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NON-COMMUTATIVE HERMITE–PADÉ APPROXIMATION

AND INTEGRABILITY

ADAM DOLIWA

Abstract. We introduce and solve the non-commutative version of the Hermite–Padé type I approx-
imation problem. Its solution, expressed by quasideterminants, leads in a natural way to a subclass

of solutions of the non-commutative Hirota (discrete Kadomtsev–Petviashvili) system and of its lin-
ear problem. We also prove integrability of the constrained system, which in the simplest case is the
non-commutative discrete-time Toda lattice equation known from the theory of non-commutative Padé
approximants and matrix orthogonal polynomials.

1. Introduction

Hermite–Padé approximation technique, originally introduced by Hermite to prove transcendency
of Euler’s constant [32, 33], has attracted recently considerable attention in mathematical physics due
to close connection to multiply orthogonal polynomials, random matrices, diffusion models or various
combinatorial problems [4, 9, 38, 11, 5, 53]. An important ingredient behind the success of these theories
was the integrability of resulting equations [2, 6, 3, 8, 27, 42, 44, 46, 52]. Recently a direct link between
the Hermite–Padé approximants and integrability has been found [24] in terms of the corresponding
reduction of Hirota’s discrete Kadomtsev–Peviashvili (KP) system, which in the simplest case of the
Padé rational approximation gives the discrete-time Toda lattice equations. Actually, it turned out that
the relevant difference equations were known in the numerical algorithms community [50, 15] including
their special solutions in terms of certain determinants.

Hirota’s discrete KP system plays a special role within the theory of integrable equations and their
applications. As it was shown by Miwa [47], it encodes the full KP hierarchy [13] of integrable partial
differential equations. It is well known, see for example reviews [39, 54], that majority of the known
integrable systems can be obtained as its reductions. Moreover, the most important techniques used to
find solutions of integrable equations can be applied to the Hirota system in their pure forms (the finite
gap algebro-geometric method [10] in [36, 51], the non-local ∂̄-dressing method [1, 35] in [17], the Darboux
transform [45] in [48]). It has simple geometric meaning in terms of geometric configurations [17],
and its multidimensional consistency is encoded in the (fundamental to projective geometry) Desargues
configuration. The symmetry structure of the equations is described by affine Weyl groups of A-type [18].

In the present paper we transfer the basic elements of the connection between the Hermite–Padé
approximants and integrability to the non-commutative level. Searching for non-commutative genera-
lizations is well motivated by physics, but also by theoretical computer science and combinatorics. An
important technical tool used in in such transition is provided by quasideterminants [28, 29, 37], which
in a sense replace the standard determinants (better to say their ratios) in the non-commutative linear
algebra. In fact, the fundamental properties of the non-commutative Padé approximants [25], including
also their connection to non-commutative/matrix orthogonal polynomials [26], can be formulated in
terms of quasideterminants [30] see also [46, 52, 8, 41, 23]. We follow this idea in replacing by quaside-
terminants the ratios of determinants in the corresponding formulas of [24], where the link between the
Hermite–Padé approximants and integrability has been established in the commutative case.

The fully non-commutative Hirota system (originally called the non-Abelian Hirota–Miwa system)
was proposed in [49] where the corresponding Darboux transform was given as well in terms of quaside-
terminants, see also [40]. The class of solutions proposed below is of different nature. The reduction of
the non-commutative Hirota system given in the present work differs also substantially from the known
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2 ADAM DOLIWA

periodic reductions [19, 22]. Other application of the quasideterminants to non-commutative discrete
integrable systems can be found in [16, 20].

The structure of paper is as follows. In Section 2 we first present the relevant information on the non-
commutative Hirota system, and then we recall basic properties of quasideterminants. Section 3 is de-
voted to formulation of the non-commutative Hermite–Padé approximation problem and to presentation
of its solution in terms of quasideterminants. We also establish there a link with the non-commutative
Hirota system and its linear problem. Then in Section 4 we show that the relevant solutions of the
system satisfy an additional integrable constraint. We also give arguments why the reduced system can
be called non-commutative multidimensional Toda system. At the end of the paper we summarize its
results, present open questions and future research directions.

2. Preliminaries

2.1. The non-Abelian Hirota–Miwa system. Consider the following linear problem [14, 49]

ψ(n− ei)−ψ(n− ej) = ψ(n)Uij(n), 1 ≤ i 6= j ≤ N, (2.1)

where Uij : Z
N → D are functions defined on N -dimensional integer lattice, N ≥ 3, with values in a

division ring D, and the wave function ψ : ZN → V(D) takes values in a right vector space over D; here

n = (n1, . . . , nN ) =
∑N

i=1 niei ∈ Z
N , and ei is the element of the standard basis in Z

N lattice.
The compatibility conditions of (2.1) consist of equations

Uij(n) + Uji(n) = 0, Uij(n) + Ujk(n) + Uki(n) = 0,

Uij(n)Uik(n− ej) =Uik(n)Uij(n− ek),
i, j, k distinct, (2.2)

called in [49] non-Abelian Hirota–Miwa system. From the last part of compatibility conditions one can
deduce existence of the potentials ρj : ZN → D such that

Uij(n) = −ρi(n)
[

ρi(n− ej)
]−1

, (2.3)

which are given up to arbitrary functions of single variables. Apart from the constraint

ρj(n)
[

ρj(n− ei)
]−1

+ ρi(n)
[

ρi(n− ej)
]−1

= 0, (2.4)

which is the first part out of the system (2.2), the second part gives

ρi(n)
[

ρi(n− ej)
]−1

+ ρj(n)
[

ρj(n− ek)
]−1

+ ρk(n)
[

ρk(n− ei)
]−1

= 0. (2.5)

Remark. For commutative D it is possible to introduce the single potential function τ(n) such that

Uij(n) =
τ(n)τ(n − ei − ej)

τ(n− ei)τ(n − ej)
, i < j. (2.6)

Then the remaining (second) part of the system (2.2) reduces to Hirota’s discrete KP equation [34, 47]

τ(n− ei)τ(n − ej − ek)− τ(n − ej)τ(n − ei − ek) + τ(n− ek)τ(n− ei − ej) = 0, (2.7)

where 1 ≤ i < j < k ≤ N .

Remark. In order to adjust to results of Section 3, instead of the original formulation of the non-Abelian
Hirota–Miwa system and of its linear problem we use their dual (called also adjoint) versions [31, 40].
The original linear problem [49] is obtained by replacing the shifts into negative directions by positive
direction shifts.

2.2. Quasideterminants. In this Section we recall, following [28], the definition and basic properties
of quasideterminants.

Definition 2.1. Given square matrix X = (xij)i,j=1,...,n with formal entries xij . In the free division
ring [12] generated by the set {xij}i,j=1,...,n consider the formal inverse matrix Y = X−1 = (yij)i,j=1,...,n
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to X . The (i, j)th quasideterminant |X |ij of X is the inverse (yji)
−1 of the (j, i)th element of Y , and is

often written explicitly as

|X |ij =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x11 · · · x1j · · · x1n
...

...
...

xi1 · · · xij · · · xin
...

...
...

xn1 · · · xnj · · · xnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.8)

Quasideterminants can be computed using the following recurrence relation. For n ≥ 2 let X ij be
the square matrix obtained from X by deleting the ith row and the jth column (with index i/j skipped
from the row/column enumeration), then

|X |ij = xij −
∑

i′ 6=i

j′ 6=j

xij′ |X
ij |−1

i′j′xi′j (2.9)

provided all terms in the right-hand side are defined.

Remark. When the elements of the matrix X commute between themselves, what we denote by placing
the letter c over the equality sign, then the familiar matrix inversion formula gives

|X |ij
c
= (−1)i+j detX

detX ij
. (2.10)

Example 2.1. Quasideterminants of generic 2× 2 matrix

X =

(

x11 x12
x21 x22

)

read as follows

|X |11 = x11 − x12x
−1
22 x21, |X |12 = x12 − x11x

−1
21 x22,

|X |21 = x21 − x22x
−1
12 x11, |X |22 = x22 − x21x

−1
11 x12.

Let us collect basic properties of the quasideterminants which will be used in the sequel; see also [37].

2.2.1. Row and column operations.

• The quasideterminant |X |ij does not depend on permutations of rows and columns in the matrix
X that do not involve the ith row and the jth column.

• Let the matrix X̃ be obtained from the matrix X by multiplying the kth row by the element λ
of the division ring from the left, then

|X̃|ij =

{

λ|X |ij if i = k,

|X |ij if i 6= k and λ is invertible.
(2.11)

• Let the matrix X̂ be obtained from the matrix X by multiplying the kth column by the element
µ of the division ring from the right, then

|X̂ |ij =

{

|X |ik µ if j = k,

|X |ij if j 6= k and µ is invertible.
(2.12)

• Let the matrix X̃ be constructed by adding to some row of the matrix X its kth row multiplied
by a scalar λ from the left, then

|X |ij = |X̃|ij , i = 1, . . . , k − 1, k + 1, . . . , n, j = 1, . . . , n. (2.13)

• Let the matrix X̂ be constructed by addition to some column of the matrix X its lth column
multiplied by a scalar µ from the right, then

|X |ij = |X̂|ij , i = 1, . . . , n, j = 1, . . . , l− 1, l + 1, . . . , n. (2.14)
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2.2.2. Homological relations.

• Row homological relations:

− |X |ij · |X
ik|−1

sj = |X |ik · |X
ij |−1

sk , s 6= i. (2.15)

• Column homological relations:

− |Xkj |−1
is · |X |ij = |X ij |−1

ks · |X |kj , s 6= j. (2.16)

2.2.3. Sylvester’s identity. Let X0 = (xij), i, j = 1, . . . , k, be a submatrix of X that is invertible. For
p, q = k + 1, . . . , n set

cpq =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1q

X0

...
xkq

xp1 . . . xpk xpq

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and consider the (n− k)× (n− k) matrix C = (cpq), p, q = k + 1, . . . , n. Then for i, j = k + 1, . . . , n,

|X |ij = |C|ij . (2.17)

In applications the Sylvester identity is usually used in conjunction with row/column permutations.

3. Non-commutative Hermite–Padé approximants

3.1. Formulation of the problem. Consider m formal series (f1(x), . . . , fm(x)) in variable x with
non-commuting coefficients

fi(x) =

∞
∑

j=0

f i
jx

j , (3.1)

where the parameter x commutes with all the coefficients. Given n = (n1, . . . , nm) element of Zm
≥−1,

we write also |n| = n1 + · · · + nm. A Hermite–Padé form of degree n is, by definition, every system
of polynomials (Y1(x), . . . , Ym(x)), not all equal to zero, with corresponding degrees deg Yi(x) ≤ ni,
i = 1, . . . ,m (degree of the zero polynomial equals −1), and such that

f1(x)Y1(x) + · · ·+ fm(x)Ym(x) = x|n|+m−1Γ(x) (3.2)

for a series Γ(x) =
∑∞

j=0 Γ
jxj .

Remark. In our paper we consider only the so called type I approximants. For closely reated type II and
mixed type approximants in the commutative case see, for example [43].

3.2. Solution of the problem. The degree conditions and equation (3.2) lead to a system of |n|+m−1
linear equations with |n|+m unknown coefficients of the polynomials. Define matrixM(n) of (|n|+m−1)
rows and (|n|+m) columns

M(n) =



















f1
0 0 fm

0 0

f1
1

. . . · · · · · · fm
1

. . .
... f1

0

... fm
0

...
... · · · · · ·

...
...

f1
|n|+m−2 · · · f1

|n|+m−n1−2 fm
|n|+m−2 · · · fm

|n|+m−nm−2



















; (3.3)

its columns are divided into m groups, the ith group is composed out of ni + 1 columns depending on
fi(x) only. Supplement the matrix M(n) by the line

(

f1
|n|+m−1, f

1
|n|+m−2, . . . , f

1
|n|+m−n1−1, · · · , · · · , f

m
|n|+m−1, . . . , f

m
|n|+m−nm−1

)

, (3.4)

as the last row, and define ρi(n) as the quasideterminant of such extended matrix, with respect to the
element in the last row and the last column of the ith block.

Proposition 3.1. By the row homological relations (2.15) the functions ρj, j = 1, . . . ,m, when exist,

satisfy equations

ρi(n)[ρi(n− ej)]
−1 = −ρj(n)[ρj(n− ei)]

−1, i 6= j.
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One can observe that the above system is identical with equations (2.4) of the theory of the non-
Abelian Hirota–Miwa system; we keep therefore the same notation. Moreover we are going to show how
other elements of the theory can be obtained from the data of the Hermite–Padé approximants.

Supplement the matrix M(n) at the bottom by the line

Xk = (0, . . . , 0, . . . . . . , 1, x, . . . , xnk , . . . . . . , 0, . . . , 0), (3.5)

consisting of zeros except for the kth block of the form 1, x, . . . , xnk . Define Z
(i)
k (n, x) as the quaside-

terminant of such matrix with respect to the element in the last row and the last column of the ith
block.

Proposition 3.2. When it exists, Z
(i)
k (n, x) is a polynomial in x of degree not greater than nk. In

particular, Z
(k)
k (n, x) is monic.

Proof. By the elementary row operations and the recurrence (2.9) one can decompose Z
(i)
k (n, x) into the

sum of quasideterminants multiplied by subsequent powers of the parameter x. The highest order term

of Z
(k)
k (x, n) can be easily calculated using equation (2.9). �

Proposition 3.3. The product

ψk(n, x) = Z
(i)
k (n, x)[ρi(n)]−1, i, k = 1, . . . ,m, (3.6)

is independent of the index i. This allows to find the leading term of the polynomials

Z
(i)
k (n, x) =[ρk(n)]−1ρi(n)xnk + lower order terms, i, k = 1, . . . ,m, (3.7)

ψk(n, x) =[ρk(n)]−1xnk + lower order terms, k = 1, . . . ,m. (3.8)

Proof. By combining the row homological relations

Z
(i)
k (n, x)[ρi(n− ej)]

−1 = −Z
(j)
k (n, x)[ρj(n− ei)]

−1, i 6= j, k = 1, . . . ,m, (3.9)

with analogous relations (3.1) we obtain the first part of the statement. The second part follows from
Proposition 3.2. �

Let us present the role of the polynomials ψk(n, x) within the non-commutative Hermite–Padé ap-
proximation theory.

Proposition 3.4. The polynomials (ψ1(n, x), . . . , ψm(n, x)) provide solution of the non-commutative

Hermite–Padé problem with the following asymptotic

f1(x)ψ1(n, x) + · · ·+ fm(x)ψm(n, x) = x|n|+m−1 + higher order terms. (3.10)

Proof. Supplement the matrix M(n) at the bottom by the line

(f1(x), xf1(x), . . . , x
n1f1(x), · · · · · · , fm(x), xfm(x), . . . , xnmfm(x)) ,

and calculate the quasi-determinant QDi of the resulting square matrix with respect to the element in
the last row and in the last column of the ith block. The direct calculation, by decomposition of the
last row into blocks in equation (2.9), gives

QDi = f1(t)Z
(i)
1 (n, t) + · · ·+ fm(t)Z(i)

m (n, t).

From the other hand, the row operations allow to remove from the last row terms of the order lower
than |n|+m− 1 in the parameter x, what implies

QDi = x|n|+m−1ρi(n) + higher order terms.

Then equation (3.10) follows from definition (3.6). �

Corollary 3.5. Equivalently, (Z
(i)
1 (n, x), . . . , Z

(i)
m (n, x)) where i = 1, . . . ,m, are also solutions of the

non-commutative Hermite–Padé problem with asymptotics

f1(x)Z
(i)
1 (n, x) + · · ·+ fm(x)Z(i)

m (n, x) = x|n|+m−1ρi(n) + higher order terms. (3.11)
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3.3. The non-commutative Hirota system. Finally, we show the relation of the above solution of
the non-commutative Hermite–Padé problem with the non-commutative Hirota system.

Proposition 3.6. The polynomials ψk(n, x), k = 1, . . . ,m, satisfy the linear problem of the non-Abelian

Hirota–Miwa system

ψk(n− ei, x)− ψk(n− ej , x) = ψk(n, x)ρ
j(n)[ρj(n− ei)]

−1, i 6= j. (3.12)

Proof. Let us apply the Sylvester identity for matrix M(n) supplemented by Xk, with respect to last
two rows and the last columns of the ith and jth blocks, where i < j. The corresponding 2 × 2 matrix
reads

(

ρi(n− ej) ρj(n− ei)

Z
(i)
k (n− ej) Z

(j)
k (n− ei)

)

,

and the quasideterminant of the big matrix with respect to the element in the last row and the last
column of the jth block equals then

Z
(j)
k (n, x) = Z

(j)
k (n− ei, x)− Z

(i)
k (n− ej, x)[ρ

i(n− ej)]
−1ρj(n− ei). (3.13)

Multiplication of the above equation by [ρj(n − ei)
−1] from the right gives the statement for such an

ordering of indices. The homological relations (3.1) prove the statement for j < i. �

Remark. To avoid degenerations we usually assume that for all n ∈ Z
m
≥0 the potentials ρi(n) do not

vanish. Such a system of series (f1, . . . , fm) is called perfect, in analogy to the commutative case [43].
Then, by properties of the quasideterminants [29] for each n the Hermite–Padé problem has a solution
defined uniquely up to a constant factor with maximal degrees of the polynomials. In such a case there
is an alternative way to derive the linear problem (3.12). The system of polynomials defined on the left
hand side of (3.12) provides the solution of the Hermite–Pad’e problem for n, thus by the non-degeneracy
condition must be proportional to the system ψk(n, x). The coefficient is fixed by examining the highest
order term of k = jth polynomial on both sides and Proposition 3.3.

Corollary 3.7. By examining the highest order term of kth polynomial, k 6= i, j, on both sides of the

linear problem (3.12) and using the homological relations (3.1) we obtain that the potentials ρi satisfy

the second part (2.5) of the non-commutative Hirota equations.

3.4. Comparison with the commutative case. To close this Section let us show the link with the
commutative case [24]. By equation (2.10) we have

ρi(n)
c
= (−1)ni+1+···+nm+m−i τ(n)

τ(n− ei)
, (3.14)

where τ(n) is the determinant of the square matrix used to define ρi(n)

τ(n)
c
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1
0 0 fm

0 0

f1
1

. . . · · · · · · fm
1

. . .
... f1

0

... fm
0

...
... · · · · · ·

...
...

f1
|n|+m−2 · · · · · · fm

|n|+m−nm−2

f1
|n|+m−1 · · · f1

|n|+m−n1−1 fm
|n|+m−1 · · · fm

|n|+m−nm−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Similarly

Z
(i)
k (n, x)

c
= (−1)ni+1+···+nm+m−i Zk(n, x)

τ(n− ei)
, (3.15)



NON-COMMUTATIVE HERMITE–PADÉ APPROXIMATION AND INTEGRABILITY 7

where Zk(n, x) is the determinant of the square matrix used to define Z
(i)
k (n, x)

Zk(n, x)
c
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1
0 0 fk

0 0 fm

0 0

f1
1

. . . ··· ··· fk

1

. . . ··· ··· fm

1

. . .
... f1

0

... fk

0

... fm

0

...
... ··· ··· ··· ···

...
...

f1
|n|+m−2 ··· f1

|n|+m−n1−2 fk

|n|+m−2 ··· fk

|n|+m−n
k
−2 fm

|n|+m−2 ··· fm

|n|+m−nm−2

0 ··· 0 ··· ··· 1 ··· xn
k ··· ··· 0 ··· 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Such polynomials gives the so called canonical solution of the Hermite–Padé problem

f1(t)Z1(n, t) + · · ·+ fm(t)Zm(n, t) = x|n|+m−1τ(n) + higher order terms. (3.16)

Moreover, then

ψk(n, x)
c
=
Zk(n, x)

τ(n)
(3.17)

satisfies the standard adjoint linear problem of the Hirota discrete KP system (2.7). Correspondingly,
the polynomials Zk(n, x) satisfy the so called bilinear form of the adjoint linear problem

Zk(n, x)τ(n − ei − ej) = Zk(n− ei, x)τ(n − ej)− Zk(n− ej, x)τ(n − ei), 1 ≤ i < j ≤ m. (3.18)

4. The ”multidimensional” non-commutative discrete-time Toda equation

4.1. The non-commutative version of the Paszkowski constraint. In the commutative case the
polynomials Zk(n, x) in addition to equations (3.18) satisfy the constraint [50]

xZk(n, x)τ(n) = Zk(n+ e1, x)τ(n − e1) + · · ·+ Zk(n+ em, x)τ(n − em), (4.1)

which supplements Hirota’s discrete KP system with the additional equation

[τ(n)]2 = τ(n+ e1)τ(n − e1) + · · ·+ τ(n+ em)τ(n− em). (4.2)

Our goal in this Section will be to give the non-commutative version of the above.

Theorem 4.1. Under the non-degeneracy assumption the polynomials ψ(n, x) = (ψ1(n, x), . . . , ψm(n, x)),
which provide solution of the non-commutative Hermite–Padé problem, satisfy also the constraint

xψ(n, x) = ψ(n+ e1, x)ρ
1(n+ e1)[ρ

1(n)]−1 + · · ·+ψ(n+ em, x)ρ
m(n+ em)[ρm(n)]−1, (4.3)

and the quasideterminants ρj(n) satisfy the following equation

1 = ρ1(n+ e1)[ρ
1(n)]−1 + · · ·+ ρm(n+ em)[ρm(n)]−1. (4.4)

Proof. The system of m polynomials (the components of the vector)

xψ(n, x)−ψ(n+ e1, x)ρ
1(n+ e1)[ρ

1(n)]−1 − · · ·+ψ(n+ em−1, x)ρ
m−1(n+ em−1)[ρ

m−1(n)]−1

forms a solution of the Hermite–Padé problem with the same degrees as the system ψ(n+ em, x), thus
both systems must be proportional. The coefficient can be found by examining the highest order term
of the mth polynomial. Equation (4.4) follows from comparison of the leading order terms of both sides
of (4.3) in the equation (3.10). �

Remark. In the simplest case m = 2 we are left with the system

1 = ρ1(n+ e1)[ρ
1(n)]−1 + ρ2(n+ e2)[ρ

2(n)]−1, (4.5)

ρ1(n)[ρi(n− e2)]
−1 = −ρ2(n)[ρ2(n− e2)]

−1. (4.6)

Elimination of ρ1(n) gives the non-commutative discrete Toda chain equation of the non-commutative
Padé theory [23]

ρ2(n+ e1)
(

[ρ2(n− e2)]
−1 − [ρ2(n)]−1

)

ρ2(n− e1) = ρ2(n+ e2)− ρ2(n). (4.7)

A similar equation, connected to the above by the homological relations, was obtained recently within
the theory of matrix orthogonal polynomials [41].
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Remark. In the commutative case the Hirota system (2.7) supplemented by the constraint (4.1) coincides,
up to simple change of the independent discrete variables, with the ”multidimensional discrete-time Toda
lattice” obtained in [7] within the theory of multiple orthogonal polynomials. Although the system of
equations involves arbitrary number (but not less then two) of discrete variables, its initial-boundary
data depend on functions of single variables [24]; for the Hermite–Padé problem they are the m sequences
of the series coefficients. This shows that effectively the reduced system is two-dimensional.

Remark. The identity (4.3) satisfied by the solutions of the Hermite–Padé problem was obtained un-
der the non-degeneracy assumption. In the commutative case it was possible to derive [24] the con-
straint (4.1) using standard properties of determinants; see also [9] for analogous direct proof of the
identity (4.2). It seems possible that also in the non-commutative case equation (4.3) can be shown
using more advanced quasideterminantal identities [37] without that additional assumption.

4.2. Integrability of the constraint. Let us leave the context of the Hermite–Padé approximants,
which give only special solutions to the non-Abelian Hirota–Miwa system. Their speciality is not only
because of the constraint (4.4), but also because the solutions are defined for nk ≥ −1, k = 1, . . . ,m.
We will study what impact on the solutions of the system has the additional constraint (4.3) on the level
of the linear problem (2.1). We will not be bounded to any special region of Zm.

Theorem 4.2. The compatibility condition of the linear system (2.1) with the additional equation (4.3)
is the non-Abelian Hirota–Miwa system (2.4)-(2.5) supplemented by the constraint

ρ1(n+ e1, x)[ρ
1(n)]−1 + · · ·+ ρm(n+ em, x)[ρ

m(n)]−1 = 1− F (|n|), (4.8)

where F : Z → D is a function of single variable |n| = n1 + · · ·+ nm.

Proof. We need to prove only the last part of the statement. Define

C(n) = 1− ρ1(n+ e1, x)[ρ
1(n)]−1 − · · · − ρm(n+ em, x)[ρ

m(n)]−1,

and use directly the linear equations (2.1) and (4.3) to obtain

ψ(n+ e1, x)C(n) = ψ(n+ e1, x)− xψ(n, x) +ψ(n+ e1 + e2, x)ρ
2(n+ e1 + e2)[ρ

2(n)]−1+

ψ(n+ e1 + e3, x)ρ
3(n+ e1 + e3)[ρ

3(n)]−1 + · · ·+ψ(n+ e1 + em, x)ρ
m(n+ e1 + em)[ρm(n)]−1.

Shift the above equation back in the e1 direction and subtract the analogous equation with distinguished
second variable

ψ(n+ e2, x)C(n) = ψ(n+ e2, x)− xψ(n, x) +ψ(n+ e1 + e2, x)ρ
1(n+ e1 + e2)[ρ

1(n)]−1+

ψ(n+ e2 + e3, x)ρ
3(n+ e2 + e3)[ρ

3(n)]−1 + · · ·+ψ(n+ e2 + em, x)ρ
m(n+ e2 + em)[ρm(n)]−1,

shifted back in the e2 direction, what gives

ψ(n, x)[C(n− e1)−C(n− e2)] = −x[ψ(n− e1, x)−ψ(n− e2, x)]+

ψ(n+ e2, x)ρ
2(n+ e2)[ρ

2(n− e1)]
−1

−ψ(n+ e1, x)ρ
1(n+ e1)[ρ

1(n− e2)]
−1+

ψ(n+ e3, x)ρ
3(n+ e3)

(

[ρ3(n− e1)]
−1

− ρ
3(n− e2)]

−1
)

+ . . .

· · ·+ψ(n+ em, x)ρm(n+ em)
(

[ρm(n− e1)]
−1

− ρ
m(n− e2)]

−1
)

.

Using once again the linear equations (2.1) but also the non-Abelian Hirota–Miwa system (2.4)-(2.5)
we obtain

ψ(n, x)[C(n − e1)− C(n− e2)]ρ
2(n− e1)[ρ

2(n)]−1 =

−xψ(n, x) +ψ(n+ e1, x)ρ
1(n+ e1, x)[ρ

1(n)]−1 + · · ·+ψ(n+ em, x)ρ
m(n+ em, x)[ρ

m(n)]−1 = 0.

Doing that for any pair of indices we get finally

C(n− ei) = C(n− ej), i, j = 1, . . . ,m,

what implies that the function C(n) = F (|n|) depends only on the sum of all the variables. �

Remark. When values of F commute with all potentials ρi and in the allowed range of k we have
F (k) 6= 1, then one can remove the function from the non-linear equations (including the non-Abelian
Hirota–Miwa part (2.4)-(2.5)) by the transformation

ρj(n) = ρ̃j(n)G(|n|), (4.9)
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where G(k) =
∏k

i=1(1− F (k − i)).

5. Conclusion and open problems

We presented the concept of the non-commutative Hermite–Padé problem and we gave its solution in
terms of quasideterminants. In our research we were guided by the corresponding results of the classical
commutative problem and its relation to the Hirota system with the Paszkowski constraint.

The theory of non-commutative Padé approximants has close connection with the theory of matrix
orthogonal polynomials, and the theory of Hermite–Padé approximants has close connection with the
theory of multiple orthogonal polynomials. Thus the results presented in the paper provide a link
between (non-existing yet) theory of matrix multiple orthogonal polynomials with integrability.

The non-commutative Hirota system provides a way [21] to construct certain maps satisfying Zamolod-
chikov’s tetrahedron condition [55], which is a multidimensional generalization of the more familiar
Yang–Baxter maps. The new class of solutions of the system, obtained in the present paper, can be
used, in principle, to produce large family of the corresponding Zamolodchikov maps.
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(1984) 41–57.
[16] P. Di Francesco, R. Kedem, Non-commutative integrability, paths and quasi-determinants, Adv. Math. 228 (2011)

97–152.
[17] A. Doliwa, Desargues maps and the Hirota–Miwa equation, Proc. R. Soc. A 466 (2010) 1177–1200.
[18] A. Doliwa, The affine Weyl group symmetry of Desargues maps and of the non-commutative Hirota–Miwa system,

Phys. Lett. A 375 (2011) 1219–1224.
[19] A. Doliwa, Non-commutative lattice modified Gel’fand–Dikii systems, J. Phys. A: Math. Theor. 46 (2013) 205202,

14 pp.
[20] A. Doliwa, Non-commutative double-sided continued fractions, J. Phys. A: Math. Theor. 53 (2020) 364001, 23 pp.
[21] A. Doliwa, R. M. Kashaev, Non-commutative bi-rational maps satisfying Zamolodchikov equation, and Desargues

lattices, J. Math. Phys. 61 (2020) 092704, 23pp.
[22] A. Doliwa, M. Noumi, The Coxeter relations and KP map in non-commuting symbols, Lett. Math. Phys. 110 (2020)

2743–2762.
[23] A. Doliwa, A. Siemaszko, Integrability and geometry of the Wynn recurrence, arXiv:2201.01749
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