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Abstract

The geometry of D-branes can be probed by open string scattering. If the
background carries a non-vanishing B-field, the world-volume becomes non-
commutative. Here we explore the quantization of world-volume geometries
in a curved background with non-zero Neveu-Schwarz 3-form field strength
H = dB. Using exact and generally applicable methods from boundary
conformal field theory, we study the example of open strings in the SU(2)
Wess-Zumino-Witten model, and establish a relation with fuzzy spheres
or certain (non-associative) deformations thereof. These findings could be
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more importantly, they provide insight into a completely new class of world-
volume geometries.
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1 Introduction

It was observed by Douglas and Hull [1] that D-branes on T2 with a constant
Neveu-Schwarz (NS) two-form potential B give rise to an effective world-volume
theory on a non-commutative torus. Even though this initial observation was
re-considered and generalized by many authors [2–4], all the subsequent work is
restricted to flat backgrounds. A perturbative analysis along the lines of [4], on the
other hand, shows that the quantization of world-volume geometries should be a
much more general phenomenon which persists in the case of curved backgrounds.

In this work we shall present the first non-perturbative (in α′) investigation of
world-volume geometries in a curved string background with non-vanishing NS
3-form field H = dB. 1 An exact treatment of D-branes in curved backgrounds
is possible within the framework of boundary conformal field theory. Here we
illustrate the basic techniques and some general features of the resulting world-
volume geometries in a particular example, namely the SU(2) WZW theory, and
study D-branes in the WZW model associated with the gluing condition Ja = J̄a.
We shall argue that their world-volumes may be regarded as fuzzy two-spheres
when the level k is sent to infinity, i.e. when the background becomes flat. For
finite level, H is non-zero and we shall find non-associative deformations of these
fuzzy spheres, which are closely linked to the theory of quantum groups. While the
infinite level result can be predicted from the semi-classical analysis in [5] together
with the general phenomenon of world-volume quantization in flat backgrounds [1],
our results on the finite level provide a non-trivial extension of the standard rules.
Apparently, many features of the world-volume geometry are not captured by the
perturbative treatment of D-branes on group manifolds that was suggested recently
in [6].

We shall follow a general procedure [4] which allows us to extract world-volume
geometry from the world-sheet description of any (generalized) D-brane, even when
it is given in purely algebraic terms. The essential input data are the operator
product expansions (OPE) of boundary fields (open string vertex operators). Since
they depend on the ordering of the operators, it is not surprising that the brane
world-volume obtained in this way is a non-commutative space, in general. We
shall see that non-associativity may show up as well.

Our approach is inspired by the one proposed in [7,8] to construct non-commutative
targets from the CFT description of closed string models. It appears, however,
that non-commutative geometry emerges in a more natural way and on a more
fundamental level in the open string case, cf. the picture below. Our findings add to

1Recall that the curvature is linked to the field strength H by the string’s equation of motion.
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Figure 1: World-sheet diagrams for closed resp. open string interaction. Having as-
signed vertex operators to the legs, they can be read as structure constants for the multi-
plication of two operators, projected on the third channel. In the closed string case, the
in-coming operators can be interchanged with the help of world-sheet diffeomorphisms,
while the ordering of open string vertices is fixed up to cyclic permutations.

the growing evidence that brane physics surpasses classical geometry – even though
the emergence of a non-commutative world-volume need not necessarily mean that
a D-brane behaves non-geometrically in the sense of the criterion formulated in [9].
This criterion rests on a comparison of low-energy effective field theories in the
stringy and in the large-volume regime, and we do not attempt to test it in the
present paper. But we would like to point out that the structures contained in
the non-commutative world-volume also form the main ingredient of the effective
action of the brane.

While we have chosen the SU(2)k example mainly because of its simplicity and
because there exists a semi-classical curved background picture, it is also an im-
portant ingredient of the CFT formulation of the Neveu-Schwarz 5-brane, see
e.g. [10]. Given that questions like stability of the configuration can be clarified,
our findings should be relevant for the geometry of D-branes in the presence of a
stack of 5-branes. Similarly, our SU(2) WZW results could be applicable in the
study of branes on an AdS3 × S3 string background, see e.g. [11, 12].

2 World-volume geometry – from the flat case to arbitrary backgrounds

Before we show how one can read off fuzzy geometry from branes in the WZW
model, let us briefly review the emergence of non-commutative spaces in the more
standard case of branes in flat n-dimensional Euclidean space Rn, or on a flat torus
Tn. Consider a D-brane which is localized along a p-dimensional hyper-plane Vp

in the target, with tangent space TVp. The conformal field theory associated with
such a Euclidean D-brane is defined on the upper half of the complex plane. It con-
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tains an n-component free bosonic field X = (Xµ(z, z̄)), µ = 1, . . . , n, subject to
Neumann boundary conditions in the directions along TVp and Dirichlet boundary
conditions for components perpendicular to the world-volume of the brane. From
the free bosons, one may obtain various new fields, in particular the open string
vertex operators

Vk(x) = : exp(ikX(x)) : for all k ∈ TVp ,

which can be inserted at any point x on the real line. When there is no magnetic
field on the brane, the OPE of these U(1)-primaries reads (with α′ = 1

2
and for

x1 > x2)
Vk1

(x1)Vk2
(x2) = (x1 − x2)

k1k2/2 Vk1+k2
(x2) + . . . , (2.1)

where the dots indicate less singular non-primary contributions. We can rewrite
this relation by introducing the objects

f(X(x)) ≡ V [f ](x) :=
1

(2π)p/2

∫

TVp

dpk f̂(k) Vk(x)

for each function f : Vp → C with Fourier transform f̂(k). Then the boundary
OPE (2.1) translates into a “definition” of pointwise multiplication of functions,

V [ f ](1) V [ g ](0) = V [ f · g ](0) + . . . . (2.2)

We have specialized to coordinates x1 = 1 and x2 = 0 for convenience, arbitrary
insertion points can be recovered via conformal covariance.

The effect of switching on a B-field is described by adding the term

SB =
1

2π

∫
dzdz̄ Bµν∂X

µ(z, z̄)∂̄Xν(z, z̄) (2.3)

to the action of the original theory without B-field. One can easily see that this
is a pure boundary term with no influence on the bulk properties of the theory.
It only changes the boundary conditions. If we assume for definiteness that Vp is
spanned by the first p coordinates xµ, µ = 1, . . . , p, the new boundary conditions
read (with z = x+ iy)

∂yX
µ(z, z̄) = Bµ

ν∂xX
ν(z, z̄) for z = z̄ and µ, ν = 1, . . . , p . (2.4)

This means that the (exact) free boson propagator becomes (x1, x2 ∈ R)

〈Xµ(x1)X
ν(x2) 〉B = − (δµν + Θµν

S ) log |x1 − x2| − i
π

2
Θµν

A sign(x1 − x2) (2.5)

3



where ΘS and ΘA denote the symmetric resp. anti-symmetric part of the matrix
Θ = (1 − B)(1 + B)−1 . Eq. (2.5) immediately yields the boundary OPE for a
non-vanishing B-field,

Vk1
(1)Vk2

(0) = e−i π
2

kt
1
ΘAk2 Vk1+k2

(0) + . . . .

As before, this can be used to define a (deformed) product ⋆ for functions through
V [f ](1)V [g](0) = V [f ⋆ g](0) + . . . , where now

( f ⋆ g )(x) := ei π
2

Θ
µν
A ∂x

µ∂y
ν f(x)g(y) |y=x . (2.6)

This is the associative, non-commutative Moyal-Weyl product of functions f, g on
the world-volume Vp of the brane. In the context of the derivation we have given,
non-commutativity of ⋆ arises because the ordering of boundary fields in general
does matter, cf. the sign-term in eq. (2.5). The algebra of functions with product
(2.6) is, of course, the non-commutative brane world-volume uncovered by Douglas
and Hull using a different approach. It is a deformation of the ordinary algebra of
functions, with deformation parameter(s) given by (the matrix) ΘA.

In [4], the term (2.3) was viewed as a bulk perturbation of the B = 0 theory,
i.e. techniques of conformal perturbation theory were applied to the operator
exp(−SB) being inserted into arbitrary correlation functions of the B = 0 the-
ory. This perturbative analysis, which can be extended to arbitrary σ-models (at
least in the case dB = 0), leads to a string theoretic picture of Kontsevich’s quan-
tization of Poisson manifolds [13], see also the work of Cattaneo and Felder [14].
It clearly displays that the quantization of world-volume geometries should be
expected beyond the case of constant B-fields. This will be confirmed through
our exact analysis of the WZW model (see discussion of the limit k → ∞ be-
low). As we remarked in the introduction, new phenomena are bound to occur
when dB does not vanish. In such cases, the classical world-volume of a brane
comes equipped with some generalization of an ordinary Poisson-structure, and
there exists no general notion of “quantization” for such geometries. Hence, the
investigation of branes in a non-vanishing NS 3-form field strength H = dB can
teach us new lessons on how to quantize certain non-Poisson geometries. In our
example of branes on SU(2) we shall recover some variants of well-known quantum
group algebras.

Our formulation of the simple example of flat branes in a constant B-field motivates
the following general procedure: When we want to associate non-commutative
spaces to branes which are given as boundary conditions on the world-sheet, we
take the OPE of boundary fields (open string vertex operators corresponding to
internal excitations of the brane) as a basic input. Then we choose a suitable subset
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of boundary fields (e.g. primaries as above) and use them as abstract generators
of an algebra of “functions” on the (non-commutative) world-volume of the brane,
with multiplication table given by the boundary OPE (projected onto the subset,
and evaluated at x1 = 1 and x2 = 0, say).

Further comments on this general prescription will be given later, but now we
would like to test it in the case of SU(2) WZW models, where the semi-classical
picture provides certain expectations as to how the “quantized world-volume” of
branes should look like.

3 D-branes in the SU(2) WZW model

3.1 Semi-classical analysis. The SU(2) WZW model at level k describes
strings moving on a three-sphere S3 of radius R ∼

√
k, which is equipped with a

constant NS 3-form field strength H ∼ (1/
√

k)Ω where Ω denotes the usual volume
form on the unit sphere. In superstring theory, this geometry appears in the space
transverse to a stack of k NS 5-branes. These branes act as sources for k units
of NS 3-form flux through a three-sphere surrounding their (5+1)-dimensional
world-volume.

The world-sheet swept out by an open string in S3 is parametrized by a map
g : H → SU(2) from the upper half-plane H into the group manifold SU(2)∼= S3.
From this field g one obtains Lie algebra valued chiral currents

J(z) = −k (∂g)g−1 , J̄(z̄) = k g−1∂̄g

as usual. We shall be interested in maximally symmetric D-branes on SU(2), which
are characterized by the gluing condition J(z) = J̄(z̄) along the boundary z = z̄.
They were analyzed from a semi-classical point of view in [5], and we shall briefly
recall the findings of this approach.
To spell them out, we decompose the tangent space ThSU(2) at each point h ∈
SU(2) into a part T

||
h SU(2) tangential to the conjugacy class through h and its

orthogonal complement T⊥
h SU(2) (with respect to the Killing form). In [5], the

following two basic observations were made:

1. With gluing conditions of the type J = J̄ , the endpoints of open strings on
SU(2) are confined to conjugacy classes, i.e.

(g−1∂xg)
⊥ = 0 .

5



2. Along the individual branes, i.e. along the conjugacy classes of SU(2), the
gluing condition becomes

(g−1∂yg)
|| =

Ad(g) + 1

Ad(g) − 1
(g−1∂xg)

|| .

Except for two degenerate cases, namely the points e and −e on the group man-
ifold, the conjugacy classes are two-spheres in SU(2). Taking into account the
usual correspondence between

√
kg−1∂g and the flat space coordinate ∂X, recall-

ing that the metric on the three-sphere scales with k, and comparing with the
gluing conditions (2.4), we infer that the D-branes associated with J = J̄ carry a
non-vanishing 2-form potential (B-field)

B =
1

8π
tr

(
θ

1 + Ad(g)

1 − Ad(g)
θ

)
where θ = k g−1dg . (3.1)

In contrast to the flat target case discussed before, the 2-form B is not closed;
instead one finds

H := dB = − 1

12π k
tr θ3 . (3.2)

Conjugacy classes equipped with such 2-forms were considered in [15] as examples
of Hamiltonian spaces which admit group-valued moment maps. Note that H
is the usual WZW-form and that the gluing condition J = J̄ has selected one
particular 2-form potential for the field strength H within a neighborhood of the
given conjugacy class.

When we send k to infinity, the three-sphere grows and approaches flat 3-space.
In the appropriate coordinates, the form θ is independent of k so that our B-field
(3.1) is not affected by changing the level and, in particular, it survives in the
limit k → ∞. The NS-field strength H , on the other hand, decays with 1/k.
Consequently, the geometry of the limiting theory k = ∞ is very close to the well-
known situation of flat branes in a flat background with constant B-field, and we
expect that the world-volume algebras of our branes in the WZW model will be
quantizations of two-spheres.
For finite k, however, the background is curved and carries a non-vanishing NS
3-form H . This will result in a non-associative deformation of the k = ∞ theory.
Since the three indices of the new object H can relate three-fold products with
different positions of brackets, the violation of associativity will turn out to be
rather mild.

The semi-classical extension of the above analysis shows that, for fixed gluing
conditions, only a finite number of SU(2) conjugacy classes satisfy a Dirac-type
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flux quantization condition [5]. These “integer” conjugacy classes are the two
points e and −e along with k− 1 of the spherical conjugacy classes (those passing
through the points diag(exp(iπj/k), exp(−iπj/k)) for j = 1, . . . , k − 1).

3.2 Exact CFT description. The WZW model on the upper half-plane is
known in enough detail to support and specify the rather crude arguments of the
previous subsection by an exact CFT analysis. In fact, for the situation we are
dealing with (gluing conditions J = J̄ in a “parent” CFT on the full complex plane
with diagonal modular invariant partition function), Cardy [16] was able to list
all [17] possible boundary conditions. There exist k+1 of them, differing in the bulk
field one-point functions (brane charges) and labeled by an index α = 0, 1

2
, . . . , k

2
.

Without entering a detailed description of these boundary theories [16], we recall
that their state spaces have the form

Hα =
⊕

J
NJ

αα HJ (3.3)

where HJ , J = 0, 1

2
, . . . , k

2
, denote irreducible highest weight representations of the

affine Lie algebra ŜU(2)
k
, and where NK

IJ are the associated fusion rules. Note that
only integer spins J appear on the right hand side of (3.3).

There exists a variant of the state-field correspondence which assigns a boundary
field ψ(x) to each element |ψ〉 ∈ Hα (see e.g. [18]). In particular, the SU(2) WZW
boundary theory labeled by α contains SU(2)-multiplets associated to primary
boundary fields, namely

ΨJ(x) = (ψJ
m(x)) with J = 0, 1, . . . ,min(2α, k − 2α)

and m = −J, . . . , J . All these boundary fields are defined for arguments x on the
real line and their correlators have, in general, no unique analytic continuation
into the upper half-plane.

In the flat target case, we chose U(1)-primaries as generating elements of the world-
volume algebra. Now, it is more appropriate not to break the group symmetry by
hand and, therefore, to keep the full SU(2)-multiplets ΨJ(x). For a fixed order
x > y of arguments on the real line, the OPE of two such boundary fields reads

ψI
i (x) ψ

J
j (y) ∼

∑
K,k

(x− y)hI+hJ−hK [ I J K
i j k

] ck,α
IJK ψK

k (y) , (3.4)

where hJ is the conformal dimension of ΨJ and [:::] denote the Clebsch-Gordan
coefficients of the group SU(2). The latter simply compensate for the different
transformation behavior of the fields on the left and right hand side under the
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action of the zero-mode subalgebra of ŜU(2)
k
. Hence, the non-trivial information

in (3.4) is contained in the new structure constants C = (ck,α
IJK).

In a consistent theory, these must obey sewing constraints, which were first an-
alyzed by Lewellen in [19]; see also [17]. Recently, these constraints were recon-
sidered by Runkel [20] for the A-series of Virasoro minimal models. His findings
carry over to SU(2) WZW models on the upper half-plane and show that the only
possible solution to the sewing constraints is given by the fusing matrix F of the
WZW theory,

ck,α
IJK = FαK [ α α

I J
]
k
. (3.5)

It is one of the fundamental results on the relation between quantum groups and
conformal field theory (see e.g. [21]) that the fusing matrix of the WZW model is
obtained from the 6J symbols of the quantum group algebra Uq(su(2)) according
to

FαK [ α α
I J

]
k

= { I J K
α α α

}q where q = e
2πi
k+2 . (3.6)

In the limit q → 1, the 6J symbols of the quantum group algebra approach those of
the classical algebra U(su(2)), thus the structure constants ck,α

IJK of the boundary
OPE become 6J symbols of the group SU(2) when the level k is sent to infinity.

4 D-brane geometry, fuzzy two-spheres, and quantum groups

We are now prepared to follow the procedure sketched at the end of Section 2 and
to read off the world-volume geometry of branes in the SU(2)-WZW model. So let
us think of the boundary fields ψI

i = V (Y I
i ) as being assigned to elements Y I

i of
some vector space, and let us use the operator product expansion (3.4,3.5,3.6) to
define a multiplication by the prescription

Y I
i ⋆ Y J

j =
∑

K,k
[ I J K

i j k
] ck,α

IJK Y K
k . (4.1)

As in (3.4), the summation on the right hand side runs from K = 0 to a maximal
spin Kmax = min(I+J, k−I−J, 2α, k−2α). First, we shall investigate this product
in the limiting case k = ∞, where it produces a familiar algebraic structure.
Passing to finite levels leads to the following two changes: There is a k-dependent
deformation of structure constants C, cf. (3.6), and the range of the summation in
(4.1) becomes a function of the level, Kmax = Kmax(k). We shall separate these
two phenomena by looking at an intermediate case where k is non-rational and
where we omit the k-dependent restriction on the K-summation.

8



Infinite level k = ∞: Recall that, in the case of infinite level, the structure con-
stants C in eq. (4.1) are given by the 6J symbols of the group SU(2). The semi-
classical analysis showed that H → 0, so we expect the world-volume algebra to
be associative. Indeed this can be confirmed using the Biedenharn-Elliot (or pen-
tagon) relation for the 6J symbols, along with the fact that 6J symbols of the
form (3.6) vanish whenever K > 2α. Hence, for infinite level our relations define
an infinite set of associative algebras S2

α, α = 0, 1

2
, . . . , with finite linear bases

consisting of dim (S2
α) = (2α+ 1)2 elements.

Since the dimension of each of these algebras is a perfect square, one may already
suspect that they are full matrix algebras, i.e. that S2

α
∼= MN (C) with N = 2α+1.

To describe the isomorphism, we first note that MN (C) admits an action of the
group SU(2) by conjugation with group elements evaluated in the N -dimensional
representation of SU(2). Under this action, the SU(2)-module MN (C) decomposes
into a direct sum of irreducible representations V J ,

MN(C) ∼=
⊕N−1

J=0
V J . (4.2)

Only integer J appear, so this agrees with the decomposition of the state space
Hα, α = (N−1)/2, in eq. (3.3) for boundary WZW models at sufficiently large (or
infinite) level k. Thus, we can identify our elements Y J

j with a basis of the spaces
V J . The isomorphism (4.2) allows to work out multiplication rules for any two such
basis elements from the multiplication of N×N -matrices. The result [22] turns out
to coincide with our formula (4.1), which shows that S2

α and MN (C), N = 2α+1,
are indeed isomorphic as associative algebras.
The non-commutative spaces S2

α are known as fuzzy spheres and are obtained
when one quantizes functions on a two-sphere with the usual Poisson structure
(see e.g. [23] and references therein). The two-spheres may also be identified
with co-adjoint orbits of SU(2). According to Kirillov, their quantization gives
all representations of the Lie algebra su(2) or of its universal enveloping algebra
U(su(2)). Note that the size N = 2α + 1 of our matrices agrees with the number
of components for an su(2)-multiplet of spin α. Hence, through the investigation
of maximally symmetric branes on SU(2) at k = ∞, we have recovered Kirillov’s
theory of co-adjoint orbits.

Finite non-rational level k: Let us stress that this case does not appear among the
exact boundary theories above (for non-compact WZW models, it is the generic
situation). We include it here merely as an intermediate step before presenting the
structure for finite integer level k. To be more precise, we consider the algebras
spanned by Y J

j with relations (4.1) in which the structure constants C are given by
the 6J symbols (3.6) of the quantum group algebra Uq(su(2)), but with summation
over the same range as in the case k = ∞.
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The resulting algebras S2
α,q with q = exp(2πi/(k + 2)) not a root of unity cease to

be associative. But they are still quasi-associative in the sense that

Y I
i ⋆ (Y J

j ⋆ Y K
k )(τ I

in ⊗ τJ
jm ⊗ τK

kl )(ϕ) = (Y I
n ⋆ Y J

m) ⋆ Y K
l (4.3)

where the τL denote representations of U(su(2)) and where ϕ ∈ U(su(2))⊗3 is
Drinfeld’s “re-associator” [24]. The proof of this statement is sketched in the
appendix.

When we perform a standard quasi-classical limit, commutators are replaced by
Poisson brackets. The quasi-classical bracket associated with the quantum algebra
S2

α,q inherits a failure of the Jacobi identity from the quasi-associativity relation
(4.3). The violation of the Jacobi identity is controlled by the leading non-trivial
term in the 1

k
-expansion of the re-associator ϕ. This term is directly related to the

NS 3-form field strength H , which measures how much the B-field deviates from
being a closed 2-form. 2

Let us briefly mention that our quasi-associative algebras S2
α,q are closely connected

to associative deformations of the fuzzy sphere which employ the Clebsch-Gordan
coefficients of the deformed Uq(su(2)) instead of their classical analogs. Some
details on these algebras and their associativity can be found in the appendix. For
now, let us only remark that they are factors of the quantum spheres introduced by
Podleś in [25]. Their relation to our algebras S2

α,q is based on the fact that one can
obtain the Clebsch-Gordon maps of classical Lie algebras from their q-deformed
counterparts with the help of Drinfeld’s “twist element” F ∈ U(su(2))⊗2. The
latter provides the following factorization formula for the re-associator:

ϕ = (id ⊗ ∆)(F−1) (e⊗ F−1) (F ⊗ e) (∆ ⊗ id)(F )

where ∆ denotes the co-product of U(su(2)). Combining these two roles of the
twist element F , one can show that our algebras S2

α,q are “twist equivalent” to
associative factors of a Podleś sphere or, more explicitly, to the same matrix alge-
bras MN (C), N = 2α+1, as in the case of infinite level. Hence, we simply recover
the representations for the usual q-deformation of U(su(2)) at generic values of the
deformation parameter.

Finite integer level k: The associated algebras Ak

α are spanned by the generators
Y J

m with the label J chosen from the set J = 0, 1, . . . ,min(2α, k− 2α). Multiplica-
tion of these elements is defined through eq. (4.1) with structure constants C now
given by the 6J symbols of Uq(su(2)) at the root of unity q = exp(2πi/(k + 2)).

2Recall that closedness of a symplectic form is equivalent to the Jacobi identity for the asso-
ciated Poisson bi-vector.
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In addition, the summation on the right hand side is now restricted to run from
K = 0 to min(I + J, k − I − J, 2α, k − 2α). Viewed as SU(2)-modules, the linear
spaces Ak

α decompose as follows:

Ak

α
∼=

{
S2

α for 0 ≤ α ≤ k

4

S2
k/2−α for k

4
≤ α ≤ k

2

.

Again, the algebras Ak

α are only quasi-associative, and they provide examples of
the geometries considered in [26]. Using the concept of representations introduced
in [27], it is not difficult to show that each of the quasi-associative algebras Ak

α

possesses precisely one indecomposable representation on a vector space W α of
dimension

dimW α =

{
2α + 1 for 0 ≤ α ≤ k

4

k − 2α + 1 for k

4
≤ α ≤ k

2

.

According to our previous discussion, the algebras Ak

α and their representations on
W α, α = 0, 1

2
, . . . , k

2
, generalize Kirillov’s theory of co-adjoint orbits to quantum

groups at roots of unity. In other words, the algebras Ak

α we obtain are “quanti-
zations” of integer conjugacy classes on SU(2). Summing over all possible brane
sectors, i.e. over the index α, we construct a deformed universal enveloping algebra.

Of course, quantum group algebras were constructed within the framework of chiral
conformal field theory before, see e.g. [24,28,29]. As long as we avoid roots of unity,
our new derivation from boundary conformal field theory reproduces well-known
algebraic structures. Differences between the two approaches occur only when q
is a root of unity. In that case, boundary conformal field theory improves upon
the old constructions in two respects. First of all, the theory gives “physical”
representations exclusively so that there is no need for additional truncations.
Furthermore, the dimensions dimW α of the representation spaces are invariant
under the simple current symmetry which interchanges α and k/2 − α.

When we increase the level k, the radius of the three-sphere grows and we can fit
more and more branes into the background. At the same time, the 3-form field
strength decreases and the world-volume algebras become “more associative” –
while their non-commutativity survives.
This is to be compared to the non-commutative targets obtained in [7, 8] from
closed strings: The k → ∞ limit of these targets is simply the classical group
SU(2). The different behavior of closed and open string geometry may be explained
as follows: Both closed and open strings feel the presence of the NS 3-form field
H at finite level. Open strings are also sensitive to the concrete choice of a 2-form
potential B, while closed strings “see” only its cohomology class. In the flat space
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limit k = ∞, the cohomology becomes trivial while B itself stays non-zero and is
responsible for non-commutativity on the brane.

5 Summary and outlook

We have derived non-commutative world-volume algebras for D-branes in the
SU(2) WZW model, using a general scheme that can be applied to arbitrary branes
given as conformal boundary conditions, including supersymmetric cases. In the
process, we have seen how abstract objects from the CFT description, like Cardy’s
boundary states and Runkel’s OPE coefficients, acquire a geometrical meaning – if
in terms of non-commutative (and sometimes non-associative) spaces. The SU(2)
WZW model provides just the simplest example of a string background with a
non-vanishing 3-form field strength H , but we think that it illustrates quite nicely
much of the behavior one should expect from more complicated backgrounds. In
particular, the discussion of SU(2) branes carries over to boundary WZW models
with other structure groups G (at least in the compact case) and leads to a quanti-
zation of integer conjugacy classes in G. It might be interesting to investigate also
branes that are not maximally symmetric, i.e. where the gluing conditions respect
only a subalgebra of the maximal chiral symmetry algebra [30].

Boundary CFT yields world-volumes independently of whether limiting classical
pictures are available or not, and it actually provides more structure than a mere
set of non-commutative algebras. Connes’ program [31] shows that, in order to
talk about the geometry of a non-commutative space, it is necessary to fix further
“spectral data”, including a Hilbert space on which the (associative) world-volume
algebra and a generalized Dirac or Laplace operator act. How these data can
be extracted from a CFT has been discussed, for the bulk case, in [7, 8]. The
importance of the Laplace operator, which is related to the conformal Hamiltonian
L0, can also be seen in the context of our definition of non-commutative world-
volumes: In order to re-derive the OPE of boundary operators from the algebraic
structure of the world-volume, the spectrum of conformal dimensions must be
known, cf. the remark after eq. (2.2).
In a CFT on the upper half-plane, additional structure is available, e.g. in the form
of boundary condition changing operators which induce transitions between two
different boundary conditions α, β. The OPE of the boundary fields ΨI(x) with
boundary condition changing operators gives rise to bi-modules Bαβ over the world-
volume algebras of the two associated branes. In the case of D-branes on a group
manifold, these bi-modules allow to construct tensor products for representations of
the associated quantum group. OPEs involving two boundary condition changing
operators provide even more data, namely a full braided tensor category.
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Some comments on our general scheme to extract a world-volume algebras from
the boundary CFT description of branes are in order. It involves a choice of
“generating elements” among the boundary fields. From a pure CFT perspective,
one could restrict to primary operators only, or one could work with all boundary
operators and thus with an infinite-dimensional world-volume. In a sense, the
latter algebra would include all internal excitations of the “static” space defined
using primary fields. The WZW case, where it proved natural to keep the full
group multiplets associated with primary boundary fields, suggests that there are
distinguished “intermediate” choices. For a large class of CFTs, the appropriate
generalization of the lowest-dimension spaces of WZW models is likely to be given
by the special subspaces introduced in [32]; see also [33].

Placing the CFT into a string theory context can remove the arbitrariness and
provide clear guidelines as to which world-volume generators to select from the
boundary fields: String theory contains additional parameters like α′, and the rel-
evant generators of the world-volume algebra are those surviving in some limiting
regime. E.g. in the flat background case, one can remove all higher excitations by
sending α′ to zero while keeping the B-field finite; see [34] and also [1]. It may
be possible that a number of interesting limits exists; then one expects that the
world-volume of a brane can look very different in different regimes, and that full
string theory can “interpolate” between those geometries.

The next task would be to calculate the effective action on the – in general non-
commutative – world-volume of the brane. The lowest-order terms are, of course,
already given by our “multiplication table” (the OPE coefficients). In principle,
higher-order contributions can be computed from the same data, but in practice
one still needs to integrate over world-sheet moduli.
In the context of the Douglas-Hull model, the effective field theories were found
to be non-commutative supersymmetric gauge theories with some amount of non-
locality [1–3,35–37]. Seiberg and Witten could show that these models are equiva-
lent to ordinary gauge theories on a flat brane [34]. It remains to be seen whether
classical structures are stretched further when more general CFT backgrounds are
taken as a starting point. Perhaps it is worthwhile to compare the induced field
theories with existing models on fuzzy geometries (see e.g. [38]).

It would also be interesting to investigate further the relation between world-
volume non-commutativity as introduced in [1] and non-commuting moduli as
discovered by Witten [39]. Both phenomena can be traced back to failures in
locality properties of boundary fields – see [40,41] for the case of moduli – so that
there exists a direct connection between the brane’s intrinsic “fuzziness” and the
way it “perceives” its ambient target.
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Appendix: (Quasi-)associativity

Here we collect some basic material on Clebsch-Gordan maps, 6J-symbols and
the (quasi-)associativity of various algebras mentioned in the main text. Let us
denote by τ I the irreducible representation of Uq(su(2)) with spin I. By definition,
Clebsch-Gordan maps Cq(IJ |K) : V I ⊗ V J → V K intertwine between the actions
of Uq(su(2)) on the product module V I ⊗ V J and the irreducible module V K . 6J
symbols enter the theory through the basic relation

Cq(MK|L) (Cq(IJ |M) ⊗ idK) =
∑

P

{ L K M
I J P

}q Cq(IP |L) (idI ⊗ Cq(JK|P )) .

(A.1)
They obey a number of fundamental equations. For our purposes, the Biedenharn-
Elliot (pentagon) relation is the most important one. With the spin labels set to
the values that we need below, it implies

∑

M

{ L K M
I J P

}q { I J M
α α α

}q {M K L
α α α

}q = { J K P
α α α

}q { I P L
α α α

}q (A.2)

Relations (A.1,A.2) hold for generic q and at the classical point q = 1 where we
are dealing with representation theory of ordinary Lie algebras.

Let us now study the algebra generated by Y I
i for I = 0, 1, . . . 2α and |i| ≤ I with

the multiplication rules

Y I
i ⋆ Y

J
j =

∑

K,k

[ I J K
i j k

]q { I J K
α α α

}q Y
K
k . (A.3)

The Clebsch-Gordan coefficients on the right hand side are obtained from the
maps C(IJ |K) once we have selected a basis in each representation space V L.
Associativity of this algebra is rather easy to prove with the help of eqs. (A.1) and
(A.2):

( Y I
i ⋆ Y

J
j ) ⋆ Y K

k =
∑

L,l,M,m

[ I J M
i j m

]q [ M K L
m k l

]q { I J M
α α α

}q { M K L
α α α

}q Y
L
l
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=
∑

L,l,M,P,p

[ J K P
j k p

]q [ I P L
i p l

]q{ L K M
I J P

}q { I J M
α α α

}q { M K L
α α α

}q Y
L
l

=
∑

L,l,P,p

[ J K P
j k p

]q [ I P L
i p l

]q { J K P
α α α

}q { I P L
α α α

}q Y
L
l

= Y I
i ⋆ ( Y J

j ⋆ Y K
k )

For the special case q = 1 this computation proves the associativity of the world-
volume algebra in the limit k = ∞. When the level k is finite and non-rational,
however, the defining relation for our algebra S2

α,q from Sect. 4 employs the unde-

formed Clebsch-Gordan maps along with the deformed 6J symbols. Hence, using
relation (A.1) for q = 1, we generate an undeformed 6J symbol in our computation
above. The latter cannot be absorbed with the help of the pentagon identity, since
we have to deal with a product of one undeformed and two deformed 6J symbols.

At this point, Drinfeld’s re-associator ϕ ∈ Uq(su(2))⊗3 plays a decisive role because
of its fundamental property

C(MK|L) (C(IJ |M) ⊗ idK)(ϕ−1)IJK =
∑

P

{ L K M
I J P

}q C(IP |L) (idI ⊗ C(JK|P ))

where (ϕ−1)IJK = (τ I ⊗ τJ ⊗ τK)(ϕ−1) : V I ⊗ V J ⊗ V K → V I ⊗ V J ⊗ V K .

Note that this relation involves Clebsch-Gordan maps of the Lie algebra and q-
deformed 6J-symbols at the same time. ϕ allows to modify the proof we have given
for the associativity of the algebra (A.3) such that we obtain the quasi-associativity
property (4.3).

A relation between our quasi-associative algebra S2
α,q and the associative q-deform-

ation of the fuzzy sphere can be established with the help of Drinfeld’s twist
element F . By definition, it maps the deformed and undeformed Clebsch Gordan
maps onto each other,

Cq(IJ |K)(τ I ⊗ τJ)(F ) = C(IJ |K) .

This property becomes crucial in showing that the quasi-associative algebra for
non-rational k is “twist-equivalent” to the associative q-deformed fuzzy sphere.
Some details on the notion of twist equivalence can be found e.g. in Section 7.3
of [42].
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