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Abstract

The human genome is ‘pervasively transcribed’ leading to a complex array of non-

coding RNAs (ncRNAs) that far outnumber coding mRNAs. ncRNAs have regulatory roles 

in transcription and post-transcriptional processes as well numerous cellular functions 

that remain to be fully described. Best characterized of the ‘expanding universe’ of 

ncRNAs are the ~22 nucleotide microRNAs (miRNAs) that base-pair to target mRNA’s 

3′ untranslated region within the RNA-induced silencing complex (RISC) and block 

translation and may stimulate mRNA transcript degradation. Long non-coding RNAs 

(lncRNAs) are classi�ed as >200 nucleotides in length, but range up to several kb and are 

heterogeneous in genomic origin and function. lncRNAs fold into structures that interact 

with DNA, RNA and proteins to regulate chromatin dynamics, protein complex assembly, 

transcription, telomere biology and splicing. Some lncRNAs act as sponges for miRNAs 

and decoys for proteins. Nuclear-encoded lncRNAs can be taken up by mitochondria 

and lncRNAs are transcribed from mtDNA. Both miRNAs and lncRNAs are dysregulated 

in endocrine cancers. This review provides an overview on the current understanding of 

the regulation and function of selected lncRNAs and miRNAs, and their interaction, in 

endocrine-related cancers: breast, prostate, endometrial and thyroid.

Introduction

Cancer is a disease of the genome in which tumors have 

a constellation of genomic and epigenetic alterations 

that drive their clinical behavior and patient prognosis 

(Macconaill & Garraway 2010). The Central Dogma 

proposed by Francis Crick in 1958 envisioned that 

information flowed from DNA to mRNA, which is 

translated into functional proteins with the assistance 

of tRNA and rRNA (reviewed in Morris & Mattick 2014, 

Jarroux et al. 2017). With time, additional classes of RNA 

that have important regulatory roles in cellular biology 

were discovered: short nuclear and small nucleolar RNAs 

(snRNAs and snoRNAs), followed by microRNAs (miRNAs) 

and long non-coding RNAs (lncRNAs). The Encyclopedia 

of DNA Elements (ENCODE) Consortium was started in 

2003 as an international collaboration funded by the 

National Human Genome Institute (NHGRI). Analysis 

of the human genome revealed that while ~85% is 

transcribed, only ~1% is protein-coding mRNA (ENCODE 

Project Consortium 2012, Djebali et  al. 2012, Dykes & 

Emanueli 2017). The GENCODE consortium (https://

www.gencodegenes.org/) is a subproject of ENCODE that 

produces high-quality reference gene annotation and 

experimental validation. The current GENECODE, version 

27 of the human genome includes 58,288 genes; 200,401 

total transcripts; 19,826 protein-coding genes; 15,778 

lncRNAs; 14,694 pseudogenes; 7569 small non-coding 
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RNA (ncRNA) genes and 1881 miRNAs. Most (85%) small 

ncRNAs are snRNAs, snoRNAs, miRNAs and tRNAs (Djebali 

et  al. 2012). In addition to GENECODE, the FANTOM 

(Functional Annotation of Mammalian Genomes) project 

is creating a comprehensive catalog of transcripts encoded 

in human, mouse, rat, dog, Rhesus monkey and chicken 

genomes (http://fantom.gsc.riken.jp) (Kawaji et  al. 

2017). Analysis of data from FANTOM5 identified 27,919 

human lncRNA genes with high-confidence 5′ ends and 

provided evidence that 69% (19,175) are functional (Hon 

et  al. 2017). The history of the discovery of regulatory  

RNAs, notably the ncRNAs, has been reviewed (Morris & 

Mattick 2014).

The advent of next-generation sequencing (NGS) 

by RNA sequencing (RNA-seq), also called ‘whole 

transcriptome shotgun sequencing’ and ‘deep RNA-seq’, 

has allowed characterization of the cellular transcriptomes, 

i.e., the entire spectrum of RNAs produced in a cell type 

(Wolf 2013), resulting in a glut of data that can be mined 

by investigators. One database of transcriptomes of 

potential interest for readers of this review is the NURSA 

website (www.nursa.org). The transcriptome includes 

mRNA, rRNA and tRNA; and the ncRNAs: miRNAs, 

enhancer RNAs (eRNAs), endogenous small-interfering 

RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), circular 

RNAs (circRNAs) and lncRNAs (Marrone et  al. 2014). 

Table  1 highlights features of these ncRNAs and their 

roles in cellular processes. The function of piRNAs and 

snoRNAs in endocrine-related cancers was reviewed 

(Venkatesh et al. 2015). miRNAs are best characterized for 

their gene silencing of target mRNA by complementary 

base-paring with the 3′UTR within the RNA-induced 

silencing complex (RISC) to repress translation and/or 

cause mRNA degradation (Muluhngwi & Klinge 2015). 

Like miRNAs, siRNAs and piRNAs bind argonaute (AGO) 

family members and base-pair with target RNA to cause 

RNA degradation and/or translation repression (Watanabe 

& Lin 2014). Studies have shown that RNA polymerase 

(pol) II-mediated transcriptional activity at gene enhancers 

is ‘pervasive’ and bidirectional, generally producing 

transcripts in both directions including short eRNAs that 

play roles in enhancer–promoter interactions (reviewed 

in Lam et  al. 2014). Enhancers are relatively insensitive 

to position and distance of their target genes and about 

half are intragenic, which can result in inhibition or 

attenuation of nascent transcript elongation (Cinghu et al. 

2017). circRNAs are usually formed by noncannonical 

splice reactions and reside in the cytoplasm where one 

circRNA, CDR1AS, regulates miR-7 stability and transport 

in neurons (Piwecka et al. 2017).

Both miRNAs and lncRNAs are epigenetic regulators 

of human cancers (Liz & Esteller 2016). Moreover, these 

RNAs are chemically modified, e.g., by post-transcriptional 

methylation on N6 of adenosine (m6A), which alters their 

activities, providing an additional layer of regulation 

termed ‘epitranscriptomics’ (Li et al. 2016c). Many more 

papers have been published on miRNAs than lncRNAs 

in endocrine cancers (Fig. 1). This review provides a brief 

overview of the identity, regulation and roles of miRNAs 

and lncRNAs in selected endocrine-related cancers. 

Because of the scope of published literature on these topics, 

this review is not a comprehensive analysis of lncRNAs 

and miRNAs in breast, prostate, endometrial and thyroid 

cancers. The reader is provided with citations to recent 

reviews and primary literature for further information.

lncRNAs: classification and 
functional activities

lncRNAs are defined as ncRNAs of >200 nucleotides that 

are transcribed by RNA pol II from regulatory regions 

including promoter upstream elements and technically 

include eRNAs (Andersson et al. 2014). However, eRNAs 

differ from lncRNAs by being shorter (<2 kbp), without 

being spliced and are not polyadenylated (Kim et  al. 

2015). By total cellular RNA mass, lncRNA constitutes 

only 0.03–0.2% while mRNA constitute 3–7% (Dykes & 

Emanueli 2017). lncRNAs are classified based on their 

genomic organization: (1) intergenic lncRNAs (lincRNAs) 

are transcribed between two protein-coding genes; 

(2) intronic lncRNAs are transcribed from introns of 

protein-coding genes; (3) overlapping lncRNAs, as the 

name implies, constitute transcripts that overlap known 

protein-coding genes; and (4) antisense (as) lncRNAs are 

transcribed in a direction opposite that of the protein-

coding gene (Peng et al. 2017b) (Fig. 2). Pseudogenes that 

arise from DNA duplication of coding genes followed 

by inactivating mutations that render the pseudogene 

non-coding are transcribed as lncRNAs and sequester 

some of the miRNAs that interact with conserved miRNA 

response elements (MREs) in the functional gene (Dykes 

& Emanueli 2017). However, given the low levels of 

lncRNA, the functional role of lncRNAs as ‘miRNA 

sponges’ by base-pairing and thus blocking miRNA-MRE  

binding to target mRNA-3′UTRs, is debated. It seems likely 

that more highly expressed lncRNAs (with higher FKPM 

(Fragments Per Kilobase Million reads in RNA-seq)) would 

be more likely to act as competing endogenous RNA 

(ceRNA) to sequester miRNAs (Dykes & Emanueli 2017). 

Additional classifications of lncRNAs are by (1) length, 
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Table 1 Summary of ncRNAs in humans, excluding rRNA and tRNA, with their size, cellular location, aspects of biogenesis, 

function, citations for reviews for roles in various endocrine-related cancers and websites.

 

ncRNA

Description, size, location, function and example of �ndings 

in endocrine cancers

 

Websites

miRNA ~21 nt ssRNA
• Nucleus and cytoplasm
• Transcribed as pri-RNAs, processed from pre-miRs bear-

ing one or more inverted repeats or hairpins
• Form complimentary base-pairs with the 3′ untranslat-

ed region of target mRNAs within RISC block transla-
tion and/or stimulate mRNA transcript degradation

• Expressed in a tissue-speci�c manner
• Most are considered highly stable
• IsomiRs are sequence variants of the canonical miRNA 

currently in the miRBase generated from a single 
miRNA locus by template and non-template variants

• miRNAs in endocrine cancers have been reviewed: thy-
roid, adrenal, pancreatic, and pituitary cancers (Lima 
et al. 2017); endocrine-resistant breast (Muluhngwi 
& Klinge 2015); prostrate, ovarian, and breast (Smith 
et al. 2017)

miRBase http://www.mirbase.org
miRTarBase: experimentally validated miRNA-target 

Interactions http://miRTarBase.mbc.nctu.edu.tw
miRAD: intragenic miRNA database http://bmi.ana.

med.uni-muenchen.de/miriad/
MAGIA http://gencomp.bio.unipd.it/magia/start/
TargetScanHuman search for predicated miRNA 

targets http://www.targetscan.org/vert_71/
IsomiRage http://cru.genomics.iit.it/Isomirage/

circRNAs Circular RNAs: 4 types: exonic circRNAs (ecircRNA), circular 
RNAs from introns, exon–intron circRNAs (EIciRNA) and 
intergenic circRNAs (Meng et al. 2017)

• Cytoplasm
• Generally formed by alternative splicing of pre-mRNA 

in which an upstream splice acceptor is joined to a 
downstream splice donor in a process known as ‘backs-
plicing’ (Barrett & Salzman 2016)

• Expressed in thousands of human genes
• Stable: half-life >48 h
• Expressed in a cell-type and tissue-speci�c manner
• Act as miRNA sponges, interact with RNA-binding pro-

teins, can be positive regulators of their parental genes
• Can be translated (Yang et al. 2017c)
• circRNAs were identi�ed in human papillary thyroid 

cancer (Peng et al. 2017a) and in human breast tumors 
(Liang et al. 2017)

CIRCexplorer (Yang et al. 2017c) https://omictools.
com/circexplorer-tool

CIRI https://omictools.com/ciri-tool
CircRNA_�nder https://omictools.com/circrna-�nder-

tool
MapSplice 2 for mapping RNA-seq data to ref 

genome for splice junction discovery http://www.
netlab.uky.edu/p/bioinfo/MapSplice2

CirclncRNAnet (RRIC:SCR_015794) https://dknet.org/
scicrunch/Resources/record/ 
nlx_144509-1/2d26f6b1-5909-5066-a261-
a05ca13e12d9/search?mc_cid=23e8e71213&mc_
eid=ed4995675c

eRNAs Enhancer RNAs are produced from enhancers (Lam et al. 
2014)

• Nuclear, 5′methyl-capped, +/− polyadenylation
• 800–2000 bp
• Low stability and abundance
• Usually function in cis to increase transcription by 

facilitating DNA looping between the enhancer and 
promoter

• May facilitate histone modi�cations and chromatin 
remodeling (Li et al. 2016b)

• CGA, the common α-subunit of LH, FSH, and TSH is 
regulated by an eRNA (Nagarajan et al. 2015)

piRNA  
 
 
 
 
 
 
 
 
 
 
 

PIWI-interacting RNAs
• 24–32 nt ss RNAs
• Derived from piRNA clusters
• Nuclear and cytoplasmic
• Bind PIWI subfamily of Argonaut proteins
• Involved in gene silencing (Luteijn & Ketting 2013)
• Protect genome against instability by repressing trans-

poson activity via transcriptional gene silencing
• Expression mostly restricted to germ cells
The transposable element (TE) landscape in postnatal 

human testis is matched by a relevant piRNA repertoire 
to silence TEs in spermatogenesis (Gainetdinov et al. 
2017)

 
 
 
 
 
 
 
 
 
 
 
 

(Continued)
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e.g. very long lincRNA (vlincRNA); (2) being encoded 

within specific DNA regulator elements and loci, e.g., in 

telomeres (TERRA), centromeres, rDNA loci (PAPAS) or 

3′UTR-associated RNAs (uaRNA); (3) biogenesis pathway; 

(4) subcellular localization or origin, e.g., nuclear, 

cytoplasmic or mitochondrial; (5) function, e.g., scaffold 

lncRNA (HOTAIR) and (6) association with specific 

biological processes (Jarroux et al. 2017).

lncRNAs show chromatin marks that are typical of 

transcribed coding genes: H3K4me3 for transcription 

initiation and H3K36me3 for elongation (Rinn & Chang 

2012) and are regulated by transcription factors binding 

to their promoters. lncRNAs are alternatively spliced, thus 

generating isoforms. lncRNAs associated with enhancer 

regions can act in cis, leading to increased transcription 

of neighboring genes, including other lncRNAs (Ørom Ulf 

& Shiekhattar 2013). Some lncRNAs directly bind target 

mRNAs which can either target the mRNA for degradation 

or stabilize the transcript. A class of lncRNAs called 

‘activating ncRNA-as’ specifically activate neighboring 

coding genes by binding to specific DNA sequences while 

associating with the Mediator-cohesin complex to loop 

enhancer/promoter regions (Dykes & Emanueli 2017). 

Despite their length, which can be several kb, lncRNAs 

do not have a functional protein-encoding capacity, i.e., 

those that contain small open reading frames (ORFs) do 

not form a template for translation (Hu et al. 2012).

As indicated in the Introduction, the number of 

human lncRNAs varies between databases. For example, 

the NONCODE v5 database includes 96,308 lncRNA genes 

(Xiyuan et al. 2017) compared with 15,778 in GENECODE 

and 27,919 in FANTOM (Hon et  al. 2017). lncRNAs are 

expressed in a tissue-specific manner and are usually  

5′-end capped and some are 3′-end polyadenylated (Li 

et  al. 2016a). Some lncRNAs, e.g., MALAT1 and NEAT1, 

have a triple-helical structure at the 3′end that protects 

them from degradation. The landscape of isoforms 

of lncRNAs adds to the complexity of understanding 

lncRNA function (Ziegler & Kretz 2017). In addition, the 

presence of lncRNA modifications and lncRNA editing 

has been reported and associated with structural and 

functional changes, which further increases the variety of 

 

ncRNA

Description, size, location, function and example of �ndings 

in endocrine cancers

 

Websites

Endo-siRNA Endogenous small-interfering RNAs
• 20–23 nt
• Cytoplasmic
• Processed from dsRNAs by DICER
• Have a 3′ 2-nt overhang
• Form an effector complex with AGO1 or AGO2 (Piatek 

Monica & Werner 2014)
• Detected in mammalian embryonic stem cells, oocytes 

and spermatocytes (Hilz et al. 2016)

lncRNAs Long non-coding RNAs
• >200 nt
• Can be several kb in length
• Transcribed by RNA pol II
• 5′-Methyl capped
• Some are polyadenylated
• Expressed in a cell-speci�c manner
• Interact with DNA, RNA, and proteins
• Stability generally lower than mRNAs with intronic or 

promoter-associated lncRNAs less stable than intergen-
ic or antisense lncRNAs (Jarroux et al. 2017)

• Located in nucleus, cytoplasm, and mitochondria
• Regulate gene expression, chromatin modi�cation 

and dynamics, protein complex assembly, splicing, and 
translation

• Regulate development and differentiation including 
embryonic development (Bouckenheimer et al. 2016)

• X chromosome silencing by XIST: a 16 kb lncRNA 
(Cerase et al. 2015)

HUGO Gene Nomenclature Committee lncRNAs 
https://www.genenames.org/cgi-bin/genefamilies/
set/788

NONCODE v. 5.0 ncRNA http://www.noncode.org/
lncRNASNP2 is a database of functional SNPs and 

mutations in human and mouse lncRNAs http://
bioinfo.life.hust.edu.cn/lncRNASNP2

Websites reviewed in (Fritah et al. 2014)
LNCipedia 4.1 https://lncipedia.org/ (146,742 human 

annotated lncRNAs)
DIANA-LncBase v.2 includes miRNA:lncRNA 

interactions (Paraskevopoulou et al. 2016)
NONCODE v5.0 http://www.noncode.org/index.php

 
 

Predicting miRNA/target duplex (Rehmsmeier et al. 2004) 
has been used to examine miRNA/lncRNA interaction 
(Zhou et al. 2017)

http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/ 
 

Table 1 Continued.
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lncRNAs (reviewed in Ziegler & Kretz 2017). For example, 

m6A modification is required for XIST1-mediated gene 

silencing (Patil et  al. 2016). Accumulating evidence 

implicates roles for dysregulated lncRNAs in cancer 

(Huarte 2015), autoimmune and inflammatory diseases 

(Chen et  al. 2017), including type 1 (Mirza et  al. 2017) 

and type 2 diabetes (Motterle et al. 2016, Leti & DiStefano 

2017) and other diseases.

lncRNA function depends on cellular location 

(Fig.  3). lncRNAs fold in various conformations that 

allows interaction with RNA, DNA and proteins to 

regulate nuclear, cytoplasmic (Delas & Hannon 2017) and 

mitochondrial function (De Paepe et al. 2017). lncRNAs 

regulate processes including gene transcription, chromatin 

dynamics, chromatin looping, histone modifications, 

telomere biology, protein complex assembly, RNA 

splicing and translation (Mercer & Mattick 2013). Within 

the nucleus, specific lncRNAs, including AIRN, ANRIL, 

HOTAIR and XIST interact with specific transcription 

factors, enzymes involved in DNA methylation (DNMT1), 

chromatin modification (HDAC1, EZH2 (a lysine 

N-methyltransferase)) and polycomb repressive complex 

2 (PRC2) (Nakagawa & Kageyama 2014). lncRNAs are 

involved in assembly of active e.g., NEAT1, or repressed, 

e.g., XIST, nuclear chromatin domains in a cell-dependent 

manner (Rinn & Guttman 2014). NEAT1 is an architectural 

RNA that interacts with >60 RNA-binding proteins and 

transcription factors in paraspeckles (Yamazaki & Hirose 

2015). NEAT1 is also acts as a ‘sponge’ for miR-214 and 

mIR-101, thus upregulating targets of these miRNAs, 

i.e., HMGA1 and EZH2, respectively (Qian et  al. 2017, 

Wang et  al. 2017a,c). Thus, many biological processes 

are regulated by lncRNAs including cell differentiation, 

proliferation and survival.

Functional roles of lncRNAs in the cytoplasm 

including acting as a scaffold. For example, the RNA stem-

loop structure of LINC01139 (also called LINK-A) provides 

a scaffold for HBEGF (heparin-binding epidermal growth 

factor (EGF)-like growth factor)-triggered, EGF receptor 

(EGFR):GPNMB (glycoprotein NMB) heterodimer-

mediated recruitment of PTK6 (protein tyrosine kinase 

6, also called BRK) and LRRK2 (leucine-rich repeat 

kinase-2) for phosphorylation and stabilization of 

HIF-1α in MDA-MB-231 triple-negative breast cancer 

(TNBC) cells (Lin et  al. 2016). LINC01139 also binds 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) and 

Figure 1

PubMed referenced papers on miRNAs and lncRNAs for endocrine 

cancers. Values were determined on November 28, 2017.

Figure 2

Classi�cation of lncRNAs based on their location 

and transcription in relation to protein-coding 

genes. Gene structure is diagramed 5′–3′, left to 

right, for RNA pol II transcription.
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promotes AKT recruitment and phosphorylation (Lin 

et  al. 2017). Several lncRNAs modulate mRNA stability 

(reviewed in Rashid et  al. 2016). lncRNAs also associate 

with ribonucleoprotein complexes to regulate translation. 

For example, ZFAS1 associates with the 40S ribosome in 

the cytoplasm of MDA-MB-468 breast cancer (BCa) cells 

and is downregulated in breast tumors compared with 

normal breast tissue (Hansji et al. 2016).

Examples of lncRNAs dysregulated in 
endocrine-related cancers

Although many lncRNAs have been identified using 

bioinformatic approaches, relatively few have been 

functionally characterized and little is known about the 

mechanism(s) of action of even the best characterized 

lncRNAs. This review is not comprehensive with respect 

to lncRNAs in endocrine-related cancers, but summarizes 

representative lncRNAs that are best characterized 

(Table 2 and described below). Examples of recent reviews 

of lncRNAs include roles in: female reproductive cancers 

(Ong et al. 2017), BCa (Malih et al. 2015, Venkatesh et al. 

2015, Miano et al. 2016, Niknafs et al. 2016, Warburton 

& Boone 2017), prostate cancer (PCa) (Alahari et al. 2016, 

Zhang et al. 2016a,c, Yang et al. 2017b) and thyroid cancer 

(Murugan et al. 2017).

One of the first characterized lncRNAs, HOTAIR 

(HOX Transcript Antisense RNA) is a 2.2 kb lncRNA 

Figure 3

Examples of interactions of lncRNAs and miRNAs in endocrine-related cancers. Not all these interactions may be expected in one cell type. lncRNAs can 

act in cis on an adjacent gene to regulate its transcription and translation. An example is HOTAIR’s interaction with AR (Zhang et al. 2015a). Nuclear 

miRNAs can be transported into mitochondria through unknown mechanisms and miRNAs are produced from the mtDNA genome (ds DNA plasmids 

shown), both are called ‘mitomiRs’. lncRNAs are transcribed from mtRNA and are called mitolncRNAs. Pri-miRNAs are process to pre-miRNAs by the 

Drosha microprocessor complex and exported by Exportin/RAN GTPase to the cytoplasm where they are cleaved into mature miRNAs by DICER which 

interacts with the lncRNA SRA1 (Redfern et al. 2013). LINC01139 acts as a scaffold for PIP3, BRK, LRK2 and GPNMB, which leads to HIF-1α 

phosphorylation (Lin et al. 2017). MALAT1 acts as a ceRNA and ‘sponges’ miRNAs including miR-101, miR-125b and mIR-217 (Table 2 and Supplementary 

Table 1).
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found only in mammals and its structure is conserved, 

despite changed sequences, especially in its protein-

binding segments, implying evolutionary importance 

(Jarroux et  al. 2017). HOTAIR is transcribed from the 

HOXC locus from a position intergenic and antisense 

to the flanking HOXC11 and HOXC12 genes. HOTAIR 

facilitates the HOXD gene cluster for transcriptional 

repression by recruiting PRC2 (Rinn et al. 2007). Analysis 

of data in the Cancer Genome Atlas (TCGA) revealed 

that increased HOTAIR expression correlates with 

metastasis and poor prognosis in breast and prostate 

cancers (Weidle et al. 2017). HOTAIR is both nuclear and 

cytoplasmic and considered an onco-lncRNA because of 

its ability to promote papillary thyroid cancer (PTC) cell 

proliferation and silencing its expression inhibited cell 

growth (Zhu et  al. 2016). HOTAIR is a scaffold for the 

PRC2 and LSD1 complexes affecting H3K27 methylation 

and H3K4 demethylation for epigenetic gene silencing 

promoting cancer metastasis (Wu et  al. 2014). HOTAIR 

decreases oxidative phosphorylation (OXPHOS) 

complex III subunit VII (UQCRQ) protein expression, 

thus reducing OXPHOS efficiency and suggesting that 

HOTAIR is important for mitochondrial function in HeLa 

cells (Zheng et al. 2015).

According to Gene Cards (www.genecards.org), 

HOTAIR has binding sites for 70 proteins involved in 

transcriptional regulation including AGO1, SIN3A, REST, 

SUZ12, RELA, ROSL1, MAX, MAZ, NR2C2 (orphan NR 

TR4), TBP, EGR2, ELK4 and SP2. HOTAIR is upregulated 

by HIF-1α, histone methylase MLL1 and coactivator p300 

(Bhan et  al. 2017). HOTAIR was reported to be induced 

by E2 in MCF-7 BCa cells (Bhan et  al. 2013), but others 

reported that E2-ERα directly that repressed HOTAIR in 

MCF-7 cells by binding to a genomic site 14.5 kb upstream 

of HOTAIR (Xue et al. 2016b). HOTAIR is downregulated by 

miR-141 (Chiyomaru et al. 2014) and is directly targeted 

by miR-34a in PCa cells (Chiyomaru et al. 2013). The 3′ 

domain of HOTAIR binds lysine-specific demethylase 

1 (LSD1)-CoREST and PRC2 interacts with a 5′ domain. 

HOTAIR–PRC2 interaction represses targets, e.g., HOXD10, 

PTEN, miR-7 and WIF1, which leads to the activation of 

the Wnt/β-catenin signaling pathway (Hajjari & Salavaty 

2015). HOTAIR binds androgen receptor (AR), blocking 

MDM2 interaction, and preventing AR ubiquitination 

and protein degradation, thus contributing to castration-

resistant prostate cancer (CRPCa) progression (Zhang et al. 

2015). HOTAIR is upregulated in endocrine-resistant BCa 

cells and its overexpression activates ERα transcriptional 

Table 2 Examples of the roles of selected lncRNAs identi�ed in endocrine-related cancers. Name, size, and genome location 

information is summarized from the sources for lncRNAs in Table 1. Other information is from the references cited.

lncRNA 

gene

 

Name, size, location

 

Interactions

 

Regulation

 

Endocrine cancer

PCA3 Prostate cancer-
associated 3

23,134 nt
9q21.2
Antisense lincRNA 

within PRUNE2

PCA3 and PRUNE2 pre-mRNA are 
co-expressed and form a double-
stranded RNA that recruits adenosine 
deaminase acting on RNA (ADAR) 
proteins to form a complex (Zhang 
et al. 2016a,c)

Increased by 
androgens in 
prostate 
cancer cells 
(Salameh et al. 
2015)

Suppressed by 
ERβ (Zhang 
et al. 2016a,c)

PCa-speci�c urine biomarker 
(Laxman et al. 2008); levels 
inversely correlate with the tumor 
suppressor PRUNE2 in human PCa 
specimens (Salameh et al. 2015)

GAS5 Growth arrest speci�c 5
1q25.1
The GAS5 gene has 12 

exons that are 
alternatively spliced 
into 2 mature lncRNAs 
and GAS5 introns 
encode 10 snoRNAs 
(reviewed in Pickard 
& Williams 2014)

Tumor suppressor

Forms hairpin structures and interacts 
with the DNA binding domain of GR 
to inhibit GR-GRE binding and 
GR-induced gene transcription (Kino 
et al. 2010)

Represses onco-miR-21 (Zhang et al. 
2013)

Inhibited miR-103 in EC cells (Guo 
et al. 2015)

Inhibited activation of the AKT/mTOR 
pathway in PC3 PCa cells (Xue et al. 
2016a)

Low expression correlated with 
poor prognosis in thyroid cancer 
tissues (Guo et al. 2017); low 
expression in breast tumors from 
trastuzumab-treated patient  
(Li et al. 2016b)

Lower in PCa tissues than normal 
prostate (Xue et al. 2016a)

MEG3 
 
 
 
 

Maternally expressed 3
14q32.2
81,622 nt
Tumor suppressor 

 

Binds miR-421 (Zhang et al. 2017c,e)
Co-immunoprecipitates with PI3K in 

HEC-1B EC cells (Sun et al. 2017a) 
 
 

 
 
 
 
 

Downregulated in breast (Zhang 
et al. 2016a,c, 2017c,e), prostate 
(Zhang et al. 2016a,c), 
endometrial (Guo et al. 2016b, 
Sun et al. 2017a), and PTC 
(Murugan et al. 2017) tumors
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activity independent of ligand (Xue et  al. 2016a). ERα 

interacts directly of HOTAIR in RNA pulldown assays 

using nuclear extracts from MCF-7 BCa cells (Xue et  al. 

2017). Overexpression of HOTAIR in MCF-7 cells grown 

under hormone-free (serum-starved) medium conditions 

increases the number of DNA sites to which ERα binds 

in chromatin immunoprecipitation assays (ChIP) and 

increases mRNA expression of some ERα target genes, e.g., 

GREB1, TFF1, PGR and CTSD (Xue et al. 2016b). The authors 

concluded that HOTAIR increases ligand-independent ERα 

transcription. This observation is concordant with a report 

of increased HOTAIR immunostaining in tamoxifen-

resistant human breast tumors (Xue et al. 2016b).

In contrast, HOTAIR was not among the 20 lncRNAs 

identified as upregulated and 9 downregulated by  

‘apo-ERα’ (non-ligand-occupied ERα) in a bioinformatic 

analysis of BCa cell lines and tumor tissues with 

experimental follow-up in MCF-7 cells (Miano et  al. 

2016). That study identified DSCAM-AS1 as the most 

apo-ERα-upregulated lncRNA and its expression was 

higher in luminal A and B breast tumors compared to 

normal breast, HER2+ or basal-like tumors. Knockdown 

of DSCAM-AS1 stimulated an increase in epithelial-to-

mesenchymal (EMT) markers in MCF-7 cells. DSCAM-AS1 

was also upregulated in prostate and lung tumors (Miano 

et al. 2016). A bioinformatics interrogation of 947 breast 

tumor RNA-seq libraries identified gene sets positively 

correlated with DSCAM-AS1 expression as significantly 

associated with clinical signatures of cancer aggression, 

tamoxifen resistance, higher grade, stage and metastasis 

(Niknafs et al. 2016).

HOTAIR interacts with ERβ in a complex with eNOS on 

gene promoters to stimulate transcription in LNCaP PCa 

cells and a primary prostate tumor-derived cell line (called 

C27IM) and with ERα/eNOS in MCF-7 cells (Aiello et al. 

2016). A potential concern with regard to the conclusion 

of the ChIPping of ERβ is the notorious lack of specificity 

of ERβ antibodies (Andersson et  al. 2017, Nelson et  al. 

2017). HOTAIR is upregulated in endometrial cancer (EC) 

(Smolle et al. 2015) and contributes to cisplatin resistance 

by inhibiting autophagy (Sun et  al. 2017b). HOTAIR 

is highly expressed in ovarian cancer (Luo et  al. 2017); 

endometrial, ovarian and cervical cancers (Li et al. 2017a) 

and thyroid cancers (Zhang et al. 2017c,e), including PTC 

(Zhu et al. 2016).

MALAT1 (metastasis-associated lung adenocarcinoma 

transcript 1, 8755 nt) is another well-studied lncRNAs with 

roles in endocrine-related cancers (reviewed in Zhang 

et al. 2017d). MALAT1 is expressed in almost all human 

tissues and is conserved across 33 mammalian species 

(Jarroux et al. 2017). MALAT1 lacks a poly A tail, but has 

a genomically encoded poly A tract and is processed into 

a 6.7 kb nuclear form and a smaller MALAT1-associated 

small cytoplasmic RNA (mascRNA) (Zhang et al. 2017d). 

MALAT1 is m6A modified on 4 of 7 sites located in hairpins 

of MALAT1 within HeLa, HEK-293T and MDA-MB-231 

cells (Liu et al. 2013). Others reported that m6A on position 

2577 of MALAT1 alter its secondary structure, enhancing 

its interaction with the m6A reader heterogeneous nuclear 

ribonucleoprotein C (HNRNPC) (Zhou et  al. 2016). The 

DROSHA-DGCR8 microprocessor associates with the 5′ 

end of MALAT1. MALAT1 acts as a sponge for nuclear 

miR-9 and cytoplasmic miR-133, miR-200s and miR-205, 

although the exact mechanisms of how MALAT1 gets to 

the cytoplasm are unclear (Zhang et al. 2017d). In turn, 

MALAT1 is post-transcriptionally downregulated by 

miR-101, miR-125b and miR-217. The crystal structure 

of MALAT1 revealed it to be a triple helix RNA that is 

stable in cells, e.g., t1/2 of 7 h in HeLa cells (Brown et al. 

2014). Functionally, nuclear speckle-associated MALAT1 

is involved in alternative splicing by acting as a scaffold 

(Tripathi et  al. 2010). MALAT1 is considered oncogenic 

and it upregulates the Wnt/β-catenin pathway (Ong et al. 

2017). Capture hybridization analysis of RNA targets 

(CHART) identified MALAT1 genomic-binding sites to 

be at actively transcribed loci (reviewed in Zhang et  al. 

2017d). However, Malat1-knockout (ko) mice showed no 

obvious phenotype, were viable and fertile and showed 

correct localization of nuclear speckles (Nakagawa et  al. 

2012). Expression of the lncRNA Neat1, which is located 

30 kb upstream (5′) to Malat1, was lower in Malat1 ko mice, 

suggesting a role for Malat1 as a cis-regulator of Neat1.  

RNA-seq studies in adult Malat1 ko mice revealed 

upregulation of a small number of adjacent genes, 

also suggesting cis regulation (Zhang et  al. 2012). One 

explanation for the lack of concordance between cellular 

and whole mouse studies is that Malat1 may only function 

under stress conditions (reviewed in Zhang et al. 2017d). 

Increased MALAT1 is found in many cancers including 

breast tumors (Ellis et  al. 2012), castration-resistant 

prostate (Ren et al. 2013, Wang et al. 2014, Sowalsky et al. 

2015), EEC (Zhao et  al. 2014), recurrent ovarian cancer 

(Yang et  al. 2017b) and thyroid tumors (Zhang et  al. 

2017a,b). Studies suggest that increased MALAT1 plays 

a role in metastasis (reviewed in Zhang et  al. 2017d). 

MALAT1 mutations are frequent in breast tumors (Arun 

et  al. 2016, Nik-Zainal et  al. 2016). MALAT1 expression 

was higher in thyroid cancer tissues and in thyroid 

cancer cells than normal thyroid (Huang et  al. 2016a). 

Likewise, NEAT1 is upregulated in breast (Qian et  al. 
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2017), endometrial (Wang et al. 2017a,c), ovarian (Chen 

et al. 2016) and thyroid tumors (Li et al. 2017b) and is the 

highest lncRNA in prostate cancer and strongly associated 

with metastasis (Chakravarty et al. 2014).

lincRNA-p21 (gene name TP53COR1) is a transcript 

of ~3 kb that is increased by p53 in response to DNA 

damage and serves as a transcriptional repressor in the 

p53 pathway by directly interacting with HNRNPK 

(hnRNP-K), increasing p21 transcription and inhibiting 

the transcription of pro-survival genes, thus triggering 

apoptosis (Barsotti & Prives 2010, Dimitrova et al. 2014). 

lincRNA-p21 is increased by hypoxia via HIF-1α and 

interacts with and stabilizes HIF-1α, resulting in increased 

glycolysis in HeLa cells (Yang et  al. 2014). lincRNA-p21 

is degraded by let-7 (Yoon et  al. 2014). lincRNA-p21 is 

transcribed into two isoforms with Alu inverted repeat 

elements and colocalizes with the lncRNA NEAT1 in the 

nucleus of U2OS, HCT-116 and MCF-7 cells (Chillón & 

Pyle 2016). lincRNA-p21 represses the translation of 

specific target genes, including CTNNB1 (β-catenin), 

through RISC complex activation. Knockdown of heat-

shock factor 1 (HSF1) in MDA-MB-231 cells increased 

lincRNA-p21 expression and the authors identified  

miR-320a, b and c as dependent on HSF1 that may target 

lincRNA-p21 through its 5′ sequence, although this 

was not demonstrated (Chou et al. 2015). lincRNA-21 is 

downregulated in PCa and acts as a tumor suppressor in PCa 

cells (Wang et al. 2017a,c). Overexpression of lincRNA-p21 

in DU145 and LNCaP PCa cells decreased pyruvate 

kinase M2 (PKM2) expression in a PTEN/AKT/mTOR  

cascade-dependent manner and transfection with 

shlincRNAP21 reduced glucose consumption (Wang et al. 

2017b,d). There are no reports on lncRNA-21/TP53COR1 

in either endometrial or thyroid cancer.

lncRNAs in breast tumors

A recent review of the function of selected lncRNAs 

upregulated (19) and downregulated (5) in BCa noted 

that while thousands of dysregulated lncRNAs have been 

identified, about most relatively little is known (Warburton 

& Boone 2017). Bioinformatic reanalysis of RNA-seq data 

from 658 invasive ductal carcinomas from TCGA and 

sorted by PAM50 assay transcriptomic data identified 

1623 lncRNAs expressed at FPKM (fragments per kilobase 

of non-overlapped exon per million fragments mapped) 

>1 in 10% of the tumors that the authors postulated 

are relevant in BCa (Su et  al. 2014). lncRNA-based 

unsupervised hierarchical consensus clustering revealed 

four subgroups that correlated with mRNA transcriptome 

PAM50 classification: basal-like, HER2-enriched and 

luminal A and B. Clustering suggested that HOTAIR was 

higher in HER2-enriched breast tumors. ACC005152.3, 

RP11-84E24.2 and HOTAIRM1 were higher in basal-like 

breast tumors, whereas RP11-53019.2 and RP11-473L15.3 

were higher in luminal-type tumors. Su and coworkers 

correlated increases in lncRNAs with increased adjacent 

gene expression: HOTAIR with HOXC11; HOTAIRM1 with 

HOXAI; RP11-53O19.2 and RP11-473L15.3 with MRPS30 

and ACC005152.3 and RP11-84E24.2 with SOX9 (Su et al. 

2014). HOTAIRM1 SOX9 is a stem cell factor involved in 

tamoxifen-resistant BCa (Jeselsohn et  al. 2017). HOTAIR 

and BCL2 expression were correlated in breast tumors 

and HOTAIR was shown to act as a ceRNA by base-pairing 

with miR-206, thus relieving mIR-206’s repression of 

BCL2 expression (Ding et al. 2017). HOTAIRM1 expression 

increased in recurrent ovarian cancer (Yang et al. 2017b), 

but acts as a tumor suppressor in colorectal cancer (Wan 

et al. 2016).

Another group performed a similar analysis on RNA-

seq data in the TCGA using ~1000 breast tumors, an 

independent RNA-seq dataset of 50 pairs of matched 

tumors and adjacent normal tissues from BCa patients, 

and 23 normal breast tissues from healthy women (Zhang 

et al. 2016b,d). They identified 2171 lincRNAs expressed 

in at least one sample, often at low levels, and ultimately 

identified 83 differentially expressed lincRNAs of which 

60 were downregulated in breast tumor samples. Among 

the upregulated lincRNAs, GATA-AS1 was associated with 

higher expression of its adjacent protein-coding gene 

GATA3 and both were associated with ERα+ breast cancer. 

GATA3 regulates the transcription of genes involved in 

maintaining luminal mammary gland differentiation 

(Kouros-Mehr et al. 2006) and acts as a licensing factor for 

ERα-chromatin binding (Theodorou et al. 2013). GATA-AS1 

may be unique in BCa since no reports were found for 

the other endocrine cancers discussed in this review. 

One upregulated lincRNA RP5-1198O20 was associated 

with lower survival rates in BCa patients (Zhang et  al. 

2016b,d). How RP5-1198O20 contributes to BCa mortality 

is currently unknown.

ANRIL was identified as the lncRNA with the highest 

expression in SK-BR3 HER2+ BCa cells vs MCF-10A cells 

in a lncRNA array qPCR study (Lee et  al. 2017). ANRIL 

expression was also higher in MCF-7 and T47D cells 

compared with MCF-10A cells. Some lncRNAs are associated 

with specific metastasis, e.g., lnc-BM (OR5BM1P) for BCa 

brain metastasis by interacting with JAK2 to activate a  

STAT3-ICAM1 axis that increases cell adhesion to brain 

capillaries and extravasation (Wang et al. 2017b,d).
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XIST is best known for X chromosome inactivation 

(da Rocha & Heard 2017). However, XIST interacts on a 

genome-wide scale with a variety of proteins, including 

the scaffold attachment factor A (SAF-A), in the non-

chromatin nuclear scaffold/matrix (Creamer & Lawrence 

2017). XIST is downregulated in breast tumors, but its 

molecular mechanisms as a tumor suppressor are unclear 

(Huang et al. 2016b). One idea is that loss of XIST induces 

reactivation of X-linked genes that contribute to BCa 

progression (Chaligne et  al. 2015). However, XIST’s role 

as a tumor suppressor may depend on the type of breast 

tumor. Patients with high XIST mRNA and low protein 

expression of 53BP1 in BRCA1-like breast tumors showed 

no benefit from high-dose alkylating chemotherapy and 

lower disease-free and overall survival (Schouten et  al. 

2016). XIST expression was also decreased in uterine 

papillary serous carcinoma accompanied by widespread X 

chromosome demethylation (Zhang et al. 2014). There are 

no apparent functional studies of XIST in EC cells.

New lncRNAs continue to be discovered. A recent 

example is ESRP2-AS that was first identified in a 

methylated lncRNA screen in a transgenic mouse model 

of human BCa (C3(1) SV40Tag) and shown to be higher 

in human breast tumors compared to normal breast tissue 

(Heilmann et al. 2017). Additional lncRNAs identified in 

BCa are included in Table 2.

lncRNAs in prostate tumors

Most lncRNAs identified in PCa are upregulated, thus 

acting as oncogenes (reviewed in Zhang et  al. 2016a,c). 

Upregulated lncRNAs include HOTAIR, PCGEM1, 

PRNCR1, ANRIL, PCAT1, MALAT1 and specific for PCa 

PCA3. Downregulated lncRNAs in PCa include GAS5, 

PTENP1 and MEG3. Refer Table  2 for details on PCA3, 

GAS5 and MEG3. MEG3 modulates the activity of TGF-β 

genes by binding to distal regulatory elements forming an 

RNA–DNA triplex and interacts with the PRC2 complex 

(Mondal et al. 2015). PCAT1 is the most highly upregulated 

lncRNA in PCa (Alahari et  al. 2016). Mechanistically 

PCAT1 post-transcriptionally represses tumor suppressor 

gene BRCA2, thus impairing homologous recombination 

DNA repair. Overexpression of PCAT1 in DU145 PCa 

cells increased proliferation, migration, and invasion and 

post-transcriptionally upregulated MYC by interacting 

with miR-3667-3p (Prensner et al. 2014). Another study 

showed interaction between PCAT1 and miR-145-5p 

that resulted in upregulation of FSCN1, an actin-

binding protein involved in invasion and migration 

(Xu et  al. 2017). Overall, PCAT1 has an oncogenic role 

in PCa (Alahari et al. 2016). Interestingly, a PCa risk SNP 

(rs7463708) promotes transformation via upregulation 

of PCAT1 lncRNA (Guo et  al. 2016a). PCAT1 is also 

upregulated in hepatocellular carcinoma (HCC) (Zhang 

et al. 2017a,b). Additional lncRNAs in PCa are included 

in Table 2.

lncRNAs in EC

The death rate for cancer of the uterine corpus, which is 

associated with obesity, is increasing in the U.S. (Siegel 

et al. 2017). EC is classified as type I or II with most patients 

having well-differentiated endometrioid endometrial 

carcinomas (EEC, type I) (Takenaka et  al. 2016). The 

identity and characteristics of lncRNAs dysregulated 

in EEC, including MALAT1, HOTAIR, SRA, H19, OVAAL, 

RP11395G12.3, LA16313D11.11, CASC2, ASLNC04080 

and ENST0000050294 were reviewed (Takenaka et  al. 

2016). The roles and functions of selected lncRNAs,  

i.e., MALAT1, HOTAIR, H19, MEG2, CCA2, ANRIL, OCAL, 

BC2200 and CUDR in cancers of the female reproductive 

system including endometrial, ovarian and cervical 

cancers were recently reviewed (Hosseini et al. 2017). H19 

is a well-studied imprinted, maternally expressed lncRNA 

that encodes miR-675 and is overexpressed in breast, HCC, 

prostate, colorectal, esophageal, bladder and many other 

cancers but is downregulated in adrenocortical neoplasms 

(reviewed in Huarte 2015).

lncRNAs in thyroid cancer

The role of lncRNAs in the pathogenesis of thyroid 

cancer was recently reviewed (Murugan et  al. 2017). 

PTC is the most common thyroid malignancy (Siegel 

et al. 2017). A microarray analysis of lncRNAs in 62 PTC 

tumors identified 3499 lncRNAs (1192 upregulated, 

2307 downregulated) that were differentially 

expressed compared with paired noncancerous tissue 

(Lan et  al. 2015). qPCR confirmed the ‘direction’ of 

lncRNA expression in PTC: TCONS_l2_00010365, 

n386477, n340790, lnc-LLPH-2:1 and NR_003225.2 

were upregulated and lnc-PSD4-1:14, n335550, lnc-

KCMF1-2:1, lnc-PLA2R1-1:1 and ENST00000422494.1 

were downregulated (Lan et  al. 2015). As indicated in 

Table 2, MALAT1 is upregulated in thyroid tumors (Zhang 

et al. 2017a,b). MALAT1 is also upregulated in SW1736, 

KAT18 and FTC133 thyroid cancer cells and knockdown 

of MALAT1 inhibited cell proliferation and invasion by 

upregulating the expression of the scaffolding protein 

IQGAP1 (Huang et al. 2016a).
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Mitochondrial-encoded lncRNAs and lncRNA 
imported into mitochondria

The human mitochondrial DNA (mtDNA) genome is 

transcribed as a polycistronic precursor and encodes 13 

proteins that function in mt OXPHOS, two rRNAs that are 

components of the mt ribosome and 22 tRNA (Kim et al. 

2017b). Seven lncRNAs have been identified to be derived 

from mtDNA (De Paepe et al. 2017). These are referred to as 

mitolncRNAs (Vendramin et al. 2017). Several are chimeric 

lncRNAs containing nucleotides of mtDNA: LIPCAR, 

SncmtRNA, ASncmtRNA-1 and ASncmtRNA-2. LIPCAR is 

cardiac specific and levels are elevated in circulation of 

patients with chronic heart failure (Kumarswamy et  al. 

2014). ASncmtRNA-1 and ASncmtRNA-2 are present in 

mitochondria and nuclei, suggesting a possible role in 

retrograde signaling (De Paepe et al. 2017). ASncmtRNA-1 

and ASncmtRNA-2 are downregulated in breast and 

prostate tumors (Burzio et  al. 2009), suggesting tumor 

suppressor activity. However, complete knockdown of 

ASncmtRNA-1 and ASncmtRNA-2 stimulated apoptotic 

cell death by downregulating the translation of survivin, 

an anti-apoptotic protein, only in cancer cells through 

an undefined mechanism, although these lncRNAs were 

shown to interact with DICER (Vidaurre et al. 2014). To 

date, the mechanism of ASncmtRNA-1 and ASncmtRNA-2 

remains unknown (De Paepe et  al. 2017, Dong et  al. 

2017). Three lncRNAs: ncND5, lncND6 and lncCyt b 

were identified as antisense transcripts of the mtND5, 

mtND6 and mtCYTB mRNAs but little is known about 

their function (Rackham et al. 2011). There is speculation 

that these three lncRNAs are transported to the nucleus 

by unknown RNA-binding proteins (Dong et  al. 2017). 

Recently, two novel lncRNAs MDL1 and MDL1AS encoded 

in the D-loop of human mitochondrial DNA were 

discovered and identical transcripts were identified in 

mouse and rat genomes (Gao et al. 2017).

RMRP (RNA Component Of Mitochondrial RNA-

Processing Endoribonuclease) is a nuclear DNA-encoded 

lncRNA that binds RNA-binding proteins HUR, PNPASE 

and GRSF1 for transport into mitochondria where RMRP 

is the RNA component of the mitochondrial RNA-

processing endoribonuclease (RNase MRP) for mtDNA 

replication and RNA processing (Dong et al. 2017). RMRP 

acts as a sponge for miR-206 an oncogene in lung cancer 

(Meng et al. 2016). Deep sequencing of 360 primary breast 

tumors identified mutations in the promoters of lncRNAs 

RMRP and NEAT1 that increased their expression and 

noted increased expression of these lncRNAs in breast 

tumors (Rheinbay et  al. 2017). However, RMRP’s role in 

BCa remains to be fully elucidated, and no publications 

were found with respect to RMRP in prostate, endometrial, 

ovarian or thyroid cancer.

SRA1, steroid receptor RNA activator, was first identified 

as an RNA transcript acting as an RNA coactivator in a 

complex with SRC-1 (NCOA1) to increase progesterone, 

glucocorticoid, androgen, estrogen, thyroid hormone, 

retinoic acid and peroxisome proliferator-activated 

receptor (PR, GR, AR, ERα, TRβ, RARγ, RXRγ and PPARγ) 

transcriptional activity (Lanz et  al. 1999). Knockout of 

Sra1 in mice showed that the Sra−/− mice were resistant 

to high-fat diet-induced obesity and had lower fat mass 

(Liu et al. 2014). In humans, inactivating SRA1 mutations 

were identified in three families with a proband with 

idiopathic hypogonadotropic hypogonadism (Kotan 

et al. 2016). The SRA1 gene also encodes a protein steroid 

receptor coactivator protein (SRAP) (reviewed in Leygue 

2007) that interacts with AR and is involved in PCa 

(Kawashima et al. 2003). Notably, SRA1 and SRAP do not 

interact (McKay et al. 2014). SRA1’s identity as a lncRNA 

was revealed in 2012 (Novikova et  al. 2012). Additional 

protein-binding partners of SRA1 were recently reviewed 

(Liu et  al. 2016). SRA1 interacts with DICER (Redfern 

et al. 2013). By its interaction with SLIRP (SRA stem-loop 

interacting RNA-binding protein), SRA1 has a repressive 

function by recruiting corepressors (reviewed in Liu 

et  al. 2016). SLIRP represses NR transactivation in an  

SRA1-dependent manner (Hatchell et  al. 2006). 

Interestingly, Slirp-knockout mice are sub-fertile, 

and males have defects in sperm motility and 

mitochondrial morphology (Colley et  al. 2013). SRA1 

and SLIRP were identified as a BCL2-interacting RNA 

and proteins, respectively in mitochondria of H1299 

lung adenocarcinoma cells (Trisciuoglio et al. 2016). The  

SMRT/HDAC1 corepressor complex interacts with SRA1 

(Dong et al. 2017). SRA1 is upregulated in steroid hormone-

responsive tumors including breast, endometrial and 

ovarian (reviewed in Liu et al. 2016).

lncRNAs in circulation

Circulating nucleic acids, including miRNAs and lncRNAs, 

are found in cell-free serum, plasma and other bodily 

fluids and differ between cancer patients, including those 

with prostate and breast tumors and non-cancer/normal 

individuals (reviewed in Qi et  al. 2016). In addition, 

virtually all cells release membrane-enclosed extracellular 

vesicles (EV): exosomes (0.04–0.15 µm diameter) and 

microvesicles (0.2–1 µm diameter); further, apoptotic 
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cells release apoptotic bodies (0.5–2 µm diameter) that 

do not contain miRNAs and lncRNAs (Kim et al. 2017a). 

Exosomes, which arise from the endosomal pathway, and 

microvesicles have been reported to transport mRNAs, 

ncRNAs, including miRNAs, lncRNAs and circRNAs, as 

a mechanism of intercellular communication (Kim et al. 

2017a). Cancer exosomes modulate the immune response 

and the tumor environment locally and at a distance, 

i.e., metastasis to secondary sites, by horizontal cargo 

transfer to recipient cells (Ruivo et al. 2017). In a recent 

study, isolated exosomes from tamoxifen-resistant LCC2 

BCa cells were shown to contain ~25-fold higher lncRNA 

UCA1 compared to parental MCF-7 cells and incubation 

of MCF-7 cells with exosomes from LCC2 cells resulted 

in decreased growth inhibition by tamoxifen (Xu et  al. 

2016), although no uptake of UCA1 or other lncRNAs 

or miRNAs was examined. There is great interest in EVs 

as biomarkers and as tools to deliver therapeutic genetic 

materials and drugs. Interestingly, a recent study reported 

that EVs isolated from BCa patients with metastatic disease 

and whose initial tumor had been ERα+/PR+/HER2-

contained mtRNA from cancer-associated fibroblasts 

(CAFs) (Sansone et  al. 2017). Xenograft transplantation 

studies in immunocompromised mice demonstrated that 

transfer of mtDNA from CAFs contributed to resistance to 

fulvestrant in vivo. Whether accompanying miRNAs and 

lncRNAs play a role in these findings was not evaluated.

lncRNA therapeutics

Antisense oligonucleotides (ASO), liposome-delivered 

RNAi, vector-expressed shRNAs and decoy RNAs or small 

molecules that compete for domain–domain interactions 

between lncRNA and proteins or within the lncRNA are 

of interest in targeting overexpressed lncRNAs in cancer 

(Weidle et al. 2017). Targeting of lncRNAs using lncRNAs 

and nanoparticle-coated siRNAs has been successful in 

preclinical mouse models of BCa (Liu et al. 2015, Wang 

et al. 2017b,d). Approximately 25 RNAi-based therapeutics 

are under clinical investigation (Weidle et al. 2017).

Overview of miRNA biosynthesis in 
endocrine-related cancers

miRNAs are small (22 nucleotides), evolutionarily 

conserved, single-stranded, ncRNAs that regulate mRNA 

translation or stability by base-pairing with miRNA 

response elements (MREs) in the 3′UTR of the target 

transcript within the RNA-induced silencing complex 

(RISC). The chronology of miRNA discovery was recently 

reviewed (Drusco & Croce 2017). Comparative genomics 

analysis indicated that >60% of human protein-coding 

genes have been under selective pressure to maintain 

pairing to miRNAs with >45,000 miRNA-binding sites 

within 3′UTRs conserved (Friedman et  al. 2009). The 

human genome includes 2,588 mature miRNAs (mirBase 

release 21) http://www.mirbase.org/ (Kozomara & 

Griffiths-Jones 2014).

The biogenesis of miRNAs has been reviewed (Ha 

& Kim 2014, Klinge 2015). In brief, in the canonical 

pathway of miRNA biogenesis, miRNAs are transcribed as 

primary-micro-RNAs (pri-miRNAs) by RNA pol II either 

as independent transcription units or are cotranscribed 

within introns of pre-mRNAs (~50% of miRNAs) (Saini 

et  al. 2007). Most pri-miRNAs are >1 kb, thus meeting 

the definition of a lncRNA (Dykes & Emanueli 2017). 

About half of all miRNAs are produced from non-coding 

transcripts, i.e., host lncRNAs. One example is DLEU2 that 

encodes the miR-15a/16.1 cluster and MIR155HG that 

encodes miR-155 (reviewed in Dykes & Emanueli 2017). 

Pri-miRs are capped and polyadenylated (Cai et al. 2004). 

The microprocessor complex of DROSHA (an RNAse III 

endonuclease) and DGCR8, plus additional proteins, 

cleaves hairpin-loop-containing pri-miR into 60–70 

nucleotide (nt) precursor (pre)-miRNAs. The efficiency of 

pri-miRNA processing depends on stem length (36 ± 3 nt) 

and the appearance of bulges in the structure (Roden et al. 

2017). DGCR8 acts as an oncogene in prostate cancer 

whereas DROSHA has oncogenic or tumor suppressor 

activity depending on the cancer type (reviewed in Hata & 

Kashima 2016). Alternative pathways of miRNA biogenesis 

include miRtrons, which are processed by spliceosomes 

in a DROSHA/DGCR8-independent/DICER-dependent 

manner and DROSHA/DGCR8-dependent/DICER-

independent yielding miR-451 (reviewed in Daugaard 

& Hansen 2017). The widespread reduction of miRNAs 

in human tumors has been attributed to dysregulation 

of the DROSHA/DGCR8 microprocessor complex as a 

result of the many pathways that regulate microprocessor 

components, e.g., p72 is sequestered by YAP in the Hippo 

pathway in a cell-density-dependent manner (Mori et al. 

2014). RNA-binding proteins also regulate pri-miRNA 

accessibility (Fernandez et al. 2017).

Pre-miRNAs are exported from the nucleus by Exportin 

and Ran-GTP or CRM1 to the cytoplasm where they are 

cleaved by DICER (DICER1, an RNAse III enzyme) forming 

~21–23 nt transiently double-stranded miRNA duplexes 

(Kurzynska-Kokorniak et al. 2015). DICER, in association 

with cofactors TRBP and PACT, transfer the mature miRNA 

to RISC, which contains the catalytic argonaute proteins 
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(AGO1, AGO2, AGO3 and AGO4) (Hock & Meister 2008)) 

that unwind the mIRNA duplexes to form single-stranded 

miRNAs. The lncRNA SRA1 binds DICER complex 

components PACT, TRBP and PKR in various cell lines 

and also binds NRs, including ERα (Redfern et al. 2013). 

DICER also plays a role in the DNA damage response 

in which DNA damage results in phosphorylation and 

binding to double-strand breaks and recruits DNA repair 

factor MDC1 and 53BP1 (Burger et al. 2017). DICER acts as 

an oncogene in PCa but as a tumor suppressor in breast, 

endometrial and ovarian cancer (reviewed in Hata & 

Kashima 2016). DICER is regulated transcriptionally, post-

transcriptionally, including by alternative splicing, and 

by post-translational modifications, e.g. phosphorylation, 

glycosylation and SUMOylation (Kurzynska-Kokorniak 

et  al. 2015). Germline DICER1 mutations, DICER1 

syndrome, were identified as causative in differentiated 

thyroid cancer and multinodular goiter (de Kock et  al. 

2014, Rutter et al. 2016, Khan et al. 2017).

In cancer tissues, overexpressed miRNAs that 

act as oncogenes are referred to as oncomiRs while 

downregulated miRNAs are called tumor suppressor miRs 

with their targets, tumor suppressors and oncogenes, 

respectively dysregulated. However, as we learn more 

about miRNAs, it is clear that generalization about a 

particular miRNA being oncogenic or a tumor suppressor 

depends on cellular context. miRNAs are involved in 

the post-transcriptional regulation of genes involved in 

EMT, stemness, cell signaling pathways and regulation of 

the tumor microenvironment, including the conversion 

of normal fibroblasts into cancer-associated fibroblasts 

(CAFs) by transfer of exosomal miRNAs from tumor cells 

(reviewed in Yang et al. 2017a). An issue in the field is the 

lack of congruence of miRNAs identified for a particular 

cancer type, e.g., thyroid cancer, even within a subtype, 

in different studies. This may be attributed to the number 

of tumor samples examined, tumor heterogeneity, whole 

tumor RNA isolation vs laser-capture microdissected 

tumor cells, the technique used to identify the miRNA 

(microarray, quantitate real-time PCR (qPCR), or  

NGS/RNA-seq.), the gene normalizer and statistical 

approaches used. Databases of putative and experimentally 

verified targets of miRNAs are listed in Table 1.

Despite the large datasets available on miRNAs in 

endocrine cancer, functional studies are needed for 

each miRNA and its targets. Functional analysis of 

overexpression and silencing of individual miRNAs is 

used to validate the role of deregulated miRNAs in cancer 

cells in vitro and animal tumor models, including human 

tumor cell xenografts and patient-derived xenograft 

(PDX) in vivo. An essential step to validate the identify 

of an mRNA target of a miRNA is to clone the 3′-UTR 

of the mRNA target downstream of a luciferase reporter 

and then transfect that reporter into a cell line, with an 

appropriate loading control either in the same plasmid 

or another cotransfected reporter, with overexpression 

and knockdown of the putative miRNA regulator. The 

investigator should detect reduced luciferase reporter 

activity and mutation of the MRE in the 3′UTR is 

required confirm direct miRNA-mRNA target regulation,  

i.e., validating that the mRNA is a bona fide target of that 

miRNA. Further validation steps include Western blot to 

demonstrate decrease target protein expression. Target 

validation in clinical samples is used to demonstrate 

disease relevance of the miRNA and its target.

Supplementary Table 1 (see section on supplementary 

data given at the end of this article) summarizes examples 

of miRNA dysregulated in BCa, PCa, EC and thyroid 

cancer with examples of their bona fide, validated, mRNA 

targets. Cellular functions associated with the miRNA are 

listed in Supplementary Table 1. In addition, I have added 

lncRNAs that either downregulate a miRNA or act as 

ceRNAs, i.e., endogenous sponge for binding a miRNA. It 

will be clear to the reader that many of the miRNA:lncRNA 

interactions listed are from non-endocrine cancers and 

are single reports requiring further validation.

miRNAs in BCa

In the 12  years since miRNAs were identified to be 

dysregulated in BCa (Iorio et  al. 2005), about 3600 

papers have been published in miRNAs in BCa 

(Fig. 1). There are many recent reviews of the identity, 

regulation and targets of miRNAs in BCa, e.g., (Egeland 

et al. 2015, Klinge 2015, Muluhngwi & Klinge 2015, van 

Schooneveld et al. 2015, Yahya & Elsayed 2015, Li et al. 

2017c, O’Bryan et al. 2017, Smith et al. 2017). miRNAs 

regulate key pathways dysregulated in BCa including 

apoptosis, cell cycle, cellular energetics, invasion, 

metabolism and metastasis.

The majority (70%) of primary breast tumors express 

ERα, and these patients are treated with endocrine 

therapies including tamoxifen (TAM); the selective 

estrogen downregulator (SERD), e.g., fulvestrant and 

aromatase inhibitors (AI), e.g., anastrozole and letrozole 

(Ring & Dowsett 2004, Clarke et al. 2015). Hence, many 

miRNA studies have examined the correlation of miRNAs 

with diagnostic markers related to ERα in BCa, estrogen-

regulated miRNAs and the potential role of miRNAs in 

endocrine resistance (Klinge 2015, Muluhngwi & Klinge 
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2015). ERα is the target of miRNAs including miR-221,  

miR-222, miR-873, let-7b and let-7i (reviewed in 

Muluhngwi & Klinge 2015).

Computational approaches are used to identify 

putative mRNA and lncRNA targets of miRNAs (Table 2). 

In addition, specific algorithms to identify possible 

targets of dysregulated miRNAs in breast tumors and BCa 

cell lines have been reported (O’Day & Lal 2010, Cava 

et al. 2014, Ru et al. 2015, Liang et al. 2016, Zhang et al. 

2016b,d). More recently, various strategies to directly 

identify miRNA:RNA targets and RNA modifications by 

protein:RNA immunoprecipitation and high-throughput 

RNA-seq have been used to examine protein:RNA 

interactions in human biology, e.g., HITS-CLIP  

(high-throughput RNA-seq isolated by crosslinking 

immunoprecipitation) (Darnell 2010); PAR-CLIP 

(photoactivatable ribonucleoside-enhanced CLIP) (Farazi 

et al. 2014), iCLIP (crosslinking and immunoprecipitation) 

(Hong et al. 2015), eCLIP (enhanced CLIP) (Van Nostrand 

et al. 2016) and dCLIP (denaturing CLIP) (Rosenberg et al. 

2017). A downside is that CLIP techniques are technically 

challenging.

Dysregulation of miRNAs in PCa

Dysregulation of miRNA expression is correlated with 

aggressive PCa phenotypes including tumor stage, 

Gleason grade and disease recurrence (Ren et  al. 2014, 

Cha et al. 2016). Altered miRNA expression is associated 

with physiological changes in tumorigenesis and disease 

progression in PCa (reviewed in Chun-Jiao et  al. 2017, 

Vanacore et  al. 2017). Changes in miRNA expression 

contribute to altered expression of genes involved in 

pathogenesis of metastatic PCa (Kojima et  al. 2017). 

Changes in miRNA expression in PCa have been reviewed 

and described below.

miRNAs upregulated by AR in PCa include miR-21, 

miR-27a, miR-32, miR-125b, miR-135a, miR-141 and AR 

overexpression in PCa downregulates miR-99a (Massillo 

et al. 2017). miR-125b is the most overexpressed miRNA in 

PCa and downregulates apoptotic genes including BAK1. 

A recent review of 104 studies of miRNAs in PCa tissues 

identified six miRNA consistently upregulated: miR-34a, 

miR-106b, miR-183, miR-200a/b and miR-301a; and 

sixteen miRNAs downregulated: miR-1, miR-23b, miR-27b,  

miR-34b/c, miR-99b, miR-125b, miR-152, miR-187,  

miR-199a, miR-204, miR-205, miR-224, miR-452,  

miR-454 and miR-505 (Chun-Jiao et  al. 2017). Other 

oncomiRs overexpressed in PCa are miR-21, miR-32,  

miR-221, miR-222, miR-181, miR-18a and miR-429 

(reviewed in Kanwal et  al. 2017). ‘Andro-miRs’: let-7c, 

miR-31, miR-124, miR-185, miR-205 and miR-488 

downregulate AR expression (Massillo et  al. 2017). 

Notably, the top four downregulated miRNAs in PCa 

tissues are miR-187, miR-205, miR-222 and miR-31 (Fuse 

et al. 2012). Additional tumor suppressor miRNAs in PCa 

and their targets include miR-331-3p that downregulates 

ERBB2 and AR and is associated with castration-resistant 

PCa (reviewed in Kanwal et al. 2017). miRNAs associated 

with metastasis include downregulation of miR-1,  

miR-15, miR-16, miR-23a, miR-29b, miR-126, miR-130, 

miR-132, miR-141, miR-195, miR-200b, miR-200c, miR-203,  

miR-205, miR-218, miR-375, miR-377, miR-466, miR-573, 

miR-675, and miR-802 and upregulation of miR-21, miR-22,  

miR-25, miR-93, miR-106b, miR-154-3p, miR-379, miR-543  

and miR-590-3p (reviewed in Massillo et al. 2017). miRNAs 

upregulated or downregulated in serum, plasma and urine 

with potential prognostic value in separating men with 

potentially lethal PCa vs indolent disease were recently 

reviewed (Massillo et al. 2017).

Dysregulation of miRNAs in EC

EC is the most frequently diagnosed gynecological cancer 

(Siegel et  al. 2017). Among the miRNAs differentially 

expressed in EC vs normal endometrial tissue are the 

increased expression of miR-10b, miR-21, miR-31, miR-182,  

miR-183, miR-205, miR-222, miR-223, miR-410,  

miR-429, miR-449a, miR-994, and miR-1228; and 

downregulation of let-7, miR-34b-5p, miR-34c-3p,  

miR-34c-5p, miR-99b, miR-101, miR-130a, miR-143,  

miR-145, miR-184, miR-193b, miR-204, miR-340, miR-372,  

miR-429, miR-449a, miR-490 and miR-495 (reviewed in 

Srivastava et  al. 2017). In serum samples from women 

with EC, increased levels of miR-186, miR-222 and  

miR-223 were identified compared with controls 

(Montagnana et al. 2017). Targets of upregulated miRs in EC 

include the tumor suppressor PTEN that is downregulated 

by overexpressed miR-21, miR-130a, miR-205, miR-222 

and miR-429 (Srivastava et  al. 2017). Although much 

studied, there are currently no miRNA signatures in use 

for early detection and screening of gynecological cancers 

(Srivastava et al. 2017).

miRNAs in thyroid cancer

The identity and targets of miRNAs dysregulated in PTC 

and follicular thyroid carcinoma (FTC) have been recently 
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reviewed (Pallante et  al. 2013, Saiselet et  al. 2016, Yoo 

et al. 2016, Celano et al. 2017, Lima et al. 2017, Pishkari 

et al. 2018). miRNAs upregulated in PTC include miR-21,  

miR-31, miR-99-3p, miR-128a, miR-128b, miR-139,  

miR-141, miR-146a, miR-146b-3p, miR-146b-5p, miR-155,  

miR-181a, miR-181b, miR-187, miR-191, miR-200a,  

miR-200b, miR-200c, miR-220, miR-221, miR-222,  

miR-222-5p, miR-224, miR-375, miR-551b (Pallante et al. 

2013). Downregulated miRNAs in PTC include: let-7f,  

miR-1, miR-26a-1, miR-30, miR-30c, miR-138, miR-199,  

miR-219, miR-292, miR-300 and miR-345 (Pallante et al. 

2013). With RNA-seq, the arm of each miRNA and isomiRNAs 

can be detected. Thus, RNA-seq has higher resolution and 

detected increased miR-21-3p, miR-21-5p, miR-31-3p,  

miR-31-5p, miR-34a-5p, miR-146-3p, miR-146-5p,  

miR-182-5p, miR-183-5p, miR-221-3p, miR-221-5p,  

miR-222-3p and miR-551b-3p in PTC (Saiselet et  al. 

2016). RNA-seq identified miRNAs upregulated in FTC 

include miR-96-5p, miR-182-5p, miR-221-3p, miR-183-5p 

and miR-222-3p, whereas miR-31-5p, miR-199a-5p and  

miR-199b-5p showed consistent downregulation in three 

independent studies (reviewed in Saiselet et al. 2016).

miRNAs in mitochondria

Mitochondrial function is critical for metabolic 

homeostasis. NGS has identified several miRNAs imported 

into mitochondria including miR-34, miR-181c-5p and 

miR-146a-5p (Kim et al. 2017b). The identity and roles of 

miRNAs in mitochondrial biology were recently reviewed 

(Vendramin et  al. 2017). The term ‘mitomiRs’ refers to 

miRNAs functioning in mitochondria, whether nuclear- 

or mtDNA-encoded (Duarte et  al. 2015). mitomiRs 

are 17–25 nt vs the canonical 22 nt for most miRNAs. 

The exact function and identity of mitomiRs remains 

unknown and caution is advised since cytoplasmic 

contamination of mitochondrial extracts is problematic 

(Vendramin et  al. 2017). Many ncRNAs appear to be 

involved in rapid cell stress responses and may be involved 

in anterograde and retrograde signaling between the 

nucleus and mitochondria to regulate energy homeostasis 

and apoptosis. For example, miRNAs appear to provide 

anterograde regulation of mitochondrial function, 

apoptosis and cancer cell metabolism (Duarte et al. 2015, 

Cha et  al. 2017). However, although mitochondrial 

dysfunction is a hallmark of cancer, the role of ncRNAs in 

the mitochondrial unfolded protein response (UPRmt) in 

cancer (reviewed in Kenny & Germain 2017) remains to 

be examined.

miRNAs in circulation

Screening of free and exosomal-associated miRNAs by 

high-throughput sequencing platforms has identified 

changes in breast, ovarian and prostate cancers (Smith 

et  al. 2017) and in thyroid cancer (Saiselet et  al. 2016). 

The release of exosomes containing miRNAs (as well as 

other ncRNAs, protein and lipids) and endocytic uptake 

of the exosomes in recipient cells results in altered 

regulation of gene translation and has implicated miRNAs 

as hormones (reviewed in Bayraktar et  al. 2017). In 

addition, circulating miRNAs can be transported between 

cells by microvesicles, apoptotic bodies, lipoproteins 

(HDL) and ribonucleoproteins, e.g., nucleophosmin 1 

and AGO2. Exosomes derived from patients with CRPCa 

have increased expression of miR-1290 and miR-375 and 

correlate with decreased overall survival (reviewed in 

Kanwal et al. 2017). CAFs stimulate cancer progression by 

secreting chemokines, cytokines and growth factors that 

create the extracellular matrix (ECM) and CAFs secrete 

EVs containing a different spectrum of miRNAs compared 

to normal fibroblasts (Bayraktar et al. 2017). Among the 

miRNAs secreted by CAFs that regulate cancer cells are 

miR-21, miR-143 and miR-378 in BCa (Donnarumma 

et al. 2017); miR-210, miR-409-3p/5p (Yang et al. 2017a) 

and miR-409 (Josson et al. 2014) in PCa cells; and miR-21 

in ovarian cancer (Au Yeung et al. 2016). Tumor-associated 

macrophages (TAMs) are also donors of miRNAs in cancer 

(reviewed in Bayraktar et  al. 2017). Increased TAMs is 

associated with poor survival in advanced thyroid cancer 

(Ryder et al. 2008).

The mandate from NIH in the Precision Medicine 

Initiate is to have data-driven care for patients. A current 

goal of clinical trials is to determine if miRNA signatures 

obtained in fine needle aspiration biopsies and blood 

(serum or plasma) or urine will provide early diagnosis 

and track with therapeutic responses in cancer patients. 

However, the miRNA expression profile identified in 

blood samples depends on the processing of the sample, 

the miRNA extraction method, contamination, including 

by lysis of blood cells, and which normalizers are used 

(Saiselet et  al. 2016). In addition to the ongoing efforts 

to standardize exosome and miRNA purification from 

biological fluids, factors that impact variability in miRNAs 

detected in circulation include diet, physical activity and 

circadian rhythms (reviewed in Smith et al. 2017). Most of 

the clinical trials involving mRNAs are observational, i.e., 

examining circulating in PCa, ovarian and breast cancers 

to monitor therapeutic responses to chemotherapy or 

other treatment strategies (reviewed in Smith et al. 2017).
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miRNA therapeutics

Despite the large body of literature supporting miRNAs 

as biomarkers for diagnosis, prognosis and follow-up in 

patients with malignancies, the application of miRNA 

therapeutics into the clinical practice has a number of 

technical obstacles to overcome include clearance and 

optimization of bioavailability (reviewed in Chen et  al. 

2015). Nanoformulations of miRNAs, miRNA mimics, 

miRNA sponges, anti-miR oligonucleotides (AMOs) and 

small-molecule inhibitors are being tested in animal 

models. miRNA mimics to replace the expression of 

downregulated miRNAs by synthetic oligonucleotides 

that are combined with hydrogels, liposomes, minicells, 

nanoparticles, synthetic polymers or viral carriers for 

better delivery are under investigation (Drusco & Croce 

2017). Recently, a folate-miR-34a-5p conjugate was shown 

to be taken by MDA-MB-231 cells, which have high folate 

receptor levels and to inhibit MDA-MB-231 xenograft 

tumor growth in mice (Orellana et al. 2017). ‘AntagomiRs’ 

serve to inhibit oncomiR function, e.g., a miR-10b 

antagomiR to mice did not inhibit primary mammary 

tumor growth, but inhibited lung metastasis (Ma et  al. 

2010) and intraperitoneal injection of a miR-92a-LNA 

inhibitor inhibited human EC cell xenograft growth in 

mice with no evidence of overt toxicity or metastatic 

spread (Torres et  al. 2016). However, many challenges 

remain for therapeutics with or against miRNAs, notably 

the contradictory nature of miRNAs.

Conclusions

lncRNAs and miRNAs dysregulated in endocrine cancers, 

and they serve as biomarkers and potential therapeutic 

targets and agents in various cancers and other diseases, 

 e.g., cardiovascular disease and type II diabetes. These 

and other ncRNAs are interconnected and have complex 

molecular roles in regulating protein-coding and non-

coding nuclear gene transcription: RNA stability, epigenetic 

processes, chromatin accessibility, translation, gene 

expression in mitochondria, anterograde and retrograde 

signaling and intracellular and intercellular signaling. The 

study of lncRNAs is less mature than that of miRNAs. For 

example, new lncRNAs continue to be discovered, relatively 

few studies on any specific lncRNA have been published, 

and each lncRNA may have multiple isoforms that can 

be post-transcriptionally modified, adding complexity 

to evaluating their cellular and physiologic function. 

lncRNA structures are functionally important, but only 

a few lncRNAs’ structures are known. Identification of 

cell-specific lncRNA-interacting proteins and other RNAs 

and their subcellular distribution is needed. Both miRNAs 

and lncRNAs are being actively evaluated as tumor 

biopsy, plasma, serum, blood and urine biomarkers in the 

diagnosis and management of endocrine-related cancers 

as well as therapeutic targets. In addition, lncRNAs and 

miRNAs may serve as therapeutic agents. Many challenges 

remain in elucidating the biogenesis and function of 

ncRNAs in endocrine-related cancers. Our understanding 

of the functional roles of miRNAs and lncRNAs and 

their molecular targets is expanding rapidly. However, 

individual miRNAs and lncRNAs, and their combinations, 

may have different sets of targets and activities depending 

on the cell type, microenvironment, microbiome 

and hormonal milieu; thus, further investigation is  

required to fully elucidate miRNA and lncRNA function in 

endocrine-related cancers.
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