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Background

Currently, IPPG technique has been developed for measurements of physiologi-

cal parameters, such as HR, RR, etc., which uses an imaging devices to capture video 

of body surface that contains physiological information, and restructures the informa-

tion by specific algorithms [1–5]. It has many advantages in physiological parameters 

assessments, such as low-cost, non-contact, safe, continuous measurement, etc. Hence, 
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IPPG techniques, especially the ones based on ordinary camera and ambient light, have 

become a research focus in biomedical engineering field [1–18].

Previously, Takano and Ohta initially presented the feasibility of HR assessment based 

on IPPG system that used ambient light as the illumination [6]. Also, using ambient 

light, Verkruysse et al. introduced a spatial ROI averaging on R/G/B channels approach, 

which significantly improved the signal-to-noise ratio (SNR) in IPPG signals [7]. Moreo-

ver, they also brought insight into the relative strengths of IPPG signals in different chan-

nels, revealed that the G channel carried the stronger BVP signals [7]. Since then, several 

teams have attended to cardiac pulse researches related to G channel [8–11]. Although 

G channel suits for HR estimations, the motion artifacts inescapable in IPPG might 

make the accuracy vulnerable and limit its capabilities in real-world measurements envi-

ronments [12]. Based upon previous research results, Poh et al. proposed a novel IPPG 

method based upon Independent Component Analysis (ICA). Using joint approximate 

diagonalization of eigenmatrices (JADE) algorithm, they separated out the BVP source 

signal and motion artifacts from the R/G/B channels [13, 14]. As a potential tool, ICA/

BSS has the advantages to improve the estimation accuracy of BVP signal along with 

motion artifact attenuation. �erefore, the approach proposed by Poh et al. has aroused 

much interests [15–19].

Currently, there have been many IPPG techniques based on ambient  light on the 

theme of how to extract physiological parameters, such as HR, RR, HRV, SpO2, etc. [1–

18]. However, it is accepted that only HR measurement has been mature for applications, 

other estimations are relatively incapable for reliable applications. For instance, there are 

several researches have made short mentions of RR estimation: mainly estimation from 

spectral peak of the signals generated from video frames based on relevant ROI [3, 6, 7, 

20, 21] or estimation from HRV using a well-known indirect method [13, 22], while the 

sensitiveness to motion artifacts in these estimations has not been carefully addressed 

[23]. �us, it is worth keeping on further exploration in RR measurement, as well as 

other vital signs. In addition, there are still some issues commonly involved in existed 

approaches need to be optimized and explored further for more reliable and practical 

measurement in IPPG techniques. Brief analyses are as follows:

a. Motion artifacts attenuation

It is known that motion artifacts are difficult to avoid in IPPG systems [23]. Take, for 

example, the IPPG techniques based on facial videos that are most highly concerned. 

Apart from involuntary global motions such as head swing and deflection, natural 

motions in local facial regions or even other more complex artifacts should be included 

in motion artifacts. Commonly, to attenuate motion artifacts, a series of video track-

ing and detection algorithms are utilized to locate the face in consecutive frames with 

a rectangular bounding-box, such as the Viola-Jones (VJ) face detector [13]. By sim-

ply employing these video tools, one can only compensate for the global motion of the 

whole face, without capability to cover more. Among different local regions on face, 

there are significant differences on SNR. For instance, the regions of cheek and fore-

head are golden for assessments, while the regions of eyes, nose, mouse are ill-suited, 

which invariably arise local motion artifacts like blinking, wrinkling nose, yawn, as well 

as muscular movements caused by smiling, talking, or breathing. �is issue is always 
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intractable for studies in IPPG, and has been mentioned and explored by several 

researches. Wang et  al., pointed out limitation of VJ detector, introduced a “tracking-

by-detection” with kernels method which is superior than other tracking algorithms 

and a skin/nonskin pixel classification method for achieving high SNR pulse signals [24, 

25]. Feng et al. selected two golden ROIs on the region of cheek that has a higher SNR 

for assessment instead of the whole face, utilizing a speeded-up robust features (SURF) 

detector [26]. Emrah Tasli mentioned shortages in traditional tracking algorithms, and 

proposed a facial landmark localization method to track golden ROIs for obtaining 

robust signals [27]. Mayank Kumar also mentioned the similar issue, and introduced a 

new method for generating high SNR PPG signals from the tracked golden ROIs struc-

tured by a weighted average approach [28]. Generally, these researches mainly focused 

on obtaining high SNR signals by tracking selected golden ROIs using different sophisti-

cated facial video tracking and detection algorithms. Attributed to the complicated facial 

physiological structure and the complex interaction of light with facial tissues, or even 

weak ambient light changes, the motion artifacts and other complex noises could hardly 

be attenuated thoroughly by only employing video approaches for local golden ROIs. 

Moreover, the computational complexities of the video algorithms should also be taken 

into account for applications of IPPG on different platforms. Considering the capabilities 

of the ICA/BSS approaches in separation of BVP source signal and motion artifacts, it 

would be a quite appropriate solution for motion artifacts attenuation in IPPG. Further-

more, some motion artifacts could be deemed as vital signs, such as respiratory motion 

artifact which contains stable breathing rhythm, it might provide new insights into phys-

iological parameters assessments.

b. The issues unresolved in ICA/BSS-based IPPG techniques

Most of the existing studies on ICA/BSS-based IPPG techniques are similar to the 

researches from the method proposed by Poh et al. [13, 14], with seldom further explo-

ration. (1) Limitation of ICA/BSS based on single ROI According to the theory of ICA/

BSS, insufficient observations would influence the effect of separation. Based upon sin-

gle ROI (3-channels R/G/B signals), the method proposed by Poh et  al. is only fit for 

single target extraction (BVP signal) with limited motion artifacts attenuation [14], 

thus it needs to increase the number of R/G/B channels for improvement of separation. 

Estepp et al. introduced a novel BSS-based method, which employed nine synchronized 

cameras to capture multiple imager channels, and separated out satisfactory BVP signal 

with motion artifacts mitigation [29, 30]. (2) Selection of BSS algorithm Commonly, the 

JADE or FastICA, are utilized for extracting BVP signals [14, 17–19]. Among different 

ICA/BSS algorithms, there invariably existed significant differences in computational 

complexities, as well as performances of separation, which are both crucial for applica-

tions of IPPG techniques. �us it deserves to select an appropriate algorithm that could 

maintain the balance between these two points [23]. (3) Permutation problem of ICA/

BSS �ere is an inherent permutation problem in ICA/BSS, i.e., the outputs of separa-

tion are in random order, which would bring trouble for identifying the target. Poh et al. 

selected BVP signal only depending on experience alone (selected the second one) [14] 

and the highest spectra peaks of ICs [13]. Many other studies also employed the similar 

means [31–33]. In general ICA-based IPPG, for single BVP signal identification from 
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3-channels outputs, these means could cover it basically. However, when selecting mul-

tiple targets from more outputs, this problem would become more complex, and should 

be highlighted.

In this study, in order to realize the synchronous detection of RS and BVP signal, we 

explored the potential of dual-region-based BSS method. Two sensitive regions cor-

responding to RS and BVP detection were selected based upon experimental analysis. 

Since the two facial regions can yield 6-channel R/G/B signals, it allows BSS algorithms 

work more stable and efficient in separating multiple physiological signals. It has to be 

mentioned that we took respiratory motion artifacts for extracting RS. In addition, kur-

tosis-based identification methods were proposed to solve the permutation problem of 

BSS, which is crucial for long-term RR and HR monitoring.

Theories

We first introduce the relevant theories involved in the proposed method, including gen-

eration of R/G/B signals from video of body surface and BSS algorithm.

Theory of R/G/B signals generation

We generated R/G/B signals by spatial ROI averaging, a simple approach that is com-

monly used in relative studies. Of note, in order to control computational complexity, 

the proposed method has not employed video tracking tools, such as VJ detector, to 

compensate for the global motion of the whole face. Here we briefly give out calculation 

formula and variable symbols that involved in the following sections. Assume R/G/B 

components have the expression:

where N  and M are the height and width of the selected ROI. �en R/G/B signals 

denoted by XV (t) are calculated as follows:

where xR(t), xG(t) and xB(t) are R, G and B component mean values respectively, and T  

is the number of the frames in sliding window.

Theory of BSS

Blind source separation (BSS) refers to the method that uncovers hidden source signals 

from observed signals in the case that the source signals and parameters of transmis-

sion channels are unknown, only according to the statistical characteristics of the source 

signals. Assuming that, X(t) are observed signals, and S(t) are hidden source signals. In 

model of linear instantaneous mixed BSS, the relationship between them is linear mixed, 

i.e.,

A is a N × N dimension constant coefficient matrix. �e aim of the BSS is to find a 

demixing matrix W  that is an approximation of the inverse of the original mixing matrix 

(1)I(x, y, t) =
{
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}
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A by repeated iterative calculation according to separation criterion, i.e., W = A
−1, and 

make the output recovering source signals:

It needs to be mentioned that, BSS has an inherent uncertainty of orders in outputs.

Methods

In this section, the details of our method are described. �e flow chart of the method 

is shown in Fig.  1. By using front-facing camera of iPhone4s, the facial videos were 

recorded at a frame rate of 30fps with pixel resolution of 640 × 480 and saved in MOV 

format for offline analysis on MATLAB2015a platform. For the video, we selected a dual 

ROI (ROI(I)&ROI(II)), and calculated the two groups of R/G/B signals based on the 

dual ROI. After that, we utilized a series of methods and tactics for extracting the RS 

and BVP signals, then obtained RR and HR. Of note, in the article, all the examples of 

(4)U(t) = W · X(t) = S(t)

Fig. 1 The flow chart of the scheme
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R/G/B signals were shown based on sliding window. �e window length and the slid-

ing step size were set as 600 frames and 150 frames. In spectrum estimation, the length 

of the FFT was increased from 600 to 2048 by zero filling for increasing the frequency 

resolution.

Selection of the dual ROI

Figure 2 shows the comparison of R/G/B signals calculated based on different sensitive 

regions. �e dual ROI associated with respiration and cardiac pulse is selected according 

to the comparison.

Most recent literatures have demonstrated that, almost the whole face region could 

be used for BVP (i.e., HR) measurement [6, 7, 13, 14, 16]. While few practical studies 

focused on the RS. �e process of breathing are often accompanied by the subtle rhyth-

mic movements of some facial organs (such as mouth, nose, neck, etc.), which are com-

monly treated as motion artifacts. It displays in Fig.  2 that, the distinguished features 

appear in the waveform of R/G/B signals based on related regions. �e throat region (see 

signals X I ,V (t)) has the most stable and standard breathing rhythm comparatively, while 

the mouth region (see signals X II ,V (t)) appears the feature with a poor stability, and as 

for the nasal cavity region (see signals X III ,V (t)), it is inconspicuous. Based on the above 

analysis, we developed a dual ROI (that is ROI(I)&ROI(II)) in attempting to obtain syn-

chronous measurement of RR and HR. Of note, the normal fluctuation ranges of RR and 

HR of the human body are about 12–44 beats/min and 55–140 breath/min, respectively. 

�erefore, the RR frequency band is set as 0.2–0.8 Hz, and for HR is 0.8–2.3 Hz.

Fig. 2 Comparison of R/G/B signals generated based on different ROI
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R/G/B signals preprocessing

After selecting the dual ROI, the facial video will be transformed to two groups of R/G/B 

signals based on it. It is invariably found that the R/G/B signals are easily contaminated 

by various noises, including complex motion artifacts, weak ambient light changes, and 

other complex noises. For the improvement of SNR, three steps, namely high pass filter-

ing (HPF) with cutoff at 0.15 Hz, detrending and normalization, are performed in turn to 

preprocess the R/G/B signals.

Selection of BSS algorithm

According to our previous experimental results, the SOBI algorithm based on sec-

ond-order statistics, is superior  in performance of R/G/B signals separation and com-

paratively fairish in computational complexity, compared with other classical ICA/BSS 

algorithms based on high-order statistics, such as FastICA, InfomaxICA, JADE, etc. Fig-

ure 3 is the comparison of separation results on a segment of R/G/B signals selected ran-

domly, which shows the impressive performance of SOBI in R/G/B signals separation. 

�erefore, in our research, we selected SOBI algorithm for R/G/B signals separation, 

instead of commonly used JADE or FastICA algorithms.

Separation of RS and BVP signal

Different from traditional single ROI-based ICA/BSS methods that only extract single 

target, we explored the dual ROI-based ICA/BSS to separate out the RS and BVP signal 

from two groups of R/G/B signals. For illustrative purposes, we randomly picked two 

video segments with different SNR as an example set, and compared the results of two 

approaches.

a. The e�ect of single ROI-based BSS

We first disposed the example set using traditional single ROI-based BSS approach (i.e., 

BSS based on 3-channels R/G/B signals). Of note, since each video segment had been 

transformed to two groups of R/G/B signals based on ROI(I) and ROI(II) using spatial 

pixel averaging, it needs twice BSS.

Figure 4 displays the separation effect of single ROI-based BSS on the first video seg-

ment that has a high SNR. It could be observed that, there are clear breathing rhythms 

in waveform of the two groups of R/G/B signals [see signals [xI,R(t), xI,G(t), xI,B(t)]T and 

[xII,R(t), xII,G(t), xII,B(t)]T]. After BSS, the breathing rhythms were separated out from the 

R/G/B signals [see [SI,1(t), SI,2(t), SI,3(t)]T and [SII,1(t), SII,2(t), SII,3(t)]T], while the redun-

dancies still exist on two groups of outputs.

Figure 5 displays the separation effect of single ROI-based BSS on the second video 

segment that has a low SNR. Being contaminated by complex noises, there is no con-

spicuous physiological feature appears in waveform of the signals before and after single 

ROI-based BSS. �e separation results are unsatisfactory.

b. The e�ect of dual ROI-based BSS

In the above circumstances, the 3-channels BSS based on single ROI is generally insuf-

ficient for separating the two physiological signals. �e number of observations needs 

to be increased in order to improve the separation effect. �erefore, we took the two 
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groups of R/G/B signals together as the observations, disposed them by using dual ROI-

based BSS (i.e., 6-channels SOBI algorithm). �e separation effects of new approach 

applied on the same two video segments were displayed in Figs. 6 and 7. �e two figures 

show that, the RS and BVP signal were well separated out from the 6-channels R/G/B 

signals (see Figs. 6c, 7c), by using 6-channels SOBI algorithm.

Nevertheless, there are still some residual noises remained in the source signals (see 

Fig. 6c: the spectrum obtained by the FFT). We further removed the residual noises by 

using HPF with cut-off at 0.15 Hz and low pass filtering (LPF) with cut-off at 8 Hz. After 

the filter processing, the results are defined as the target signals (see Figs. 6d, 7d) that are 

comparatively clear for further analysis. In Fig. 6d, it can be identified from their spec-

trum that the Ch1 is RS and Ch2 is BVP signal. While for Fig. 7d, in which Ch3 is BVP 

Fig. 3 Comparison of separation results using different ICA/BSS methods. a There is a segment of R/G/B 

signals contains less apparent BVP signals in G channel (see the green circle mark), b after separated by JADE, 

two ICs contain BVP components emerge in results (see the red circle mark), and c the situation of FastICA is 

similar to JADE, d furthermore, InfomaxICA algorithm separated out a satisfactory BVP signal (see the yellow 

circle mark), e at last, a superior BVP with an outstanding amplitude is obtained by SOBI algorithm (see the 

blue circle mark)
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signal, yet the RS needs to be further judged on Ch1 and Ch2. For identifying targets in 

outputs of 6-channels BSS, more automatic selection algorithms are indispensable, espe-

cially in presence of low SNR.

Automatic selections of RS and BVP signal

In our work, we devised the kurtosis-based methods, assisted with some tactics, to 

achieve the automatic selections of RS and BVP signal.

1. RS selection

RS could be classified to typical sub-Gaussian signal on account of the feature of the 

waveform. It might be feasible to identify the RS by measuring sub-Gaussianity of the 

target signals from the perspective of kurtosis [34]. For data with high SNR as the one 

in Fig.  6, only the RS belongs to sub-Gaussian signal because of its negative kurtosis, 

and the largest spectral peak located in RR band is the value of RR desired. While for 

low SNR data, it is probably the case that several sub-Gaussian components with simi-

lar negative kurtosis emerge after BSS, which might interfere with automatic selection 

of RS. �ese sub-Gaussian components (low frequency components) might be mainly 

residual noises remained in RR band (0.2–0.8 Hz) that have not been removed or acci-

dentally results from defective separation. �us, we utilized some tactics to perfect it. 

Fig. 4 Separation effect based on single ROI for high-quality data: a shows the facial video frames captured 

under ideal condition; b displays the two groups of R/G/B signals based on ROI(I) and ROI(II) and the respec-

tive source signals separated by using SOBI algorithm
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Figure 8 is the schematic diagram of automatic selection of the RS based on the data in 

Fig. 7d.

It can be seen in Fig. 8 that, there are six channels of target signals and their spectrum 

marked with purple columns on the RR band (0.2–0.8 Hz) directly from Fig. 7d. Besides, 

the kurtosis of the target signals are also listed, which were clustered to three clusters 

(respectively marked with three different colors) by K-means clustering. �e minimum 

cluster is yellow comprised of Ch1 and Ch2 which are all sub-Gaussian signal, with own 

closed kurtosis. �e prediction of the RR was introduced based on the latest five RR val-

ues by the linear predictive coding (LPC) method. �en, Ch2 whose largest spectral peak 

in RR band is closest to the predicted value was selected as the RS candidate. Finally, we 

confirmed that its spectral peak (RR candidate) was not out of the fluctuation range of 

the predicted value (±0.3 Hz), then obtained the RS (i.e., Ch2) and RR, otherwise dis-

carded Ch2 as outliers and tried the next one in the minimum cluster.

2. BVP signal selection

After obtaining RS, the five channels target signals remained (it was still six channels 

if there was no RS identified). In order to avoid interferences from the low frequency 

components, the HPF with cutoff at 0.8 Hz was used to remove them. �en, the power 

spectrum kurtosis of the remaining signals were used to detect the BVP components.

Fig. 5 Separation effect based on single ROI for low-quality data: a shows the facial video frames captured 

under noise condition; b displays the two groups of R/G/B signals based on ROI(I) and ROI(II) and the respec-

tive source signals separated by using SOBI algorithm
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�e periodic components would display more distinguishable features on power 

spectrum kurtosis than power spectrum. In the remaining target signals removed low 

frequency components, the BVP signal has the strongest periodicity, i.e., the value of 

power spectrum kurtosis is maximum. �erefore, Power spectrum kurtosis method 

is feasible to identify the BVP component. Figure 9 is the schematic diagram of auto-

matic selection of the BVP signal based on the five remaining target signals from 

Fig. 8.

In Fig. 9, there are five channels remaining target signals with low frequency being fil-

tered by HPF (0.8 Hz), the effect of which could be observed in the spectrum that has a 

green column marked on the HR band (0.8–2.3 Hz). Similar to the Fig. 8 above, we listed 

the power spectrum kurtosis of the signals, and clustered them to three clusters marked 

with different colors. �e maximum cluster with turquoise color only contained Ch3 

as the BVP candidate by chance, and its power spectrum kurtosis value is far greater 

than others’. Furthermore, we introduced the linear prediction of the HR, which con-

firmed that the HR candidate was not out of the fluctuation range of the predicted value 

(±0.2 Hz). �en we obtained the BVP signal (i.e., Ch3) and HR, otherwise discarded Ch3 

as outliers. If there is more than one candidate in the maximum cluster, keep on trying 

until empty.

Fig. 6 The separation effect of the same data from Fig. 3 by using SOBI based on dual ROI: a shows subject’s 

high-quality video and the dual ROI, then b displays 6-channels observations; c displays the source signals 

separated by using 6-channels SOBI; after filters out residual noises, d obtains the target signals (note: the 

purple and green column on spectrum respectively denote RR band and HR band)
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Fig. 7 The separation effect of the same data from Fig. 4 by using SOBI based on dual ROI: a shows subject’s 

low-quality video and the dual ROI, then b displays 6-channels observations; c displays the source signals 

separated by using 6-channels SOBI; after filters out residual noises, d obtains the target signals (note: the 

purple and green column on spectrum respectively denote RR band and HR band)

Fig. 8 The schematic diagram of automatic selection of the RS
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Experiments and results

�ere were eight subjects aged 22–31 years without medical history of heart and respir-

atory system selected for experiments. �e experiments were carried out indoors with 

adequate and stable ambient light as illumination, according to the experimental para-

digms under ideal condition and noise condition. Reference RR and reference HR were 

recorded by using HKH-11B breathing apparatus and HKG-07A pulse sensor (Hefei 

Huake Info Technology Co., Ltd.) respectively. For the video recorded, based on sliding 

window analysis, we obtained estimated RR sequence and HR sequence by the proposed 

method, without pre-knowledge of the subjects’ actual HR and RR, then compared them 

with reference values from commercial medical sensors.

Experiments under ideal condition

We devised the experimental paradigm of ideal condition to acquire data with high SNR 

for experimental verification. �e details are as follows:

1. �e subjects need to maintain the condition: sit still without movements, ensuring 

that face and neck are located in the video region, keeping breaths standard and well-

balanced as far as possible.

2. Each subject needs to perform the experiment twice.

3. �e time of capturing video in each experiment is limited to 4–6 min, the subject 

needs to alternate gentle breath (45–60 s) and short breath (45–60 s) at least twice 

during this time.

Notes: If there are some abrupt movements or jitters happened, which bring serious 

corruption in commercial medical sensors, the experiment is allowed to be terminated 

Fig. 9 The schematic diagram of automatic selection of the BVP signal
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with marking the recording as defective data, and then the subject could give up or try it 

again after a rest.

�ere were eight groups of data captured in experiments. We discarded three defec-

tive ones, and then obtained a valid original experimental data set with a high SNR. 

Table  1 shows the level of agreement between the estimated values by the proposed 

method and reference values from commercial medical sensors. �e results of the two 

methods are strongly correlative from the root-mean-squared error (RMSE) and correla-

tion coefficients.

For  further  illustration, we picked out an experimental data (Video 7) from Table  1 

for analysis in Fig. 10 (see raw data: Additional files 1, 2, 3). During this experiment, the 

subject was asked to perform gentle breathing and short breathing alternately twice. It 

could be observed in Fig.  10a that there are two relatively perfect undulations on the 

variant curve of RR that effectively reflect the breathing state of the subject throughout 

the experiment. Furthermore, for RR and HR, the variant curves of the estimated values 

and reference values are both highly consistent in the waveform. Besides, in Fig. 10b, c, 

the Bland–Altman plots show that, the mean error (bias) of RR is 0 breaths/min and the 

95% confidence interval is [−2.9 2.8], and the parameters for HR are 0.1 beats/min and 

[−2.4 2.5].

Experiments under noise condition

Similarly, for acquisition of data with low SNR, the experimental paradigm of noise con-

dition is developed as follows:

1. �e subjects maintain the relaxed state: Keep breathing natural and symmetry (some 

common undesirable conditions are allowed to exist, such as subjects’ subtle invol-

untary movements, occasional irregular breathing action, swallowing saliva and 

slight changes in ambient light, etc.).

Table 1 Summary of experimental results under ideal condition

RR (breaths/min), HR (beats/min)

Experimental data with high SNR Statistic (RMSE/correlation 
coe�cient)

RR HR

Group 1 Subject 1 Video 1 (5′03″) 1.51/0.97 1.25/0.96

Video 2 (4′45″) 1.55/0.96 1.28/0.95

Group 2 Subject 2 Video 3 (4′15″) 2.02/0.90 1.92/0.91

Group 3 Subject 3 Video 6 (4′25″) 1.50/0.97 1.25/0.95

Group 4 Subject 4 Video 7 (4′39″) 1.45/0.98 1.22/0.96

Video 8 (5′10″) 1.52/0.97 1.32/0.95

Group 5 Subject 5 Video 9 (4′11″) 1.55/0.96 1.14/0.96

Video 10 (4′35″) 1.49/0.96 0.88/0.98

Group 6 Subject 6 Video 11 (4′55″) 1.50/0.97 1.25/0.96

Video 12 (5′10″) 1.53/0.96 1.30/0.96

Group 7 Subject 7 Video 13 (5′05″) 1.60/0.95 1.33/0.95

Group 8 Subject 8 Video 15 (5′12″) 1.63/0.96 1.18/0.96

Video 16 (5′02″) 1.50/0.97 1.21/0.96
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2. Each subject needs to perform the experiment twice.

3. �e time of capturing video in each experiment is limited to 10–15  min, the sub-

ject needs to alternate gentle breath (45–60 s) and short breath (45–60 s) about 5–8 

times during this time.

Notes: �e same as ideal condition mentioned above.

Similar to the procedure above, we reorganized experimental data with discarding the 

defective one. �en, the result of the statistic was given in Table 2. It indicates that the 

measurements by the proposed method are closely correlative to reference values under 

noise condition.

Figure 11 shows the analysis results on the Video2 picked out from Table 2 (see raw 

data: Additional files 4, 5, 6). During this experiment, the subject was asked to alternate 

gentle breathing and short breathing six times. It could be observed that, there are six 

undulations on the subject’s variant curve of estimated RR. Although the waveform of 

estimated RR sequence is not perfect, it is basically consistent with the reference data, 
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Fig. 10 The analysis result on an experimental data under ideal condition. a Shows the subject’s variant 

curves of RR and HR compared with reference values, b Bland–Altman plot of the estimated RR against the 

reference RR, c Bland–Altman plot of the estimated HR against the reference HR
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and roughly reflects the subject’s breathing state. Moreover, the subject’s estimated HR 

sequence is impressively stable and less affected.

Discussions

We  extracted RS and BVP signals from the face video synchronously by BSS, and 

achieved dynamic variations of RR and HR that were good in agreement with commer-

cial sensors. Although many researches have mentioned the estimations of several physi-

ological parameters, these estimations are mainly relying on sophisticated video tracking 

and detection algorithms for motion artifact attenuation. However, our research mani-

fested that, instead  of video processing algorithms, the ICA/BSS approaches could 

appropriately separate out BVP signals, motion artifacts and other noises. Moreover, we 

creatively obtained RS based upon the rhythmic respiratory motion artifacts. We also 

carried out some optimization or explorations in ICA/BSS-based IPPG techniques as 

follow:

1. Dual ROI-based BSS For the insufficient capability of separation in single ROI-based 

ICA/BSS (see Figs. 4b, 5b), we explored the potential of dual ROI-based BSS. �e dual 

ROI comprised of throat region (ROI(I)) and mouse region (ROI(II)) were selected 

based on experimental analysis (see Fig. 2). By applying BSS on 6-channel R/G/B sig-

nals yielded from dual ROI, we separated out RS (i.e., respiratory motion artifacts) 

and BVP signal adequately. It is worth noting that, the throat region (ROI(I)), com-

monly exposed in facial video, with stable and standard breathing rhythm, might be 

suitable for practical breath detection.

2. SOBI algorithm To separate out the target signals, the existed ICA/BSS-based IPPG 

approaches commonly utilized classical ICA algorithms based on higher-order sta-

Table 2 Summary of experimental results under noise condition

RR (breaths/min), HR (beats/min)

Experimental data with low SNR Statistic (RMSE/correlation 
coe�cient)

RR HR

Group 1 Subject 4 Video 1 (12′03″) 2.52/0.92 1.90/0.89

Video 2 (10′01″) 2.15/0.97 2.32/0.83

Group 2 Subject 2 Video 3 (13′25″) 2.83/0.82 2.91/0.81

Group 3 Subject 3 Video 5 (12′30″) 2.63/0.89 1.91/0.91

Video 6 (12′55″) 2.25/0.91 2.12/0.89

Group 4 Subject 8 Video 7 (11′10″) 2.45/0.92 1.82/0.93

Video 8 (11′36″) 2.58/0.91 1.98/0.93

Group 5 Subject 1 Video 9 (12′20″) 2.62/0.87 1.70/0.95

Video 10 (12′58″) 2.43/0.88 1.64/0.93

Group 6 Subject 6 Video 11 (13′01″) 2.48/0.89 1.90/0.89

Video 12 (13′59″) 3.15/0.80 1.65/0.91

Group 7 Subject 7 Video 13 (12′11″) 2.18/0.92 1.81/0.92

Video 14 (12′29″) 2.28/0.89 1.95/0.90

Group 8 Subject 5 Video 15 (13′07″) 2.08/0.91 1.69/0.93

Video 16 (12′55″) 2.55/0.86 1.92/0.90
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tistics, such as JADE or FastICA algorithms, yet the performances were neglected. In 

our research, we selected SOBI algorithm instead, which is superior in performance 

of R/G/B signals separation and good in computational complexity. �ese superiori-

ties might guarantee the proposed method more potential for applications on differ-

ent platforms, for instance, the smart phone.

3. Kurtosis-based methods for automatic selection Based upon analysis of the statis-

tical characteristics of RS and BVP signals, we devised the kurtosis-based method 

and power spectrum kurtosis-based method respectively for reliable automatic 

selections. Of note, under low SNR situations, defective separation might acciden-

tally emerge, because the separation of BSS is contaminated by complex noises (see 

Fig. 7c). In Fig. 7c, it encountered an unexpected case that the two ICs (Ch1and Ch2) 

are closed on waveform or spectrum. To our knowledge, they both belong to the 

same RS. Nevertheless, according to the RS automatic selections method, Ch2 was 

detected as RS (see Fig. 8), and the accuracy could still be maintained. In our practi-
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cal tests, under low SNR situations, it is commonly the case that 6-channel R/G/B 

signals could be separated well by ICA/BSS algorithms, with accurate selections of 

targets. Figure 12 shows the separation and RS automatic selections results on a seg-

ment of 6-channel R/G/B signals with low SNR selected randomly.

Moreover, in the proposed method, the bands of RR and HR were set as 0.2–0.8 and 

0.8–2.3 Hz respectively. For purpose of noises removal, we utilized different filters, and 

there are several reasons behind them as below:

First of all, in the preprocessing, we carried out HPF for removing the intricate low-

frequency noises in R/G/B signals, where the cut-off frequency of filter was set as 

0.15  Hz, which is an adapted value through adjustment. Considering the requirement 

of ICA/BSS in mechanism that observations should retain the statistical data (especially 

high frequency components) as much as possible, so we gave up LPF that is the removal 

of high-frequency noises.

Furthermore, after BSS, it is found that quite a few residual noises emerged in ICs, 

which would interfere with automatic selections (see Figs. 5c, 6c). Hence, we took meas-

ures to filter them. �e filter is set as HPF (0.15 Hz) and LPF (8 Hz) for the following 

reasons: Firstly, the residual low-frequency  noises with sub-Gaussianity would cause 

misjudgment in RS automatic selections. So we performed the HPF (0.15  Hz) that is 

beneficial for resolving the problem. Secondly, the residual high-frequency noises would 

bring a measurable impact on the kurtosis of ICs, thus it is essential to depress the noises 

Fig. 12 The separation and RS automatic selections results on a random low SNR data: a shows a segment of 

6-channel R/G/B signals with low SNR, then separated by 6-channels SOBI, b displays the source signals, after 

filters out residual noises, c obtains the target signals. By kurtosis-based method, the RS (Ch3) was detected 

accurately, with estimated RR being approximate to reference value from commercial sensor
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by applying LHF. However, it is meaningful that attention is required to maintain non-

destructive BVP signals in processing, for further researches such as HRV, etc. In consid-

eration of the frequency band of BVP (0.8–2.3 Hz), an excessively low cut-off frequency 

of LHF is inappropriate for preserving the 2nd and 3rd harmonic components of BVP. 

Consequently, we selected LPF (8 Hz) by practical test.

�e last but not the least, the automatic selection of BVP signal depends on the strong 

periodicity of BVP, while the essential condition is  to remove the out-of-band noises, 

especially the lower frequency noises as clean as possible. Consequently, after detecting 

RS, we further filtered the low-frequency band by using HPF (0.8 Hz), to avoid interfer-

ence from unknown periodic components.

Besides, it is significant to be mentioned that the proposed method has the potentials 

for extracting more vital signs, such as blinking, wrinkling nose, yawn, as well as other 

muscular movements, which are all intricate local motion artifacts for facial video track-

ing and detection algorithms. Figure 13 demonstrates that blinking and yawn signs could 

be extracted from relevant local facial regions. �us, it is easy to understand that the 

idea of the proposed method might also be applied to other IPPG-based applications 

such as emotion computation and fatigue detection, etc.

Fig. 13 The test of blinking and yawn signs extraction based upon motion artifacts: a shows a segment of 

6-channel R/G/B signals yielded from regions of eyes and mouth respectively, in which could be seen appar-

ent motion artifacts caused by blinking and yawn. Through ICA/BSS, b displays that the blinking and yawn 

are extracted appropriately as physiological signs in the separation results
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�ere are still some limitations existed in the proposed method. In our research, we 

have not employed facial video tracking  and automatic region selection algorithms, 

which brought a shortcoming that the ROI can only be marked manually. Besides, 

the proposed method might be unable to handle the serious artifacts caused by heavy 

motions, which gave rise to serious drifts or deformation on R/G/B signals (the problem 

also exists in clinical applications of many commercial medical sensors). We are taking 

efforts to cover these problems.

Conclusion

Dynamic measurements of RR and HR from facial video have been proved in this pro-

posed method. And it may have the potentials to be extended further to extract more 

physiological parameters, such as HRV, eye blinking, wrinkling nose, yawn, and other 

muscular movements, etc. �e research has a good application prospect in the field of 

face-based physiological parameters assessments or emotion computation fields, espe-

cially for the subjects in the trial, the sniper or the people under special working envi-

ronment. All the related issues could have further exploration in follow-up work.
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