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(Non)-Coherent MU-MIMO Block Fading Channels
with Finite Blocklength and Linear Processing

Junjuan Feng, Member, IEEE, Hien Quoc Ngo, Senior Member, IEEE, and Michail Matthaiou, Senior
Member, IEEE

Abstract—Driven by the stringent demands of future ultra
reliable and low latency communication (URLLC), we provide a
comprehensive study for a coherent and non-coherent multiuser
multiple-input multiple-output (MU-MIMO) uplink system in
the finite blocklength regime. The independent and identically
distributed (i.i.d.) Gaussian codebook is assumed for each user.
To be more specific, the base station (BS) first uses two popular
linear processing schemes to combine the signals transmitted
from all users, namely maximum-ratio combining (MRC) and
zero-forcing (ZF). Following it, the matched maximume-likelihood
(ML) and mismatched nearest-neighbour (NN) decoding metric
for the coherent and non-coherent cases are respectively em-
ployed at the BS. Under these conditions, the refined third-
order achievable coding rate, expressed as a function of the
blocklength, average error probability, and the third-order term
of the information density (called as the channel perturbation), is
derived. With this result in hand, a detailed performance analysis
is then pursued, through which, we derive the asymptotic results
of the channel perturbation, achievable coding rate, channel
capacity, and the channel dispersion. These theoretical results
enable us to obtain a number of interesting insights related to
the impact of the finite blocklength: i) in our system setting,
massive MIMO helps to reduce the channel perturbation of the
achievable coding rate, which can even be discarded without
affecting the performance with just a small-to-moderate number
of BS antennas and number of blocks; ii) under the non-coherent
case, even with massive MIMO, the channel estimation errors
cannot be eliminated unless the transmit powers in both the
channel estimation and data transmission phases for each user
are made inversely proportional to the square root of the number
of BS antennas; iii) in the non-coherent case and for fixed total
blocklength, the scenarios with longer coherence intervals and
smaller number of blocks offer higher achievable coding rate.

Index Terms—Achievable coding rate, channel dispersion,
channel perturbation, finite blocklength, MU-MIMO.

I. INTRODUCTION

LTRA reliable and low latency communication (URLLC)
has been regarded as one of the key technological pillars
for future wireless networks, since many applications, such as
industrial automation, tactile internet, smart cities and remote
surgery, etc. will require the reliable transmission of short
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packets [1], [2]. Thus, providing URLLC is a very timely ex-
ercise and has attracted increasing research attention over the
past decade. For instance, [3] analyzed the effect of wireless
energy transmission and the information signals’ length on
the outage probability, while [4] provided accurate analytical
approximations for the error probability distribution. Now,
recall that the most prevalent used metric in physical layer
wireless communication analysis is the Shannon capacity,
which is the largest coding rate at which the error probability
can be made arbitrarily small by choosing a sufficiently large
blocklength. Thus, it is accurate enough for the performance
evaluation of wireless systems, whenever it is not necessary
to consider the latency constraints. However, with stringent
latency requirements, as those in URLLC, the long codewords
assumption becomes irrelevant and we should instead resort
to short-codeword transmissions, which results in a non-zero
error probability and significant rate loss. In this context,
using Shannon capacity will not only overestimate the system
performance but also offer confusing guidelines for system
design in the finite blocklength regime. Taking this into
account, one of the most important metrics in URLLC, i.e.,
the refined maximum achievable channel coding rate is in-
troduced, which incorporates the channel dispersion resulting
from the finite blocklength and is expressed as a function of
the blocklength and error probability [5]. This metric has been
proved to predict the performance more accurately in the finite
blocklength regime.

The work of [5] triggered considerable research interest
and a plethora of research groups have extended its results to
more general and complicated fading channels. Specifically,
[6] has taken a step further to present a channel disper-
sion analysis under additive non-Gaussian noise and random
Gaussian codebooks along with the nearest-neighbor (NN)
decoding. For fading channels, [7] studied the dispersion over
coherent multiple-input multiple-output (MIMO) block-fading
channels, and showed that the channel dispersion approaches
to a constant with an increasing number of receive antennas.
Regarding the non-coherent scenario, [8]-[10] analyzed the
maximum coding rate under block-fading channels. More
specifically, [8] presented non-asymptotic bounds on the max-
imum coding rate under non-coherent Rician block-fading
channels and quantified the optimal trade-off between the
rate gain obtained from the channel diversity and rate loss
resulting from fast channel dynamics and pilot overhead.
Following it, [9] provided a high signal-to-noise ratio (SNR)
normal approximation of the maximum coding rate, which
complements the non-asymptotic bounds in [8] and provided
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us with a tractable formula for performance analysis. Later,
[10] generalized the high SNR result of [9] via saddlepoint
approximations and proved that these new approximations are
also accurate in the low SNRs regime.

Before presenting the motivations and contributions of our
work, it is worth recalling the importance of massive multiple-
input multiple-output (MIMO) in the wireless space over the
past decade, since it can provide substantial spectral efficien-
cy while guaranteeing high reliability [11], [12]. Likewise,
multiuser MIMO (MU-MIMO) topologies afford an additional
dimension for spatially multiplexing geographically separated
users [13]. In this context, we refer to [14] which showed
that nearly optimal performance can be obtained by employing
linear processing techniques, such as maximum-ratio combin-
ing (MRC) and zero-forcing (ZF) schemes, when the number
of BS antennas is large. Surprisingly, the combination of
finite blocklength systems with MU-MIMO and linear signal
processing techniques has been largely overlooked in the
related literature due to the existence of inter-user interference
and channel estimation errors, which renders the performance
analysis challenging. Thus, this paper tries to make a first step
towards bridging this gap.

To date, most works in the finite blocklength space have
mainly focused on general point-to-point networks [5]-[10].
The only exception is [15], which provided a detailed analysis
of the random coding union (RCU) bound of the error proba-
bility via the saddlepoint approximation for both the uplink
and downlink of massive MIMO system under imperfect
channel state information (CSI). Recently, there has been a
surge of interest in studying the higher-order terms of the
achievable coding rate in the finite blocklength regime [16].
However, most existing works focus on the scaling order of
the third-order term along with the blocklength for point-to-
point networks, except [9], in which a loose upper bound
on the third-order term was derived. In practice, whether
the high-order terms of the achievable coding rate, e.g., the
channel dispersion and third-order term, are bounded or not
with massive MIMO remains questionable. This characteristic
is critical when using the RCU bound and the simpler Berry-
Esseen central limit theorem (BE-CLT) as a basis.

For the reasons mentioned above, it is indispensable to
pursue a performance analysis for MU-MIMO systems in the
finite blocklength space and for fading channels. Motivated by
this, the main contributions of this paper are listed as follows:

e We study the MU-MIMO uplink system in the finite

blocklength regime, in which a BS equipped with mul-
tiple antennas simultaneously serves multiple single-
antenna users. The linear combining schemes, MRC and
ZF, are applied at the BS. Both coherent and non-coherent
block-fading channels with independent and identically
distributed (i.i.d.) Gaussian input signals are considered.
The matched maximum-likelihood (ML) and mismatched
nearest-neighbour (NN) decoding metric are applied for
the coherent and non-coherent case, respectively. Two
of the fundamental performance metrics, the achievable
coding rate and average decoding error probability, are
investigated. Note that the achievable coding rate has
been the primary focus in the existing literature since

it is adequate to characterize the behavior of the finite
blocklength [17].

Closed-form results of the channel dispersion and the
third-order term (the channel perturbation in this pa-
per) of the achievable coding rate are derived for both
the coherent and non-coherent cases. Note that for the
channel perturbation term in the non-coherent case, a
tight approximation is provided in terms of the matched
Gamma distribution approximation.

Based on the RCU bound of the average error probability
and further the BE-CLT, the achievable coding rate is
derived under the condition that the channel perturba-
tion is less than a given threshold. Capitalizing on this
result, a closed-form expression of the BE-CLT based
upper bound of the average error probability is given.
By proving that the channel perturbation is quite small
(smaller than 1) with a small-to-moderate number of BS
antennas and blocks, a Taylor expansion is applied on the
derived achievable coding rate and a new approximation
of the achievable coding rate is provided by neglecting the
channel perturbation term. Following it, a Taylor expan-
sion based approximation of the average error probability
is given.

New asymptotic results with and without considering the
power scaling law under massive MIMO, including the
achievable coding rate, channel capacity, channel disper-
sion, and channel perturbation, are derived. From these
results and simulations, we can obtain some important
and useful insights:

1) In MU-MIMO systems with linear combining schemes
and i.i.d Gaussian input signals, massive antenna arrays
at the BS help to reduce the channel perturbation of
the achievable coding rate to a small constant, whilst
a large enough number of blocks pushes the channel
perturbation to zero. Meanwhile, the channel disper-
sion of the achievable coding rate also approaches to
a constant with massive antenna arrays at the BS.

2) Having a large number of antennas at the BS can
help to reduce the minimum blocklength required for
obtaining a certain fraction of the channel capacity
and also helps to reduce the average error probability.
Likewise, increasing the number of BS antennas will
improve the achievable coding rate even when the
channel dispersion (rate loss) caused by the finite
blocklength is incorporated into the expression.

3) Different from the infinite blocklength scenario, if no
power scaling laws are considered, massive MIMO
cannot eliminate the channel estimation errors for
the non-coherent case in the finite blocklength space.
Consequently, the corresponding effective noise vector
cannot be approximated by a Gaussian distribution.
However, when the power scaling law at both the
channel estimation and data transmission phases are
considered, all channel estimation errors can be can-
celed out and both the effective noise and the output
signal vector tend to be Gaussian distributed with
massive MIMO.
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4) For the non-coherent case, by fixing the total block-
length, the scenarios with longer coherence intervals
and smaller number of blocks are more beneficial for
serving the higher achievable coding rate. On the con-
trary, in the coherent case, the normal approximation of
the achievable coding rate is equally affected by these
two parameters. Nevertheless, from a channel pertur-
bation point of view, the system with more number of
blocks and a shorter coherence interval is better.

Notation: Boldface upper and lower case letters are used
to denote matrices and vectors respectively. The symbols A. j
and x,, denote the k-th column of the matrix A and the
m-th element of the vector x, respectively. The superscripts
()7, ()T and (-)* are used to denote the conjugate transpose,
the transpose and the conjugate of a matrix or a vector,
respectively. The notation ||x||2 = Vxtx denotes the 2-norm
of the complex column vector x. The notation E{-} denotes the
expectation of random variables and the notation CA/ (0, o)
represents the circularly-symmetric complex Gaussian distri-
bution with zero mean and variance 2. The symbol x?(N)
denotes the chi-square distribution with /N degrees of freedom.
The notation diag{-} denotes the diagonal operator. Finally,
f(z) = O(g(z)) means that lim @) — ¢ < 0.

1500 9(2)

II. SYSTEM MODEL

We consider a multiuser uplink system consisting of K,
single-antenna users and one BS equipped with N}, antennas
in the finite blocklength regime. As previously mentioned, a
block-fading channel is considered, i.e., the channel remains
constant during one coherence block and varies independently
to a new realization in the next block. We assume that there
are in total L blocks and each block has T, symbols, such
that the total blocklength for users to transmit a message is
n = LT.. The pilot length allocated for the channel estimation
in each block is assumed to be 7.. Thus, we define the notation
T,, which represents the number of symbols used for data
transmissions in each block, as Tc = T, in the coherent case
and TC =T, — 7. in the non-coherent case. The detailed data
transmission process is as follows.

At block j, for j = 1,2, ..., L, for each symbol i € [T,] =
{1,2,...,T.}, the received signal y;(j) € CNo*1 at the BS is

K.
yi(d) =Y hr(i)wri () + mi(3), (D
k=1

where hy(j) = [he1(5), he2(d), - hen, ()] € CVx!
denotes the channel realization from the k-th user to the
BS at block j with each element drawn independently from
the distribution CA(0,~2), in which ~? denotes the large-
scale fading coefficient from the k-th user to the BS. The
random variable xy ;(j) is the ¢-th transmit symbol of user k&
at block j, and n;(j) = [n;1(5),...,nin, ()T € CVo¥1 s
the additive white Gaussian noise (AWGN) vector, which has
iid. CN(0,02) elements.

From (1), the received signal matrix at the BS for all

symbols [T,] at block j is:

Ku
Y(j) = he(h)xf (§) + N(), )
k=1

where Y(j) = [yi()....yz ()] € cNxTe,
N@G) = m@),....nz ()] € ¥, and
xk(5) = [era(d),- 2,5 ()T € CTeX! contains all

the transmitted symbols within block j of user k. We assume
that the input signal vectors from all users {xk(j)}kK;‘l are
independent and each signal vector xj(j) is drawn from the
distribution CA/ (0, PkITC);l thus, we have

E{|x()l3} =TePr, k=1,..., Ky, 3)
which can be treated as the average transmit power for each
user. Here, we point out that all the channels, input signals and
noise signals are respectively block-wise independent, and also
independent of each other.

Following the uplink transmission process in [15], for an
intended user £ at the block j, the BS will process its received
signals with a linear combining vector ay(j) € CMe*!. By
multiplying the received signal matrix Y (5) in (2) with a£ (9,
we obtain

i(5) = a} (/)b ()xE (7)

where y1(j) € C IxT. i the processed signal row vector (after
linear processing) used for decoding the symbols transmitted
from user k.

Assume that M}, is the maximum number of messages that
are allowed to be transmitted over the fading channels by the
k-th user. Note that as we consider the instantaneous rate,
Mj, is a function of the fading coefficients. Then, we will
introduce the channel coding notations such that the targeted
user k transmits M} messages under the average decoding
error probability no larger than 0 < €, < 1 and the finite data
transmission blocklength 7 = LT.. A (Mk,L,TC,ek)-code
consists of the following two functions:

1) An encoding function fi: [My] = {1,..., My} — CTexL:
this function is used to map the message W}, which takes
values uniformly on the set [My], to a codeword (X)X £
[xx(1),...,x,(L)] under the power constraint in (3);

2) A decoding function gy: CE*7Te — [M,]: this function
can_decode the message W from the received signal-
s (Yp)E £ [3F(1),...,¥E(L)]" under the average error

'Note that three popular codebooks are the i.i.d. Gaussian input signals,
spherical Gaussian codebooks (also called shell codes) in [6], and the
unitary space time modulation (USTM) in [9], wherein the shell codes are a
special case of the USTM codes. The i.i.d. Gaussian input signals assumed
in this paper do not represent the optimal input distribution in the finite
blocklength regime. They are capacity-achieving input distributions for the
matched decoding metric (considered in the coherent case), but not the optimal
distribution for the channel dispersion metric, compared with other existing
input distributions, such as the shell codes, which can achieve a lower channel
dispersion than the i.i.d. Gaussian input distribution. Moreover, the USTM
is not capacity-achieving at low to median SNRs for non-coherent block
fading channels. Here, we use an i.i.d. Gaussian input codebook as it is a
common codebook in the literature [17] and also amenable to mathematical
manipulations later on (similar to [15], [18]), which facilitates the system
design and optimization. Moreover, we know from [6], [19], that the channel
dispersion of the i.i.d. Gaussian codebook is close to that of the shell codes
under a large amount of inter-user interference, which is the exact case we
consider in our paper.
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probability €;, which is defined as
> Plon((Y0)) # welWi = wid, )

. wy €[ My]
where the notation P{A} denotes the probability that the
event "A" happens.

In the following sections, we analyze the performance of our
considered system in terms of the achievable coding rate and
average error probability for two common linear combining
schemes: MRC and ZF. Another common linear combining
scheme is the minimum mean-square error (MMSE) scheme.
However, the analysis of this scheme is rather complicated.
More importantly, the performance of MRC is very close to
that of MMSE at low SNRs, while the performance of ZF
approaches that of MMSE at medium and high SNRs [20].
So, the analysis of MRC and ZF can reasonably cover the
analysis of MMSE.

III. COHERENT CHANNELS

In this section, the coherent case is considered, i.e., all LT,
symbols are used for transmitting signals from all users and
there are no resources allocated for the pilot transmission.

A. MRC Scheme

For coherent channels, i.e., perfect CSI at the BS, when the
MRC scheme is applied at the BS, the vector ax(j) at the j-th
block in (4) is

Chi(h)

mrc /[ \ __ 6
akco(]) ||hk( )” ( )
forall k = 1,...,K, and j = , L. By substituting

(6) into (4), we obtaln the received 51gnals at the BS after
combining as

Vi (d) = k() lloxi (7 +Z”h 3l hy,, ()%, (4)
m=1 k 2
Desired signal m#k
Inter-user interference
BhLG)
+ NG (7
b (7)]]2
Noise
We denote by
_ hi (5)
vmrc . T /- .
X + RN (), (®)
Znhk R TR

m#k
the effective I;fOiSG including the interference plus noise. Then,
(7) can be rewritten as

iieo(d) = (i) l2x5 () + 0 (5), ©)
where y7'5 (7) € € CY*Tc. Under the assumptions of perfect
CSI at the BS and the i.i.d. Gaussian input signals, both
the interference term and the noise term in (7) are still
Gaussian distributed. So, the effective noise n™(j) € C**7e

is also a Gaussian vector with the distribution nf°(j) ~
CN (0 U%m( D, ) in which U%mrc( ) is given by

Z P
m;ék

So, the end-to-end channel model (9) can be considered as
a point-to-point SISO channel with the i.i.d. Gaussian input

2
—k h, ()| +o2 (10)

nmu

Ihk Hz

signal vector xI (§), the coherent fading channel || hy(j)| 2 and
the i.i.d. Gaussian noise nv°(4). The corresponding signal-to-
interference-plus-noise-ratio SINR}'C,(j) for the k-th user at
the j-th block is

. P.llhg(j 2
ZP mk%zh ()| +o2

m#k
Hence, the matched;édecoding metric, i.e., the ML decoder,
could be applied at the BS. To be consistent with the non-
coherent case later, we introduce a coefficient s, i.e., for
arbitrary s > 0, namely the generalized ML decoding metric,
which is given by

~ ~ L
o = agmax p { (%o | 0", 010",
(Xk)LECTCXL

(12)
where

o { ()| oxo” en

S Smrc

1% Yk,co

()] (), [ ()12}

|
.Eh

<
Il
_

—sT,

|
-E“

()T | (5)]

1 .

X exp [—s ((M) (fli'é”(j))(flé‘?)“(j))ﬂ , (13)
in which (X;)* € ¢T<*% and ((Yk)‘g},‘“)L e CExTe are defined
similarly as in Section II. The channel matrix (H;)" =
diag {||hx(1)]]2, ..., [|he(L)]2}. It is well known that when
s = 1, (13) coincides with the capacity-achieving output
distribution for the matched ML decoding metric, i.e., the
ii.d. Gaussian inputs are capacity-achieving for the matched
decoding metric in the coherent case [17, Section 3.8.1]. Thus,
with the decoding metric in (12)-(13) and setting s = 1, the
following proposition can be obtained.

Proposition 1: Consider perfect CSI at the BS and assume

that the input signals are i.i.d. Gaussian distributed. Under the
MRC scheme, define a threshold term

~
Il
_

i _ 1‘@?53(])
NN J=
?;ilrcez*Q LTC
MM, Inpg 1L
k mrc,im / -
- — = I 14
LT. IT. LJ,Z:1 koo G) | )5 (4

where Q(-) is the Q-function. When the channel perturbation
term Up'e, which will be defined later, satisfies the condition
the relation between the average error proba-

rc ' mrc,co
Uk co <q g, thres’ . . .
and the achievable coding rate R;”C, (in nats per

b1l1ty €
channel use)? is given as (15) shown at the top of next page.
In (14) and (15), the parameter p is uniformly distributed on

2The achievable coding rate represents the achievability bound (lower
bound) of the maximum coding rate, and it does not represent the actual
maximum coding rate. Note that throughout the paper, we will use the
achievable coding rate as our performance metric.
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In Mk
LT,

L
mrc 1 mrc N ln/’t
2 k,coélek,co(.j)+LT
j=1 c

L
%;1 Vit (d)
Q)+ o W)

k,co

IT. (15)

the interval (0,1). The term I} (j) represents the channel

capacity at the j-th block, given by

Tiieo(j) = In (1 + SINRYG(7)) (16)
Furthermore, V(5 (j) denotes the channel dispersion, which

is used to characterize the backoff of the achievable coding
rate from the capacity caused by the finite blocklength, is
1+ SINRR" (4)

Vitee(j) =2 - a7
k,co
The term UM<, which is defined in (111) of Appendix B and

k,co’
stems from the absolute third-order moment of the information
density, is called the channel perturbation and given by,
e 4cr 1 1 <2Tc+3>

ko o VI VT (Te + 1) 2

_3
2

L L
1 I - 1 I . 2
<\ g2 ViR 72 RG] - a8)
Jj=1 j=1
Proof: See Appendix B. ]

Remark 1: Tt should be noted that both the channel dis-
persion in (17) and the channel perturbation in (18) of the
achievable coding rate are obtained by leveraging the capacity-
achieving input distribution (s = 1). From Appendix B, the
result in Proposition 1 is obtained based on the RCU bound of
the average error probability in [21, Theorem 1] and the Berry-
Esseen central limit theorem (BE-CLT) [22]. From (110) of
Appendix B, we have that when U'c > ¢;" 0, the largest
allowable (upper bound) average error probability €;"C; is 1.
However, when U < ¢;"', the average error probability
€).co after using the BE-CLT is upper bounded by

€0 <1 Qs + Ullo = eliea™"

In general, the desirable average error probability €;'s
should be at least smaller than 0.5, whilst in URLLC, the
average error probability €C should be less than 107" for
one transmission package [23]. In this context, the scenario
U > Gy es 1S Nt desirable. Fortunately, from (18), after

fixing the number of BS antennas, the channel perturbation

1 .
ﬁ) N whilst
mrc,co

the function ¢, - - in (14) is non-decreasing with respect to

L. Thus, the condition Uy, < q?rl;;: < 1 can be satisfied by
increasing the number of blocks L. With this, by substituting
(14) into (19) and further taking the Taylor expansion on the
function @~* (1 — €rco T Upeo ) at the point 1 — €;7C
obtain the achievable coding rate in (15).

Observing (15), it is clear that the third term decreases

with the order O (%), while both the second and the

19)

U decreases with respect to L according to O

we

last term decrease with the order O (%) In this context,
when the number of blocks is large enough, by ignoring the
terms of the order O (), the achievable coding rate R},
in (15) is approximated as (20) shown at the top of next
page, in which the term }ZHTZ is retained only for the sake
of analytical consistency of (14) and (21) given later in the

paper. This is called the normal approximation and it can

accurately characterize the theoretical achievable coding rate
for sufficiently large number of blocks. Meanwhile, with (20),
the achievable coding rate approaches to the corresponding

. . . 1 . .
channel capacity with a scaling speed of JiTo 1€ In the

order O (ﬁ), and the average error probability can now

be approximated as

mrc mrc,co A _mrc-Taylor
€k,co ~ 1- qk,thres — “k,co 2n

Remark 1 provides clarifications for a varying number
of blocks and fixed number of BS antennas. However, it
is obvious that the channel capacity {I}' (4) ¥, channel
dispersion {V,™¢ ()}, and the channel perturbation U}"
in Proposition 1 are functions of {SINR}'¢,(j)}i=;, which
from (11) depend on the fading channels {hy(j)};_,, for all
k=1,...,K,. Since the randomness of the fading channels
{hi(j)}i=, (the channel hardening level) strongly relates
with the number of the BS antennas, it is hard to analyze
Proposition 1 in terms of the number of BS antennas directly.
Thus, to see the impact of using large number of BS antennas
case and unveil more system insights, an asymptotic analysis
will be performed. By using the law of large numbers, the
SINR}'S,(4) in (11) will approach to

k,co
Ppr by ()12
SINRer (]) — ko H ]f(])HQ

- $¢ p 1| blG) o
1 U)o . 1
m=1 Fin No Hhk(j)\lzhm(]) + N %0
m#k
_%% 50 o
Np—o0

By substituting (22) into (16)-(18), the following corollary can
be obtained.

Corollary 1: Without considering any power scaling laws,
the asymptotic results (when the number of BS antennas goes
to infinity) of the channel capacity I} (7) in (16), the channel
dispersion V;™¢(4) in (17), and the channel perturbation term

k,co
U,gnéf) in (18) of the achievable coding rate, are:

(23)

k,co

() <= ]
Np—o00

k,co

Vi) =2 Vi =2, (24)
b o0

Uer

k,co N?ﬁ} Ulr;:rcco
41 1 1 <2TC + 3)
V2r VL VT.L (T, + 1) 2
401 1 1/2
< mﬁ(l +1/T.)"=. (25)
Remark 2: Note that when converting the real case in [7]
to the complex case, the asymptotic results of the channel
capacity in (23) and dispersion in (24) (without considering
the power scaling law) are aligned with the asymptotic result
of the channel capacity in Eq. (273) and channel dispersion
in Eq. (274) of [7]. Now, from Proposition 1 and Corollary 1,
the following insights can be obtained:
i) With massive antenna arrays at the BS, both the channel
dispersion V;¢(j) and the perturbation U' of the

k,co
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mrc Rer,CO _

L
1 .
k,co ™ “lk,app T E lercrzrc%(.j) +
j=1

L
R ENGE)
JI= —1 (_mrc
LT. 9 (), 20)

achievable coding rate approach to a constant. This in-
dicates that for our system setup, in the finite blocklength
regime, these two important terms cannot be eliminated
even when N, goes to infinity. This means that the
clarifications in Remark 1 are valid under massive MIMO,
i.e., the final effective channel dispersion (the third term

in (15)) goes to which decreases as the order

2
IT.’
(@) ( %), whilst the final effective perturbation (the last
term in (15)) still decreases with the order O (%)

For massive MIMO, due to (23) and (24), the function
Gpimes OF (14) approaches to 1, and the asymptotic result
of the channel perturbation U™ < 1 even with a
small number of blocks L and coherence intervals T.
(e.g., L = 1, T, = 5). This implies that the condition
Ue, < Qe €an be more easily achieved in massive
MIMO sys’tems. Meanwhile, the BE-CLT-based upper
bound of the average error probability €M:Pclt of (19)

k,co
is approaching to
mrc-beclt
€k ,CO

ii)

a.s. (26)
Np—o00
while the Taylor expansion based approximation of the
average error probability €).' of (21) will converge
to zero. This is a big difference in the massive MIMO
regime while a detailed comparison between these two
results will be presented in the numerical results.
iii) In terms of (20), as shown in [5, Eq. (227)], the minimum
blocklength required for achieving a certain fraction 0 <

N < 1 of the channel capacity is as

—1 2
; Vi
n=LT,~ [Q (6")] L 27)
L=me ] (C)
where we ignore the adjusting term E‘Ifb for convenience.

The terms C} and Vj, denote the channel capacity and
dispersion. Using the asymptotic results in Corollary 1,
we infer that the required minimum blocklength can
approach to a extremely small value with a large number
of BS antennas. This conclusion indicates that massive
MIMO is beneficial in reducing the required blocklength,
and so is in reducing the communication delay.

Corollary 1 and Remark 2 are the asymptotic results without
considering any power scaling laws. However, under the power
scaling law at the users’ side, i.e., the transmit power for
each user is scaled with N, according to Pj L
k =1,...,K,, where Ej is fixed, the SINR}((j) in (11)
will now approach to

& i (5)113

U= hi () 2
By | .G ,
mz—:l Ny | e Pm(9)] +on
m#k

2
a.s. E
ey ek, (28)
Np—00 g

which is obviously quite different from the asymptotic result

given in (22). Substituting this asymptotic result into (16)-(18)
of Proposition 1, we have the following corollary.

Corollary 2: Under the power scaling law P, = %’; for
all k = 1,..., Ky, when N, — oo, the capacity I}'5 (7).
the dispersion V;7c(j), and the perturbation term Uy in
Proposition 1, now approach to

2
. a.s. = 'YkEk

Ier Ier :1 1 2
k,co(])m k,co n< + O'% >a ( 9)
Vk,co(.]) Ny — 00 Vk,c0:2_ 1+ 7’3?’“ ) (30)
Ukso - Uko (31)

~ 0 Ny—oo
where Uy, has been given in (25) of Corollary 1.

Remark 3: Under the power scaling law, massive MIMO
can suppress the channel dispersion of the achievable coding
rate while sacrificing the performance loss of the channel ca-
pacity. Thus, for the achievable coding rate 12} of (20) after
dropping the terms O (%) under the power scaling law, the
backoff from the corresponding channel capacity is reduced
for fixed average error probability €;"¢; and blocklength LT-.
Meanwhile, substituting the asymptotic results of Corollary
2 into (19) and (21), we have that both the average error
probability embeclt in (19) and €', in (21) cannot go
to zero even with massive MIMO since the function gy, o
in (14) and U} are approaching to constants. Also, the
minimum required blocklength in (27) will also approach to
a constant. Therefore, the conclusions are quite different with
and without considering the power scaling laws.

Furthermore, from Proposition 1 and Corollaries 1 & 2, we
can infer that fixing the total blocklength n = LT, both the
analytical result U™ and the asymptotic result U™ of the
channel perturbation term increase along with the coherence
interval T,. However, from Proposition 1, leveraging more
number of blocks can not only help to reduce the channel
perturbation, but also help to reduce the performance uncer-
tainty caused by the randomness of the channels. In this sense,
we can conclude that in the coherent case, the scenarios with
higher number of blocks and shorter coherence intervals are

more beneficial.

B. ZF Scheme

With ZF scheme, we must have K, < N,. Let H(j) =
[hy(j),...,hx, (j)] € CNo*Eu be the channel matrix from all
users to the BS, and X(j) = [x1(j),...,xx, (j)] € CTe*Eu
be the input signal matrix from all users. Then, the ZF vector
ar(j) = aj ., (j), is given by
(H()HETGHG) ), ,

)

~IHG) \EGHEG) )kl
T

ay ()

; (32)
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where V() is the null projection of the matrix Hy(j), which
is given by

—1

Vi) = Iy, —Hg(j) (HLGHL())  HLG),  G3)
in which Hy () is the submatrix obtained by removing hy(j)
from H(j). Substituting the ZF vector of (32) into (4) and
taking into account V(j)Hy(j) = Oy,, we obtain

Vi o (i) = I () Vi()ll2xE (5)
Desired signal
hl (/) Vi(j)

0 () VEG) ]2

Colored noise

N(j) - (34)

We denote the noise vector in (34) as nZ(j) =

co
v .
WN( ) € C**T<. Thus, for the coherent case, (34)

can also be treated as a point-to-point SISO channel with
the fading channel ||hT( )Vi(4)||2 and independent Gaussian
noise 0 (j) ~ CN(0,021r,). The corresponding signal-to-
noise ratio with the ZF scheme is

N B , ,
SNRf o) = —5 [ () V(I3 (35)
So, by replacing the terms |hg(j)||2 and
2
Z P, Hhk(ﬂ))||2hm(j) + 02 of the MRC scheme in

Proposmon 1 of Section II-A with ||hL(j)Vk( )||2 and o2,
respectively, the following proposition for the ZF scheme
under the finite blocklength regime can be obtained.

Proposition 2: Under the assumptions of coherent block-
fading channels and the i.i.d. Gaussian input signals, with the
ML decoder at the BS define a threshold term as

Z kco( ) 2
LT,

zf,co A
qk,lhres - Q

In Mk
LT,

lnp’ 1 zf,im
I I Fco (J)

j_l

X

(36)

When the channel perturbation term U7 k o> Which will be given

later in (40), satisfies the condition U4 e,co < qut;?eg, the relation

between the achlevable coding rate RZf «©

probability € o 18 glven by:

lan .
LT. — Zlk co

and the average error

z’r €0 A

(37)
In (36) and (37), the parameter p is also uniformly distributed
on the interval (0, 1). The terms I, ifco( j) and Vy? f ,(j) denote

the channel capacity and dlspersmn at the j-th block, which
are given by

P,
o) =t (14 ZHRGVAGIE) . GO

Vk co( ) 2 <1 - 1 (39)

The term UZ

1
- 5:ghz<j>vk<j>||%> |

is the channel perturbation and has the form

k,co
— dey 1 . <2T +3)
Reo ™ or VLTI (T, + 1) 2
,% . I ,
Z Vk co ‘ L Z [Vk (,0( )] : ) (40)
j=1

Remark 4: Observmg Proposition 2 and Proposition 1, the
only difference between the ZF and MRC scheme for the
coherent case is the SINR in (35) and (11). Hence, all the
conclusions obtained in Remark 1 also hold for the ZF scheme.
Likewise, we have:

i) The exact difference between the finite blocklength and
infinite blocklength comes from the channel dispersion,
channel perturbation, and the non-zero average decod-
ing error probability. From Propositions 1 & 2, these
terms, which do not contribute to the improvement of the
achievable coding rate, can be made arbitrarily small by
letting the number of blocks tend to infinity. Meanwhile,
similarly as in the MRC scheme, the achievable coding
rate for the ZF scheme after ignoring the terms of the
order O (1), is given by

R ~ zfco_ lnﬂ
k,co ™ kapp

Z‘Ikco .

Q" (), (D)

and the average error probability E%cf,co after using the BE-

CLT and the Taylor approximation are respectively as
zf,co A zf beclt

ek co <1l- qk thres + Uk co = €kco > (42)
zf co 4 zf-Taylor
Gk ,CO ~1- k thres — “k,co (43)

From (41) & (42) & (43) for the ZF scheme and (19)
& (20) & (21) for the MRC scheme, we can observe
that the performance of both schemes is determined by
the interaction between the average capacity, average
dispersion, average perturbation through all blocks, and
the total blocklength (L and 7). Thus, it is challenging,
if not impossible, to conjecture which scheme performs
better in the finite blocklength space. A detailed numerical
comparison is given in the numerical results section;

ii) Similar to Corollaries 1 & 2, the asymptotic analysis
can also be performed with massive MIMO by using the
following asymptotic result,

Nibllhl(j)vk (44)
from which, it is easy to see that the power loss in the
ZF scheme can be eliminated with massive MIMO. Now,
by substituting (44) into (35) and further into (38)-(40),
the same asymptotic results as that given in Corollary
1 without any power scaling law and Corollary 2 under
the power scaling law Py = % forall k =1,..., K,,
can also be obtained for the ZF scheme. Thus, all the
conclusions obtained in Remarks 2 & 3 also hold here;

iii) The instantaneous channel capacity, channel dispersion,

DI —=—%,
Nb—)OC
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and channel perturbation terms during a certain block 7,
are expressed as the realizations of the uplink channels in
that block, and the corresponding three key terms in the
achievable coding rate under block fading channels are
the average values across the whole number of blocks.

IV. NON-COHERENT CHANNELS

In this section, non-coherent channels are considered, i.e.,
the BS has no perfect CSI of the uplink channels and it
needs to estimate them firstly with the received pilots at
the beginning of each coherent block. We consider the usual
time-division duplex (TDD) scheme and the MMSE channel
estimation is applied at the BS. Thus, each coherence interval
T, is divided into two phases: the channel estimation phase, in
which 7, symbols are used for the transmission of orthogonal
pilot sequences simultaneously by all users, and the signal
transmission phase with the remaining 7, — 7. symbols in
each block being used for signals transmission. Assume that
the k-th user transmits the pilot signal with the transmit power
Py¢. Then, the uplink channel in j-th block can be written as

hy(5) = hy(j) + hy(4), (45)
for all £ = . K, and j = 1,..., L, In this equation,
hi(j) and hy(j) are independent and denote the estimated
channel and the estimation error at the BS with the distribution
hy.(j) ~ CN (0,671n,) and hy(j) ~ CN (0, (47 — ¢7)Lw,),
respectively. The coefficient ¢7, representing the estimated
channel gain, is given by )

9 N\ —
=)

i =T <7k +
where k = 1,..., K,. The notation o2 denotes the variance

of the AWGN at the channel estimation phase.

(46)

A. MRC Scheme

For the non-coherent case, the vector ay(j) at the j-th block
in (4) for the MRC scheme is

. hy. (j)
() = @)
T Gl
forall k=1,...,K, and j = 1,..., L. Substituting (47) and

the estimated channel of (45) into (4) yields
Fion(7) = [ ()llaxE () +0Res (i), (48)
where g () € C**(Te=7¢) and the input signals x(j) €

C(Te=7)x1 g distributed as x4 (j) ~ CA (0, PyIz,_»,). The

term nue(j) denotes the effective noise, which has the form

hi() - SO
Aon () = = B () () ) B (5)%5, ()
IRl %k IBL()1l2

m
Ko {1/. Ty
V) PN . (€ B
+ Y =y, ()%, () + o N().
ot ()2 by, (7|2
m#k
(49)

After the channel estimation phase, the BS treats the esti-
mated channels {hy(j )}, as the true channels. However,
the channel estimation errors {hy(j)}r", are unknown at
the BS, which leads to the fact that the first and third
terms in (49) are not Gaussian distributed vectors. Thus, the
effective noise n™¢(j) € C'*(Te=7) in (48) is also not

Gaussian distributed, which has zero mean and covariance
matrix Xgme (j) = Uﬁmm( )1, 7., in Which 02u(5) is
non

nmrc E P k
non

K \hT ()b ()
+ 02, (50)
%_: ) (5)13

This is quite different from the corresponding coherent case,
in which the effective noise is Gaussian distributed. Hence,
the non-Gaussian effective noise makes the non-coherent case
more challenging and difficult to analyze.

Now, (48) can be treated as a point-to-point SISO channel
with the coherent fading channel ||1A1£ (4)||2, the i.i.d. Gaussian
input signal vector x; (j) and the non-Gaussian noise vector
nuc(j). The corresponding signal-to-interference-plus-noise-
ratio SINR;[,,(7) at the j-th block is

me (v _ PelBi()3

SINRk non( ) U%m‘: (]) )

which reveals the impact of the inter-user interference and the
channel estimation errors.

As shown in Appendix C, to determine the achievable
coding rate under the non-coherent case, we need to identify
the distributions of the normalized squared norms of the output
signal vector ¥ (j) and the effective noise vector gt (;)
of (48). Since it is really hard to derive the exact probability
density function (PDF) of these two parameters, we consider
their approximations, which are widely used in the literature
and shown to be very tight in the numerical results. More
precisely, let us define the random variables:

e o IR

Uymon(J) =
o Pl R{ ()13 + 03 (1)
L]
' O famre (J)
which represent the normalized squared norms of the output
signal vector and the effective noise vector, respectively.
Conditioned on {hy(j )}ice,, the distribution of Uy o (J) and
vpon(J) can be approximated by a Gamma distribution by
matching the first and second-order moments, which are as
follows:?

(D

; (52)

. (53)

mrc - mrc . gr/n,rrfon (])
vy,non(]) ~T y,non(])» T.— 1. ’ 54
()
) ~ T (050 7222 )

mrc

with the correlation coefficient plas (j

Upmon(J) as

(j) between ;'L () and

\/ﬂ;,nifon )3355on (4)

@)

er

pHOH

(56)

3The reasons for using the Gamma distribution are that: i) it is a Type-
IIT Pearson distribution which is widely used in approximating distributions
of positive random variables by matching the high-order moments [24];
ii) its bivariate PDF is also simple and does not involve any higher-order
complicated mathematical functions [25]; iii) the positive parameters vy, (5)
and v, (j) can be expressed as a summation of a series of squared-
norm random variables which are chi-squared like form, while the Gamma
distribution is a generalization of the chi-square distribution.
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(T. — 7.) (SIN

fonon (4) + 1)

Erl;l,rrfon(j) = PP o) s (3) , (57)
(IR (0) (B ) 1] + 20 () 1
mrc . 2 _
ynon (J) = (1 + SO m(f)) (7 A, () : (58)
5 mr . 2 T . P, 2_¢2 mrﬁmn
N e /- . . . o . T. —
where =} on(J) and BT (7) are respectively given in (57) me on(d) 2. /1_ (pnmor,?(j))Q de—Te , 67)
and (58) at the top of this page. The term 37, (5) is as me (7
. (T. —7¢)
anlrlfon (]) = T y (59) Jmre j A Jmre ] mrc ]
> 14 ik;:;n((j)) [(T TC) 4 1] non( ) 22 non( ) mmmon( )
In (57), (58), and (59), the term A", (j) is as + (Tnon () = 1500 () \/ 155en (1) (68)

mrc
k,non

j) = Z P vk —
+2ZP2 ) m)|h<3h ()P
IBEG)I3
m#k
Now, under this case, the mismatched nearest-neighbor
(NN) decoding rule is applied at the BS.* With [15], for
arbitrary s > 0, the generalized mismatched NN decod-

ing rule is given as (61) shown at the top of next page,
where (HL,)E = diag{||h;,(1)||2,...,HhL(L)Hz}, for all
k =1,...,K,, which is perfectly known at the BS. The
matrices (X)% € C(Te=7e)xL and ((Yk)mrC € Ccbx(Te—me)

(60)

have similar definitions as in Section II. From Appendix C,
when choosing s = ﬁ in (61), the capacity can be

achieved if we use this decoding rule.’ Recalling the matched
ML decoding metric in (12) under the coherent case, the
mismatched NN decoding metric in (61) is quite different
from (12), which is exactly due to that the effective noise
in the non-coherent case is not Gaussian distributed. Thus,

with this decoding metric and setting s % the

following Proposition 3 can be obtained. Before presenting
this proposition, some coefficients are first defined as follows:

rTlra‘L:x,non(j) = maX{ non(7): Brmon(4) } 5 (62)
min.non (1) = min { 8716, (1), Banon(7) } (63)
. Tc — Tc
lrlnlrcnon (.]) £ B e (64)
Binin.non (7)
2
I (/B cnon (1) — P )/ B en)) -
non\J) = r ;
2 1- (pnoﬁ,‘_([.]))Q
- mrc c— Tc
r2nlr?n0n (j) £ Pron (] ) B N (66)

mrc ( )
max,non J

4Note that when the effective noise is non-Gaussian distributed, it is much
more complicated to use the ML decoding metric again since it is quite
involved and difficult to calculate the corresponding PDF as in (13). Hence, it
is more convenient to deploy the mismatched NN decoding metric, as shown
in [17].

SGenerally, the i.i.d. Gaussian input signals are not capacity-achieving in
mismatched decoding schemes.

Proposition 3: For non-coherent fading channels and i.i.d.
Gaussian input signals, when the mismatched NN decoding
metric in (61) is applied at the BS, for the MRC scheme,

setting s = o Gy e define the threshold value qkmr[irg‘:“ as

follows,
-2
T 2 Vilea ()
mrc,non A j=1
k,thres — Q LTG
In My, In g 1 mrc,im / .
- — = = X 69
X LT(/ LT(; LJ - k,non ( ) ( )
When the channel perturbation U;cnifon (given later in (73))

satisfies the condition U}y < qgﬁlr’;‘s’“, the achievable coding
rate (in nats per channel use) can be expressed as (70) shown
at the top of next page. In (69) and (70), the parameter p is
also uniformly distributed on the interval (0, 1). The channel

capacity I3, (j) at the j-th block, is given by
In (1+SINRP™ (7). (7D

T. —

Imru N — ¢

knon( ) T

The channel dispersion V"¢ (), which comes from the

variance of the information densuy, is

) (T. — 7.)? {( 1 1 )
erc — - + -
fnon(9) T, mee () B ()
2000 (7)
\/Bin () B5en ()

The channel perturbation term Ug'T is given by

(72)

L 2

L
. 1 = .
Z an,l;f)n (]) Z Z Ircrglcon (.7) )

j=1

(73)
where the term U Jmon(4) in (73), which represents the absolute
third-order moment of the corresponding information density
at the j-th block, can be approximated by (74) shown at the
top of next page, where the term Q' (j) is given by (75)
shown at the top of next page. In (72) (75), the parameters
Phon (J)> By'non (7)> and B0 (7), have been given in (56), (58),

and (59), respectively. Note that the hypergeometric function

1 T

pymre = | e
VI\T

knon — C1
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. \L N . 2
(Xe) = argmax exp {—s |((m® = A (X0 5| }
(X)L eCTexL F
L . 2
— orgmax [T {-s [528.0) - 1L IRE )]} 1)
(Xk)LECTCXszl 2
| & '
In M L T '21 an,lll;(t:)n ()
]f Rmre mre J= mrc
TTG k non — 4 k non - LTC Q ! (ek non) =+ (70)
34B0in,non (4) 3175 non (4)
G (i) [lggcm< )] [0 () = BSaon ()] 5
knontJ )~ [lnmorrclz(j)]3+l12,non(-7)+63fn non (9)
. M . ]Tgnon(” F (3 + 112 ,n n( ) + ﬁrrglﬁl non( )) c .
< [Biinaon (D] 5 [ ()] 7 e O (), (74)
(112 non (-])) (/81nin7n0n (]))
mrc : mrc mrc lmrc non (‘7) ﬂ;“nrfn,lmn (j)
3 -1 f3| 2F1 (173 + llQ,non(]) + Bmimnon( ) f + ﬁmm non( ) + 1; = mre(5) )
mrc
Z 13 F B )
. . . U177 non (3) =157 non (4) oo (7)
2 Fy (17 3+ lrlng,cnon(j) + ﬁrrﬁli%,nnn(])v f + lrlrg,cnon (]) +1 [ 2131(5"0(]; ] ] )
+ o (75)
f + ll2cnon( )
oFy (+) in (75) is convergent. m =1,..., K, from the matched Gamma approximation
Proof: See Appendix C. [ | in (54) and the related parameters in (56)-(60), the non-
Remark 5: Note that the channel dispersion V;[C (j) of coherent case simplifies to the corresponding coherent

(72) is a closed-form result while U, Fon(J) in (74) is obtained
based on the matched Gamma approximations in (54) &
(55) and the absolute high-order moment approximation in
Lemma 2 of Appendix A. From the simulations later, the
approximation result of (74) is quite accurate and the gap from
its real value can be almostly ignored. The channel dispersion

Ve (4) and channel perturbation U™  of the achievable

k,non ; k,non R .
codmg rate in the non-coherent case are acquired by fixing
s = ﬁ, since this is a capacity achieving strategy. Now,

Angh

comparing Proposition 3 with Proposition 1, we have:

i) Firstly, the expressions in (69)-(70) in Proposition 3 are
similar as the results given in Proposition 1 of Section
III-A. Thus, the same conclusions as in Remark 1 can
also be obtained for the non-coherent scenario;

Secondly, the channel capacity Ig“ncon( j) in (71) for a
given j-th block and the correspondmg average result
under block fading channels (the first term in (70)) are
determined only by the SINR}'L), (4), for j = 1,..., L.
This is the same as the MRC scheme in the coherent case.
However, the channel dispersion Vkmrrlfm( ) in (72) and the
perturbation Uy in (73) are determined not only by
the SINR}'{,(7), but also by the parameters %:(3’%)
and Ak,:zn(u))’ which are brought in by the channel es-
timation errors from all users and represent the exact
difference from the corresponding coherent case. Thus,
setting all channel estimation errors 72, — ¢2, = 0, for all

case.

The channel dispersion and perturbation terms in Propo-
sition 3 are quite general and valid for the system with
any arbitrary and finite number of BS antennas. However,
these expressions are quite complicated. In the following, an
asymptotic analysis will be performed. Again, by using the
law of large numbers, the related parameters in Proposition
3, which includes SINR}(,(j) of (51), the noise variance
02 (j) of (50) and the parameter Ao (j) of (60), will
apf)ornoach to

SINRJT, (7) = oc, (76)
O’%mrc (j) M O—ﬁmrc
Ky
=P (i —})+ > Purd+oan, (D)
mzk
mrc . Np—00  xmrc
kmon(.j) —_— k,non
K,
= Pk2 Z 7m - m) (78)

m=1

m#£k
Substituting these asymptotic results of (76)-(78) into (56)-
(59), we further have:

. Nl,—>OO >
gr/n,];fon (]) 7 Z],rrfon =T — e, (79
., Npy—oo 3 T. — T
rnon (J) = Bpinon = e (80)

k non

1+ [(Te —TC)+1]

nmm
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Pr(vi — ¢%)
ok + (T —7) + 1 A,
8D
Substituting (76)-(81) into Proposition 3, the following
corollary can be obtained.

—mrc __
non

Np—
Phon () ===

Corollary 3: Without considering any power scaling laws,
when N, — oo, the channel capacity ,‘C“ffon( ) in (71), the
channel dispersion V;[¢ (j) in (72) and the channel perturba-
tion term U™

in (73) will approach to

k,non
mrc o Np—oo
Fhon(7) == 00, (82)
mr .\ Np—o0 mr
Vk nf)n( ) — Vk n((:)n
_ (Te - Tc)2 + (Te — 1) Ar];lrlgon
B TC a’ﬁmlu
Te
N >G2< mv, 3
e O
Wﬁnmﬁml?m=xﬁﬂTW%ﬁ Ol (84)
where U kmon 18 the asymptotic result of U fon(J) i (73),

which can be obtained by directly replacmg g (9),

y,non

mie (7)), PR(4) in (74) and (75) Wlth pme |, gme | pmre

n,non y,non’ T,non’ pHOH

of (79)-(81). In (83), the parameters an.m and A‘,?rrfon have
been given in (77) and (78), respectively.
Remark 6: As the channel dispersion Vkmrrlfm in (83) and

perturbation term U,‘::fon in (84) are constants and independent
of N, the conclusions obtained in Remark 2 of Section
III-A for the MRC scheme also hold here. Meanwhile, from
Corollary 3, we have that: under our system setting and in
the finite blocklength regime, without considering any power
scaling laws, massive MIMO fails in eliminating the channel
estimation errors in the channel dispersion and perturbation
term, which is quite different from the usual infinite block-
length case. This reveals that imperfect CSI is much more
harmful in the finite blocklength regime even in the massive
MIMO region. The reason behind this is that the channel
estimation errors in the asymptotic results g™ and B™C
still exist in the massive MIMO regime. Recall the phys{cal
meanings of these two terms in (56) and (59), we can conclude
that in the non-coherent case, the effective noise cannot be
treated as Gaussian distributed and the output signal and noise
vector cannot be assumed to be uncorrelated unless the channel
estimation error from the intended user k is equal to zero, i.e.,

— ¢2 = 0. This is in sharp contrast to the corresponding
results obtained in Corollary 1 and this key observation will
be verified clearly via simulations.

We will now perform the asymptotic analysis under the
power scaling laws at both the pilot transmission phase and
signal transmission phase. With this, we have the following
corollary.

Corollary 4: When the power scaling law Py = fz@fb and
P = f—J\’% with Ej and E} fixed, for all £ =1,..., K,, is
considered, we have,

mrc . NbA)OO QTN e, 00 TC’Y}% c
SINR}5on(4) ——— SINRy 10n = 7202 s ExEy,  (85)

while the parameters 375, (5), Brnon (J)5 and pnmgg( j) in (58),

(59), and (56) will respectively approach to

. . Np—o0
on (1), Baon (1) ——— Te — e, (86)
mrc N; 8] 1
P () == — (87)

1+ SINRj, 0n

Remark 7: Comparing the asymptotic results in Corollary
4 with those in Corollary 3, it is clear that under the power
scaling laws given in Corollary 4, all the channel estimation
errors are theoretically eliminated with a massive number of
antennas. From the asymptotic results 37", (7) and B"5, ()
obtained in (86), both the effective noise vector nlus () in (49)
and the output signal vector y',?rrfon( /) in (48) would approach
to be Gaussian distributed. However, from the asymptotic
result of p¢( ) in (87), the effective noise vector njns(j) and

the output signal vector y;'" (j) will never be independent
under the scenario considered in Corollary 4. These insights
are in sharp contrast to the results obtained in Corollary 3 but

similar with the results obtained in Corollary 2.

The asymptotic results in Corollary 4 are very similar with
the general case in Proposition 1 for the MRC scheme in the
coherent CSI in Section III-A. Thus, we have the following
corollary.

Corollary 5: Under the power scaling laws Pj, = \}ENLb

P = % for all £k = 1,..., K,, and massive MIMO at
b . . .
the BS, the channel capacity I;f;con( ) in (71), the channel

dispersion V™ (j) in (72) and the perturbation term U™®

k,non k,non
in (73) of Proposition 3 will approach to
e () I_VQO_O_> Imrc 'S

knon k,non
Tc_Tc
= In(1
T, n( +0

Np—00  Fmrc,00
; ;
Vk,non

and

5 kg Ek> (88)

c”n

Viemon (4)

Np—ro00 fyme,oo
k,non

Cda 11
N \/QW\/Z\/chTC

1 2(Tc —7c)+3
XI‘(TCTCJrl)F( 2 ) ©0)

Remark 8: The results obtained in Corollary 5 are quite
similar with those obtained in Corollary 2 for the MRC scheme
with the power scaling law Py, = ﬁ’" under the coherent case,
except the 7. and asymptotic SINR difference. Hence, the
corresponding conclusions in Remark 3 are also valid here.

Furthermore, by using the result in [26], we have

Uer

k,non

4e; 1 T—Tc—i—l
\/QW\F\/ .= Te) — 7.+ 3/2)

7 mre, 00 4c1 1 1 /2

mm"_¢%¢LO+E—%> - OV
Both the left-hand and right-hand side of (91) are decreasing
functions with respect to 7, — 7.. This indicates that in the
asymptotic scene, using longer pilot sequences is not bene-
ficial for suppressing the perturbation term of the achievable
coding rate in the non-coherent case. Meanwhile, the channel

dispersion V,;n o> in (89) is a concave function with respect
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to the pilot length 7.

B. ZF Scheme

With the estimated channels in (45), the ZF combining
vector of (32) will become

N N T
(BL(Ve())
) IBLG)VEG) 2
where Vi (j) has similar definition as (33) by replacing
{hx(j)} =, with the estimated channels {hy, (j)}ie, of (45).
Now, substituting (92) and the estimated channel of (45)
into (4) yields (93) shown at the top of next page, where
H(j) = [hi(5), ..., hk,(j)] € C¥>*F . The term nf,(j) €
C1x(Te=7c) denotes the effective noise vector, which includes

independent non-Gaussian random elements and each element
has zero mean and the variance
K

o =Y P — 6}) + o
k=1

Hence, (93) can also be treated as a point-to-point SISO
channel with the i.i.d. Gaussian input signal vector x} (j) €
C1(Te=7e) | fading channel |[h}(j)V4(j)|l2 and the non-
Gaussian noise vector nZ (j). The corresponding signal-to-
interference-plus-noise-ratio SINR%men () at the j-th block for

the non-coherent and ZF case is U,

Pelhy (7)) V()3

SINsznon(j) _ k” k(.]2) k(])”Q (95)

’ O 2ot
Note that this case is similar with the MRC scheme for
the non-coherent setting in Section IV-A. Thus, we define the

coefficient A for the ZF scheme, which is as

K.,
Afff,non = Zpkz(’yg - ¢%)2
k=1
By replacing the parameters SINRY'(7), 03me, and AF
that are included in the terms 3775, (7), B on (7), and p™e(5)
in Proposition 3 with that SINR@{HO“ (j) of (95), o2, of (94),
and A% of (96), respectively, similar conclusions about the
achievable coding rate as given in Proposition 3 can also be
obtained for the ZF scheme. Meanwhile, by replacing the
asymptotic parameters G and AR’ - included in all the
terms of Corollary 3 with that o2, of (94) and A7 of (96),
respectively, similar asymptotic results as given in Corollary
3 can also be obtained for the ZF scheme. Furthermg)re, under
the power scaling laws P, = %GT and Pf = \f—]%, for all
k=1,...,K,, the same asymptotic result as in Corollary 5
can be obtained here.

zf

k,non\J) = (92)

(94)

(96)

V. PACKET LOSS PROBABILITY IN THE FINITE
BLOCKLENGTH REGIME

In the following, we will present the relationship between
the packet loss probability [27] and the average error prob-
ability in the finite blocklength regime. Firstly, in the finite
blocklength regime, we consider one packet is lost if the
receiver cannot correctly decode all symbols transmitted by
the intended user. In this paper, we will mainly consider the
following two scenarios that lead to a packet loss:

i) The first one occurs whenever the achievable coding rate

is below a target threshold; consequently, the transmitter

cannot send information to the receiver successfully due
to the poor channel conditions;

ii) The second one occurs whenever the channels are good
enough for successful transmission, however, the receiver
cannot decode the desired signals completely, i.e., the
decoding error probability is positive. This is quite dif-
ferent from the infinite blocklength regime, in which the
decoding error probability can be arbitrarily small.

Thus, combining these two cases, we have the following
corollary:

Corollary 6: In the finite blocklength regime, for a fixed
average error probability, the packet loss probability for the
intended k-th user in our paper can be expressed as

Prips = Pr{ B < B} + e Pr {BP > R |

=ep+ (1— ) Prier < g}, (97)
where qg‘rlf’is is given by
L& -3
I '21 Vi(4)
res J=
q?,loss = Q T
1 & Inp
- T (i _ pthres 8
x L; o) + o — B (98)
In (97) and (98), the term R}?res denotes a
predetermined target rate for the k-th wuser. The
parameter €, € a e el represents

mrc
£6k7007 6k:,co7 6k7n0n7 6k,non

all the average decoding error probabilities. The term

app mrc,co zf,co mrc,non zf,non
Ry € Ry aop > B app Bicapp B app represents
all the achievable coding rates obtained in this
paper after removing the perturbation term, and the
mrc zf mrc zf
parameters  Vj € { kaco, Vk,co , Vk’mn, V,mon and
I, € {I}C“rcco,],ifco,[,‘c“fon,],?non represent all the channel

dispersions and channel capacities, respectively.

Remark 9: Note that the packet loss probability in Corol-
lary 6 is based on the premise that we treat the average
decoding error probability caused by the finite blocklength as
one of the packet loss events. In this context, from (97), it is
easy to obtain that Pri™ > ¢, i.e., the packet loss probability
is lower bounded by the average error probability. From the
asymptotic analysis in this paper, without considering any
power scaling laws, all the channel capacities I approach

to infinity. In this situation, the term Prqe; < q}frlffss} in
(97) approaches to zero and in this context, the packet loss
probability can be approximated by the corresponding average
error probability € in the massive MIMO regime. This implies
that in massive MIMO system without considering any power
scaling laws, the packet loss probability tends to coincide
with the average error probability. However, under the power
scaling laws, the result will be very different due to that the
term q}:rlffss in (98) approaches to a non-zero constant.

On the other hand, Corollary 6 can also be explained in the
following way: define the effective decoding error probability

1, R <RI
eff & ) k k

as €, = o, R > Rl}];res; then, the packet loss probability
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ot AT b (Vi) o hj, (/) V()
~f N 'y . T, . \J) ViU . AN\T L\J)VED .
Yinon(7) = B, (1) Vi (G)ll2xk (1) + 5~ =2 B () (X (7)) + e =N (), (93)
[BL()Vi()Il2 [bL () V()2
20,(7)
in the finite blocklength regime is defined as Pri*® = E {e‘,’ff}. Uphon(J) under the MRC scheme (similar random variables

VI. NUMERICAL RESULTS
A. Parameters Setting

We consider a single cell with radius » = 300m and all
users are uniformly distributed in this cell. The simulations
are carried out under some basic system parameters setting
unless otherwise stated. The number of the BS antennas is
set as IV, = 20, whilst the number of users is K,, = 5 and
the pilot length is 7. = 5. The transmit powers in both the
channel estimation phase and signal transmission phase are
P, = P{ = P = 10dBm, for k = 1,..., K,, and the noise
variance are set as 02 = o2 = —100dBm. The coherence
time is 7. = 20 while the number of blocks is L = 10. We
assume the same information nats for all users that allowed to
be transmitted are as In My = ... = In Mg, = b = 100nats.
The average error probabilities are €1 = ... = €g,
107°. The large-scale fading coefficients 77, k = 1,..., Ky,
can be modeled in dB as [28]

(v)ag = —35.3 — 37.6log, (di) + 2k, (99)
where dj, in meters is the distance from the k-th user to the BS.
The non-deterministic variable zj, is called the shadow fading
and distributed as z ~ N (0, 03), in which o, = 8dB is the
standard deviation of the log-normal random variable. Note
that all the simulation results are presented without considering
the power scaling laws due to limited space.

= € =

B. High-order Moments and the Matched Gamma Approxi-
mation

From Appendix B and Appendix C, the main results ob-
tained in this paper rely on the mean, variance and the absolute
third-order moment of the corresponding information density.
Therefore, Figs. 1-3 are used to verify the correctness and
accuracy of these results obtained in this paper. Specifically,
the correctness of the high-order moments for both MRC and
ZF schemes under the coherent case is demonstrated in Fig.
1, which shows that the simulation and the corresponding
analytical results match very well.

Considering the MRC and ZF scheme under the non-
coherent case, the closed-form expressions of the mean and
variance of the corresponding information density are cal-
culated, and their correctness are verified in Fig. 3(a)&(b).
However, for the absolute third-order moment, it is quite
involved and difficult to acquire the exact distributions of
the random variables vy'%, () and vy, (7) defined in (52)
and (53), respectively. Therefore, the matched Gamma dis-
tribution approximations are given in (54) and (55) for the
MRC scheme. Likewise, similar random variables and ap-
proximations also exist for the ZF scheme. These distribution
approximations for both MRC and ZF schemes are simulated
in Fig. 2. In this figure, the CDF of the exact distribution

and the matched Gamma approximation for vj'T,(j) and

for the ZF scheme) are showed. The notation "CDF-Chi-
Squ" represents the case when we treat all the effective
noise vectors and the corresponding output signal vectors as
Gaussian distributed. From this figure, the matched Gamma
distribution can precisely evaluate the complicated distribu-
tions of the normalized squared norms and it is not accurate to
just simply treat them as Gaussian distributed. Based on these
distribution approximations, the absolute third-order moment
for both MRC and ZF schemes are then approximated by using
Lemma 2 in Appendix A, and the correctness and accuracy
of these approximations are validated in Fig. 3(c). From this
subfigure, we see that the gap between the simulation and the
corresponding approximation can be neglected.

Since the analytical expressions agree remarkably well
with the corresponding simulations, we will only show the
analytical results henceforth unless otherwise stated.

C. Perturbation Restrictions

All the results obtained in this paper are under the condition
that the perturbation terms of the achievable coding rate must
be restricted below a given threshold. In Fig. 4(a)&(b) for the
coherent case and Fig. 4(c)&(d) for the non-coherent case,
the analytical values of the channel perturbations and the
corresponding threshold terms are simulated. From Fig. 4(a)
in the coherent case, when we fix the number of blocks L
(e.g., L = 10, which is a small value), the channel perturbation
constraint condition in Propositions 1-3 (and the corresponding
similar result for ZF scheme in the non-coherent case) can
be satisfied quickly by increasing the number of BS antennas
(e.g., N = 10 in this figure). However, increasing the number
of BS antennas, the channel perturbation for both MRC and
ZF schemes will approach to the same small constant while
the threshold terms are approaching to 1. On the contrary,
when the number of BS antennas is fixed, Fig. 4(b) showcases
that only a very small number of blocks (L = 5) are needed
in order to satisfy the channel perturbation constraint and by
increasing the number of blocks, the threshold terms are also
approaching to 1 while the perturbation terms approach to
zero. Considering the non-coherent case, similar conclusions
can be obtained as shown in Fig. 4(c)&(d). The difference from
the coherent case of Fig. 4(a)&(b) is that more BS antennas
are needed for the same fixed number of blocks and larger
number of blocks are needed for the same fixed number of
BS antennas. This is due to the high impact of the channel
estimation errors.

Finally, Fig. 4 shows that the perturbation terms in this
paper are very small even in small-to-moderate number of BS
antennas [V, and the small number of blocks L. This indicates
that when massive MIMO is deployed and with even small
number of blocks, the channel perturbation of the achievable
coding rate for both MRC and ZF schemes under the coherent
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and non-coherent case can be discarded without affecting the
system performance.
D. Average Decoding Error Probability

All results in this paper are calculated in terms of the RCU
bound of the average error probability. Then, the BE-CLT is
employed to provide a further upper bound of the average
error probability. After this step, when the threshold conditions
shown in Fig. 4 are satisfied, the Taylor expansion is taken to
get an approximation of the achievable coding rate, based on
which, an approximation of the average error probability is
calculated, which is denoted as "ATaylor" in the figures. In
Fig. 5 and Fig. 6, the average error probability obtained from
these results is illustrated for both MRC and ZF schemes in
the coherent and non-coherent case.

Specifically, Fig. 5 shows the simulation result of the RCU
bound and the analytical results obtained after the BE-CLT
and Taylor approximation with respect to both N, and L for
the coherent case. From this figure, the RCU-based average
error probability matches well with the corresponding result
obtained from the Taylor approximation, while the BE-CLT-
based result acts as an upper bound.® The reason behind this is
that when considering multiple blocks, the normalized infor-
mation density through multiple blocks can be approximated
by the normal distribution. Meanwhile, increasing the number
of BS antennas, the BE-CLT-based average error probability
approaches to a non-zero constant, while the RCU-based
and the Taylor-based result approach to zero. However, by
increasing the number of blocks, all the results approach to
zero. The difference between them is that the RCU and Taylor-
based results go to zero faster than the result obtained from the
BE-CLT. In this context, we can conclude that massive MIMO
without the power scaling laws can suppress the average error
probability to zero. Furthermore, the most significant insight
extracted from this figure is that it is impractical to compare
the performance between the MRC and ZF scheme, which
means that in some situations, the MRC scheme performs
better than the ZF scheme, as shown in Fig. 5(a), and in other
parameters settings, the ZF scheme has better performance
than the MRC scheme, as shown in Fig. 5(b). This interplay
depends on the system parameters, e.g., the number of blocks
L and the SINR}'; and SNRZf’CO through all blocks.

The average error probability for the non-coherent case is
shown in Fig. 6. Firstly, similar conclusions as extracted from
Fig. 5 for the coherent case can be drawn. The difference is
that a higher number of BS antennas and blocks are needed in
the non-coherent case. Then, Fig. 6(c) shows that an optimal
value for the pilot length should be calculated, which is used
to make a trade-off between the channel estimation phase and
data transmission phase.

E. Capacity, Achievable Coding Rate, and Channel Disper-
sion

Figures 7&8 show the analytical results and the asymptotic
results of the channel capacity, the achievable coding rate (after

SNote that although the Taylor approximation is more accurate than the
BE-CLT-based upper bound, it is not precise enough with an extremely large
array at the BS (i.e., the gap from the exact value cannot be ignored) and a
more accurate and complicated result was provided in [15] via the saddlepoint
approximations.

dropping the terms of the order O (1)) and the final effective

L

T X 0e™ (@)
for all situations. Firstly, Fig. 7 for the coherent case and
Fig. 8 for the non-coherent case illustrate that without con-
sidering any power scaling laws, increasing the number of BS
antennas can still improve the achievable coding rate without
bounds even when the channel dispersion caused by the finite
blocklength is taken into account for both MRC and ZF
schemes. Meanwhile, the channel dispersion for both MRC
and ZF schemes grows with respect to the number of the BS
antennas until an upper bound. Lastly, from Fig. 7(b) and Fig.
8(c), increasing the number of blocks, the achievable coding
rate will grow to its channel capacity, which means that the
channel capacity overestimates the performance in the finite
blocklength space.

Furthermore, from Fig. 8(b) for the non-coherent case,
fixing the total number of blocklength n = LT, = 800,
the scenarios with longer coherence intervals and smaller
number of blocks can offer higher achievable coding rate
for both MRC and ZF schemes. This is due to that under
this circumstance, we do not need to estimate the channels
frequently, such that more resources could be allocated for
the data transmission. At the same time, from Fig. 8(d), we
have that increasing the pilot length 7, the channel dispersion
for both MRC and ZF schemes are almost diminishing and an
optimal value of the pilot length 7. should be calculated for
both the achievable coding rate and the channel capacity. On
this optimal point, the gap between the achievable coding rate
and the corresponding capacity is the largest for both MRC
and ZF schemes.

channel dispersion, i.e., the term

F. Packet Loss Probability

Figure 9 shows the variation of the packet loss probability
given in Corollary 6 against the number of BS antennas, and
at the same time we include curves of the outage probability
in the infinite blocklength regime. Note that to exhibit the
results clearly, we set a larger average error probability, i.e.,
€ = 0.1. From this figure, the packet loss probability will
approach to the presented average error probability while the
outage probability in the infinite blocklength regime tends to
be zero with an increasing number of the BS antennas. This
indicates that the average error probability caused by the finite
blocklengh is the basic source of a packet loss.

VII. CONCLUSION

We have investigated an MU-MIMO uplink system in the
finite blocklength regime over both coherent and non-coherent
block-fading channels. Both the MRC and ZF combining
schemes at the BS were considered. The matched ML de-
coding metric was deployed in the coherent case while the
mismatched NN decoding metric was applied in the non-
coherent case. The input signals were assumed to be i.i.d.
Gaussian sequences. Under this system setting, we derived
closed-form results for the coherent case and tight approxi-
mations for the non-coherent case of the channel perturbation
terms of the achievable coding rate, while exact results for
the channel dispersions of the achievable coding rate under
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all cases were also presented. After providing a constraint
threshold of the channel perturbations, the relation between
the achievable coding rate and the corresponding average

error probability were then derived. Based on these analytical

Lemma 1:

APPENDIX A
PRELIMINARIES

results, an asymptotic analysis for a massive antenna array at
the BS with and without the power scaling laws was performed

and a series of useful insights were extracted.

[29] For two correlated chi-square distributed
random variables = and y with the distribution z,y ~ x?(N)
and the correlation p, then, the random variable z N y is

variance-gamma distributed with the corresponding PDF given
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by
1 1
2N\fﬁr

x K (mm) , (100)

where K, () denotes the modified Bessel functions of the
second kind.

Lemma 2: Consider any two correlated Gamma distributed
random variables with the distributions  ~ I'(ai,b1) and

y ~ T'(ag,bs) and the correlation coefficient p. Define the
index

fz(2) =

Z.max = {imax|aimax = max{al, a2}} ) (101)

Z.min é Z'max + (_1)imax+17 (102)
and the coefficients in (103) and (104) shown at the top of next
page. Then, the absolute high-order moment of the random
variable z = x — y is as follows:

(I) When 121 > l11, i.e.,
V@ipiy b

tmax

- X )
vV a7max b’rmin

the correlation coefficient p >
we have

m lor — 11 ! lao med
E{lz —yl }”Zﬂm ) ( By > <Béﬂ>
I'(f+oy)D(m— f+af)
r(a;v)l I'(af) 2 1

(II) When l2; < 113, i.e., the correlation coefficient 0 < p <

ﬁv;lfm“ meax we have (106) shown at the top of next page.

Proof: The key idea is to use the Cholesky decomposition
to transform correlated Gamma distributed random variables
into a linear combination of independent Gamma distributed

random variables, as given in [30]. The detailed proof of
Lemma 2 is omitted due to limited space. [ ]

APPENDIX B
PROOF OF PROPOSITION 1

Our proof resembles those developed by Polyanskiy et
al. in [5]. So, we begin by presenting the definition of the
generalized information density, which is given by [10]’

(s (wm)”)

o { (v

el

=In

Vo)

L
=Y i (xk(4); I (6)) s >0, (107)

Jj=1
"Note that our proof is conditioned on the uplink channels
{hy(j )} K and for simplicity, we removed this condition from the

entire proof
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V Firmin

a'inlax
hh=S—=, la=p b lag =+/1— 02\/17;. (103)
min : s R — - iy
O = Qs BT = Uiy @3 = mR, By = e (104)
1 1 2 1= 2 i
E{lz —y|™} =~ (B2)°F (B9)°% g (liy = 1o1)™ ¥ T (m + o + a1 Z fm'
1221 + (11 — lo1) By mHes +o L(a?)T(ay) < fl(m
¥+af YL lo2By’ w (li121)B3
y oy <l,m+a2 +af, f+af +1; m) +2F1 (1 m+aoy +af’ ,f+a2 +1; m) 06)

f+ay

[+ay

- L
where p* { ((Yk)ggm) (Xk)L} has been given in (13). The

notation (Xj)~ is defined as (X;)F = [xx(1),...,%x(L)],
in which %,(j) € CT<*! is a random vector that is inde-
pendent with xj(j) and has the same distribution as x(j),
ie., Xx(j) ~ CN(0, PIr,). The term iy (xx(j); Y3, (d)
denotes the generalized information density at the j-th block,
given by

is (%1 (5); Y ieo ()

Pi|lhe(5)]3
i (H—s ) kmz)

O (1)

sll¥ ki ()13 s[nge(o)l3
02 (D) FsPullhr ()3 oZue(i)
which shows that conditioned on the uplink channels at the BS,
the distribution of information density is only determined by
the squared norm of the output signal vector and the effective

noise vector, i.e., [|F3", (7)]13 and [[age(5)]/5.
Then, with the random coding union bound in [21, Theo-
rem 1], it is easy to obtain that the average decoding error

probability can be upper bounded by

EZ“CCO<P1"{ZS ((xk)L; ((Yk)ggC)L> <ln(Mj — 1)—lnu} ,
(109)
where p is a random variable that is uniformly distributed on
the interval (0, 1).
Next, conditioned on the CSI at the BS, we focus on
the sequence xk(J); SIZ"CCO(])) j=1,..., L} consisting
of independent random variables with their mean, variance

and absolute third-order moment being I, ,‘C‘“CCO( i), V,;“Crg( ) and

U ,2“?0( ), respectively. Then, (109) can be rewritten as (110)
shown at the top of next page, where (a) is due to the Berry-
Esseen central limit theorem (BE-CLT) [22] and the coefficient

c1 = 0.56. In (110) we define the term

(108)

U, £ k“‘éﬁ Z ome )|, i
; -4
G 2 Q [ [ Do Vi)
j=1
x | In(M —1) —Inp — ZI,‘;"CCO j , (112)

then, the results (14) and (15) of Prop0s1t10n 1 can be

obtained by first determining the exact value of U™ and

k,co
Gy tmes and then taking the Taylor expansion on the function

o1 ( eme 4 U,’fg%) at the point 1 — €s.. Now, from
(110)-(112), we need to calculate the mean, variance, and
absolute third-order moment of the generalized information

density of (108).

Under the condition on the wuplink channels
{hy(j )}J """ % at the BS, the mean value is
Ilrfm;:(i) ]E{ZS (Xk ) Yk co(.?))}
Py||h
i (14 FelbaG)IB
O-n“‘“(j)
s (02 () + Pellbic(5)13) s
-5
g (7) + 5P [ ()13
Then, the optimal solution of the optimization problem

sup I,'cnrc‘o(j) is s = 1, under which, the channel capacity
s>0

is achieved. Thus, in the following, the variance and the
absolute third-order moment are derived under the choice of
s = 1 in (108) and (113), which are given by (114) shown

at the top of next page. In (114), both the random variables

2]975.0)]12 205 ()11
n o 2 hi- re distri
T P GE 204 oz )" are chi-square distributed

with the distribution x (2T) and the correlation coefficient
MIc

Peo’ given by )
[ ol
© TALT ) |02 () + Pl (DI T
mrc 2
U%Q;C(j)

= . 115
Pelle ()13 + 02 () (11>

the variance V;™°(j) and the absolute third-

kco
moment U™ (j) of the

k,co
Tg—1 (xk (); Sf‘,ffco(j)) can be obtained from (114) by
using Lemma 1 and setting m = 2 and m = 3, respectively.

APPENDIX C
PROOF OF PROPOSITION 3

Finally,

order information density

Similar as Appendix B, our proof also begins by the defini-
tion of the generalized information density, which is given

N L
similarly as (107) by replacing p°® { ((YQ&”) ‘(Xk)L}
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L ~
> i (o009 0)) = P ()] (Me=1) —lp— z I, ()
e, < Pr{ = - <
> V()
j=1
L 7 .
" In(My —1) —lnp z TE0) | e X O 0)
<min{l,|[1-Q + —I= =| 3, (110)
L L _ 2
2 VEs0) > V()
- Py
E {Jis=1 (xk(7); Y1 (1) — B {is=1 (xx(3); Vi) } ™ }
1 2 mrc > mrc 2 m
_ — ”ykco( )HQ 2” ( )HQ 7 m:273. (114)
5\ |02 G) + PGB~ 02 ()

~ N 2
with exp 4 —s H((Yk)ygg)L - (Hk)L((Xk)L)THF} given in

(61) and the corresponding expression is

o ((Xe)5 (V™) = Zzs x1(); Finen(7)) 5 (116)
where the generahzed information density
) (xk G); y‘,;‘frfon(j)) at the j-th block is given by
] (X’C (3)7 S’Z‘,rrfon(]))
—~(T.=7:)In (1+st||1&T (4)I3)
ol
Dyon )”2 (117)

T+sPJRlGHIE o
Then, the proof can be obtained by following the similar pro-
cess as given in Appendix B. Hence, we only need to calculate
the mean I™¢ (j), variance V;™¢ () and the absolute third-

k,non \ k,non
order moment U™ () of the generalized information density

is (xk(j) k) of (117).

mrc

yk non( )

‘Under the condition of the uplink estimated channels
{hk(J)}i:j];(u at the BS, the mean value I}™¢

emon (1)
B {i. (xe(0)s7T5n()) } i
]I?;con( )= (T — 7¢) {ln (1 + stHhT G2 )
)

sP. BT y 1—SO'erL
|y, ()15 ( - ags: (7)) C118)
1+ sPy||h] (5)]2

Then, the solution of the following optimization problem with
respect to s > 0

supIk ncon( i), (119)

is that s = Wthh is consistent with the result in [17].

L
Unmn. (4)°
With this given s, the channel capacity for the mismatched
decoding metric under the non-coherent case can be achieved.

in the following, the variance N,f";fm(j) and the

(7) of (117) will be derived

Thus,

absolute third-order moment U,'C“;COH

under the setting s = — , which are equivalent to derive

nmre ( )

non m
330 () 113 g ()13

PUBLGIB + 02 () 72 ()
7E{|vzlrﬂc(m 7vgl,rr?0n(j)|m}a m = 2,3, (120)
where % () and v (j) have been defined in (52) and

(53), respectively. Substituting (48) and (49) of Section IV into
(120), we can get that the closed-form result of the variance
is ,f‘;fm(j) =T, km;fm('), in which ,gn;fm(j) is as given
in (72). However, for the calculation of the absolute third-

order moment U,Z“‘lfon (9), i.e., for m = 3 in (120). Generally

speaking, the calculation of U,’C“ff‘m( j) by using the exact
distributions of ;' (j) and vﬁ'fgon( ) is quite involved due

to the difficulty and computational complexity of deriving the
exact PDF of them. Thus, we invoke the matched Gamma
distribution approximations of vy, (j) and vy’ (j) as given

y,non m,non
in (54) and (55) to derive ,‘g‘ffon( ), which is obtained as given

in (73) by directly using the result in Lemma 2.
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