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Non‑compulsory measures 
sufficiently reduced 
human mobility in Tokyo 
during the COVID‑19 epidemic
Takahiro Yabe 1, Kota Tsubouchi2, Naoya Fujiwara 3,4,5, Takayuki Wada6, 
Yoshihide Sekimoto4 & Satish V. Ukkusuri 1*

While large scale mobility data has become a popular tool to monitor the mobility patterns during the 
COVID‑19 pandemic, the impacts of non‑compulsory measures in Tokyo, Japan on human mobility 
patterns has been under‑studied. Here, we analyze the temporal changes in human mobility behavior, 
social contact rates, and their correlations with the transmissibility of COVID‑19, using mobility data 
collected from more than 200K anonymized mobile phone users in Tokyo. The analysis concludes 
that by April 15th (1 week into state of emergency), human mobility behavior decreased by around 
50%, resulting in a 70% reduction of social contacts in Tokyo, showing the strong relationships with 
non‑compulsory measures. Furthermore, the reduction in data‑driven human mobility metrics showed 
correlation with the decrease in estimated effective reproduction number of COVID‑19 in Tokyo. Such 
empirical insights could inform policy makers on deciding sufficient levels of mobility reduction to 
contain the disease.

�e COVID-19 pandemic has posed unprecedented challenges for cities around the  globe1. Countries have 
tackled this challenge with a variety of non-pharmaceutical interventions (NPIs), ranging from complete regional 
lockdowns, closures of non-essential businesses, to testing and  tracing2. In order to monitor, analyze and evaluate 
the impacts of such interventions, large scale mobile phone data has been identi�ed as an e�ective data  source3. 
Previous studies on human mobility analysis have shown that such large-scale mobility data collected from 
mobile devices (e.g. GPS, call detail records) may be used to assist the modeling of epidemic  spread4–7. During 
the current COVID-19 crisis, researchers from academia, industry, and government agencies have started to 
utilize large-scale mobility datasets to estimate the e�ectiveness of control measures in various countries includ-
ing China, Germany, France, Italy, Spain, Sweden, United Kingdom and the United  States8–18.

Several studies have been conducted to analyze the mobility patterns in Japan during the state of emergency 
due to COVID-1919. Moreover, private companies such as  Agoop20 and NTT  Docomo21 have visualized changes 
in population distributions during the spread of COVID-19 using mobile phone data. However, we lack studies 
that attempt to analyze the mobility behavioral changes in Japan and to further understand its correlation with 
the spread of COVID-19. Japan, in particular, has experienced a low number of cases and deaths due to COVID-
19 in comparison to other countries in Europe and America, despite the social and physical proximity to China 
and intervention policies that are not as aggressive as some of the other  countries22,23. NPIs implemented by the 
Japanese government include non-mandatory closures and remote-working of non-essential business employ-
ees (February 26th), closures of public elementary, junior high and high schools (March 2nd), and incremental 
inbound entry restrictions, starting with personnel who have visited Hubei Province, China (February 3rd), until 
restricting inbound visitors from 73 countries (April 3rd). In the case of Japan, the current justice system does 
not allow the government to lay out a mandatory lockdown. Such di�erences in policies and COVID-19 spread 
dynamics make Japan an interesting case study for international comparative analysis. �e objective of this paper 
is to provide empirical analysis on the e�ects of such non-compulsory NPIs on changes in (1) individual human 
mobility behavior and (2) amount of social contacts, and to (3) analyze the correlations between such mobility 
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changes and transmissibility of COVID-19. In this study, large-scale mobility data collected from more than 200K 
mobile phones across a four month period in Tokyo are used to answer the aforementioned research questions.

Results
Macroscopic mobility dynamics and timeline. Panels A–C in Fig. 1 show the daytime population dis-
tributions on three di�erent dates at same times (12 p.m.), each on the same day of week (Mondays) in Tokyo, 
Japan. Mobile phone data were interpolated to produce movement trajectories, and the locations of the users 
on each day were spatially aggregated into 100 m grid cells. �e population density was corrected by dividing 
the observed population in each grid cell by the total number of observed users on each day, as the number of 
active users had daily �uctuations. As shown in previous  studies24, we observe high population density along the 
railway lines and hub stations during the daytime. Comparing the three panels, we observe substantial decrease 
in population density at stations and cities along the Yamanote-line (ring railway), such as Shibuya, Shinjuku, 
Akihabara, and Tokyo Stations. By April 14th, which was 1 week a�er the declaration of state of emergency, these 
hub stations had a 76–87% decrease in visits compared to the baseline, which was computed by taking the aver-
age population density of weekdays at the same times before the crisis (January 2020).

Figure 1D shows the timeline of the COVID-19 response and occurrence of cases in Tokyo Metropolis. 
Green bars show the number of cases for each day, blue annotations show inbound travel restrictions, and red 
annotations list the policy interventions by the Japanese Government. �e number of cases for each day were 
obtained from the Tokyo Metropolitan Government  website25. Major non-pharmaceutical measures taken by 
the government include issuing non compulsory requests for remote working to private companies on February 
26th, and closing public schools (elementary, junior high, and high schools) from March 2nd until the end of the 
semester, which is usually the end of  March26. �e 2020 Olympic Games were postponed for a year on March 
24th, and the State of Emergency (SoE) was declared on April 7th. Entry restrictions for inbound travellers were 
gradually reinforced, with the �rst restriction on February 3rd from Hubei Province, China. �e restrictions 
were expanded to all foreign nationals who visited China or South Korea during the past 14 days on March 5th, 
and to 73 countries including the United States on April 3rd.

Changes in human mobility behavior. Here, we evaluate how individual users’ mobility behavior has 
changed before and a�er the state of emergency in Tokyo, Japan. Figure 2 shows the transitions of various met-
rics of individual mobility patterns. Panels A and B in Fig. 2 show the mean and median values of the radius of 
gyration (RG) and total travel distance (TTD), which characterize the magnitude and extent of individual mobil-
ity  behavior27 (see “Materials and methods”). We observe two steps of decrease in both metrics, the �rst starting 
around the end of February and stabilizing until late March, and the second which is a more rapid decrease until 
April 15th. Both the mean and median values of RG and TTD have been reduced by 50% of the typical values 

Figure 1.  Macroscopic mobility dynamics. (A–C) show the population distributions on three di�erent dates at 
same times (12 p.m.), each on the same day of week (Mondays). Substantial decrease in the population density 
at stations and cities along the Yamanote-line (ring railway) can be observed. (D) shows the timeline of the 
COVID-19 response and occurrence of new cases in Tokyo. Green bars show the number of cases for each 
day, blue annotations show inbound travel restrictions, and red annotations list related events and the policy 
interventions by the Japanese Government.
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by the end of the observation period on April 15th. Panels C and D in Fig. 2 show the complementary cumula-
tive probability distribution plots for both mobility metrics across three di�erent dates, January 20th (before the 
pandemic), March 30th (before the state of emergency), and April 14th (a�er the state of emergency), which are 
all Mondays. �e RG values observe a dip at around 20 km, which corresponds to the diameter of the Tokyo Met-
ropolitan area (scale shown in Fig. 1A–C). �is implies that while the majority of the individuals move within 
the metropolitan area, some individuals travel to di�erent regions outside Tokyo. In both mobility metrics, we 
observe substantial tempering of the tail probability as time passes. �is indicates a decrease in relatively long 
distance travelers ( > 20 km for RG and > 100 km in TTD), re�ecting the decrease and closures of airlines and 
inter-urban railways that travel outside the metropolitan Tokyo area. Figure 2E shows the rates of users staying 
κ meters within their estimated home locations. �is �gure suggests that the rate of people staying close to their 
estimated home locations increased since mid-March and doubled by April 15th regardless of the threshold 
value κ , re�ecting the increase in people working from home and spending time within their neighborhoods.

Social contact analysis. Figure 3 shows the results of the social contact analysis in Tokyo over the obser-
vation period (see “Materials and methods”). �e panel �gures show the temporal transitions in the relative 
average social contact index. �e contact index is calculated by tracking the number of individual users that 
each user is observed to be co-located in a given temporal window, using the interpolated trajectory data. We 
have used 100 m as the spatial threshold parameter for detecting potential co-location events in this analysis. 
�e social contact indexes were normalized by the mean peak contact index values observed prior to the pan-
demic (January 2020). �us, in Fig. 3, contact index value of 1 indicates the average amount of observed contacts 
during peak hours on a typical weekday prior to the pandemic. �e temporal periodicity in Fig. 3 A shows the 
daily and weekly patterns, including the highest point showing the morning rush hour peak, the following peak 
showing the returning home rush hour, and substantially small amount of contacts (around 0.2) on weekends 
and holidays, including the New Year breaks. Panels B and C in Fig. 3 show the total daily contact index and the 
daily peak contact index values, respectively. By comparing the average social contacts across the time horizon, 
we can observe in Fig. 3 A that the average amount of social contact for each user starts to decrease as COVID-
19 became a threat globally in mid February down to 90% of the typical value. �e value decreases more rapidly 
towards the end of February with the government request for remote working, down to 65% of the typical values. 
�e contact index stays at 65% of typical values until the end of March, and as the number of cases in Tokyo 
starts to increase (Fig. 1), the contact index further starts to decrease and reaches 30% of typical values by April 
15th, almost reaching the government’s goal of reducing social contacts by 80% of the typical  values28. However, 
regarding the daily peak contacts (morning rush hour peaks on weekdays and lunchtime peaks on weekends and 

Figure 2.  Changes in individual mobility patterns. Temporal transition of mean and median radius of gyration 
(A), total travel distance per day (B) and their complementary cumulative distribution functions (C), (D), 
respectively. Panel (E) shows the rate of staying κ meters within estimated home locations. Red vertical lines in 
panels (A, B, E) show the timings of NPIs (remote work request, public school closure, and state of emergency, 
respectively).
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holidays), Panel C shows that peak time social contacts have decreased successfully to around 20% of the typical 
values by April 15th.

Moreover, the inequality in mobility changes across di�erent spatial regions within Metropolitan Tokyo were 
tested, since it has been suggested that inequality in society could aggravate the spread of COVID-1929. Panel 
D of Fig. 3 shows the transition of daily total contacts for users with home locations in the 23 wards in central 
Tokyo. Although the social contact index of the regions follow similar general patterns, some heterogeneity 
in the contact decrease can be observed. Panel E shows strong correlation (Pearson’s correlation coe�cient 
R = 0.875

∗∗∗ ) between the non-normalized amount of contacts on January 15th (before the pandemic) and 
April 15th, which is a�er the pandemic. Most of the 23 regions were successful in reducing the social contact 
index by 80% (shown by gray dashed line), except for wards including Nerima Ward. Panel F further shows the 
log–log plot between the relative contact index on April 15th and average taxable income per household for each 
ward in Tokyo. �e average taxable income per household was calculated using data provided by the O�cial 
Statistics of Japan through the Portal  Site30. We observe strong negative correlation ( R = −0.696

∗∗∗ ) between 
taxable income per household and contact index, indicating that households in higher income regions were able 
to reduce the amount of social contacts and risk of COVID-19 transmission more than households in lower 
income regions. �is highlights an inequality across households in terms of the voluntary mobility restrictions. 
Higher income households are more likely able to reduce their social contacts by reducing mobility, however 
lower income households may not have this �exibility. �is inequality has substantial implications in terms of 
disease spread and will require a holistic policy planning.

Correlation of mobility indexes with effective reproduction number R(t). To understand the 
implications of mobility behavior change and decrease in social contacts on the transmissibility of COVID-19 in 
Tokyo, we compare the quanti�ed mobility behavior changes with the estimated e�ective reproduction number 
R(t) of Tokyo. �e R(t) values were estimated using the weekly averaged number of con�rmed COVID-19 cases 
in Tokyo, reported by the metropolitan government (see “Materials and methods”). Figure 4 shows the weekly 
moving averaged values of (A) social contact index, (B) radius of gyration, and (C) stay-at-home rates plotted 
along with the dynamic R(t) values. �e gray shaded areas show the 95% con�dence interval for the estimated 
R(t). Panels D–F in Fig. 4 show the temporal evolution of the mobility metrics and R(t), where each dot cor-
responds to daily values. �e vertical error bars show the 95% con�dence interval of the estimated R(t) values. 
A non-linear relationship between the mobility metrics and transmissibility are observed, where the R(t) values 
substantially decrease around a threshold value of 0.33 in the contact index. We observe that R(t) < 1 is achieved 

Figure 3.  Social contact analysis. (A) shows the amount of contacts an individual potentially encounters 
outside home for each time period. (B,C) show the individuals’ mean total daily contacts and the mean daily 
peak contacts, respectively. (D) Daily total contacts in the 23 central districts (wards) in Tokyo Metropolitan 
Area. (E) Correlation between non-normalized social contacts before and a�er the COVID-19 spread. (F) 
Correlation between average taxable income per household and daily contact index on April 15th.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18053  | https://doi.org/10.1038/s41598-020-75033-5

www.nature.com/scientificreports/

with reduction in social contacts down to 0.33 on April 3rd. Further reduction in mobility and social contacts are 
observed a�er the declaration of the SoE on April 7th, but R(t) had reached a bottom before the declaration. �is 
suggests that restrictions on mobility certainly allow the reduction of number of transmissions up to a point, but 
further severe restrictions could have less e�ects on transmissibility reduction. A more targeted and nuanced 
approach may be needed to determine where and when mobility restrictions should be imposed.

To provide some examples of such nuanced and directly observable metrics of mobility reductions, Panel G 
shows the relative amount of visits to various types of points of interest (POIs) on April 3rd, which was when 
su�cient decrease in mobility was observed. We can observe that for all listed types of POIs (Table S2) includ-
ing business districts (e.g. Tokyo Midtown, Roppongi Hills), shopping areas (e.g. Ginza, Omotesando), and 
major stations (e.g. Shinjuku, Shibuya), visits were reduced by around 35–40% on average compared to January 
weekdays (before the pandemic). Haneda Airport (major airport in Tokyo area) on the other hand, had larger 
decrease in visits (55%) due to travel restrictions which were imposed in early February and March (Figure S7) .

Discussion
Large-scale mobility data collected from mobile phones provide us with an opportunity to monitor and under-
stand the impacts of NPIs during the COVID-19 pandemic with an unprecedented spatio-temporal granularity 
and scale. In this study, we utilized such data to quantify the changes in human mobility behavior and social 
contacts during the COVID-19 spread in Tokyo, Japan, which provides a unique case study where government 
policies were limited to non-compulsory measures. �e analysis concludes that by April 15th (1 week from 
declaring state of emergency), human mobility behavior have decreased by around 50% both in terms of radius of 
gyration and total travel distance per user, and also that social contact index in Tokyo had been reduced by more 
than 70% both in terms of daily total contacts and daily peak time contacts following non-compulsory measures 
including remote working requests to businesses and closures of public schools. �e analysis results also showed 
that mobility reduction had already taken place before late March (around 40% decrease of social contacts), when 
the number of imported cases of COVID-19 started to increase. �is indicates that even before the actual spread 

Figure 4.  Correlation between mobility behavior changes and e�ective reproduction number R(t). (A–C) 
shows the human mobility metrics along with the R(t) values in Japan estimated by the health ministry panel 
on coronavirus infection cluster under the Japanese Government. (D–F) shows the relationships between 
the mobility metrics and R(t). All panels show that R(t) falls under 1.0 with reduction in mobility and social 
contacts, and that such reduction may have been excessive in containing the spread of COVID-19. (G) Relative 
amount of visits to various point of interests on April 3rd, when su�cient reduction in transmissibility was 
achieved in Tokyo.
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of COVID-19 in Tokyo, and even under only non-compulsory measures, a substantial amount of cooperation 
was provided by the citizens to contain the spread of COVID-19. By comparing the mobility analysis results with 
the e�ective reproduction number R(t) estimated from the daily con�rmed number of cases in Tokyo, we were 
further able to show correlation between the mobility reduction and decrease in transmissibility of COVID-19. 
During late March, R(t) rose above 1 and the number of cases increased, however, mobility reduced following 
the nation-wide state of emergency, and the R(t) dropped below 1 by the beginning of April. In fact, it was found 
that reduction of mobility and social contacts beyond certain thresholds (e.g. social contact index of 0.33) had 
little incremental e�ects on the decrease in R(t). Looking forward into li�ing the state of emergency declaration, 
these results could inform decision making on how much human mobility and social contact reduction is needed 
to keep the e�ective reproduction number of COVID-19 below 1. Figure 4G provides more directly observable 
measures of mobility reduction at various points of interest which can be used to interpret the su�cient amount 
of social contact reduction to contain COVID-19.

�e presented empirical results should be considered in the light of some limitations. First, the presented 
analysis was limited to understanding the correlations between mobility and contact reduction and transmis-
sibility. However, microscopic human behavior, such as sanitizing hands more o�en or higher rates of wearing 
face masks, could have a�ected the reduction in transmissibility. Because of such factors other than human 
mobility, the relationships between mobility reductions and transmissibility could change a�er li�ing the state 
of emergency. Due to the lack of data on R(t) under no interventions, it is not certain whether the R(t) values 
reach a similar value of that in European countries and the US. Additional household surveys and interviews 
need to be conducted to quantify the e�ects of such behavioral changes. Second, GPS location data collected 
from mobile phones are prone to spatial errors up to 100 m. �is spatial error could have biased the results of 
the mobility metrics. However, sensitivity analysis suggests that the conclusions are not a�ected by the spatial 
thresholds selected in this study (Figures S3, S4). In addition to the 2% sample rate, the granularity of the data was 
not adequate to compute the actual contacts between individuals (i.e. 2 m distance for all individuals). Moreover, 
it is known that mobile phone data contain biases in age and income  groups31,32. It is important to analyze the 
mobility of the more vulnerable and elderly population due to the high mortality rate of COVID-19. Although 
similar conclusions were reached when di�erent spatial thresholds were used via sensitivity analysis, additional 
validation using small scale but precise data could further clarify the approximate social contact measure com-
puted in this study using mobile phone data. �ird, in Tokyo, data on the daily number of new onset cases were 
not available. �us, we estimated the onset timings from the daily number of con�rmed cases, by shi�ing the 
data back 7 days, following reports from Huang et al.33. Starnini et al.34 has shown that the estimation accuracy 
of R(t) could su�er by using the daily number of con�rmed cases. However, this e�ect is more substantial in the 
early dynamics of the epidemic, and less towards later periods where our analysis is focused on.

Future research steps include extending the analysis to other cities in Japan such as Sapporo and Osaka, where 
di�erent patterns of COVID-19 spread have been observed (Figure S1). Cross-comparative analysis including 
multiple regions could yield novel and more generalizable insights on the relationships between mobility pat-
tern changes and COVID-19 transmissibility. In addition to the spatial dimension, extending the time period 
of analysis a�er April 15th and analyzing the dynamics a�er the li�ing of the interventions could strengthen 
our understanding between social contact decrease and transmissibility reduction. Although this study used 
aggregated measures to quantify the behavioral changes (e.g. average social contacts), more microscopic analysis 
of mobility changes could be conducted with additional data.

Materials and methods
Mobile phone location data. Location data of smartphones were collected by Yahoo Japan Corporation 
through the disaster alert app in order to send relevant noti�cations and information to the users. �e users in 
this study have accepted to provide their location information. �e data are anonymized so that individuals can-
not be speci�ed, and personal information such as gender, age and occupation are unknown. Each GPS record 
consists of a user’s unique ID (random character string), timestamp, longitude, and latitude. �e data acquisition 
frequency of GPS locations changes according to the movement speed of the user to minimize the burden on 
the user’s smartphone battery. If it is determined that the user is staying in a certain place for a long time, data is 
acquired at a relatively low frequency, and if it is determined that the user is moving, the data is acquired more 
frequently. �e data has a sample rate of approximately 2% of the population, and past studies suggest that this 
sample rate is enough to understand the macroscopic urban dynamics, even during an  emergency35. We selected 
a panel of users who were active each day in Tokyo metropolitan area before, during and a�er the COVID-19 
pandemic. �is leads to a sample of about 200k users, with approximately 50 data points per user each day 
(Figure S2). Home locations of each individual was detected by applying mean-shi� clustering to the nighttime 
staypoints (observed between 8 p.m. and 6 a.m.), weighted by the duration of stays in each  location36.

Socio‑economic data. Socio-economic data of 23 wards in Tokyo Metropolis were obtained from the Por-
tal Site of O�cial Statistics of  Japan30. �e number of households and total taxable income collected from the 
residents were available through the Portal Site. �e taxable income per household values used in the analysis in 
Fig. 3F were calculated by dividing the total taxable income by the number of households in each region (ward) 
(Figure S5, Table S1).

Effective reproduction number R(t). �e e�ective reproduction number R(t) is commonly used to 
quantify transmissibility of an infectious disease, which is de�ned as the average number of secondary cases 
generated by a single infectious  case37. E�ects of NPIs such as social distancing can be measured by the e�ective 
reproduction number. In order to estimate R(t) of COVID-19 in Tokyo, we employed time series data of daily 
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con�rmed COVID-19 cases in Tokyo reported by Tokyo metropolitan  government25. Since the data of the onset 
cases are unavailable, we used the con�rmed date for the estimation. �e original daily data were smoothed by 
taking the centered 7-day moving average. Estimation of R(t) is conducted based on the code implemented by 
Jung et al., which is available on the Github  repository38. �e code estimates R(t) using the following steps. Since 
our data on the number of infected cases is based on the laboratory con�rmation, there is a time lag associated 
with the date of infection. �e date of the onset of symptoms is estimated by shi�ing the con�rmed daily number 
of new cases backwards in time for 7 days to account for the diagnosis delay, based on the report by Huang et al.33 
that the median number of days from onset to �rst hospital admission was 7.0 days. Furthermore, to estimate the 
daily number of infections, the daily number of onset cases was back-projected using a lognormal density func-
tion with mean of 5.6 days and standard deviation of 2.8 days39. R(t) was estimated via the renewal  equation40, 
which uses the time series of the number of new infected cases in Tokyo on day t, C(t). �e expected number of 
infected cases E[C(t)] are modeled as:

where E[x] denotes the expectation of random variable x, and T is the latest day of observation. �e Weibull 
distribution with shape factor 2.305 and the scale factor 5.452 was assumed to be the probability density function 
of the generation interval g(τ )41. Moreover, the cumulative Weibull distribution F(t) with shape factor 1.741 and 
scale factor 8.573, based on the maximum likelihood estimation using data on the reporting date and the date of 
illness onset collected by the Ministry of Health, Labor and Welfare of  Japan38, was introduced to account for the 
right-truncated reporting delay from illness onset to laboratory con�rmation. It was assumed that C(t) follows a 
Poisson distribution, and R(t) was estimated by maximizing the following likelihood function:

�e 95% con�dence interval of each estimate was also derived using the likelihood function.

Individual mobility indexes. Several indexes have been used in previous studies to characterize indi-
vidual human mobility  patterns27,32. In this study, we use three key indexes: Radius of Gyration ( Rg ), total travel 
distance (TTD), and stay-at-home rates parameterized by a spatial threshold κ ( SAHκ ). Given a sequence of GPS 
observation points Pi = {p1i , p

2
i , . . . , p

N
i } in a single day of an individual user i, the radius of gyration is calculated 

using the following equation.

where p̄i denotes the center of mass of the GPS observation points of user i. �e total travel distance of an indi-
vidual user is the sum of Euclidean distances between all subsequent pairs of GPS observation points on a given 
day. �e stay-at-home rate, parameterized by a spatial threshold κ , is the rate of individual users who had stayed 
the entire day within a distance κ from the estimated home location.

Quantifying social contact index from trajectory data. To overcome data sparsity, spatio-temporal 
interpolation of the GPS location observations were performed. Because the GPS data are collected less fre-
quently when movement is detected, we assume that the individual users are static while there are no obser-
vations. Using the interpolated individual trajectory data produced from mobile phones, the social contact 
indexes were computed. �e social contact indexes shown in Fig. 3 were computed for 30 min intervals. First, 
for each time interval [t, t + dt) , where dt = 30 min, users who were not within 100 m from their estimated 
home locations were detected as “staying out”. We denote this set of individual users as Nout

t  . For user i staying 
out ( i ∈ N

out
t  ), we compute the number of other “staying out” users who are within 100 m from user i, and use 

that count ci,t as a proxy for social contacts. �e social contact index is calculated as the total social contacts for 
all users staying out, divided by the total number of users including those staying at their homes. �us, mean 
social contact value is computed as Ct =

∑
i∈N

out
t

ci,t/N , where N is the total number of users observed on that 
day. �e social contact index is the relative value of mean social contacts with respect to typical mobility pat-
terns, observed before the COVID-19 pandemic. �e typical mean social contact value is computed by taking 
the average of daily peak social contact values observed on weekdays in January 2020. �us, the social contact 
index (SCI) of 1 corresponds to the same amount of social contacts as the daily peak times on weekdays before 
the COVID-19 pandemic.

Received: 9 July 2020; Accepted: 6 October 2020

(1)E[C(t)] = R(t)

t−1∑

τ=1

C(t − τ)g(τ )
F(T − t)

F(T − t + τ)
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(2)L(R(t);C(t)) =

T∏

t=1

exp{−E[C(t)]}E[C(t)]C(t)

C(t)!
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√

√

√

√
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N

N
∑
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(pni − p̄i)2,
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