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Abstract - In this paper, elastoplastic contact problems with friction are solved by BEM, using
non conforming discretisation. The contact conditions are directly enforced by relating tractions
and displacements at every node of the contact zone with a point on the opposite surface. An ini-
tial strain BEM formulation is used to study the elastoplastic problem. The material is assumed
to obey the Von Mises yield criterion with its associated flow rule. A numerical application is
presented, and the results are compared to those obtained by the use of conforming discretisation.

Introduction

The BEM is a powerful and efficient numerical technique for solving contact problems,
as contact is inherent to the boundaries of the bodies involved. The application of BEM
to a range of elastostatic, frictional problems is now well established, see for example
Andersson [1], Karami and Fenner [2], Paris and Garrido [3] and Man, Aliabadi and
Rooke [4]. These formulations use a direct contraint technique, whereby the solution is
obtained explicitly from equilibrium and compabitility conditions.
The use of conforming discretisations is a common feature of the research works cited
above. The contact areas are modelled in such a way that for every node on one body,
there must be a matching node on the other. These two nodes form a node-pair, which al-
lows the enforcement of the appropriate contact conditions, by relating the corresponding
unknowns in the system of equations.
BEM formulations for contact problems are currently being revised in order to remove
the need of conforming discretisations, which are increasingly regarded as an unnecessary
limitation. [5], [6], [7]. The use of non-conforming discretisations allows the solution of a
wider range of problems, like those involving large relative displacements, and simplifies
the modelling and data preparation, particularly in the case of non-conforming problems,
in which the surfaces in contact have different shapes before the application of the loads.
The need to include elastoplasticity is important for some type of problems, and has
received attention from researchers using BEM [8-12], all of which are restricted to the
use of conforming discretisations. The use of non-conforming discretisation to solve
frictionless, elastoplastic contact problems is reported in [13].
The work presented in this paper describes the solution of elastoplastic contact problems
without the use of conforming discretisations. To this end, the unknowns of a given
node within the contact zone of one of the bodies are related to those of an opposite
point on the boundary of the other body, which in turn are expressed in terms of the
nodal unknowns by means of the shape functions. The contact areas are modelled using
standard quadratic elements.
The initial strain approach for the elastoplastic BEM formulation [14] is employed here.
The material is assumed to obey the Von Mises yield criterion with its associated flow

                                                             Transactions on Modelling and Simulation vol 18, © 1997 WIT Press, www.witpress.com, ISSN 1743-355X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



68 Boundary Elements

rule [15]. The model can handle either perfectly plastic or work hardening materials.

BE Formulation for Elastoplastic Problems

In order to solve an elastoplastic problem by means of the BEM the inelastic strains
are considered as initial strains [14]. With this in mind, and considering a homogeneous
body of domain Q, enclosed by a boundary F, the following integral equation can be
written for the displacement rate iij at a point z' G F:

4- <,-,(/, x) 6̂ (x) ̂ (x), (1)
j fi

where x' refers to a point on the boundary F and x to a point in the domain fi; iij,
ij are the displacement and traction rates respectively; e^ is the plastic strain rate;
TJJ, Uij and <r*̂  are the fundamental solutions of elasticity. The symbol ̂  indicates a
Cauchy principal value integral and c,-j is a constant that depends on the geometry of the
boundary at z' . Although no time-dependent effects are studied here, the rate notation
is used to indicate that the magnitudes involved depend on the loading history.
The stress integral equation valid for the stress rates at an internal point z can be obtained
by differentiating (1) with respect to the coordinates of z and applying the generalised
Hooke's law to the elastic part of the total strain rate tensor, to give:

+ /,j(̂(z)), (2)
et

where Uijk, Tjjk and E*^ are the fundamental solutions, and the free term fa results
from the differentiation of the domain integral that appears in equation (1).
After discretising the boundary and those areas of the domain where yielding is expected
to occur, and after a collocation procedure, (1) and (2) can be written in matrix form as:

(3)

and

<r = G't - H'u + (D' + C')l*. (4)

The vectors u and t contain the values of displacement and traction rates at all boundary
nodes. Vector e^ contains the plastic strain rates {£?, £?i £1*2) ̂  both internal and
boundary control points. Since equation (2) is only valid for internal points, the stress
rates at boundary points must be computed from different expressions. The resulting
coefficients can be assembled into equation (4) and thus, the stress rates can be calculated
in a unified way. Equation (3) can be rearranged according to the boundary conditions,
which gives the final system of equations:

Ay = f + D£P, (5)

where y is the vector of the unknowns, and f is the elastic part of the right hand side
vector, which contains the contribution of the known boundary conditions.
Similarly, equation (4) can also be rearranged to give:
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Boundary Elements 69

<7 = _A'y + f'4-D*6P, (6)

where D* = (D' + C'), A' contains the corresponding columns of H' and G'; and f' in-
cludes the contribution of the prescribed values.
A yield criterion indicates the stress level at which plastic flow commences. In particular,
the Von Mises yield criterion, suitable for metals is used here. For a multi axial stress
state, an equivalent stress is defined as:

where J<2 is the second invariant of the deviatoric stress tensor, 5,-j, and yielding occurs
whenever the equivalent stress reaches the value of the uniaxial yield stress, CTQ:

\/3J^-<7o = 0 (8)

Therefore the load at first yield can be calculated from the elastic solution of equa-
tions (5) and (6) (with e? = 0). The most highly stressed boundary node or internal
point must be taken, and its equivalent stress <r™* reduced to the uniaxial yield stress
of the material, O-Q.
The remaining load has to be applied incrementally. Equations (5) and (6) can be
rewritten as:

Ay =f + D(eP + A^) (9)

and

a = -A'y + f + D*(£P 4- Ae"), (10)

where e*> represents the accumulated plastic strains up to, but not including the corre-
sponding to the current load increment Ac^, which are to be determined iteratively, as
follows:

(a) Arbitrary initial guess for

(b) Compute y, <r. (Eqs. (9) and (10)).

(c) Use stress-strain relationship for post yield behaviour to obtain a new estimate for

(d) Go to (b) until convergence within prescribed tolerance is achieved.

Once convergence is obtained at all control points A£^ is added to £**, and its value is
also used as an initial guess for the next load increment.

Contact Problems

Solving a contact problem requires the determination of tractions and displacements that
arise within the contact areas, which are not prescribed as boundary conditions. The
direct constraint technique consists of writing compatibility and equilibrium conditions
as additional equations to couple the unknowns of the nodes brought into contact. In
order to solve the elastoplastic contact problem, it is necessary to apply equation (9) to
all the bodies involved. For example, for two bodies in contact, and using a superscript
for each of them:
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70 Boundary Elements

1
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(11)

In the presence of friction, the Contact Conditions in equation (11) depend upon the
contact modes, i.e. stick or slip, as shown in table (1).

Slip

*t = 0
= 0

Stick

%*-%* = ()

Table 1: Modes of contact

The contact modes at each control pair are not known in advance, and therefore they must
be determined iteratively. The contact modes are first set arbitrarily to slip, and after the
solution, they are checked against inconsistencies. The tangential tractions must oppose
the relative tangential displacemente at a slip control pair. A stick control pair must have
a tangential traction which is lower than its maximum value, i.e. the normal traction
times the friction coefficient. If there exists any violation to these conditions, the contact
modes are changed, and the problem is solved again. The solution of equation (11)
requires the computation of the inverse of matrix A. Inverting it every time the contact
conditions change would be a very expensive task. Special schemes, such as the Sherman-
Morrison-Woodbury formula [16] can be used to obtain the inverse of a matrix, after small
changes happen to the original one.
In order to compute the internal stresses equation (10) is written for each body separately:

= -A' + D**(eP* + AgP^) (12)

^ = -A'V + f* + D*̂ (̂  + AgP^). (13)

Equations (11), (12) and (13) are then solved for the current load step, where the iterative
procedure to determine Ac^ must be carried out.
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Boundary Elements 71

2 b 3
—# M 1-

a) GEOMETRY b) INTRINSIC COORDINATES

Figure 1: Node a and Point b

Non-Conforming Discretisation

Figure (1) shows the general case of non-conforming discretisation, in which a node a
is brought into contact with a point 6, which does not belong to the original boundary
discretisation. Its position within the element is determined by the intrinsic coordinate,
&,, subject to the condition £5 ̂  ±1, & ̂  0.
In order to avoid considering i^, %%, t% and t^ as additional unknowns they can be
expressed in terms of the variables of nodes 1, 2 and 3 by using the shape functions, as
follows:

For a node a comprised in the original discretisation two equations must be written in
order to balance the number of unknowns, in addition to the displacement equations
(1). Therefore, writing conditions shown in table (1) into the system of equations would
result in an overdetermination. Only two of them must be chosen and it is inevitable that
those conditions not explicitly enforced will result violated (albeit by a small margin) in
the final solution.
The best results are obtained when a balanced combination of compatibility and equilib-
rium conditions is used. More specifically, equilibrium conditions are enforced at every
node of body /, and compatibility conditions are enforced at every node of body //.
According to the contact modes, and making use of equations (14), the equilibrium
conditions for a node a of body / are:
a) Slip

b) Stick
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72 Boundary Elements

while for nodes of body // (notation a, 6 is maintained for convenience) the compatibility
conditions are:
a) Slip

«n = £«*** (6) (17)

b) Stick

(18)

Equations (15) to (18) can be expressed in matrix form, and assembled in equation (11)
as Contact Conditions.

Numerical Application

H

a) Geometry

Figure 2: Flat punch

A conforming contact problem is analysed, where the contact area does not depend on
the external load. It presents, however, a singularity at point A (see figure (2a)), and in
the presence of friction the partition between the stick and slip zones must be determined
iteratively.
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Boundary Elements 73

A flat punch of semi-width w and height h lies on a foundation of semi-width W and
height #, respectively. The ratios between them are assumed to be h/w = 2, H/W — 1
and w/W = 1/4, where W = 160 mm. The domain discretisation in the neighbourhood
of the corner of the punch is shown in figure (2b). A uniform compressive load per unit
thickness, £Q, is applied on the upper face of the punch.

1.5 -i

Ld

0.5 -

0.0

Elastic Analysis

conf discr
conf discr
non—conf discr
non—conf discr

o.o 0.2 0.4
Distance from

0.6
Centre

0.8
(x/w)

1.0

Figure 3: Elastic Contact Tractions

The punch and the foundation are assumed to have the following material properties:
elastic modulus E = 210 GPa; Poisson's ratio v — 0.3; yield stress ay = 196 MPa; plastic
modulus H' — 900MPa (work hardening material). The friction coefficient is taken as
H = 0.15. The problem is solved under plane strain condition.

This example is discretised using 75 quadratic boundary elements and 63 internal cells.
The contact area of the foundation is discretised using 8 elements, whereas a finer mesh
of 11 elements is used to discretise the contact area of the punch.

1.5 -|

0.5 -

0.0

Elastoplastic Analysis

conf discr
conf discr
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0.0 0.2 0.4 0.6 0.8
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Figure 4: Elastoplastic Contact Tractions

1.0

Figure (3) shows the elastic values of the normal and tangential contact tractions obtained
for a load to — 150 MN/m. The partition between stick and slip zones is situated at
x/w — 0.33, although it is not well defined for the conforming case, as the mesh employed
is not refined enough. Nevertheless, the results for both cases compare generally well.
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74 Boundary Elements

L

A

A\\

a) Von Mises Stresses

Figure 5: Plastic Stresses and Strains

b) Equivalent Plastic
Strains (%)

In figure(4) the values of the normal and tangential contact tractions obtained for the
elastoplastic case are shown. The first node to become plastic is the lower right corner of
the punch, point A. The value of the load for which this happens, or load at first yield,
is toy = 44.6 MN/m. The remaining load is applied in 11 steps, until the final value of
to = 150 MN/m is reached.
In this case, the formation of a plastic zone limits the maximum value of the normal
traction and the position in which it occurs is shifted from point A towards the interior
of the contact area. The partition between the stick and slip zone does not change
significantly from the elastic analysis, which is to be expected, since the plastic zone is
situated at a certain distance away.
Figure (5) shows the distribution of Von Mises stresses and equivalent plastic strains.
The plastic zone develops only within the punch, and has a roughly rectangular shape.
The foundation remains in elastic regime throughout the loading process. The maximum
stresses occur inside the body. A high stress gradient from the maximum value under
the corner of the punch to nearly zero on the free surface is observed.

Conclusions

BEM contact formulations requiring the use of conforming discretisations are currently
being superseded by more advanced approaches which allow node-on-element contact
schemes. In this paper, elastoplastic contact problems with friction are solved using
non-conforming discretisations. The contact conditions are directly enforced by relat-
ing tractions and displacements at every node of the contact zone with points on the
opposite surface by means of the shape functions. Frictional phenomena are considered
by employing Coulomb's friction law. The contact modes are determined iteratively, as
these are not known in advance.
A BEM initial strain approach is used to model the elastoplastic response of the material.
The Von Mises yield criterion with its associated flow rule is adopted. The approach
is capable of handling elastic-perfectly plastic as well as work hardening constitutive
relationships.

                                                             Transactions on Modelling and Simulation vol 18, © 1997 WIT Press, www.witpress.com, ISSN 1743-355X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



Boundary Elements 75

The obtained results, in particular the sensitive tangential tractions, compare favourably
to those obtained using conforming discretisations.
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