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0. Introduction. The purpose of the note is to announce a
construction, basic properties, and certain applications of non-com-
mutative Lorentz spaces associated with semi-finite von Neumann
algebras.

At first, non-increasing rearrangements for measurable operators
affiliated with a semi-finite yon Neumann algebra are introduced and
basic properties are obtained. Then, based on them, non-commutative
Lorentz spaces are defined. Since we show that those Lorentz spaces
are identified with real interpolation spaces between the semi-finite
von Neumann algebra in question and its predual, the abstract
Marcinkiewicz theorem is available to our Lorentz spaces. In the last
section, we obtain certain applications of the abstract Marcinkiewicz
theorem.

Full details and further applications will be published elsewhere.
1. Non.increasing rearrangements of measurable operators.

Throughout the paper, stands for a semi-finite yon Neumann algebra
with a faithful normal semi-finite trace r. Also, by an operator, we
will always mean a r-measurable operator (affiliated with /) in the
sense of Segal [6]. For operators x, y, their strong sum and product
are denoted by x+y, xy respectively. In other words, we shall omit
closure signs, which will never make confusion [6].

Definition 1.1o Let x be an operator with the polar decomposi-

tion u Ix[ and [xl=.I sde be the spectral decomposition of [xl. For

each t>_0, we set 2,(x)=r(1-e,), the distribution function of x. Also,
for each t_> 0, we set /,(x) Min {s_> 0 (x)_> t}, the non-increasing
rearrangement of x.

This/,(x) was introduced by Fack [2] for x in i as a generaliza-
tion of the "t-th" largest eigenvalue of a compact operator (see [7]).
We notice that, for any operator x,/,(x)oo, t>0 (see [5]) and /20(x)

x if x e /. We also notice that, in the definition of /,(x), the
minimum is actually attained due to the normality of

The following result gives us characterizations of
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Theorem 1.2. For an operator x and each t)O,
Z,(x)--inf {[I xp P is a projection in l and (1-p)_

inf (Ix-- y Y is an operator and
Here,. supp. y means the support of lY[--/Y-.

Corollary 1.3. For operators x,y,
( i ) / (x+ y)_/(x)+/(y) t, s 0,
(ii) Z(x)=/(x*)=l(Ixl), tO.
(iii) t(yx)

_
Y l(x), t 0 (if y e /).

The next result is useful because it allows us to use approximation
argument.

Theorem 1.4. Let {x} be an increasing sequence of positive
operators converging to x in the measure topology [5]. Then, for each
t>O, [.lt(Xn) /.lt(X) a8 n-.oo.

The next result is known or x in / ([2]). Thus, the above
theorem, the normality of r, and the monotone convergence theorem
yield"

Corollary, 1.5. For a positive operator x and a continuous in-
creasing function f on [0, co) with f(0)=0, we have

r(f(x))=; f(l(x))ds.
2. Non.commutative Lorentz spaces and the real interpolation

method. As a generalization of the usual Lorentz spaces (see [8]), we
define our Lorentz spaces as ollows"

Definition 2.1. For l_poo, l_q_c, let Lpq(_;r) be the
set of every (r-measurable) operator x satisfying

x {tTMz(x)} <
As usual, x * should be understood as

llxl * sup
t>0

We call it the non-commutative Lorentz space associated with /. In
particular, we call Lpoo(l) the non-commutative weak L’-space.

Like the classical Lorentz spaces, each Lpq (/; ) together with
I]" [l*q is a quasi-normed linear space, and, whenever q_q, Lpq (/; r)
is continuously included in Lpq (l ).

By Corollary 1.5, Lpp (/; r) (together with II" I*) is exactly the
non-commutative L’-space L(/; ) ([4]). By Corollary 1.3, Lpq (l
is an t/-bimodule in the natural way and it is stable under the adjoint
operation (o operators).

We now apply the real interpolation method (the K-method) to the
pair (L, L)= (L(/; r), L(/; r)). We recall the K-method of Peetre
[1] briefly.

Definition 2.2 (K-functional). For x e L --L, the algebraic sum,
and t0, we set
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K(t, x) (=K(t, x L, L))
inf {11 x + t x 11 x x+x, x e L, x e L}.

Here, 11" 11 (resp. 11" I1) is the uniform norm of L(t/; r)=/(resp, the
norm of L(/; r) /.).

Definition 2.: (the K-method of Peetre). For 0tl, l_qc,
(L, L), is the set o2 every x in L’+L satisfying

Xllo,= {t-K(t, x)}- < c.

This is called the real interpolation ,space and (L, L), together with
the norm x I, is a Bnach space.

Here is the main theorem of the section"
Theorem 2.4. For lpc, l_q_ c, the real interpolation

space (L, L), with 1- lip is exactly the non-commutative Lorentz
space Lpq (/; r) Furthermore, I1" I* and I1" I1, give rise to the samepq

topology.
This result is a consequence o the Hardy-Littlewood inequality

(see [1] or [8]) and the following result"
Theorem 2.5. For each tO and an operator x,

K(t, x)--.[0 [(x)ds.
:. Applications. By Theorem 2.4, the abstract interpolation

theorem (the abstract Marcinkiewicz theorem) is available to our non-
commutative Lorentz spaces (see [1] for details). We give two ap-
plications.

At first, let G be a locally compact unimodular group with the left
Haar measure dg. We denote the semi-finite yon Neumann algebra
2((t))" on L(G, dg) generated by the left regular representation 2 simply
by t/. The algebra /admits the canonical trace r, the dual Haar
trace. Following Kunze [4], for a unction f on G, we consider the
convolution operator (f)=f* on L(G) as the Fourier transform (f).
The next result is a generalization of Paley’s theorem on Fourier
series, which is a slight strengthening of Kunze’s version of the
Hausdorff-Young theorem [4].

Theorem :.1. For 1p_2, 1/p+1/q=l, the Fourier transform
is a bounded operator from L’(G dg) to Lpq (l ).

Secondly, we consider Haagerup’s L’-space L() associated with
an arbitrary yon Neumann algebra (not necessarily .semi-finite) [3].
We recall that his L’() consists of certain (measurable) operators
affiliated with the crossed product /=oR relative to the modular
automorphism group and that /is always a semi-finite von Neumann
algebra admitting a relatively invariant trace r (with respect to the
dual action) (see [9]). Although Haagerup’s L’() is not included in
L’(/; r), we have"
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Theorem 3.2. For each lpc, Lp() is a closed subspace of
the non-commutative weak LP-space Lpc(/;r). Furthermore, on
LP(), the following three topologies are all identical:

( i ) the norm topology of L’() (introduced in [3]),
(ii) the topology as a closed subspace of Lpoo(t r),
(iii) the measure topology (see [5]).
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