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1 Introduction

Understanding the dynamics of spinning black holes (BHs) is of both formal and phe-
nomenological interest [1]. Although much is known about the quasinormal mode spec-
trum of the Kerr solution, understanding how those modes react to external perturbations
presents a theoretical challenge. External tidal fields will distort the black hole both by
inducing changes in multipole moments as well as changing the mass and angular momen-
tum. Phenomenologically these tidal effects can become sufficiently large to be relevant to
parameter estimation in binary inspiral gravitational waveforms. While for non-spinning
black holes these finite size are fourth order corrections in the Post-Newtonian (PN) expan-
sion [2, 3], they are enhanced to 2.5PN order for the case of maximally rotating BHs [3].

In this paper we will utilize worldline EFT techniques [4–9] to calculate non-
conservative finite size effects for Kerr BHs, in a limit in which their size is parametrically
smaller than the curvature length scale of any external gravitational fields, for arbitrarily
large spins. In order to account for the physics of the horizon within a point particle de-
scription, we use a method introduced in ref. [6] for the case of non-rotating black holes,
which attributes dissipation across the horizon to a set of worldline localized modes. The
dynamics of these modes is encoded in a set of correlation functions that can be obtained by
a matching calculation to graviton absorption and (in the quantum mechanical case [7, 8])
emission processes in the single BH sector.

Within the context of spinning BHs, the EFT formalism for dissipation was previously
discussed first in ref. [10] who considered the tidal couplings of gravitons in the limit of slow
rotation, and then in ref. [13] which also restricted its analysis to slow spin but discussed
the couplings to more general external fields. Here, we generalize these methods to the case
of Kerr BHs with arbitrary rotation parameter, including the phenomenologically relevant
limit of maximal (near extremal) spin.
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We begin in section 2 by constructing the Schwinger-Keldysh [14, 15], or “in-in” action
of a generic spinning compact object tidally coupled1 to a background gravitational field.
The compact object is described by a worldline xµ and a local rotation frame [16, 17]
eaµ, plus a generic set of internal modes X responsible for dissipation. The in-in action
is obtained by integrating out the internal modes, and its variation yields instantaneous
(i.e. valid locally at any parameter time along the worldline) equations of motion for the
center of mass momentum and spin of the BH. In the linear response approximation, these
equations depend on the retarded Green’s function of the internal modes, or equivalently,
the induced quadrupole moments (in the sense defined in section 2) due to the external
field. If there is a separation of scales between the internal response and external field
time scales, the equations of motion become local. The resulting equations of motion are
quadratic in the background curvature and contain time-reversal even terms corresponding
to conservative tidal effects (e.g. static Love numbers), and time-reversal odd parts which
encode the effects of dissipation (e.g. tidal heating and torquing).

The results presented in section 2 are generic. In section 3 we specify to the case of
Kerr BHs. The Wightman functions of the EFT are extracted in section 3.1 by matching
to the low-energy graviton absorption probabilities computed in [18, 19]. In section 3.2, we
determine the retarded Green’s function relevant to classical dynamics from these Wight-
man functions. To do so, we employ dispersion relation methods, which fix the absorptive
(or non-“local”, in the sense defined in section 3.2) part, in combination with recent re-
sults of [20], indicating that Kerr BHs have vanishing conservative tidal response at low
frequency, to fix the local part. As a check, we compute in section 3.3 the rate of change
of mass and spin of a Kerr BH placed in long wavelength tidal background field whose
average over worldline time are in agreement with previous results in [21–25].

Finally, as a novel application of our methods, we obtain the non-conservative part of
the PN equations of motion for spinning black hole binaries in section 4. These include
instantaneous forces and torques which, in the near maximal spin case, scale as 5PN and
4PN respectively. We also compute the rate of change of orbital energy and angular
momentum due to horizon finite size effects. The former effect, arising at 2.5PN order for
large spins, is not small compared to finite size effects in neutron stars (5PN) or slowly
rotating BHs’s (4PN), and may have implications for gravitational waveform modeling. In
section 5, we conclude and outline directions for future work.

2 Dissipative mechanics of spinning compact objects

In this section, we consider how dissipative processes affect the motion of a spinning com-
pact object moving through a fixed background spacetime. We work in the limit R � R
where object’s radius is R and R is the typical length scale over which the background
metric varies (the curvature radius). In this limit, the object may be described by world-
line effective field theory [4, 5], with finite size effects encapsulated by local, curvature
dependent terms in a generalized point-particle Lagrangian.

1We restrict ourselves to leading order quadrupolar gravitational interactions in this paper.
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In order to account for dissipative effects while retaining a point particle description,
we employ the framework introduced in [4, 5] and further developed in [6–9]. In this ap-
proach, long wavelength dissipative effects due to the internal structure (finite size effects)
is attributed to the existence of gapless modes localized on the worldline which absorb
energy as well as linear and angular momentum from the external environment.

We begin with the worldline theory in the absence of dissipation. In addition to the
trajectory xµ(λ), we also introduce an orthonormal frame eaµ which is necessary to describe
spin dynamics [17], and obeys the constraints

ηabe
a
µe
b
ν = gµν(x), gµν(x)eµaeνb = ηab, (2.1)

where a, b = 0, 1, 2, 3 are local Lorentz indices. The rotation of the particle relative to fixed
inertial frames is then encoded in the angular velocity

Ωab = gµνeaµ
D

Dλ
ebν = −Ωba, (2.2)

with D
Dλe

a
µ = ẋρ∇ρeaµ = ėaµ − Γρσµẋσeaρ (the overdot correspond to differentiation with

respect to λ). Finally, it is convenient to define an einbein e(λ) in order to enforce repa-
rameterization invariance λ 7→ λ′(λ), e′(λ′)dλ′ = e(λ)dλ.

We begin by writing down the most general reparameterization invariant (RPI) action
to leading order in a derivative expansion in powers of R/R � 1,

Spp = −
∫
dxµpae

a
µ + 1

2

∫
dλ SabΩab + 1

2

∫
ds
(
pap

a −m2
)

+
∫
dsλaS

abpb + · · · , (2.3)

where ds = e(λ)dλ, with units of time/energy, is RPI. For our purposes here, this treatment
is more convenient than the Routhian approach employed in [11]. In this equation the
momentum pµ = −δSpp/δẋµ and spin Sab = ∂Spp/∂Ωab are conjugate variables to xµ and
eaµ. The quantity m2 is an arbitrary function of all possible scalars constructed out of
pa, Sab and gµν . The form of this function is not predicted by the point-particle EFT,
but rather must be fixed through a matching procedure to the UV theory of the extended
object. m2(p, S) determines the relation between the spin and angular velocity Ωab. It
also fixes the Regge trajectory [17] of the spinning particle, i.e. the relation between the
invariant mass p2 and the spin, which follows from variation of Spp with respect to e(λ).

The last term in eq. (2.3), involving the Lagrange multiplier λa enforces a ‘supplemen-
tary’ constraint on Sab that reduces the number of spin degrees of freedom down to the
three required by Poincare symmetry. We find it convenient to impose

Sabpb = 0, (2.4)

which is known as the covariant spin supplementary condition, other choices [26, 27] have
no effect on physical predictions. Likewise, λa itself is ambiguous since it can be shifted by
an amount proportional to pa without affecting the equations of motion. The variation of
Spp with respect to the kinematic variables (xµ, pa, eaµ, Sab, λa, e) leads to the Papapetrou-
Mathison-Dixon [28–30] equations of motion for pµ = eaµpa and Sµν = eaµe

b
νSab, with

pµp
µ = m2.
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To account for dissipation, we now include a set of internal worldline degrees of freedom,
which we generically label as X(λ) in what follows. The dynamics of the composite object
then follow from an action

S = −
∫
dxµeaµpa(X) + 1

2

∫
dλSab(X)Ωab +

∫
ds
(
pap

a + LX(X, e−1Ẋ)
)

+
∫
dsλaS

abpb + Sint. (2.5)

The internal dynamics is encoded in the Lagrangian LX whose detailed form will not be
needed in order to obtain our results. In the case of a composite object, the momentum
pa(X) and spin Sab(X) are interpreted as ‘composite operators’ (cf. a hydrogen atom or
relativistic string) which account for the possibility that excitations or de-excitations of the
internal modes X can contribute to changes in the linear and angular momenta measured
by asymptotic observers. Note that this implies that we are not treating p and S as
independent degrees of freedom and, as such, we will not vary them in the action. In the
non-dissipative case the resulting equations of motion would lead to a relation between
p/S and ẋ/Ω. Instead, we will determine the relation between the velocity dxµ/ds and the
momentum by imposing that the operator constraint Sabpb = 0 be a constant of the motion.

The term

Sint = −
∫
dsQEab(X, e)Eab(x, p)−

∫
dsQBab(X, e)Bab(x, p) + · · · . (2.6)

in eq. (2.5) describes the interaction of the internal modes with an external gravitational
field, to leading order in gradients of the spacetime metric. QEab and QBab are dynamical
moments, which are also composite operators built out of the variables X(λ), e(λ) in some
unspecified way, that couple to the electric and magnetic components of the of the Weyl
tensor, Wabcd, in the local Lorentz frame of the rotating particle,

Eab = Wacbd
pcpd

p2 , (2.7)

Bab = W̃acbd
pcpd

p2 = 1
2εacdW

cd
eb

pe√
p2 , (2.8)

where we have defined εabc = εdabcp
d/
√
p2 as the Levi-Civita tensor transverse to pa. Note

that we have not included any explicit couplings to the Ricci curvature, as such terms can
be removed by field redefinitions of the spacetime metric and therefore have no physical
content. For the same reason, only the traceless, transverse to pa, components of the
tensors QE,Bab couple to the external field.

In order to determine how the internal modes X affect the time evolution of the
kinematic variables, we employ the “in-in” (or Schwinger-Keldysh) closed time path [14, 15]
of quantum mechanics. This time asymmetric approach allows one to treat dissipative
systems within an action formalism. In the case of black holes, the quantum mechanical
nature of the underlying degrees of freedom is not important for the classical processes
described here. Nevertheless, as discussed in [9], a quantum formulation of the black hole
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EFT (including such effects as Hawking radiation [8]) can be used to efficiently describe
black hole dissipation even in the purely classical regime.

The Schwinger-Keldysh effective action (Γ) is defined through

exp
[
iΓ[∆, e; ∆̃, e]

]
=
∫
DXDX̃ exp

[
iS[∆, X, e]− iS[∆̃, X̃, ẽ],

]
. (2.9)

Here, the path integral is over two copies of the X degrees of freedom with fixed boundary
conditions at initial time. Integration over X, X̃ yields a functional Γ[∆, e; ∆̃, ẽ] whose
variation determines the classical motion of ∆ = (xµ, eaµ) and the einbein e:

δ

δ∆(λ)Γ[∆, e; ∆̃, ẽ]
∣∣∣∣
∆=∆̃;e=ẽ

= 0. (2.10)

Note that by construction, Γ[∆, e; ∆̃ = ∆, ẽ = e] = 0. Treating the interaction terms with
the background curvature in eq. (2.5) perturbatively, the variation of Γ[∆, e; ∆̃, ẽ] relates
the equations of motion for the orbital degrees of freedom to the correlation functions of
the operators QabE,B, which can be calculated by matching to a full theory description of
the internal structure of the compact objects.

Variation of the in-in action Γ with respect to the einbein e(λ) yields

〈papa −HX(X)−Hint〉 = 0. (2.11)

In this equation, 〈· · · 〉 denotes a quantum expectation value in the initial state of the
internal modes X(λ), and corresponds to the in-in path integral expression

〈O[X]〉 =
∫
DXDX̃eiS[χ,X,e]−iS[χ̃,X̃,ẽ]O[X] (2.12)

for any composite operator O. The internal Hamiltonian, in the absence of interactions, is

HX = − δ

δe

∫
dsLX(X, e−1Ẋ) = Ẋ

∂LX

∂Ẋ
− LX , (2.13)

while the tidal coupling gives

Hint = − δ

δe

∫
dλe

(
QEabE

ab +QBabB
ab
)
. (2.14)

In the absence of external curvature, Hint = 0 and eq. (2.11) has the interpretation
of a mass-shell constraint 〈HX(X)〉 = 〈papa〉 whose solution relates the invariant mass
M2 = 〈papa〉 to the initial state of the variables X. More generally, when Hint 6= 0,
eq. (2.11) determines in principle how M2 changes as a result of tidal interactions with the
external field.

The change in M2 due to tidal interactions can also be obtained from the equation of
motion for pµ = eµa〈pa(X)〉, which follows from the variation of the Schwinger-Keldysh
action with respect to xµ(λ). To perform this variation, it is convenient to work in Fermi
normal coordinates centered on the worldline, i.e. ∂σgµν(x(λ)) = 0, and then covariantize
to obtain a result valid in any coordinate system. This yields,

D

Ds
pµ = −1

2R
µ
λρσ

dxλ

ds
Sρσ + eaρe

b
σ

[
〈QEab〉∇µEρσ + 〈QBab〉∇µBρσ

]
, (2.15)
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where we have defined (by an abuse of notation), ∇µEρσ = pαpβ(∇µWρασβ)/p2, ∇µBρσ =
pαpβ(∇µW̃ρασβ)/p2. The first term2 on the r.h.s. corresponds to the usual Mathison-
Papapetrou-Dixon [28–30] force on a spinning point particle, where Sµν = εµae

ν
b〈Sab(X)〉

is the physical spin of the object as measured by asymptotic observers, while the remaining
terms give the finite size corrections, consistent with the general form found by Dixon [29].

The expectation values 〈QE,Bab 〉 in eq. (2.15) are defined through eq. (2.12) and are in
general functionals of the applied fields Eab, Bab as well as the orbital degrees of freedom.
For weak external fields, linear response theory implies that the in-in expectation values
〈QE,Bab 〉 are of the form3

〈QabE (s)〉 =
∫
ds′Gab,cdR,E (s− s′)Ecd(x(s′)) +O(E2), (2.16)

and similarly for 〈QBab〉, where the retarded Green’s function is

Gab,cdR;E,B(s− s′) = −iθ(s− s′)〈[QabE,B(s), QcdE,B(s′)]〉, (2.17)

with the expectation value calculated at zero external field, in the initial state of the
compact object.4 If the internal dynamics is fast compared to the time scale of the tidal
perturbation, the response can be regarded to be nearly instantaneous, ie. a sum of time
derivatives of delta functions, with coefficients that depend on the internal structure of the
compact object, of the form

〈QEab(s)〉 ≈ Λab,cd0 Ecd(x(s)) + Λab,cd1
d

ds
Ecd(x(s)) + · · · . (2.18)

The tensors Λab,cd0,1 , which can depend on pa = 〈pa(X)〉 and Sab = 〈Sab(X)〉, carry informa-
tion about the microscopic structure of the compact object. In particular, Λab,cd0 encodes
the static response (including possible Love numbers) while Λab,cd1 includes the effects of
dissipation. We will compute Λab,cd1 for the Kerr BH in section 3. Note that the derivative
of the curvature includes both the intrinsic time dependence of the background field as well
as that induced by the rotation of the compact object:

d

ds
Eab = e−1 d

dλ
Eab = ea

µeb
ν
(
dxρ

ds
∇ρ
)
Eµν − e−1Ωa

cEcb − e−1Ωb
cEac. (2.19)

To obtain the spin equation of motion, we vary the in-in effective action with respect to
the frame eaµ. This variation must be carried out in a way that preserves the constraints [17]
in eq. (2.1), i.e δeaµ = θabe

b
µ, with parameters θab = −θba and yields the evolution equation

for the spin Sµν = eµae
ν
b〈Sab(X)〉,

D

Ds
Sµν = dxν

ds
pµ − dxµ

ds
pν + 2eµaeνb

[
〈QEcd〉

δ

δθab
Ecd + 〈QBcd〉

δ

δθab
Bcd

]
, (2.20)

2Note that because of the constraints eq. (2.1) on eaµ, the variation of the action with respect to xµ

must be compensated by the variation δeaµ = 1
2g
ρσδgσµ, δgµν = δxρ∂ρgµν in order to generate the first

term in eq. (2.15).
3Parity invariance forbids a term in linear in Bab from appearing in 〈QEab〉 and similarly for 〈QBab〉.
4For a classical black hole, this state is labeled by mass, spin and electric plus magnetic charges.
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with variations
1
2〈Q

E
cd〉

δ

δθab
Ecd = 〈QEc[a〉E

c
b] − 〈QEcd〉

p[aεb]
ceBd

e√
p2 , (2.21)

1
2〈Q

B
cd〉

δ

δθab
Bcd = 〈QBc[a〉B

c
b] − 〈QBcd〉

p[aεb]
ceEde√
p2 , (2.22)

that can be deduced from the electric-magnetic (Bel) decomposition of the Weyl tensor [31],

W ab
cd = −4E[a

[cδ
b]
d] + 8

p2E
[a

[cp
b]pd] + 2√

p2 ε
ab
eB

e
[cpd] + 2√

p2 ε
cd
eB

e[apb]. (2.23)

This equation is in agreement with the Mathisson-Papapetrou-Dixon [28–30] torque as
expected.

To complete the system of equations of motion we need relations between the pairs
(pµ, Sµν) and (ẋµ,Ωµν), which in the absence of dissipation, are usually determined by
varying the action with respect to pµ, Sµν . However, in eq. (2.5), the momentum variables
are regarded as dependent on the internal modes X, so the necessary relations would follow
from the equations of motion for X. Because these equations depend on the (unknown)
Lagrangian LX(X, e−1Ẋ), it is not possible to obtain them in a model-independent way.
For the Kerr BH, we will sidestep this issue in the next section by performing an explicit
matching calculation that yields the relation between Sµν and Ωµν . On the other hand,
the relation between ẋµ and the momenta can be obtained without knowledge of the La-
grangian, by demanding that consistency of the constraint Sabpb = 0 with the equations of
motion eq. (2.20), (2.15). This yields

dxµ

ds
+ 1

2p2Rνλρσ
dxλ

ds
SµνSρσ− p

µ

p2 p·
dx

ds
= 1
p2 〈Q

E
ab〉
(

2
√
p2eµdε

dacBb
c+eaρebσSµν∇νEρσ

)
+ 1
p2 〈Q

B
ab〉
(

2
√
p2eµdε

dacEbc+eaρebσSµν∇νBρσ
)
,

(2.24)

which can be used to relate pµ to dxµ/ds. In particular, for an object at rest in the
absence of background fields, this equation simply states that pµ and dxµ/ds are colinear.
Therefore, in terms of the proper time τ along the worldline, the four-velocity obeys the
usual relation vµ = dxµ/dτ = pµ/M .

In the case of a point-like spinning particle without tidal interactions, the equations
of motion imply that p2 = M2 and S2 ≡ 1

2SµνS
µν are conserved along the worldline. The

main new feature of the composite object is that it incorporates the effects of dissipation,
for instance the accretion/loss of mass and spin due to interactions with the background
curvature. Including dissipative effects, we have instead (up to cubic and higher powers of
the background curvature)

d

ds
M2 = 2eaρebσ

[
〈QEab〉(p · ∇)Eρσ + 〈QBab〉(p · ∇)Bρσ

]
6= 0. (2.25)

Similarly, the tidal coupling in eq. (2.20) can generate non-trivial time dependence for S2:
d

ds
S2 = 4〈QEab〉EbcSac + 4〈QBab〉BbcSac 6= 0. (2.26)

– 7 –
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We will use these results in section 3.3, section 4 to obtain predictions for the rate of mass
and spin dissipation of black holes coupled to tidal backgrounds.

3 EFT matching for spinning black holes

In this section we apply the general framework described in the previous section to the
case of a Kerr black hole with mass M and spin S. For a BH probed by fields with
characteristic frequency ω, the EFT power counting consists of a double expansion in the
small parameters κ ≡ ~ω/MPl � 1 and GNMω � 1. The parameter κ controls quantum
gravity effects, which are negligibly small for the applications considered in this paper,
while GNMω � 1 is an expansion parameter for finite size effects. Our EFT can be
used to describe black holes with arbitrary values of the dimensionless rotation parameter
χ = S/(GNM2) in the full range χ2 ≤ 1, including the near extremal (maximally rotating)
case with χ ∼ O(1). Equivalently, our EFT is valid regardless of the size of the ratio ω/ΩH

(with ΩH the angular velocity of the horizon), and therefore extends previous work [10, 13]
on worldline EFTs for spinning BHs, allowing us to make predictions for non-conservative
effects in the regime ΩH � ω where these effects are enhanced relative to the non-spinning
case. We will only work to leading order in the power counting, although the formalism
allows for systematic corrections.

3.1 Wightman functions

Here we extract the two-point Wightman correlators of the composite operators QE,Bab , by
matching to the graviton absorption probability given in [18, 19]. The incoming graviton
is taken to be in a state with fixed angular momentum quantum numbers (`,m, h = ±2),
sharply localized about a frequency ω. Classically, the probability is simply the coefficient
for absorption of an incident wavepacket in the given partial wave.

To calculate this probability in the EFT, we work in the frame where the BH center
of mass is at rest. The probability is given by

p(1→ 0) =
∑
X

|A(1 +M → 0 +X)|2, (3.1)

where, to linear order in the interaction eq. (2.6), the relevant matrix element is

iA(1 +M → 0 +X) ≈ −i
∫
ds〈X|QabE (s)|M〉eia(s)ejb(s)〈0|Eij(x0(s), 0)|λ〉+ magnetic,

(3.2)
where the graviton state | λ〉 will we defined below.

Since the black hole is spinning, the change of frame eia(s) which carries co-rotating
to static observers is non-trivial. Taking the spin axis along to be along the x3-axis, and
denoting the angular velocity of rotation by Ω, we have that eµ=0

a = δ0
a, and for a = 1, 2, 3:

eia(s) =

 cos Ωx0 − sin Ωx0 0
sin Ωx0 cos Ωx0 0

0 0 1,

 (3.3)

– 8 –
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where for the black hole at rest at the origin, with momentum pµ = Mδµ0, eq. (2.24)
implies that

x0(s) = M?s (3.4)

where M? is an unknown constant that will drop out of the final result.
The state |λ〉 of the initial graviton is a linear superposition of helicity partial waves

|λ〉 =
∫ ∞

0

dk

2πψλ(k)|k, `,m, h〉, (3.5)

which are normalized as

〈k, `,m, h|k′, `′,m′, h′〉 = 2πδ(k − k′)δ``′δmm′δhh′ . (3.6)

Then 〈λ|λ〉 = 1 implies that the wavefunction is normalized according to∫ ∞
0

dk

2π |ψλ(k)|2 = 1. (3.7)

For graviton plane wave states, we have the matrix elements

〈0|Bij(x0, 0)|k, h = ±2〉 = ±i〈0|Eij(x0, 0)|k, h〉 = ±i
~k2

2mPl
εh;ij(k)e−i|~k|x0

, (3.8)

where the polarization tensors of definite helicity can be expressed in terms of the SO(3)
Wigner D-matrix that takes the z-axis to the direction (θ, φ) of the momentum vector ~k,

εh=±2,ij(k) =
2∑

m=−2
〈i, j|` = 2,m〉D`=2

m,h(θ, φ, 0) (3.9)

and 〈i, j|` = 2,m〉 is the change of basis matrix from Cartesian to spherical rank ` = 2
traceless symmetric tensors.5 Given the relation between plane waves |~k, h〉 and spherical
helicity eigenstates,

〈ω, `,m, h|~k, h′〉 = (2π)2

√
2`+ 1
2πω δ(ω − |~k|)δhh′D`

m,h(θ, φ, 0), (3.10)

we can write the relevant matrix elements as

〈0|Eij(x0, 0)|λ〉 =
∫

d3~k

(2π)32|~k|
2π
√

2`+ 1
2π|~k|

ψλ(|~k|)
[
D`
m,h(θ, φ, 0)

]∗
〈0|Eij(x0, 0)|k, h〉

=
√

2`+ 1
4mPl

ψλ(x0)
2∑

m′=−2
〈i, j|` = 2,m′〉

∫
dΩ
[
D`
m,h(θ, φ, 0)

]∗
D`=2
m′h(θ, φ, 0),

(3.11)

where we have introduced the time-domain wavefunction

ψλ(x0) =
∫ ∞

0

k5/2dk

(2π)5/2 e
−ikx0

ψλ(k). (3.12)

5The Cartesian states are normalized as 〈i, j|r, s〉 = 1
2

[
δirδjs + δisδjr − 2

3δijδrs
]
.
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Using the orthogonality relation for the SO(3) rotation matrices,∫
dΩ
[
D`
m,h(θ, φ, 0)

]∗
D`=2
m′h(θ, φ, 0) = 4π

2`+ 1δ`,2δmm
′ , (3.13)

we end up with
〈0|Eij(x0, 0)|λ〉 = π√

5mPl

δ`,2〈i, j|` = 2,m〉ψλ(x0), (3.14)

and 〈0|Bij(x0, 0)|λ〉 = ±i〈0|Eij(x0, 0)|λ〉 as the wavepacket matrix elements with helicity
h = ±2.

Since eia is a rotation matrix about the z-axis, it follow that

eiae
j
b〈i, j|` = 2,m〉 = 〈a, b|Û(R−1

z (Ωx0)|` = 2,m〉 = eimΩx0〈a, b|` = 2,m〉, (3.15)

where Û(R) is the unitary operator that represents the rotation R acting on the |`,m〉
states. Thus we find

p(1→ 0) = π2

5m2
Pl

∣∣∣∣∫ ds〈X|Qab(s)|M〉〈a, b|` = 2,m〉ψλ(x0)eimΩx0
∣∣∣∣2 (3.16)

for the absorption probability in the EFT.
Squaring the matrix elements in eq. (3.16) and inserting a complete set of states,∑

X

|X〉〈X| = 1, (3.17)

relates p(1→ 0) to the Wightman correlator 〈Qab(s)Qcd(s′)〉 evaluated in the initial state
|M,S〉 of the BH.

We would now like to write this correlator in terms of a set of form factors which are
arbitrary functions of χ. Notice that χ scales with inverse powers of 1/GN and thus must
be matched non-perturbatively. The form factors are enumerated by the possible tensor
structures which can now depend upon the direction of the spin, the magnitude of which
is absorbed into the form factors. It is useful to expand this correlator into a basis of
tensors that are invariant under rotations about the spin axis. Viewing the correlator as
a linear map on the 5D space of traceless symmetric rank-` = 2 tensors (transverse to the
BH momentum pa), a basis of tensors consists of the various powers of the generator J3
of rotations. Because we are in the ` = 2 representation of SO(3), only the powers Jk3 for
k = 0, . . . , 4 are independent. For instance, J5

3 = 5J3
3 − 4J3 and so on. Thus, our tensor

basis consists of the identity tensor on the ` = 2 space.

〈a, b|c, d〉 = 1
2

[
〈a|c〉〈b|d〉+ 〈a|d〉〈b|c〉 − 2

3〈a|b〉〈c|d〉
]
, (3.18)

with 〈a|b〉 = δab−papb/p2 the ` = 1 identity matrix, together with the independent powers
of the angular momentum J3 in the ` = 2 representation. In particular, the rotation
generator in the Cartesian basis is

〈a, b|J3|c, d〉 = 1
2 [〈a|c〉〈b|J3|d〉+ 〈a|d〉〈b|J3|c〉+ 〈b|c〉〈a|J3|d〉+ 〈b|d〉〈a|J3|c〉] (3.19)
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where in turn the angular momentum generator in the ` = 1 space is 〈a|J3|b〉 = iscεc
a
b =

i
M p

csdεcd
a
b (we denote the spin direction by the unit spacelike vector sa = δa3). The tensor

〈a|J3|b〉 has eigenvaluesm = ±1, 0 corresponding to the eigenvectors va± = ∓ 1√
2 (δa1 ± iδa2)

and va0 = sa so it is normalized according to the usual conventions used in quantum
mechanics. Higher powers, of the form 〈a, b|Jk3 |c, d〉. can be obtained from eq. (3.19) by
successive tensor contraction, e.g.

〈a, b|J2
3 |c, d〉 =

∑
e,f

〈a, b|J3|e, f〉〈e, f |J3|c, d〉, (3.20)

etc. We have defined these invariant tensors such that 〈a, b|J3|c, d〉 is pure imaginary and
Hermitian, and therefore our tensor basis satisfies the relation

〈a, b|J j3 |c, d〉 = (−1)j〈c, d|J j3 |a, b〉. (3.21)

In this basis, the correlator then takes the form

〈QabE (s)QcdE (s′)〉 = M2
?

4∑
j=0

A+
E,j(s− s

′)〈a, b|J j3 |c, d〉, (3.22)

where the functions A+
E,j(s − s′) can depend on the magnitude of the particle spin as

well as its mass. We will adopt an identical decomposition for the magnetic correlator
〈QabB (s)QcdB (s′)〉.

In the point particle limit where our EFT is valid, the form factors A+
k (s − s′) are

analytic in ω, i.e. can be represented as series of derivatives acting on the delta function
δ(s− s′) given the lack of long time tails. Note that Hermiticity of the operators QabE/B(s)
implies that the frequency space Wightman function

W ab,cd
E/B (ω) = M∗

∫
dseiωM∗s〈QabE/B(s)QcdE/B(0)〉 (3.23)

obeys the reality condition
[W ab,cd

E/B (ω)]∗ = W cd,ab
E/B (ω) (3.24)

on the real ω-axis. Given the properties of our tensor basis, this implies that the frequency-
dependent form factors A+

k (ω) = M∗
∫
dseiωM∗sA+

k (s) obey [A+
k (ω)]∗ = [A+

k (ω)] on the
real axis.

Inserting the form eq. (3.22) into p(1→ 0), and using the fact that J3|`,m〉 = m|`,m〉,
we obtain that

p(1→ 0) = 4
5GNω

5
4∑
j=0

mj
(
A+
E,j(ω −mΩ) +A+

B,j(ω −mΩ)
)
. (3.25)

The dependence on the shifted frequency ω−mΩ reflects the transformation from the static
frame to the rotating frame of the BH where the correlators are defined. We can read off
A+
k (ω) by comparing powers of m in the result given in [18, 19]

p(1→ 0)≈ 16
225πAH(GNM)4ω5

[
1+(m2−1)χ2

][
1+ 1

4(m2−4)χ2
]
θ(ω−mΩH)(ω−mΩH) ,

(3.26)
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with AH = 4π(r2
++a2) = 8π(GNM)2

[
1+
√

1−χ2
]
the area of the horizon, χ = a/GNM =

J/GNM
2 the dimensionless rotation parameter of the Kerr black hole, and ΩH = 4πa/AH

the angular velocity of the horizon. This result is valid to all orders in the rotation param-
eter χ, but holds to leading order in GNMω � 1. The factor of ω−mΩH , ensures that his
result is valid in both the slow and rapidly rotating cases. We have inserted a step function
into eq. (3.26) to enforce the condition ω−mΩH > 0 so that the single particle absorption
probability is positive. Naively, this seems to imply that we can not trust our results in
the super-radiant regime ω � ΩH . However we can match in this regime for mΩH < 0,
which can then be continued for all m.

Comparison of p(1 → 0) with eq. (3.25) suggests that we should identify the angular
velocity in the EFT with the horizon angular velocity,

Ω = ΩH = 4πa
AH

, (3.27)

which, together with eq. (3.4) fixes the relation between the angular velocity Ωab and spin
Sab for a Kerr black hole,

e−1Ωab = gµνe
a
µ

D

Ds
eνb = 4π

AH

M∗
M

Sab. (3.28)

The non-vanishing frequency space response functions are then

A+
0,E(ω) = A+

0,B(ω) = 2AH
45πGN

(GNM)4(1− χ2)2θ(ω)ω, (3.29)

A+
2,E(ω) = A+

2,B(ω) = AH
18πGN

(GNM)4χ2(1− χ2)θ(ω)ω, (3.30)

A+
4,E(ω) = A+

4,B(ω) = AH
90πGN

(GNM)4χ4θ(ω)ω. (3.31)

In obtaining this result, we have used the equality of the electric and magnetic responses
that arises as a consequence of the Teukolsky equation [10]. We will check this below by
comparing to known results obtained via different methods.

The step function θ(ω) reflects that matching was performed under the assumption the
graviton is quantized around the Boulware vacuum [32], corresponding to no (Hawking)
particle emission for ω −mΩH > 0. By contrast, matching in the Unruh state [33], where
the BH can emit Hawking radiation, would lead to Wightman response functions A+(ω)
that are non-vanishing even at ω < 0. See [7] for a more detailed discussion of matching
in the Unruh state. It is straightforward to check that in the Boulware state, the single
particle emission probability p(0→ 1) is given in the EFT by a formula like eq. (3.25) that
involves the Wightman correlators A+(mΩ − ω), leading to the prediction of a non-zero
emission probability for the superradiant modes with ω −mΩH < 0.

p(0→ 1)≈ 16
225πAH(GNM)4ω5

[
1+(m2−1)χ2

][
1+ 1

4(m2−4)χ2
]
θ(mΩH−ω)(mΩH−ω) ,

(3.32)
see [12] for more a detailed discussion of the worldline EFT in the regime of superradiant
emission.
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ω ↔ −ω ab↔ cd

Re
[
W ab,cd(ω)−W cd,ab(−ω)

]
odd even

Im
[
W ab,cd(ω)−W cd,ab(−ω)

]
even odd

Table 1. Behavior of real and imaginary parts under the substitution ω → −ω or index exchange
ab ↔ cd. Even/odd means that the function changes/does not change sign under the given trans-
formation.

3.2 The causal response function

In the classical processes that we consider in this paper, the relevant correlator is the
retarded Green’s function

Gab,cdR (s− s′) = −iθ(s− s′)〈
[
Qab(s), Qcd(s′)

]
〉 (3.33)

rather than the Wightman functions obtained in the previous section. Because this is a real
quantity, the frequency space causal response Gab,cdR (ω) = M∗

∫
dseiωM∗sGab,cdR (s) satisfies

the reality condition [
Gab,cdR (−ω)

]∗
= Gab,cdR (ω), (3.34)

for real frequencies. Thus ReGab,cdR (ω) is an even function on the real ω-axis while
ImGab,cdR (ω) is an odd function. The retarded Green’s function is related to the two-point
Wightman correlators by a dispersion relation of the form

Gab,cdR (ω) = M∗

∫
dseiωM∗sGab,cdR (s) =

∫ ∞
−∞

dω′

2π
W ab,cd(ω′)−W cd,ab(−ω′)

ω − ω′ + iε
, (3.35)

which, as a consequence, defines a function that is analytic for Imω ≥ 0 but singular on
the lower-half complex-ω plane. Expanding out the dispersion relation in eq. (3.35) into
its real and imaginary parts, we find that in terms of the Wightman functions

ReGab,cdR (ω) = 1
2 Im

[
W ab,cd(ω)−W cd,ab(−ω)

]
+ Pr

∫ ∞
0

ω′dω′

π

Re
[
W ab,cd(ω′)−W cd,ab(−ω′)

]
ω2 − ω′2

, (3.36)

and

ImGab,cdR (ω) = −1
2Re

[
W ab,cd(ω)−W cd,ab(−ω)

]
+ ω · Pr

∫ ∞
0

dω′

π

Im
[
W ab,cd(ω′)−W cd,ab(−ω′)

]
ω2 − ω′2

. (3.37)

This result follows from eq. (3.24), which implies the exchange properties under the trans-
formations ω → −ω or ab↔ cd listed in table 1.

Note that in addition to the contribution of the worldline multipole operators, the
physical response (as determined, for example, through measurements of the gravitational
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field at large distances) can also receive contributions from terms in the worldline action
that are polynomial in Eab, Bab and/or their derivatives with respect to the parameter s.
We will henceforth refer to these terms as “local”, to make the distinction from terms in
the action involving the internal degrees of freedom X.

Focusing on purely electric couplings, such local terms modify the low-frequency re-
sponse by an analytic function Lab,cd(ω) whose real part is even under ω ↔ −ω or index
interchange ab ↔ cd. Then using (3.21) we see that the local contribution to the real
response can only involve the tensor structures 〈a, b|J j3 |c, d〉 with j = 0, 2, 4. In particular,
the static Love numbers of the black hole, which are identified with the local response at
ω = 0 (both from Lab,cd(ω) and from eq. (3.35)) cannot involve tensor structure that are
linear or cubic in the spin. Alternatively, time reversal invariance implies that terms odd
in spin vanish in the static limit.

The contribution from terms in the action also modifies the imaginary part by terms
that are odd under either ω → −ω or ab↔ cd exchange.6 Despite possibly having a non-
vanishing imaginary part, the local response Lab,cd(ω) does not contribute to dissipation,
as will be discussed below, and thus can not be matched using p(1→ 0) but instead must
be fixed by matching to other observables in the full theory, for instance elastic scattering
of low-frequency gravitons off the black hole.

Because our matching procedure only fixes the Wightman function at low frequency,
it does not completely determine the form of the retarded response function. In partic-
ular, matching to low-frequency absorption cannot yield information about the terms in
eq. (3.36) and eq. (3.37) that involve principal part integrals over high arbitrarily high
frequency scales, where the EFT description necessarily breaks down. However, from
eq. (3.36) and table 1, we see that the principal part integral contribution to ReGab,cdR (ω)
is analytic at ω = 0 (assuming the integral in eq. (3.36) converges), and even under either
ω ↔ −ω or ab ↔ cd exchange. Similarly ImGab,cdR (ω) is odd if we replace ω ↔ −ω or
ab ↔ cd. Consequently, the principal part contribution to Gab,cdR (ω) is physically indis-
tinguishable (i.e. of the same form), from the local response Lab,cd(ω) arising from adding
local counterterms to the point particle action.

On the other hand, the calculable part of eqs. (3.36), eqs. (3.37) gives rise to a genuinely
non-local contribution to the retarded Green’s function, of the form

Gab,cdR,non-local(ω) = − i2
[
W ab,cd(ω)−W cd,ab(−ω)

]
. (3.38)

This object does not have the correct ab ↔ cd index exchange properties to arise from
curvature couplings in the point particle action, and cannot be absorbed into a local coun-
terterm. It is in particular this function Gab,cdR,non-local(ω) that gives rise to dissipative effects
in the EFT description of the black hole.

Ignoring the local contribution to the causal response, we obtain from eqs. (3.29)–(3.31)
the result

GabR,Ecd(ω) = M2AH
45πGN

(GNM)4 (−iω) · 〈a, b|(1−χ2)2 + 5
4χ

2(1−χ2)J2
3 + 1

4χ
4J4

3 |c, d〉, (3.39)

6An example of such term is eq. (3.44) below.

– 14 –



J
H
E
P
0
6
(
2
0
2
1
)
0
5
3

with an identical expression for the magnetic Green’s function GabR,Bcd(ω). This result is
equivalent to the statement that, up to local terms, the quadrupole moment induced7 by
an external electric field is

〈QabE (s)〉 =
∫
ds′GabR,Ecd(s− s′)Ecd(s′) (3.40)

= AH
45πGN

(GNM)4〈a, b|(1− χ2)2 + 5
4χ

2(1− χ2)J2
3 + 1

4χ
4J4

3 |c, d〉
d

ds
Ecd(x(s)),

where the derivative here is in the co-rotating frame, see eq. (2.19). An identical formula
relates the induced magnetic moment 〈QabE (s)〉 to the co-rotating components of magnetic
curvature Bab(x(s)) along the point particle worldline.

Taking the limit where the rotation of the black hole is larger than the intrinsic time
dependence of the curvature, we may approximate

d

ds
Eab ≈ −Ωa

cEcb − Ωb
cEac = iM∗ΩH〈a, b|J3|c, d〉Ecd, (3.41)

in which case the induced moment is of the form

M−1
∗ 〈QabE (s)〉 ≈ 4i(GNM)5

45GN
χ〈a, b|(1− 2χ2)J3 + 5

4χ
2J3

3 |c, d〉Ecd. (3.42)

Despite appearances, eq. (3.42) does not imply the existence of a non-vanishing static Love
tensor for the Kerr black hole, since this relation cannot arise from local terms in the point
particle action. In particular, a term such as

∫
χdsEab〈a, b|J j3 |c, d〉Ecd for j = 1, 3 vanishes

identically due to the antisymmetry under ab ↔ cd of the tensor structures. We have
verified, however, that eq. (3.42) is consistent, for χ � 1, with the results of [35] which
obtained the quadrupolar response of a slowly spinning Kerr BH, at linear order in χ.

On the other hand, it is in principle possible that Kerr black holes have non-zero
static Love numbers, but by symmetry those would have to correspond to local worldline
counterterms which in our basis take the form

Spp ⊃ G4
NM

6
∫
dsfj(χ2)χjEab〈a, b|J j3 |c, d〉Ecd, (3.43)

with j = 0, 2, 4, as well as their magnetic counterparts. Here, we have defined χ =√
−SµSµ
GNp2 ≤ 1, and f0,2,4(χ2) are functions analytic at χ2 = 0. The overall scaling G4

NM
6

is the characteristic magnitude of the static tidal response of a compact object. It is well
known that the spin-independent term in eq. (3.43) has vanishing Wilson coefficient, i.e
f0(χ2 = 0) = 0, [36–38]. Recently, ref. [20] has extended this calculation to arbitrary orders
in spin (previous partial results can be found in [39]) and found, remarkably, that the all
local contributions to the static response function of the Kerr BH are in fact vanishing
as well.

7Because of spin, the Kerr black hole has an infinite series of permanent multipole moments [34], which
in the point particle limit are equivalent to local spin-dependent worldline interactions that linearly in the
curvature tensor. Here, by induced moment, we mean the shift in the value of the permanent moments that
are generated when a background field Rµνρσ 6= 0 is turned on.
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In addition to the local contributions to the static response, there are also terms in the
point particle action which modify Gab,cdR (ω) away from ω = 0. The leading such terms at
low frequency are of the form

Spp ⊃ G5
NM

6
∫
dsχjEab〈a, b|[iJ3]j |c, d〉Ėcd, (3.44)

with j = 1, 3. These local interactions not forbidden by symmetries (it is even under both
parity and time reversal), and yield contributions to 〈QabE 〉 of comparable magnitude to
those in eq. (3.40). However, unlike the terms in eq. (3.40), the curvature couplings in
eq. (3.44) cannot give rise to dissipative effects, despite the fact that they contribute to
ImGab,cdR,E (ω). The recent analysis of ref. [20] indicates that, for the Kerr BH, terms such as
those in eq. (3.44) are also vanishing. Assuming the validity of the results in [20], it then
follows that eq. (3.39) completely characterizes the black hole response function at linear
order in time derivatives but to all orders in spin.

3.3 Dissipative dynamics of a black hole in a tidal environment

Assuming that all the local contributions to BH response are indeed zero [20], the complete
equations of motion for a spinning black hole moving in a background gravitational field
with curvature scaleR � GNM can be obtained straightforwardly by inserting the induced
moments 〈QE,B〉 from eq. (3.40) and its magnetic analog into eqs. (2.15), (2.20). Because
the resulting expressions are messy and not particularly illuminating, we will report instead
on the implications of these equations for the rate of change of mass and spin that arise as
a consequence of tidal interactions, given in eqs. (2.25), (2.26). We consider separately the
cases of a rapidly spinning BH, R−1 � ΩH and χ ∼ O(1), as well as the opposite slow-spin
limit R−1 � ΩH , which necessarily requires that |χ| � 1,

Using the relation in eq. (3.4) between our parameter s and the proper time τ along
the wordlline of the rotating BH, we find, in the large spin case

d

dτ
M ≈ 8(GNM)5

45GN
χεµνλs

λ
[
(1 + 3χ2)EµρĖρν + 15

4 χ
2Eµρs

ρĖνσs
σ
]

+ magnetic

+O(GNM/R). (3.45)

This result, which is valid to all orders in spin, agrees with result found in refs. [22, 24, 25].
To linear order in χ it also agrees with results obtained in [10]. In the opposite, χ → 0
limit, we find instead

d

dτ
M ≈ 16

45GN
(GNM)6

[
ĖρσĖ

ρσ + ḂρσḂ
ρσ
]

+O(χ) (3.46)

which receives corrections at linear order in χ� 1 from radiative tail contributions to the
EFT matching and to the Schwinger-Keldysh action. This is also in agreement with [21–23].

For the torque induced on the black hole by the tidal background, we find from
eq. (2.20), (3.40)
d

dτ
S≈− 2

45GN
(GNM)5χ

[
8(1+3χ2)EρσEρσ+3(4+17χ2)EλρEλσsρsσ+15χ2(Eρσsρsσ)2

]
+magnetic, (3.47)
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in the limit ΩH � R−1. In the opposite, χ → 0, eq. (3.40) is dominated by the time
variation of Eµν and the torque is instead

d

dτ
S ≈ − 8

45GN
(GNM)6εµνλs

λ
[
EµρĖ

ρ
ν +BµρḂ

ρ
ν

]
(3.48)

Both eqs. (3.47), (3.48) are in agreement with results obtained previously in [21–23]. To
go to next order in GNM/R � 1 would require the inclusion in both the EFT matching
and Schwinger-Keldysh action of infrared divergent tail terms corresponding to graviton
scattering off the BHs own gravitational field. Ref. [25] has reported a result for these next-
to leading order corrections, although a discrepancy with their earlier results [24] obtained
in a probe limit remains unsettled in the literature.

As another check of our results, note that from eqs. (2.15), (2.20), we also find that in
terms of the curvatures Eab, Bab in the rotating frame

d

dτ
M − ΩH

d

dτ
S = 〈QEab〉

D

Dτ
Eab + 〈QBab〉

D

Dτ
Bab, (3.49)

or by eq. (3.40),

d

dτ
M−ΩH

d

dτ
S= AH(GNM)4

45πGN
d

dτ
Eab〈a,b|(1−χ2)2+ 5

4χ
2(1−χ2)J2

3 + 1
4χ

4J4
3 |c,d〉

d

dτ
Ecd

+magnetic. (3.50)

Because the even powers of the tensor 〈a, b|J3|c, d〉 are positive definite, this quantity is
manifestly positive in the physical region χ2 ≤ 1. Therefore the change in the BH area as
a result of tidal interactions is also positive

d

dτ
AH = 2AH

M
√

1− χ2

[
Ṁ − ΩH Ṡ

]
≥ 0, (3.51)

as required on general grounds [40].

4 Post-Newtonian equations of motion for binary dynamics

The same worldline effective action formalism can also be applied to dissipation in dy-
namically generated spacetimes, i.e sourced by the particles themselves, rather than the
fixed background field case discussed above. In order to do so, we have to include in
the Schwinger-Keldysh functional an integral over the fluctuations of the gravitational
field itself.8

As an example we will consider a binary system of black holes in the non-relativistic
regime, with v2 ∼ GNMr/r � 1. For illustration, we will focus on the regime of rapidly
spinning black holes, with ΩH � v/r. The rotation parameters will be assumed to scale
as χ ∼ O(1). Integrating out the potential graviton exchange between the black holes,
figure 1(b), the two-particle interaction term reduces to [8]

Sint ≈ −GNm1m2

∫
dt

[
QabE,1(t)
m2

1
e1
i
ae1

j
b + (1↔ 2)

]
∂i∂j

1
|~x(t)| , (4.1)

8The role of the in-in formalism to describe radiation reaction forces was first discussed in [41].
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Figure 1. Potential exchange diagrams that contribute to the two-particle action Sint. In (a)
the particles interact through the minimal gravitational interaction. Figure (b) is the term in Sint
generated by the quadrupole couplings of particle 1 (a similar diagram with 1↔ 2 has been omitted).

with ~x = ~x1−~x2, up to terms suppressed by more power of the velocities. Varying the in-in
action, we obtain, in the linear response limit, an instantaneous non-conservative force on
the black holes that is given by,

~F1(t) = δ

δ~x1(t) Γ[~x, ~̃x; e1,2, ẽ1,2]
∣∣∣
~x=~̃x;e1,2=ẽ1,2

≈ −GNm1m2

[
〈QabE,1(t)〉

m2
1

e1
a
je1

b
k + (1↔ 2)

]
∇∂j∂k

1
|~x(t)| = −~F2(t), (4.2)

with ~x = ~x1 − ~x2. Similarly, the torque on each black hole can be obtained from the
Schwinger-Keldysh action by varying with respect to the frame eai,

d

dt
~Si1 = ei1aε

abc δ

δθ1bc
Γ[~x, ~̃x; e1,2, ẽ1,2]

∣∣∣
~x=~̃x;e1,2=ẽ1,2

≈ 2GNm2
m1

ei1ae
j
1be

k
1cε

abd〈QE,1cd〉∂j∂k|~x|−1. (4.3)

On the right hand side of this and the previous equation, the in-in expectation values in
the PN limit can be obtained from eq. (3.40), by inserting

Eab = GNm2e1
i
ae1

i
b∂i∂j |~x(t)|−1 (4.4)

into 〈QabE,1〉, and similarly for the case of 〈QabE,2〉. This yields the result

~F1(t) = −~F2(t) = −8
5
G5
Nm

3
1m

2
2

|~x|7

[
1 + 3χ2

1 −
15
4 χ

2
1

(
~s1 ·

~x

|~x|

)2] ~x

|~x|
× ~S1 + (1↔ 2) (4.5)

for the non-conservative force. The torque on each particle is

d

dt
~S1 = −8

5
G5
Nm

3
1m

2
2

|~x|6

[
1 + 3χ2

1 −
15
4 χ

2
1

(
~s1 ·

~x

|~x|

)2] [
~S1 −

~S1 · ~x
~x2 ~x

]
. (4.6)

In eq. (4.5), “1↔ 2” has the meaning that we exchange the particle labels without changing
the sign of ~x. The PN equations of motion to linear order in the spin for an arbitrary
composite object were first calculated in [13]. Our results at χ � 1 agree with those of
ref. [13] if one uses eq. (3.29) with χ = 0 to fix their dissipation parameter. The friction
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force ~F1,2 is a 5PN effect, while our result for the torque is 4PN relative to the leading
order gravito-magnetic spin precession formula predicted by linearized GR.

As a simple consequence of eq. (4.5), consider the mechanical power that is absorbed
or extracted by the BH horizons

d

dt
E =

∑
a

~va · ~Fa ≈
8
5
G5
Nm

2
1m2

|~x|8
(m1 +m2)

[
1 + 3χ2

1 −
15
4 χ

2
1

(
~s1 ·

~x

|~x|

)2]
~S1 · ~L+ (1↔ 2),

(4.7)
where ~L is the orbital angular momentum about the center of mass. This result agrees
to quadratic order in spin with [10, 13]. It also generalizes the results in [22, 23] to allow
for any orientation between the spin and orbital angular momentum. Depending on the
relative orientations between the spins and the orbit, the rate of change of energy can be
positive or negative, reflecting the possibility of energy extraction from the black holes
through the Penrose process. For example, if the spins are orthogonal to the orbital plane,
dE/dt can be either positive or negative depending on whether the spins are aligned or
anti-aligned with ~L. Regardless, eq. (4.7) enters at order v5, or 2.5PN relative to leading
order quadrupole radiation from the binary and, as is well known [3, 23], is enhanced
relative to absorption in the case of non-rotating black holes by a factor of v−3. A final
check of these results is that the orbital angular momentum as predicted by eq. (4.5) is
given by

d

dt
~L =

∑
a

~xa × ~Fa ≈ −
d

dt
(~S1 + ~S2), (4.8)

with d~S1,2/dt given by eq. (4.6). It therefore follows that the total angular momentum ~J =
~L+ ~S1 + ~S2 is conserved, as should be expected given that the tidal dynamics we consider
here does not involve any gravitational radiation out to infinity at leading PN order.

5 Conclusions

In this work we have calculated the leading order non-conservative finite size effects in
Kerr black hole dynamics within the worldline EFT formalism. In contrast to earlier
approaches [10, 13], the EFT is valid for arbitrary rotation parameter χ within the physical
region χ2 ≤ 1. Using our framework, we have obtained results for angular momentum and
energy loss in a background field which agree, upon time averaging, with those previously
obtained in refs. [22–25].

We have also presented results for the 5PN equations of motion of near extremal black
holes, as well as the 2.5PN correction to the power transferred between horizon and orbital
degrees of freedom. Due to the large size of this latter effect, the next to leading order PN
non-conservative effects are phenomenologically relevant as well. Part of the motivation for
the present work has been to set up a systematic method which, combined with [4], can be
used to calculate such corrections. One potential application is to resolve the discrepancy
between results obtained in [3] and the test particle limit of formulas obtained in [25] for
general mass ratios. Part of the discrepancy between the two results lies in certain terms
proportional to π2 which, in the worldline EFT, arise from infrared enhanced tail-type
corrections. We hope to address these effects in future work.
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Note added. Some of these results were first reported in the talk [42]. While this paper
was in preparation, ref. [43] appeared which has partial overlap with work reported here
and in [42]. In particular eq. (3.40) appears as the Love tensor given in eq. (8.10) of [43].
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