore be classified as a form of regulated necrosis [15].
Membrane repair is dependent on endosomal sorting complexes
required for transport-III (ESCRT)-III (Fig. 1). This protein complex,
consisting of 12 subunits, assembles into the spiral filament and
mediates membrane remodeling [63].

Ferroptosis, metabolic and cellular signaling pathways
The regulation of ferroptosis is strongly connected to various
essential cellular processes, including metabolic pathways (iron,
lipids, amino acids, and glucose metabolism), mitochondrial
activity, maintenance of redox status, or response to radiation
exposure. Furthermore, several key mediators of cell signaling
pathways have been implicated in the regulation of ferroptosis,
including multiple oncogenic and tumor-suppressive proteins
(e.g., p53) [14, 16].
Iron metabolism plays a central role in ferroptosis. For example,

transferrin and its receptor import iron into the cells and promote
ferroptosis [64]. In contrast, mechanisms that export cellular iron
have been shown to reduce ferroptosis [65, 66]. Autophagic
degradation of major iron-storage protein ferritin promotes
ferroptosis due to increased iron availability (Fig. 1). This process
is named ferritinophagy [67]. Other types of autophagy, such as
lipophagy, clockophagy and chaperone-mediated autophagy may
also contribute to induction of ferroptosis via degradation of
negative regulators of ferroptosis [68–70]. Indeed, there is growing
evidence asserting the interaction between ferroptotic and
autophagic machinery [71]. For example, lipid peroxidation
products (i.e., 4-HNE) may induce autophagosome formation
[72]. Heme oxygenase-1 (HO-1), a source of intracellular iron, is
found to promote macroautophagy [73]. Erastin also promotes
chaperone-mediated autophagy via upregulation of lysosome-
associated membrane protein 2a (LAMP-2A), that may also
degrade GPX4 [74]. In contrast, overexpression of GPX4 has been
shown to inhibit ROS-mediated autophagy [75].
The activity of several metabolic pathways can affect the

generation of ROS and are therefore strongly associated with the
induction of ferroptosis. For example, glutamine can replenish
tricarboxylic acid (TCA) cycle through the generation of α-
ketoglutarate [64]. High glutamine uptake and metabolism can
result in increased TCA cycle activity and increased rate of
mitochondrial respiration, leading to ROS formation and loss of
the mitochondrial membrane potential. High extracellular con-
centration of glutamate impedes system xc

- function due to
inhibition of cystine uptake, and eventual intracellular glutathione
synthesis, therefore leading to the ferroptosis induction [12].
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Hypoxia promotes ferroptosis by increasing ROS production which
can directly contribute to lipid peroxidation and activation of
hypoxia-inducible factors (HIFs) [14]. HIFs have been shown to
drive ferroptosis in clear cell renal carcinoma [76]. Even though
glucose starvation increases ROS generation, it actually suppresses
ferroptosis through the activation of energy sensor AMP activated
kinase (AMPK). Energy-stress-mediated AMPK activation inhibits
acetyl-CoA carboxylase which blocks the conversion of acetyl-CoA
to malonyl-CoA and thus synthesis of PUFAs [77, 78]. In contrast,
the core regulator of autophagosome formation Beclin-1 (BECN1)
promotes ferroptosis by inhibiting system xc

- activity in energy-
sufficient AMPK-mediated manner [79].
Tumor suppressor proteins may sensitize cells to ferroptosis.

P53, an important regulator of apoptosis and autophagy,
enhances ferroptosis and prevents tumor development via
suppressing the transcription of system xc

- component SLC7A11
[80]. In addition, BRCA1-associated protein 1 (BAP1) also promotes
ferroptosis by SLC7A11 downregulation [81]. Involvement of
oncogenes in ferroptosis is best illustrated through the initial
discovery of stronger lethality of erastin and RSL3 in RAS-mutated
cancer cells, suggesting determining role of RAS-RAF-MEK path-
way in ferroptosis [82].
Furthermore, ionizing radiation has been shown to upregulate

ACSL4 expression in cancer leading to increased lipid peroxidation
and ferroptosis [83]. Clearly, many more regulators of ferroptosis
are yet to be discovered and characterized. As mentioned, and
exemplified earlier in text, ncRNAs as versatile master regulators of
cellular processes have also recently been linked to the regulation
of ferroptosis (Fig. 2). The following sections will systematically
summarize the current knowledge on the involvement ncRNAs in
regulation of ferroptosis and their role in cancer.

The role of miRNAs in the regulation of ferroptosis in cancer
MiRNAs are a class of small evolutionarily conserved ncRNAs with
a length of approximately 22 nucleotides. Their main function is
post-transcriptional regulation of gene expression through bind-
ing to complementary target mRNA sequences, leading to
translational inhibition or mRNA degradation. The final result is
halted protein synthesis [84, 85]. In addition, it has been reported
that miRNAs may also induce gene expression by binding to
target sequence and act as translational activator [86]. While they

were completely unknown less than three decades ago, nowadays
it has been estimated that miRNAs control the expression of over
60% of all protein-coding genes [87]. Given their substantial
regulatory capacity, it seems obvious that deregulation of this
tightly controlled miRNA network is frequently linked to
cardiovascular, autoimmune, infectious, and neurodegenerative
diseases [84]. In fact, they are increasingly recognized as major
mediators of disease. The first link between miRNA and human
cancer was reported in 2002 by Calin and colleagues [88]. Since
then, thousands of miRNAs have been discovered, their dereg-
ulation in virtually every type of cancer has been confirmed, and
their involvement in all hallmarks of cancer has been revealed [89].
Their regulatory roles in ferroptosis in cancer are not well
understood yet, but there is strong evidence that miRNAs are
also involved in this crucial process in cancer cells (Fig. 2). Some
prominent examples are outlined below and a broader overview is
provided in Table 1.

Ferroptosis-stimulating miRNAs
MiR-214-3p promotes ferroptosis in hepatocellular carcinoma
(HCC) by downregulating the expression of activating transcrip-
tion factor 4 (ATF4) [35]. ATF4 is induced by stress signals and
prevents ferroptosis through the induction of SLC7A11 [90]. In
addition, ATF4 regulates the expression of genes involved in
differentiation, metastasis and angiogenesis [91]. In gliomas, ATF4
promotes tumor angiogenesis which can be diminished in vitro
with ferroptosis inducers [92].
In lung cancer, miR-101-3p is found to be downregulated [26].

When available, this miRNA targets oncogenic transducin beta-like
1X-linked (TBLR1) protein. Low expression of miR-101-3p and high
expression of TBLR1 result in enhanced activity of the transcription
factor nuclear factor kappa B (NF-κB), which regulates ferroptosis
through GPX4 and prostaglandin-endoperoxide synthase 2
(PTGS2). Interestingly, appealing results on tumor growth reduc-
tion were observed in in vivo experiments when miR-101-3p was
delivered in the form of nanoparticles [26].
Moreover, miR-324-3p is significantly downregulated in lung

adenocarcinoma (LUAD) cell lines when compared to healthy cells.
When overexpressed, miR-324-3p induces ferroptosis by targeting
GPX4, and enhances cisplatin sensitivity [27]. This miRNA is
additionally upregulated by metformin in breast cancer cell lines,

Fig. 2 NcRNAs implicated in regulation of ferroptosis. NcRNAs regulate ferroptosis via modulation of its key players at mRNA and protein
levels. Ferroptosis agonists (ASCL4, LPCAT3, ALOX, CYP450) and ferroptosis antagonists (GPX4, SLC7A11, SLC3A2, FSP1) can be sponged and
inhibited by overexpressed lncRNAs (pathways 1 and 2), circRNAs (pathways 3 and 4), and miRNAs (pathway 5) thus regulating the ferroptosis
activity. Created with BioRender.
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and in vivo experiments lead to GPX4 downregulation and
ferroptosis induction [28].

Ferroptosis-inhibitory miRNAs
It has been shown in melanoma cells that miR-137 inhibits lipid
peroxidation and iron accumulation in vitro and in vivo by directly
targeting solute carrier family 1 member 5 (SLC1A5) [93]. SLC1A5,
a non-member of system xc

-, is a neutral amino acid transporter of
alanine, serine, cysteine, and glutamine [94]. As a consequence,
reduced levels of this important glutamine transporter lead to
decreased glutamine uptake, glutaminolysis, and MDA accumula-
tion [93]. Under physiological conditions, glutamine uptake and its
metabolism induce lipid ROS generation and ferroptotic cell death
[64]. In addition, miR-137 is associated with TNM stage, metastasis
and drug resistance in various cancers through different pathways
[95–98].
In addition, miR-7-5p is highly expressed in radioresistant cell

lines of ovarian, oral squamous cell and HCC. miR-7-5p down-
regulates mitoferrin, a protein responsible for transporting iron
into mitochondria. Ferroptosis is diminished as a result of reduced
iron levels [99]. This miRNA is also upregulated in radioresistant
cervical cancer [59]. The observed radio-resistance in cervical and
oral squamous carcinoma cell lines is, at least partly, due to miR-7-
5p effect on ferroptosis. Knockdown of miR-7-5p is shown to
increase ROS levels, mitochondrial membrane potential, intracel-
lular Fe2+ content, as well as downregulation of the iron storage
protein ferritin, and upregulation ALOX12 expression [59].
MiR-4443 is upregulated in non-small cell lung cancer (NSCLC)

where it contributes to cisplatin resistance [46]. In addition, this
miRNA may be transferred to the sensitive cells via exosomes and
make them resistant. Mechanistically, miR-4443 inhibits ferroptosis
via regulation of FSP1 expression in an N6-methyladenosine (m6A)
manner by directly targeting its gene METLL3 [46].
MiRNAs have extremely diverse regulatory roles. In addition to

direct regulation of ferroptotic key players, as outlined in the
above section, miRNAs may indirectly regulate this cell death

process via interaction with other ncRNAs, as illustrated in the
following sections.

The role of lncRNAs in the regulation of ferroptosis in cancer
LncRNAs are a class of heterogeneous ncRNAs that are more than
200 nucleotides in length. They share many features with mRNA
regarding transcriptional and post-transcriptional processing
[100]. Despite being classified as ncRNA, the relevance of the
protein-coding potential of lncRNA is growing [101]. Nevertheless,
current evidence infers that lncRNAs mainly regulate cellular
processes through the interaction with various other molecules,
such as DNA, RNA, and proteins [102, 103]. Having a much broader
interactome than miRNAs, lncRNAs can also control chromatin
structure, methylation status, sequestration of miRNAs, assembly
or disruption of protein complexes, and post-translational
modifications [100, 103]. Another feature of lncRNAs is their
tissue- and condition-specific (e.g., cancer-specific) expression
pattern [100]. The first lncRNAs, H19 and Xist, were discovered in
1980s and 1990s, but they remained exceptions until the early
2000s when characterization of ncRNAs started to outpace
protein-coding genes [104]. Dysregulated lncRNAs are involved
in all hallmarks of cancers, including sustained angiogenesis and
deregulated cellular metabolism [105, 106]. In addition, mounting
evidence suggest their importance in ferroptosis regulation, as
outlined below (Fig. 2).

Ferroptosis-stimulating lncRNAs
Tumor suppressive lncRNA P53RRA, also known as LINC00472, is
downregulated in various cancers including lung, liver, colon,
renal and breast cancers [107–111]. In lung cancer, it interacts with
Ras GTPase-activating protein-binding protein 1 (G3BP1) in the
cytosol [38]. This cytosolic P53RRA–G3BP1 interaction displaces
p53 from the G3BP1 complex. In turn, p53 is retained in the
nucleus, leading to cell-cycle arrest, apoptosis, and ferroptosis.
P53RRA promotes ferroptosis and apoptosis by affecting tran-
scription of several metabolic genes, including the

Table 1. Examples of miRNAs implicated in ferroptosis regulation in cancer.

miRNA Role in ferroptosis Mechanism of action Reference

miR-375 Induces ferroptosis in gastric cancer Downregulates SLC7A11 [34]

miR-4715-3p Induces ferroptosis in gastric and esophageal
carcinomas

Downregulates AURKA and GPX4 expression [170]

miR-214-3p Induces ferroptosis in HCC Downregulates ATF4 and SLC7A11 [35]

miR-101-3p Induces ferroptosis in lung cancer Downregulates TBLR1, NF-κB, GPX4 and PTGS2 expression [26]

miR-324-3p Induces ferroptosis in LUAD Downregulates GPX4 [27]

miR-324-3p Induces ferroptosis in breast cancer Downregulates GPX4 [28]

miR-5096 Induces ferroptosis in breast cancer Downregulates SLC7A11 [36]

miR-1287-5p Induces ferroptosis in osteosarcoma Downregulates GPX4 [171]

miR-137 Inhibits ferroptosis in melanoma Downregulates SLC1A5 [93]

miR-9 Inhibits ferroptosis in melanoma Downregulates GOT1, inhibits glutaminolysis [172]

miR-130b-3p Inhibits ferroptosis in melanoma Downregulates DKK1, upregulates NRF2 and HO-1
expression

[173]

miR-103a-3p Inhibits ferroptosis in gastric cancer Downregulates GLS2, prevents hydrolysis of glutamine to
glutamate

[174]

miR-522 Inhibits ferroptosis in gastric cancer Downregulates ALOX15 [60]

miR-23a-3p Inhibits ferroptosis in HCC Downregulates ACSL4 [54]

miR-4443 Inhibits ferroptosis in NSCLC Downregulates m6A, upregulates FSP1 [46]

miR-424-5p Inhibits ferroptosis in ovarian cancer Downregulates ACSL4 [55]

miR-7-5p Inhibits ferroptosis in ovarian, oral squamous cell
and HCC

Downregulates mitoferrin, reduces mitochondrial iron levels [99]

miR-7-5p Inhibits ferroptosis in cervical and oral squamous
carcinomas

Upregulates ferritin, downregulates ALOX12 expression [59]
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downregulation of SCL7A11. Additionally, P53RRA increases
erastin-induced ferroptosis, lipid ROS and iron concentrations [38].
Furthermore, lncRNA GA binding protein transcription factor

beta subunit 1 antisense RNA 1 (GABPB1-AS1) is upregulated by
erastin in HCC cells. It inhibits the translation of GA binding
protein transcription factor subunit beta 1 (GABPB1) protein,
which acts as an activation subunit of transcription activator
nuclear respiration factor 2, also called GA-binding protein (GABP).
Downregulated GABPB1 protein leads to the downregulation of
peroxiredoxin-5 peroxidase (PRDX5). The resulting suppression of
the cellular antioxidant capacity causes accumulation of ROS and
MDA, and reduction in cell viability [112].
Metallothionein 1D pseudogene (MT1DP) is a lncRNA that

regulates erastin-induced ferroptosis through NRF2 [113]. Ectopic
MT1DP expression in NSCLC upregulates ROS and MDA levels,
increases intracellular ferrous iron concentration, and reduces
glutathione levels in cancer cells exposed to erastin. These effects
are achieved through downregulation of NRF2, indirectly via
stabilization of miR-365a-3p that normally targets NRF2 mRNA.
Interestingly, Gai and colleagues designed folate-modified lipo-
some nanoparticles to enhance the bioavailability and the
efficiency of the targeted delivery of both erastin and MT1DP. In
vivo mice studies have shown promising results for erastin-
induced ferroptosis through this particular pathway in NSCLC
[113].

Ferroptosis-inhibitory lncRNAs
LINC00336 is a nuclear lncRNA with oncogenic functions in lung
cancer, including the regulation of ferroptosis [114]. It interacts
with RNA-binding protein ELAV-like RNA-binding protein 1
(ELAVL1), which stabilizes the LINC00336 via binding adenylate
and uridylate (AU)-rich elements (AREs), the signal regions that
determine RNA stability. In addition, it is indirectly upregulated
through the p53 signaling pathway since LSH increases ELAVL1
expression. When upregulated, LINC00336 acts as an endogenous
sponge of miR-6852, thus preventing miRNA-induced down-
regulation of CBS. The result is inhibited ferroptosis in lung cancer
cells, leading to enhanced cell proliferation, colony formation, and
tumor formation. LINC00336 has been shown to decrease iron
concentration, lipid ROS, and mitochondrial superoxide, and
increases mitochondrial membrane potential [114].
Zhang et al. investigated the effects of chronic cadmium

exposure - one of the causative factors of prostate cancer - on
cellular growth and ferroptosis resistance in vitro and in vivo. After
the cadmium exposure, the expression of ferroptosis-related

proteins (particularly GPX4, FTH1 and SLC7A11) was increased,
suggesting that cadmium exposure confers ferroptosis resistance.
These effects were preceded by upregulation of lncRNA OIP5-AS1
expression. OIP5-AS1 acts as an endogenous sponge of miR-128-
3p to regulate the expression of SLC7A11 [39].
Nuclear enriched transcript 1 (NEAT1) is a well-known

oncogenic perinuclear lncRNA that has significant roles in non-
cancerous diseases as well [115, 116]. It is associated with several
hallmarks of cancers including proliferation, cell cycle, invasion,
migration and apoptosis [117]. Wu et al. found that NEAT1 is
capable of binding to ACSL4 mRNA, thus reducing the expression
level of this pro-ferroptotic enzyme in NSCLC [56]. While NEAT1
contributes to apoptosis, its role in ferroptosis in NSCLC seems to
be independent from it. Also, its contribution to ferroptosis is
mediated exclusively via ACSL4 as erastin induction does not
significantly affect other ferroptotic players, such as SLC7A11,
GPX4, and TfR1 levels [56].
Table 2 provides additional lncRNAs involved in ferroptosis

regulation in cancer.

Ferroptosis-related lncRNAs in the prediction of therapy
responses and outcomes
In addition to the above-mentioned lncRNAs with confirmed
regulatory mechanisms, RNAseq investigations associated many
other lncRNAs with ferroptosis. For example, signatures consisting
of eight to twelve differentially expressed lncRNAs were shown to
be independent prognostic factors for overall survival (OS) in
breast cancer [118, 119]. In the study from Zhang et al., patients
with high-risk score had worse prognosis when treated with
endocrine therapy, anthracycline, cyclophosphamide or paclitaxel,
but not anti-HER2 therapy. In general, their tumors were
immunologically cold due to inactivation of immune-related
pathways and reduced tumor’s immune cells infiltration [119].
Similarly, Yao et al. correlated seven ferroptosis-related lncRNAs
with clinical prediction of prognosis and immunotherapeutic
responses in LUAD [120]. In the same fashion, Jian et al. developed
ferroptosis-related lncRNAs signature for glioma consisting of 15
lncRNAs. They also showed that patients in high-risk group had
lower tumor purity, higher infiltration of immunosuppressive cells,
and higher expression of immune checkpoints. In addition, those
patients had no survival benefits of radiotherapy, compared to the
low-risk group [121].
In the first study investigating the roles of ferroptosis-associated

lncRNAs in the prognosis of head and neck cancer (HNSCC), a total
of 25 differently expressed lncRNAs were found to be

Table 2. Examples of lncRNAs implicated in ferroptosis regulation in cancer.

lncRNA Role in ferroptosis Mechanism of action Reference

P53RRA (LINC00472) Induces ferroptosis in lung cancer Downregulates SCL7A11 [38]

MT1DP Induces ferroptosis in NSCLC Stabilizes miR-365a-3p, downregulates NRF2 [113]

GABPB1-AS1 Induces ferroptosis in HCC Inhibits GABPB1 translation, downregulates GABPB1
and PRDX5

[112]

LINC00618 Induces ferroptosis in leukemias Downregulates SLC7A11 via attenuation of LSH expression [37]

LINC00336 Inhibits ferroptosis in lung cancer Stabilized by ELAVL1 and LSH. Sponges miRNA6852,
upregulates CBS

[114]

NEAT1 Inhibits ferroptosis in NSCLC Downregulates ACSL4 expression [56]

H19 Inhibits ferroptosis in breast cancer Inhibits production of lipid ROS and induces production of
GSH

[175]

lncPVT1 Inhibits ferroptosis in HCC Sponges miR-214-3p, upregulates GPX4 [29]

OIP5-AS1 Inhibits ferroptosis in prostate cancer Sponges miR-128-3p, upregulates SLC7A11 expression [39]

RP11-89 Inhibits ferroptosis in bladder cancer Sponges miR-129-5p, upregulates PROM2 which induces
iron export

[176]

MEG8 Inhibits ferroptosis in benign
hemangioma

Sponged by miR-497-5p. Upregulates SLC7A11 and GPX4
expression

[177]
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independent prognosis factors for OS [122]. It was revealed that
those novel ferroptosis-related lncRNAs in HNSCC may regulate
immune and tumor-related pathways, particularly the expression
of PD-1, CTLA4, LAG3, and BTLA [122]. Hence, combining immune
checkpoint inhibitors with ferroptosis inducers may synergistically
reduce cancer growth [123]. There is limited ongoing research that
explores the relationship between immune checkpoints, radio-
therapy and ferroptosis. Therefore, lncRNAs implicated in these
processes should be investigated further. Nevertheless, all above-
mentioned signature profiles need further validation using
different cohorts and complete molecular characterization before
having a potential of being used as biomarkers or targets for novel
medications.

The role of circRNAs in the regulation of ferroptosis in cancer
CircRNAs are single-stranded, covalently closed ncRNA molecules
with distinct characteristics from other ncRNAs [124]. Their
existence was first reported several decades ago. Initially, it was
believed that they are merely splicing-associated noise that arises
from irregular splicing and represents procedural errors. Therefore,
their biological relevance was initially underappreciated [125].
Generally being classified as non-coding molecules, it has been

found that some circRNAs have AUG sites and may be abundantly
associated with polysomes [125, 126]. Similar to lncRNAs, circRNAs
seem to be highly conserved and exhibit tissue-specific expression
[127, 128]. Fairly contrary to the linear miRNAs and lncRNAs,
circRNAs are exceptionally stable thanks to their circular nature,
leaving them without free ends to be degraded by exonucleases.
Due to their increased stability, circRNAs can be found in
exosomes and extracellular fluids, such as saliva and plasma.
Therefore, they have great biomarker potential [129].
While some circRNAs (e.g., intron-containing circRNAs) are

found only in the nucleus where they might play a role in
transcription regulation, most circRNAs are located in the
cytoplasm [125]. There they usually function as miRNA sponges.
Individual circRNAs can bind to multiple miRNAs that regulate

different pathways [124, 125]. This feature is of particular
importance for the potential therapeutic purposes. Importantly,
miRNA-circRNA interactions might not always result in miRNA
suppression, but also vice versa. Therefore, circRNAs may also
function as miRNAs transportation or reservoir agents [124, 130].
However, growing caution stands for the alteration of miRNAs’
activity via sequestration by other ncRNAs (e.g., circRNAs and
lncRNAs), the phenomenon called competing endogenous RNA
(ceRNA) hypothesis [131]. Recent findings alert that physiological
and even pathological changes in individual ceRNA expression are
usually insufficient in significant miRNA activity suppression [132–
134]. This limitation is based on the fact that individual ceRNA
constitute only a small fraction of miRNAs’ large target pool.
Moreover, mathematical models assert that optimal ceRNA
inhibition occurs when miRNA and targets are at near equimolar
concentrations [135–137]. Many previously published studies have
used supraphysiologic concentrations of transfected oligonucleo-
tides or expression vectors that frequently exceed total cellular
concentrations of their natural counterparts. This clearly suggests
an overestimation of ceRNA activity and demand for better
molecular models. Lastly, ceRNA as the appealing and straightfor-
ward approach in ncRNA studying may potentially hinder
researchers’ consideration of other confirmed ncRNAs’ mechan-
isms of action. Nevertheless, circRNAs are important regulators of
numerous normal and pathological cellular processes and
diseases, including cancer [138]. So far, circRNAs have been
associated with several hallmarks of cancers, including sustained
proliferative signaling, evasion of growth suppressors, angiogen-
esis, invasion and metastasis, and evading cell death and
senescence [124, 138]. Growing evidence associate them with
ferroptosis (Fig. 2).

Ferroptosis-stimulating circRNAs
Three circRNAs capable of ferroptosis induction are cIARS,
circKDM4C and circ_0000190. cIARS is derived from the IARS
gene, and it is found to be highly expressed in HCC after sorafenib

Table 3. Examples of circRNAs implicated in ferroptosis regulation in cancer.

circRNA Role in ferroptosis Mechanism of action Reference

cIARS Induces ferroptosis and ferritinophagy in
sorafenib-treated HCC

Interacts with ALKBH5, improves Bcl-2 mRNA stability, enhances
Bcl-2/BECN1 interaction

[139]

circ_0000190 Induces ferroptosis in gastric cancer Sponges miR-382-5p, upregulates ZNRF3, inhibits Wnt/β-catenin
signaling

[178]

circKDM4C Induces ferroptosis in AML Sponges miRNA let-7b-5p. When present, upregulates ACSL4,
PTGS2 and p53, and downregulates GPX4 and FTH1

[32]

circ-TTBK2 Inhibits ferroptosis in glioma Sponges miR-761, upregulates ITGB8 expression [179]

circCDK14 Inhibits ferroptosis in glioma Sponges miR-3938, upregulates PDGFRA, GPX4 and SLC7A11
expression

[30]

circKIF4A Inhibits ferroptosis in papillary
thyroid cancer

Sponges miR-1231, upregulates GPX4 expression [146]

circ_0067934 Inhibits ferroptosis in papillary and follicular
thyroid cancers

Sponges miR-545-3p, upregulates SLC7A11 expression [144]

circDTL Inhibits ferroptosis in NSCLC Sponges miR-1287-5p, upregulates GPX4 [31]

circRHOT1 Inhibits ferroptosis in breast cancer Sponges miR-106a-5p, upregulates STAT3 [180]

circGFRA1 Inhibits ferroptosis in breast cancer Sponges miR‐1228, upregulates AIFM2 and GPX4 expression [181]

circPVT1 Inhibits ferroptosis in esophageal cancer Sponges miR-30a-5p, upregulates FZD3, GPX4 and SLC7A11
expression

[40]

circIL4R Inhibits ferroptosis in HCC Sponges miR-541-3p, upregulates GPX4 expression [182]

circ0097009 Inhibits ferroptosis in HCC Sponges miR-1261, upregulates SLC7A11 [143]

circABCB10 Inhibits ferroptosis in CRC Sponges miR-326, upregulates CCL5 [141]

circ_0007142 Inhibits ferroptosis in CRC Sponges miR-874-3p, upregulates GDPD5 [183]

circEPSTI1 Inhibits ferroptosis in cervical cancer Sponges miR-375, miR-409-3p and miR-515-5p, upregulates
SLC7A11 expression

[41]
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treatment. Liu et al. found that it promotes ferroptosis after
sorafenib treatment through, at least partially, activation of
autophagy and ferritinophagy. This circRNA physically interacts
with RNA binding protein AlkB Homolog 5 (ALKBH5) [139].
ALKBH5 is known for the improvement of Bcl-2 mRNA stability
by catalyzing m6A demethylation, thus enhancing Bcl-2/BECN1
interactions. It is also known as autophagy inhibitor in cancer
[140]. Sorafenib administration increases cIARS–ALKBH5 interac-
tion, which is probably due to sorafenib-induced expression of
cIARS as this kinase inhibitor has no influence on the ALKBH5
protein levels. Consequently, cIARS represses negative role of
ALKBH5 in autophagy leading to enhanced autophagy, ferritino-
phagy and ferroptosis [139]. Up to date, cIARS is the only circRNA
that regulates ferroptosis via interaction with a formed protein.
Further, circKDM4C is downregulated in AML. Normally, it

sponges miRNA let-7b-5p which targets p53. In addition to
indirect upregulation of p53, circKDM4C, when not retrieved from
the circRNA pool, is capable of ferroptosis induction via increasing
cellular iron content, upregulation of ACSL4 and PTGS2, and
downregulation of GPX4 and FTH1 [32].

Ferroptosis-inhibitory circRNAs
Xian et al. found that circular ATP binding cassette subfamily B
member 10 (circABCB10) is upregulated in colorectal cancer (CRC)
where it acts as a sponge to miR-326. Consequently, its target C-C
motif chemokine ligand 5 (CCL5) is overexpressed and contributes
to carcinogenic effects, including inhibition of apoptosis and
ferroptosis [141]. CCL5 has already been associated with CRC
development and progression [142]. However, its exact mechan-
ism in ferroptosis is still not reported.
Furthermore, circEPSTI1 is upregulated in cervical cancer

contributing to enhanced cellular proliferation. Mechanistically,
circEPSTI1 is capable of sponging three miRNAs, namely miR-375,
miR-409-3p and miR-515-5p. All three of those miRNAs normally
target SLC7A11, that acts as a ferroptosis inhibitor [41]. Other
circRNAs that upregulate SLC7A11 are circ0097009 (sponges miR-
1261 in HCC) [143], circ_0067934 (sponges miR-545-3p in thyroid
cancer) [144], circCDK14 (sponges miR-3938 in glioma) [30], and
circPVT1 (sponges miR-30a-5p in esophageal cancer) [40].
Moreover, GPX4 is, as mentioned above, considered to be

pivotal regulator of ferroptosis, analogous to bcl-2 in apoptosis

Fig. 3 NcRNA-based therapeutics and delivery systems. Several ncRNA-based therapeutics exist, including antisense oligonucleotides,
siRNAs, shRNAs, miRNA mimics, anti-miRNAs, miRNA sponges, and therapeutic circRNAs (box 1). Their major limitations and side effects can
expectedly be overcome by usage of unique delivery systems that include lipid and polymer nanoparticles, antibodies, bacteriophages,
exosomes and viral vectors (box 2). Newer generation of ncRNA therapeutics with convenient clinical administration (box 3) are awaited
candidates due to their numerous advantages, including utilization of existing cellular processing mechanisms, capability of multiple signaling
pathway targeting and promising cost-effective production (box 4). siRNA, small interfering RNA; shRNA, short hairpin RNA; antimiRs, anti-
microRNAs; circRNAs, circular RNAs. Created with BioRender.
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[145]. CircKIF4A, upregulated in papillary thyroid cancer, acts as a
sponge of miR-1231, leading to GPX4 overexpression [146].
Table 3 provides an overview of additional circRNAs involved in

ferroptosis regulation in cancer.

Ferroptosis and ncRNAs interplay: therapeutic potential in
cancer
Remarkably, this form of cell death has been associated with
numerous pathologic processes including neurodegeneration,
liver and lung fibrosis, ischemia-reperfusion injuries in brain,
heart, kidneys and organ transplantation [14, 16]. Nevertheless,
there is major evidence of its particular relevance in cancer. It has
been shown that mesenchymal and dedifferentiated cancer cells,
which are resistant to cancer therapeutics and apoptosis, are
highly susceptible to ferroptosis inducers [147, 148]. Hence,
inducing ferroptotic cell death (e.g., by pharmacologic manipula-
tion) may help to overcome resistance of malignant cells to
chemotherapy and therefore has great potential for cancer
treatment. Several strategies to specifically induce ferroptosis are
already being tested. One option is to target key enzymes
involved in ferroptosis in cancer cells. For example, pharmacologic
and genetic inhibition of system xc

- by blocking SLC3A2 and
SLC7A11 have shown promising results in mouse models with low
toxicity [149–152]. Similarly, targeting FSP1 is a promising
approach due to its irrelevance in normal mice development
indicating a potential broad therapeutic window [42, 153].
While GPX4 is expressed in most cancer cell lines, it is essential

for various organs, including kidneys and neurons [145, 154, 155].
Therefore, GPX4 inhibitors (e.g., RSL3) should be delivered

specifically to the cancer cells to prevent side effects. Indirect
ferroptosis inducers such as erastin may have low solubility and
labile metabolism in the complex human body [156]. Incorpora-
tion of ferroptotic inducer compounds into protective delivery
systems, such as nanoparticles, may overcome this problem. In
addition, nanoparticles delivering iron, peroxides, and ncRNAs
targeting key inhibitors of ferroptosis into cancer cells are already
actively being tested in vitro and in vivo studies. NcRNAs are
notably emerging as they ultimately carry several advantages.
They are naturally occurring molecules in cells meaning their
therapeutic counterparts may utilize existing cellular metabolic
pathways. Additionally, ncRNAs frequently target multiple genes
within one and/or more pathways causing a broader yet specific
anti-cancer response, such as the case with miR-15 and miR-16
cluster that regulates various anti-apoptotic and cell cycle players,
including bcl-2, mcl1 and c-JUN [157]. Lastly, ncRNA therapeutics
can be fairly easy chemically synthesized shaping them as cost-
effective medications of the future.
Indeed, several ncRNA-based therapies are currently developed,

including antisense oligonucleotides, small interfering RNAs, short
hairpin RNAs, miRNA mimics, miRNA sponges, anti-microRNAs
(antimiRs), and therapeutic circular RNAs (Fig. 3) [158, 159]. Some
of them are targeting up-regulated oncogenic molecules, while
others replenish downregulated tumor suppressors. Although
majority are still being tested in clinical studies, eleven ncRNA-
based therapeutics have already been approved for several other
disease entities [159]. Major current limitations of ncRNA-based
therapeutics are specificity, delivery, and tolerability. Issues with
specificity and off-target effects occur due to uptake by the

Fig. 4 Compounds implicated in modulating ferroptosis. Some of these compounds are clinically available therapeutics that may
additionally induce ferroptosis and/or sensitize cells to ferroptosis (cisplatin, metformin, sulfasalazine, sorafenib, immune checkpoint inhibitors
HMG-CoA reductase inhibitors, ionizing radiation, artesunate, haloperidol, lapatinib, ibuprofen, acetaminophen, temozolomide), while others
may prevent ferroptosis (selenium, idebenone, CoQ10, zileuton, rosiglitazone, vitamin E, DFO, CPX, resveratrol). In addition, several
compounds currently limited to experimental studies carry potential for optimization toward clinical utilization in ferroptosis induction
(erastin, RSL3, FIN56, BSO, ML-210, IKE, apocynin, DPI, dioscin) and ferroptosis blockade (baicalein, triascin C, ferrostatin 1, liproxstatin 1, BHT,
BH4). RSL3, RAS synthetic lethal 3; BSO, buthionine sulfoximine; IKE, imidazole ketone erastin; DPI, diphenyleneiodonium chloride; BHT,
butylated hydroxytoluene; BH4, tetrahydrobiopterin; DFO, deferoxamine; CPX, ciclopirox olamine. Created with BioRender.
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untargeted cells. The unstable nature of ncRNAs leads to their
inefficient intracellular delivery, and adverse immune responses
occur if ncRNAs are recognized as foreign viral nucleic acids [158–
160]. Nevertheless, newer generations of RNA therapeutics are
being designed to overcome those limitations and increase their
chances of eventual clinical utilization. For example, it has been
shown that circularization of small RNAs mediates more efficient
and longer inhibiting effects on their targets, and overcome major
current limitations of ncRNA-based therapeutics [161–163].
Particular advances have been made with chemical modifications
and optimization of delivery methods that include lipid nano-
particles, polymers, antibodies, bacteriophages, and exosomes
(Fig. 3) [159]. Furthermore, immune checkpoint inhibitors, radio-
therapy and several medications including sorafenib, sulfasalazine,
metformin, artesunate, temozolomide, cisplatin, may all induce
ferroptosis and/or sensitize cells to ferroptosis (Fig. 4) [83, 164–
169]. These findings propose the potential drug repositioning and
synergistic combinatorial therapeutic regimens in the future.
Figure 4 highlights the compounds, including available therapeu-
tics, with their suggested roles in ferroptosis.

CONCLUSION
Recently characterized as unique form of regulated cell death,
ferroptosis has already been associated with numerous diseases –
above all with cancer. However, our knowledge about ferroptosis is
still fairly limited and many open questions remain. We still do not
know the complete relationship between ferroptosis and other
forms of regulated cell death that share some common upstream
mechanisms, such as p53. In addition, redox-independent roles of
iron as well as the roles of other metals (e.g., copper) are not
completely ruled out in ferroptosis induction. In addition, the exact
molecular events responsible for the execution of cell death via
ferroptosis are not fully understood. This is particularly pronounced
in our ignorance of molecular events that occur downstream of
lipid peroxidation including crucial moment(s) when activated
ferroptosis cannot longer be suppressed. Finally, specific markers
of ferroptosis suitable for application in live cells and intact tissues
are still lacking. Furthermore, ncRNAs are a heterogenous group of
non-coding transcripts with exceptional regulatory and biomarker
capacities. Only a fraction of annotated ncRNAs have been
investigated in the context of ferroptosis and cancer. Nevertheless,
current evidence suggests that ferroptosis is frequently inhibited in
cancer through the deregulation of usually tightly controlled
ncRNA networks, thereby aiding cancer cell survival and progres-
sion. Hence, artificial induction of ferroptosis carries a great
therapeutic potential. Albeit in their infancies, emerging innovative
discoveries in both fields are paving the exciting path toward the
successful utilization of novel ferroptosis-modulating ncRNA-
therapeutics in cancer.
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