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Abstract

Remote sensing of the reflectance photoplethysmogram using a video camera

typically positioned 1 m away from the patient’s face is a promising method

for monitoring the vital signs of patients without attaching any electrodes or

sensors to them. Most of the papers in the literature on non-contact vital sign

monitoring report results on human volunteers in controlled environments.

We have been able to obtain estimates of heart rate and respiratory rate and

preliminary results on changes in oxygen saturation from double-monitored

patients undergoing haemodialysis in the Oxford Kidney Unit. To achieve this,

we have devised a novel method of cancelling out aliased frequency components

caused by artificial light flicker, using auto-regressive (AR) modelling and

pole cancellation. Secondly, we have been able to construct accurate maps of

the spatial distribution of heart rate and respiratory rate information from the

coefficients of the AR model. In stable sections with minimal patient motion,

the mean absolute error between the camera-derived estimate of heart rate

and the reference value from a pulse oximeter is similar to the mean absolute

error between two pulse oximeter measurements at different sites (finger and

earlobe). The activities of daily living affect the respiratory rate, but the camera-

derived estimates of this parameter are at least as accurate as those derived from

a thoracic expansion sensor (chest belt). During a period of obstructive sleep

apnoea, we tracked changes in oxygen saturation using the ratio of normalized
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reflectance changes in two colour channels (red and blue), but this required

calibration against the reference data from a pulse oximeter.

Keywords: non-contact monitoring, PPG, video, auto-regressive models, vital

signs, dialysis

1. Introduction

It has now been established that it is possible to record the blood volume changes associated

with the cardiac cycle remotely from facial images of human subjects with a digital video

camera up to 2 m away from the subject, using only ambient light as the light source. This ability

to record photoplethysmographic signals remotely opens up the possibility of non-contact

vital sign monitoring. Conventional patient monitoring using pulse oximetry to measure heart

rate and peripheral arterial oxygen saturation (SpO2) requires a probe to be attached to the

patient’s ear or finger. Long-term monitoring outside the intensive care unit is plagued by

motion artefact, leading to frequent false alerts. While non-contact monitoring will also be

affected by motion artefact, the use of a camera indicates when the subject is moving, whereas

conventional monitoring provides no information on the cause of the artefact. Additionally,

the probes used in conventional monitoring often cause patient discomfort and increase the

risk of spreading infection in hospitals. Hence a method for deriving estimates of heart rate

and SpO2 with no electrodes or sensors attached to the patient is an attractive proposition,

with the cost of digital video cameras continuing to decrease as the technology becomes

more ubiquitous. The same non-contact monitoring technology can also be used to obtain

estimates of respiratory rate, another parameter of major clinical significance (Cretikos et al

2008).

This paper advances the state-of-the-art in non-contact vital sign monitoring by making a

number of significant contributions: firstly, a novel method of cancelling out aliased frequency

components caused by strong artificial light flicker, based on auto-regressive (AR) modelling,

is presented; secondly, highly accurate maps of the spatial distribution of heart rate and

respiratory rate data are constructed from the coefficients of the AR model; and finally vital

sign data, including changes in oxygen saturation, are acquired from patients in the clinic who

are double-monitored, rather than from healthy volunteers as has invariably been the case in

the papers so far published on non-contact vital sign monitoring.

The paper is organized as follows. We start with a review of previous work to establish

the novelty of our approach. Our methods for non-contact vital sign monitoring using

AR models are then described: we introduce a novel pole-cancellation algorithm for the

removal of aliased frequencies; we describe how heart rate, respiratory rate and changes

in peripheral oxygen saturation can be estimated from video images of patients undergoing

dialysis in the local renal unit. Results from these algorithms, including maps of the spatial

distribution of heart rate and respiratory rate for a typical patient, are presented. Finally, the

paper ends with a discussion of the applicability of non-contact vital sign monitoring in the

clinic.

2. Review of previous work

It has been well known since the 1930s—see, for example, the introduction in the paper by

Verkruysse et al (2008)—that the variations in tissue blood volume in a body segment with

each heart beat modulate the transmission or reflection of visible (or infra-red) light through
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or from that body segment. All forms of the haemoglobin molecule, the protein responsible

for oxygen transport in blood, are highly absorptive in the visible and near-infrared, hence

the variations in blood volume during the cardiac cycle affect the transmission or reflection

of light in time with the heart beat. The cardiac-synchronous variations in light transmission

or reflectance are known as the photoplethysmographic or PPG signal. The pulse rate (or

heart rate—the two are used interchangeably) can easily be extracted from the PPG signal

by measuring the time interval between two consecutive peaks (or troughs) of the PPG

waveform.

In the 1970s, the technique of pulse oximetry was developed to obtain a non-invasive

estimate of SpO2 by measuring the PPG signal at two wavelengths (Severinghaus and

Honda 1987). Oxygenated haemoglobin (HbO2) and deoxygenated haemoglobin (Hb) have

significantly different optical spectra in the wavelength range from 500 to 1000 nm. Hence,

by measuring the pulsatile changes in the light transmitted through tissue at two different

wavelengths using a simple probe with two light-emitting diodes (LEDs), pulse oximeters

determine the oxygen saturation of the arterial blood in the tissue non-invasively.

Most conventional pulse oximeters operate in this transmittance mode (Chan et al 2013),

with the probe attached to the finger or earlobe. Reflectance-mode pulse oximeters, which have

the light sources and detector side by side on the same plane, are also occasionally used. These

work because some of the light is back-scattered by the tissues. The main use of this type of

pulse oximeter is in forehead pulse oximetry (Agashe et al 2006), for clinical applications in

which peripheral shut-down occurs, for example during vascular surgery (Wax et al 2009) or in

severe shock (Nesseler et al 2012). During peripheral shut-down, conventional, transmittance-

mode, pulse oximetry loses accuracy, and sometimes fails outright, because of the reduction

in blood flow in the extremities.

The possibility of measuring back-scattered light remotely using a camera (rather than

a reflectance probe in contact with the body) is first discussed in the scientific literature

around 2005 (Wieringa et al 2005, Humphreys et al 2007). The 2005 paper describes how

reflectance-mode plethysmographic signals were acquired in seven volunteers using a CMOS

camera positioned 0.7 m away from the left inner arm (near the wrist). The arm was exposed

to diffuse non-coherent monochromatic light, at three different wavelengths in turn (660,

810 and 940 nm). The camera-derived signals all contained a respiration-correlated pulsatile

component, as well as smaller amplitude variations at the cardiac frequency. Despite the

paper’s title (‘A first step toward SpO2 camera technology’), there were no experimental

results relating to oxygen saturation.

In the 2007 paper (Humphreys et al 2007), a CMOS camera was used to image the light

reflected from the inner arm of ten volunteers, adjacent to an area illuminated by an array of

LEDs (with wavelengths of 760 and 880 nm). This allowed two multiplexed PPG waveforms

to be captured simultaneously at a rate of 16 frames s−1. The agreement between estimates of

heart rate derived from the camera images and from a conventional pulse oximeter was shown

to be excellent. The feasibility of estimating oxygen saturation from the camera images at two

different wavelengths was investigated, but no results were presented.

Although the early work concentrated on the feasibility of non-contact oxygen saturation

measurement using illuminated tissue, the focus then switched to heart rate and respiratory

rate estimation with no illumination other than ambient light. Verkruysse et al (2008) showed,

for the first time, that PPG signals could be remotely acquired from the human face with a

simple, digital, consumer-level camera as the detector more than 1 m away; daylight was used

as the illumination source in combination with normal artificial fluorescent light. Regions of

interest (ROIs), usually the forehead, were selected in images of the faces of human volunteers.

The raw signal, calculated as the average of all pixel values in the ROI, was band-pass filtered
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using a fourth-order Butterworth filter (with cut-off frequencies of 0.8 and 6 Hz, corresponding

to a heart rate range of 48–360 beats min−1).

The authors presented evidence that the reflectance signals were true PPG signals by

showing that signals corresponding to movement of facial areas with no exposed skin (edge of

the face and hair above the ear) were not predominantly at the heart rate frequency. The green

channel was found to provide the strongest plethysmographic signal, corresponding to an

absorption peak by oxyhaemoglobin, but the red and blue channels were also shown to contain

plethysmographic information. The paper showed how heart rate could be extracted from the

frequency content of these images using the fast Fourier transform (FFT) for 10 s windows,

and hinted at how respiratory rate might be computed using an ROI which encompasses the

entire face.

The first two papers from MIT (Poh et al 2010, 2011) describe the recording of videos

of facial regions from 12 human volunteers with varying skin colours (Asians, Africans and

Caucasians). They used as their detector the standard webcam embedded in a Macbook Pro

laptop (Apple Inc.), positioned approximately 0.5 m away from the subject. The studies were

all conducted indoors during the day-time, with a varying amount of sunlight as the only

source of illumination. The authors’ hypothesis was that volumetric changes in the facial

blood vessels during the cardiac cycle modify the path length of the incident ambient light.

The RGB colour sensors in the webcam amplify a mixture of the reflected plethysmographic

signal along with other sources of fluctuations in light due to artefacts caused by motion and

changes in ambient light conditions.

In these two papers from MIT, a rectangular bounding box was set up covering most of the

skin area of the face, the ROI then being defined using the full height of the box but only 60%

of the width. The time series for the three colours were decomposed into three independent

source signals using the JADE algorithm for Independent Component Analysis (ICA). An

FFT was then applied to the strongest plethysmographic component (over 30 s windows)

and the largest spectral peak in the region from 0.75 to 4 Hz was deemed to be the cardiac

frequency.

In the second paper (Poh et al 2011), the respiratory rate of the volunteers was estimated

with a well-known indirect method (Sayers 1973) based on heart rate variability (HRV). The

peaks of the PPG waveform (corresponding to the dominant ICA component) were identified

to derive a time series of inter-beat intervals. The spectrum of this unevenly-sampled time

series was computed using the Lomb periodogram (Moody 1993) with the low-frequency

(LF) component and the high-frequency (respiratory) component calculated as the areas under

the curve within the 0.04–0.15 Hz and 0.15–0.4 Hz bands, respectively. Scatter plots of

heart rate and respiratory rate for the data acquired from the volunteers demonstrated good

correlations between the webcam-derived estimates and those from a finger probe (for heart

rate) and a chest belt for respiratory rate.

Respiratory rate estimation from HRV works well in healthy young volunteers, but is

much less likely to give accurate results in elderly subjects, especially those with chronic

diseases, most of which depress autonomic function (Dietrich et al 2006). However, breathing

is associated with movement of the upper thorax and regions of the face. The changes in the

amplitude of the PPG waveform caused by breathing-synchronous motion can be extracted

though band-pass filtering and spectral analysis (see section 3.6). In addition, respiratory rate

can also be estimated directly through motion-tracking techniques, well known in the computer

vision community. A second MIT group has been developing Eulerian video magnification

techniques to track and amplify the motion-related changes caused by breathing in the

videos of human subjects, including neonates, recorded under normal lighting conditions

(Wu et al 2012).
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Interestingly, the latest paper from a third MIT group (Balakrishnan et al 2013)

hypothesizes that there are also motion-induced changes in the cardiac-synchronous changes

in the reflected ambient light. These are thought to be caused by the cyclical movement of

blood from the heart to the head via the carotid arteries giving rise to periodic head motion at

the cardiac frequency. The cardiac-synchronous changes in the ambient light reflected from the

face and measured remotely (up to a distance of 1m away) thus appear to be the sum of three

components, each of which is caused by the inflow of blood into the head during the cardiac

cycle: volume changes in the facial blood vessels (Poh et al 2010), changes in the colour of

these vessels (Wu et al 2012), and ballisto-cardiographic changes (Balakrishnan et al 2013).

In parallel with this work in the US, Philips in Europe has developed similar methods

based on FFT analysis of the remote PPG signal to estimate heart rate and on motion analysis

to estimate breathing rate. This led to the release of a software application for the iOS operating

system for the consumer market in 2011. There is also a family of patent applications which

describe aspects of non-contact vital sign monitoring such as the identification of people in the

image (Cennini and Jeanne 2010) or the automatic selection of the measurement zone (Jeanne

et al 2010).

Further work from Philips researchers includes the use of multi-spectral illumination and

adaptive filtering techniques to minimize the effect of motion artefacts (Cennini et al 2010).

Related theses from members of the Video and Imaging Processing Group at Philips Research

Laboratories in Eindhoven focus on the issues of motion estimation and compensation (Schmitz

2011, Sahindrakar et al 2011). The latest paper (de Haan and Jeanne 2013) reports on

techniques to deal with the periodic motion arising from exercise. Colour difference ratios

are used in an attempt to eliminate the specular reflection component and more generally the

effect of motion.

There are many other papers in the literature which describe variations on the theme of

remote PPG signal analysis to derive heart rate and occasionally respiratory rate, using for

example principal component analysis (Lewandowska et al 2011), ICA and time-frequency

analysis (Sun et al 2011) or the continuous wavelet transform (Bousefsaf et al 2013). However,

since the early work of Wieringa et al (2005) and Humphreys et al (2007), with illumination at

specific wavelengths, there appears to have been little progress in estimating oxygen saturation

with non-contact methods and ambient light. A recent paper (Kong et al 2013) uses two CCD

cameras, each with a narrow-band filter (at 660 and 520 nm) mounted in front of the camera,

but this is a more complicated arrangement than the single camera set-up which is the focus

of this paper. Scully et al (2012) report on SpO2 measurements made by comparing the red

and blue PPG waveforms in light reflected from a flash light but using a contact method, as

the finger is placed on the digital camera in a mobile phone.

To summarize, most of the previous studies of non-contact video-based vital sign

monitoring have been on healthy volunteers, sometimes in sunlight only, and have usually

concentrated on heart rate estimation, with some attempts at deriving respiratory rate. In this

paper, we describe novel algorithms which are robust even under strong fluorescent lights,

and can be used to estimate the values of the three cardio-respiratory vital signs (heart rate,

respiratory rate and oxygen saturation) in patients in a clinical environment.

3. Methods

3.1. Clinical study

Almost 50% of patients with end stage renal failure (ESRF) in the UK are supported with

haemodialysis, a form of renal replacement therapy in which the blood is pumped from the

811



Physiol. Meas. 35 (2014) 807 L Tarassenko et al

patient through an extracorporeal filter to remove fluid and waste products and replace some

electrolytes. The treatment is usually given in three sessions a week, each session lasting up

to 4 h during which two litres of fluid are typically removed.

Patients with ESRF often have multiple co-morbidities such as diabetes and may suffer

from associated conditions such as obstructive sleep apnoea. Hence their vital signs (blood

pressure, heart rate, respiratory rate and oxygen saturation) will often be highly variable during

a dialysis session (Borhani et al 2010) and dialysis therefore represents an ideal testing ground

for developing clinically relevant non-contact vital sign monitoring techniques.

Our non-contact vital-sign monitoring study took place in the Oxford Kidney Unit, at the

Churchill Hospital, which provides care for over 500 patients at any one time. The camera sub-

study was part of a clinical study (Research Ethics Committee reference number 11/SC/0207)

in which vital signs were recorded with conventional patient monitors, the aim being to

understand the changes in physiological variables which occur during dialysis (Borhani et al

2010). Patients were given information leaflets approved by the research ethics committee and

were recruited and consented by clinical staff.

A non-invasive, multi-parameter recording device (EquivitalTMVital Signs Physiological

Monitor EQ-02, Hidalgo, Cambridge, UK) provided the conventional vital sign monitoring.

The EQ-02 belt incorporates a thoracic expansion sensor to record the changes in chest

circumference during respiration using a conductive material within the belt, the electrical

impedance of which increases with length. Software provided by the manufacturer produces a

respiratory rate estimate every 5 s, together with a signal quality index based on how sinusoidal

the thoracic expansion sensor signal is, giving an indication of the validity of the estimate. A

pocket within the belt holds the battery-powered recording device, onto which other monitors,

such as a pulse oximeter and an oscillometric blood pressure monitor, are attached. The pulse

oximeter (Onyx II Bluetooth Pulse Oximeter Model 9560, Nonin Medical, Plymouth, MN,

USA) records a 4 beat average heart rate and SpO2, both at 3 Hz.

The patients in the video camera sub-study were also monitored with a high-quality 5

megapixel camera (Grasshopper2 GigE Point Grey Research, Richmond, Canada), positioned

approximately 1 m away from the patient, whose face is then in the focal plane of the camera

(see figure 1). Raw uncompressed video data with 8 bits-per-pixel resolution was recorded at

a sampling rate of 12 frames s−1 (i.e. 36 bytes per pixel per second). A 4 h dialysis session

therefore required a maximum of 2.4 terabytes of storage. The physiological and camera data

were relayed to a workstation using the Network Time Protocol, with synchronicity up to 1 ms

ensured at the start of each recording session. All recordings took place in a brightly-lit ward

environment, with several sources of fluorescent light, as well as natural light.

3.2. Video pre-processing

An overview of the processing steps involved in deriving estimates for the three vital signs

from the video signals is shown in the block diagram of figure 2. The following sections will

cover each of these steps in more detail.

The first step towards obtaining one-dimensional physiological signals for each colour

channel is to select an area of exposed skin on the subject’s face. The process of determining

the location of the patient’s face is challenging for video recordings in a real-life hospital

environment. Patients are usually active during dialysis (for example, talking on the phone)

and the clinical staff are constantly interacting with them. Many algorithms for face registration

have been reported in the literature, for example (Li and Jain 2011), which are generic in nature

and perform best with frontal images. In our implementation, 13 facial features (based on the

eyes, nose and mouth) are located using face registration algorithms described in Everingham

812



Physiol. Meas. 35 (2014) 807 L Tarassenko et al

Figure 1. Patient being monitored during a 4 h dialysis session in the Oxford Kidney
Unit. The chest belt, with recording device, is clearly visible. There is also a pulse
oximeter probe on the index finger of the right hand and a blood pressure cuff on the
left arm. The digital video camera is highlighted with a red circle. In the picture, the
patient’s face is obscured to preserve anonymity.

et al (2006) for frontal and profile faces. The facial features are subsequently tracked over

time using the Kanade–Lucas–Tomasi feature tracker (Sivic et al 2009).

The algorithms for estimating vital signs described in this paper not only depend on

the location of the patient’s face, but also on finding a background reference ROI. Once the

location of the patient’s face is computed for every video frame, algorithms for non-parametric

Bayesian image segmentation (Orbanz and Buhmann 2008) are used to segment the image

into three clusters: face, upper body and background (see figure 3 in section 4).

3.3. Spectral analysis using auto-regressive modelling

As with most of the previous work on the analysis of the non-contact PPG signal, we use

spectral analysis to identify the frequencies of interest in the signal. However, rather than using

Fourier transforms, we chose AR modelling to capture these frequencies. We have previously

applied AR modelling to the problem of identifying frequencies in noisy physiological signals,

for example the electroencephalogram (Pardey et al 1996) and the cardiotocogram (Cazares

et al 2001). More recently, we have used this method to extract the respiratory rate information

from PPG waveforms recorded with a pulse oximeter and finger probe (Fleming and Tarassenko

2007).

AR modelling looks for regular frequencies in a signal which is deemed to be stationary

over the period of analysis (Takalo et al 2005). As explained in section 2, the dominant

frequency in the reflected PPG waveform is the cardiac frequency, as a result of the changes in

colour and volume of superficial vessels with each cardiac cycle (see section 3.5). Breathing-

synchronous motion also modulates the amplitude of the PPG waveform, hence there is a
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Figure 2. Block diagram detailing the three algorithms used to calculate heart rate (HR),
breathing rate (BR) and SpO2 from the video sequence. For the details of pole selection
and filtering differences between HR(∗) and BR(+), please refer to table 1.

respiratory peak in the PPG waveform spectrum as well, but of much lower amplitude than

the cardiac peak (see section 3.6).

With an AR model, we assume that the value of the current sample, x(n), is a linear

combination of the p previous values of x(n) and the current value of e(n), where e(n) is a

white-noise Gaussian distribution. Here x(n) is the sampled value of the PPG time-domain

signal, where n is the sample number. Thus:

x(n) = −

p∑

k=1

akx(n − k) + e(n) (1)

where the summation is over k, from 1 to p (the model order). x is therefore a linear regression

on previous values of itself and e(n) is the error of the regression.

The AR model can also be re-formulated in terms of a system with a white-noise input

e(n) and an output x(n). In the domain of the z-transform, the transfer function H(z) relating

the output to the input, can be written as:
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H(z) =
1∑
akz−k

. (2)

The denominator of H(z) can be factored into the product of p terms:

H(z) =
zp

(z − z1)(z − z2) . . . (z − zp)
=

zp

P1P2 . . . Pp

. (3)

P1, P2, . . . , Pp are vectors extending from any point z in the complex plane to each of

the p poles of H(z), z1, z2, . . . , zp. These poles, each of which is either real or one of a

complex-conjugate pair, are the roots of the denominator of H(z). The poles above the real

axis correspond, in the frequency domain, to the spectral peaks of the signal being modelled,

with higher-magnitude poles corresponding to higher-magnitude peaks. The frequency f of

each peak is given by the phase angle θ of the corresponding pole:

θ = 2π f �t (4)

where �t is the sampling interval and θ is expressed in radians.

3.4. Pole cancellation

One of the challenges in making non-contact PPG imaging work in real-world settings is the

presence of aliased components from artificial light (e.g. fluorescent lights), which can be

found at frequencies similar to cardiac frequencies. This occurs because the image is sampled

at the camera’s frame rate (typically less than 30 Hz), which is much lower than the flicker

frequency of the artificial light, 100 Hz in Europe and 120 Hz in the US (Rea 2000).

We are proposing a novel differential technique based on pole cancellation in the z-

domain to suppress components unrelated to physiological information, i.e. to remove the

aliased components in the frequency band of interest. The poles corresponding to the aliased

components can be cancelled by removing them from the denominator. The new transfer

function H ′(z), without these cancelled poles in the denominator, will now represent the

transfer function for the light intensity reflected from the ROI (from the subject’s face, for

example) without the aliased components (Tarassenko et al 2013). The procedure is now

explained in more detail in the next section in the context of heart rate estimation.

3.5. Heart rate estimation

(i) We firstly identify a ROI within the subject’s face (such as the forehead or the cheek), to

be called ROIs.

(ii) We then identify a reference ROI outside the subject’s face (such as the background wall),

to be called ROIr.

(iii) For each video frame, we calculate the average colour intensity, typically for the green

colour, by spatial averaging over the ROI (typically 100 × 100 pixels) for ROIr and ROIs.

(iv) We then construct a de-trended time series of these spatial averages, x(n), for a time

window, the duration of which may typically be 15 s for heart rate estimation, for both

ROIs and ROIr. A window length of 15 s corresponds to approximately 20 cardiac cycles,

a sufficient number of cycles for accurate estimation, without introducing too long a

processing delay.

(v) The windowed PPG waveform is band-pass filtered to enhance the frequency of interest.

For heart rate estimation, the cut-off frequencies of the band-pass filter will typically be

0.7 and 5 Hz (corresponding to 42 and 300 beats min−1). These cut-off limits represent

the range of expected human heart rates.
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(vi) We fit an AR model to the time series derived from ROIr. At 12 frames s−1 (which is the

video sampling rate assumed throughout this paper) and for a window of 15 s, there are

180 samples from which to estimate the coefficients of the AR model in each window. The

choice of model order is a compromise between the requirement to identify the dominant

cardiac frequency (which favours a low model order), and the need to model the shape

of the spectrum between the cardiac frequency and the half-sampling frequency (which

favours a high model order). A model order of 9 was found to be a good compromise,

as it allows a pole to be fitted to the second harmonic of the cardiac frequency, when the

latter has sufficient energy (in sections of high-quality signals) or the noise spectrum can

be modelled with higher-frequency poles (in section of low-quality signals). For a more

detailed discussion of model-order selection, the reader is referred to Pardey et al (1996).

(vii) We then fit a separate AR model to the time series derived from ROIs in the same way as

for ROIr in step 6.

(viii) We identify the poles in the AR model for ROIr which are the poles corresponding to the

aliased components of the artificial light flicker frequency as these are also present in the

AR model for ROIs. The test of identity allows for these poles in ROIr and ROIs to be

within m degrees of each other (m = 1 or 2, typically). Pole cancellation in ROIs gives

the new AR model (heart rate information only), ROIk. For example, if the aliased flicker

causes two poles to be present at the same frequencies in both ROIs and ROIr, these poles

and their complex conjugates are cancelled in the transfer function for ROIs, which means

that ROIk is now a fifth-order model, given that ROIs is a ninth-order model.

(ix) The highest-magnitude pole between 0 Hz and the half-sampling frequency in the AR

model for ROIk is the heart rate pole. Its angle corresponds to the heart rate in beats min−1,

the latter being obtained by multiplying θ by 60 fs/2π , where θ is the angle in radians

and fs is the sampling frequency in Hz. Note again that the poles below the horizontal

axis in the pole-zero plot, which are disregarded in the analysis, are simply the complex

conjugates of the poles above the axis (Takalo et al 2005).

(x) The radius of that pole (the distance to it from the centre of the pole-zero plot) is an

indication of the amplitude of the heart rate component in the green channel for that

window.

(xi) We slide the 15 s window by one second and repeat steps 1–10 for the new window. The

use of a 1 s offset between consecutive windows allows us to derive heart rate estimates

(based on the previous 15 s of data) every second.

3.6. Respiratory rate estimation

Low-frequency amplitude variations of the camera reflectance signal x(n) from the subject

region of interest ROIs are mainly caused by breathing-related motion. The size of the region

of interest ROIs for respiratory rate estimation is usually smaller than that for heart rate

estimation (see figure 4 later in the paper). The breathing-related amplitude variations are

extracted with a separate band-pass filter (or low-pass filter, after de-trending), with an upper

cut-off frequency, for normal breathing, of 0.7 Hz (corresponding to 42 breaths min−1). The

band-pass or low-pass filter requires a narrow transition band so that the cardiac-frequency

component (at 1 Hz or above), which is a much stronger component in the camera reflectance

signal, is eliminated by the filtering.

Once the low-frequency respiratory component has been obtained from the output of the

band-pass filter, a separate AR model is applied to this time series, using a window of 30 s

duration, to identify the ‘respiratory rate pole’. However, even with the low frame rate of the
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Table 1. AR model parameters for heart rate and respiratory rate estimation.

Heart rate Respiratory rate

Frequency for analysis (Hz) 12 2
Cut-off frequencies (Hz) 0.7–5 0.7
Time window size (s) 15 30
AR model order 9 7
Pole cancellation range (◦) 2 –
Criterion for selecting Highest magnitude Lowest angle within the range
dominant pole pole whose angle equivalent to 0.1–0.7 Hz

is within [0, π ] and with magnitude
> 0.95 × magnitude
of highest-magnitude pole

camera (12 frames s−1), downsampling is required. For a respiratory rate of 15 breaths min−1

(i.e. 0.25 Hz), the phase angle θ of the respiratory rate pole will only be 0.3 radian (7.5◦). To

increase the angular resolution, the band-pass filtered video signal is downsampled to 2 Hz

(after low-pass filtering to eliminate the effects of aliasing). This increases the angle of the

pole corresponding to a respiratory frequency of 0.25 Hz (15 breaths min−1) to π/4 radians

or 45◦.

As with the AR model for heart rate estimation, the model order for respiratory rate

estimation, which is typically chosen to be 7, is a compromise between the two conflicting

requirements: the need to identify the dominant respiratory frequency (which favours a low

model order) and the need to model the shape of the spectrum between the respiratory frequency

and the half-sampling frequency. We define a sector of interest on the pole-zero plot from

18◦ to 126◦, i.e. 0.1 to 0.7 Hz (corresponding to a range of respiratory rates from 6 to

42 breaths min−1). Candidate poles within the sector of interest are those whose magnitude

is at least 95% of the magnitude of the highest-magnitude pole and the candidate pole with

the lowest angle is selected as the respiratory rate pole. This is the method first described by

Fleming and Tarassenko (2007) for estimating the respiratory rate from the PPG waveform

recorded with a pulse oximeter and finger probe.

Table 1 is a summary of the parameters used with the heart rate AR model (middle column)

and the respiratory rate AR model (right-hand column).

3.7. Maps of spatial distribution of heart rate and respiratory rate information

As explained in section 3.1, the angle of the pole in an AR model gives the frequency of that

spectral peak; the magnitude (i.e. its radius, which can vary between 0 and 1) indicates the

strength of that frequency component. The dominant pole in the cardiac AR model (order 9)

and the dominant pole in the respiratory AR model (order 7), selected using the criteria shown

in table 1, are the poles corresponding to the cardiac frequency and respiratory frequency,

respectively. The magnitude of the dominant pole for each model in small regions of the video

image (typically 25 × 25 pixels) can be displayed graphically across the entire image (for

example, using colour coding) to show the relative strength of that frequency component in

different regions of the image (Villarroel et al 2013). This will allow us to determine whether

the colour and volume changes during the cardiac cycle are uniform across the subject’s

face and in which areas of the face and neck is the breathing-synchronous motion most

prominent.
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3.8. Oxygen saturation

With conventional (transmission-mode) pulse oximetry, in which light is shone through a body

segment such as a finger or earlobe, only that part of the signal directly related to the inflow

of arterial blood into the body segment, the cardiac-synchronous pulsatile component, is used

for the calculation of oxygen saturation. It is then assumed that the increase in attenuation

of light is caused only by the inflow of arterial blood into the body segment, and the oxygen

saturation of the arterial blood is then estimated from the relative amplitudes of the cardiac-

synchronous pulsatile component at the two wavelengths. The approach, which is based on

the Beer–Lambert law, is sometimes known as the ‘ratio of ratios’ method. The equation for

oxygen saturation is given by:

SpO2 = A − B
(Iac/Idc)λ1

(Iac/Idc)λ2

(5)

where A and B are empirically−determined coefficients, Iac and Idc are respectively the

amplitudes of the pulsatile (ac) and dc components of the transmitted (or reflected) light

at wavelengths λ1 and λ2. In conventional pulse oximetry, the two wavelengths λ1 and λ2

are usually chosen to be 660 nm (red) and 940 nm (near infra-red). Data from calibration

experiments are used to derive population-based estimates for A and B.

The ambient light used in our non-contact vital sign monitoring studies has most of its

energy in the visible part of the spectrum, and visible light only has limited penetration in

skin tissue. However, forehead vascularization is supplied from the supra-orbital artery and

forehead reflectance pulse oximetry has demonstrated better correlation with arterial blood gas

determination of oxygen saturation than standard finger-probe transmittance pulse oximetry in

a number of studies (see for example Yönt et al (2011) and Nesseler et al (2012)). We therefore

assume that the ac values in equation (5) will still depend on arterial oxygen saturation, even

in our measurements of these quantities with the video camera 1 m away from the patient.

A final limitation to note is that the three colour sensors in RGB cameras have overlapping

broad-band, rather than narrow-band, spectral responses.

Despite these limitations, we analysed the sections in which the camera-derived estimates

of heart rate, computed as described in section 3.5 above, agreed with the reference heart rate

values to estimate the ac and dc quantities of equation (5) for the red and blue wavelengths. The

dc value was obtained by calculating a 10 s moving average and the ac value was estimated by

averaging the peak-to-trough heights in each 10 s window. As before, we processed the ROIs

from the patient’s faces during periods in the dialysis sessions for which patient motion was

minimal. In each case, we estimated the A and B coefficients for each subject in equation (5)

by obtaining ‘ground-truth’ SpO2 values from the pulse oximeter attached to the finger, and

then finding the best-fit linear equation.

4. Results

4.1. Clinical study

A total of 46 patients had their vital signs double-monitored (conventional monitoring and

camera recording) during 133 dialysis sessions in the Oxford Kidney Unit. The demographics

and physical characteristics of these patients are given in table 2.

The main goal of our study was to capture the changes in vital signs which occur

during a typical 4 h dialysis session without affecting patient care or behaviour. Patients

were mostly awake throughout the dialysis sessions, although there were occasional periods

of sleep. During wakefulness, there was no restriction on patient activity, which included
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(a) (b)

(d)

(e)

(c)

Figure 3. Region of interest selection: (a) original image frame, with the red
square representing face registration; (b) computed image segments, red: face; blue:
background; green: upper body; (c) regions of interest selected, red square: subject
(ROIs); blue square: background (ROIr); (d) 15 s time series extracted for the green
channel colour intensity from ROIs; (e) 15 s time series extracted for the green channel
colour intensity from ROIr.

Table 2. Characteristics of dialysis patients in clinical study of non-contact vital sign
monitoring. Where relevant, ± one standard deviation is given in brackets after the mean
value for that variable.

Age (yrs) 64.7 (±15.3)
Gender (males) 36 (78.3%)
Pre-dialysis weight (kg) 78.8 (±17.1)
Post-dialysis weight (kg) 77.0 (±16.8)
Height (cm) 171.4 (±8.9)
Body Mass Index 26.5 (±5.4)
Length on dialysis (months) 30.2 (±23.3)

talking (sometimes on mobile phones), listening to music or watching television. As a result,

there were regular occurrences of patient motion, including changes of posture, which caused

major discontinuities in the reflectance signals recorded by the video camera.

As outlined in section 3.2, two types of ROIs (see figure 3) were identified for every video

frame.

• A ROIs on the patient’s skin, preferably the face, for which the heart rate was estimated

by analysing the varying intensity of the reflected light.
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(a)

(b)

(c)

(d)

(e)

Figure 4. 15 s time series for the green channel colour intensity (recorded without any
ambient light flicker) averaged from five regions of interest (ROI) with increasing pixel
sizes: (a) 10 × 10, (b) 25 × 25, (c) 50 × 50, (d) 100 × 100 and (e) 150 × 150 pixels. The
time on the horizontal axis represents the time since the start of dialysis. Heart rate can
be extracted from the larger regions of interest, whereas changes in the reflected light
intensity as a result of breathing are more prominent in the smaller regions of interest.

• A background region of interest (ROIr), used to minimize the effects of external lighting

sources such as fluorescent lights (see section 3.4).

The size of the ROI to be selected is dependent on the physiological information we wish

to extract. Figure 4 shows the mean colour intensity for the green channel for different ROI

sizes, from 10 × 10 to 150 × 150 pixels. Heart rate can be extracted from the bigger ROIs,

whereas changes in intensity due to breathing are more prominent in smaller ROIs.

Pole cancellation results. Figure 5 shows the results of applying the pole-cancellation

algorithm to a 15 s section of green-channel camera PPG data in which there is a strong

aliased component at around 4 Hz as a result of artificial light flicker. The top two plots in

the figure show the 15 s windowed time series for the 100 × 100 pixel ROI (ROIs) recorded

from the face of one of the subjects in the clinical study (green channel) and, just below it,

the windowed time series for the equivalent ROI from the background behind the subject, the

‘reference region’ (ROIr). In both cases, the time series are shown after de-trending, band-pass

filtering (between 0.7 and 5 Hz) to enhance the cardiac information and windowing prior to

spectral estimation. It is clear from inspection of the two time series that a common component

dominates the time-domain signal; this component has 20 peaks between t = 6125 and 6130 s,

i.e. 4 peaks s−1 or 4 Hz.

We fit ninth-order AR models to both ROIs and ROIr. The pole-zero plots are shown on

the right-hand side of the figure and the corresponding AR spectra on the left-hand side. In

820



Physiol. Meas. 35 (2014) 807 L Tarassenko et al

(a)

(b)

(c)

(e)

(g)

(d)

(f)

(h)

(i)

Figure 5. From the top: (a) 15 s time series for the green channel colour intensity reflected
from the subject’s face and (b) the equivalent time series for the light reflected from
the background behind the subject. In each case, the time series has been de-trended,
band-pass filtered and windowed. The figure then splits into two: on the right-hand side
(from the top) are shown (d) the pole-zero plot for the time-series data from the subject’s
region of interest, (f) the pole-zero plot for the time-series data from the background
region of interest and (h) the pole-zero plot (for the subject) after pole cancellation. On
the left-hand side are shown, in (c), (e) and (g), the equivalent AR spectral plots (model
order 9). The lowest plot (i) is the reconstructed waveform (at the cardiac frequency)
using a finite white-noise sequence to drive the AR model after pole cancellation (model
order 2).

both cases, there is a zero at (0.0), a pole on the real axis and four poles, corresponding to the

four spectral peaks (the other four poles being the mirror images of these poles below the real

axis). The strong aliased component has split into two poles, pr3
and pr4

, in the reference AR

model, and these are also found, at approximately the same angle, in the subject AR model

(ps3
and ps4

). There is another, lower-amplitude, aliased component at approximately 2.7 Hz

in both models (pr2
and ps2

). This only leaves the lowest-frequency pole, pr1
in the reference

model, which occurs at approximately half the frequency of pr2
(sub-harmonic at 1.4 Hz), and

ps1
in the subject model, at 1.2 Hz.
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Figure 6. Heart rate estimates from a 10 min section of data recorded during a dialysis
session. The second-by-second estimates derived from the video camera PPG data (green
channel) as explained in the text are shown in red; the synchronized 4 beat averages
obtained from a standard finger probe and pulse oximeter (reference values) are shown
in black.

Hence ps4
, ps3

and ps2
can be cancelled in the subject model, leaving only ps1

as the

‘cardiac pole’, corresponding to a frequency of 1.2 Hz, i.e. a heart rate of 72 beats min−1.

Finally, the lowest plot in the figure shows the time-domain waveform reconstructed from the

z-domain transfer function for the AR model of order 2 corresponding to the original transfer

function after pole cancellation in the denominator. It is clear that this is a signal at the cardiac

frequency, which could not be seen in the original time-domain signal at the top of the figure,

even though the latter is shown after band-pass filtering between 0.7 and 5 Hz. The signal is not

a pure sinewave because the AR model is driven by a finite-length Gaussian noise sequence.

Heart rate results. The angle of the dominant pole in figure 5 (ps1
) gives the cardiac phase

angle for that 15 s section of video camera data. This angle is computed from the AR model

for each consecutive window (with each window being offset from the previous one by 1 s).

Figure 6 shows, in red, the heart rate estimates derived second-by-second for a 10 min

section of reflectance PPG data (green channel) for a typical patient in our clinical study.

These estimates can be visually compared to the 4 beat average (reference) heart rate (in black)

obtained from the pulse oximeter attached to the patient’s right index finger. For sections such

as this one, during which there is little patient movement, the correlation between the two

heart rate values is very high. In fact, the mean absolute error (MAE) between the two sets of

estimates (approximately 3 beats min−1) is similar to the MAE between the heart rate values

derived from the pulse oximeter/finger probe combination and from the pulse oximeter/earlobe

probe combination (Villarroel 2014).

The lower plot in figure 7 shows the camera-derived estimate of heart rate (in red)

superimposed on the values obtained with the pulse oximeter (in black) for the entire dialysis

session for that patient (just under 4 h). The upper plot shows the intensity values for the 100 ×

100 pixel ROI (green channel) from the patient’s ROI. The lower plot provides visual evidence

of good agreement between camera-derived estimates and reference values, whenever the

upper plot indicates a steady-state section with little or no patient movement, as between t =

61 and 71 min (the 10 min section shown in figure 6). In contrast, when there is a period of
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(a)

(b)

Figure 7. Heart rate estimates for an entire dialysis session. Top: intensity values in
analogue-to-digital units (ADU) for the reflected PPG signal from the region of interest
in the patient’s face. Bottom: in red, second-by-second estimates derived from the camera
PPG data (green channel); in black, the 4 beat averages obtained from a standard finger
probe pulse oximeter (reference values).

high patient activity, such as occurs for the half-hour period between t = 85 and 115 min, the

camera-derived estimates are no longer accurate.

Respiratory rate results. The pre-processing carried out to enhance the breathing-

synchronous changes in the camera reflectance signal is similar to that applied to extract

the heart rate: de-trending, band-pass filtering and windowing, except that the pass-band of the

filter extends from 0.1 to 0.7 Hz and the window is twice the length of that used for heart rate

estimation (i.e. 30 s). In addition, the pre-processed green reflectance signal is downsampled

to 2 Hz to increase the angular resolution in the pole-zero plot.

For each 30 s window, we identify candidate poles whose magnitude is at least 95% of

the magnitude of the highest-magnitude pole. The candidate pole with the lowest angle is

selected as the respiratory rate pole (see section 3.6). The angle of this pole (in radians) is then

converted to a respiratory rate in breaths min−1 by multiplying it by 60 fs/2π . The respiratory

rate pole is thus estimated from the seventh-order AR model for each consecutive 30 s window

(with each window being offset from the previous one by 5 s).

Figure 8 shows, in red, the respiratory rate estimates derived every 5 s from the breathing-

synchronous changes in amplitude of the reflectance PPG signal (green channel), for the

same 10 min section as in figure 7. These estimates, in red, follow broadly the respiratory

rate estimates derived from the chest belt (in black). At this point, the patient is asleep and

experiencing an episode of periodic hypoventilation, as indicated by the estimate from the

chest belt decreasing from about 14 to 9–10 breaths min−1 on two occasions, at approximately

62 and 63 min. In fact, it can be argued that the camera-based estimates are more accurate

than those from the belt as they continue to track the cyclical pattern associated with periodic

hypoventilation, albeit at a reduced amplitude, throughout the 10 min section.

This is confirmed by figure 9 which shows a time plot of both sets of respiratory estimates

(again in red and black—lower plot) for the entire dialysis session, with the green-channel

reflectance PPG signal at the top and the heart rate estimates in the middle plot for comparison.

Outliers in the camera-derived estimates of respiratory rate are removed whenever they are

more than two standard deviations outside a 10 min running mean of the valid respiratory rate

estimates; similarly outliers in the belt-derived estimates are not shown if they are more than
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Figure 8. Respiratory rate estimates from a 10 min section of data recorded during a
dialysis session. The estimates derived from the breathing-synchronous changes in the
amplitude of the reflected PPG signal (green channel from the RGB camera) are shown
in red; the respiratory rate estimates derived from the thoracic expansion sensor in the
chest belt are shown in black.

(a)

(b)

(c)

Figure 9. Respiratory estimates for an entire dialysis session. (a) Intensity values for the
reflected green signal from the region of interest in the patient’s forehead, (b) heart rate
estimates, (c) in red: estimates derived from the breathing-synchronous changes in the
amplitude of the reflected PPG signal (green channel); in black: the estimates derived
from the chest belt.

two standard deviations outside a 10 min running mean of valid estimates or the belt signal

quality index provided by the manufacturer is below threshold (also set by the manufacturer).

Inspection of the lower plot of figure 9 reveals that the camera-derived estimates of

respiratory rate are much more consistent that those derived from the thoracic sensor in the

belt. This is further demonstrated by the lowest plot in figure 10, for which respiratory rate

estimates are only ‘trusted’ if the reference values are within two standard deviations of their

10 min running mean and the belt signal quality index is above threshold. This shows that

824



Physiol. Meas. 35 (2014) 807 L Tarassenko et al

(a)

(b)

(c)

Figure 10. Same as figure 9, except that the respiratory rate estimates are only shown
if the ‘reference values’ from the chest belt are within two standard deviations of their
10 min running mean and the manufacturer’s signal quality index for the belt is above
threshold. This leads to significant gaps in the record.

(a) (b) (c)

Figure 11. (a) Patient resting while listening to music through headphones during
dialysis session; (b) image colour-coded according to strength of cardiac-frequency
information (radius of cardiac AR pole); (c) image colour-coded according to strength
of respiratory-frequency information (radius of respiratory AR pole).

there are multiple sections during which the belt-derived estimate cannot be considered to be

a valid reference. This is not entirely surprising as the chest belt is affected by the patient’s

frequent changes in posture (from lying horizontally on one side to the other, to lying in the

supine position or sitting upright). We would therefore argue that the respiratory rate estimates

derived every five seconds from the breathing-synchronous changes in the amplitude of the

non-contact PPG signal are more accurate than the so-called reference values.

Heart rate and respiratory rate maps. The maps representing the strength of the heart rate

and respiratory rate frequency components for a typical patient in our clinical study are shown

in figure 11. These maps have been constructed by identifying the dominant pole in the cardiac

and respiratory AR models for all the 25 × 25 regions in the image and colour-coding the

radius of the dominant pole as shown in the figure. Since these are dominant poles, the colour

range only occupies a limited range of values, with pole radii lying between 0.95 and 1.0.

As expected, the cardiac-synchronous changes, as given by the spatial distribution of

the highest-magnitude pole within the 0.7 to 5 Hz frequency band, are equally strong over

the entire face, except around the eyes (the patient is wearing glasses) and nostrils. The
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highest-magnitude respiratory pole, within the 0.1 to 0.7 Hz frequency band, can be found

in the upper thorax region (as well as on the edge of the pillow—as a result of the patient’s

head movement with breathing). However, there are also high-strength poles in the patient’s

forehead and in regions close to the nose, indicating where the breathing information is present

in the image of the patient’s face.

Oxygen saturation results. Oxygen saturation (SpO2) is estimated by measuring the

amplitude of the ac and dc components of the reflectance signal for the red and blue colour

channels, as required by equation (5) (the ratio of ratios method). Building on the signal

processing for heart rate estimation, we band-pass filter (from 0.7 to 5 Hz) the red and blue

signals acquired from the subject’s ROI. It is even more important for oxygen saturation

estimation to find sections of camera data during which there is minimal patient movement. In

addition, automatic camera parameters such as the white balance, the gain, the brightness and

the camera shutter speed should ideally remain approximately constant as changes in these

parameters may affect the intensity of the two colour channels differently over time. Finally,

it is necessary to find sections in which there are changes in SpO2, which means, in practice,

identifying occurrences of hypoventilation in our dialysis patient population.

Figure 12 shows a stable 100 s section of data, centred on t = 800 s and indicated by the

vertical red bars, during which a dialysis patient (different from the one whose data are shown

in figures 6–10) has two desaturations below 90% either side of a lesser desaturation.

The panels in figure 13 indicate the results of processing the band-pass filtered signals

at the red and blue wavelengths. The dc values are simply the average intensities of the raw

signals for the two colour channels during each 10 s window. The ac values (averages of the

peak-to-trough heights for each window and shown in the top two panels) are normalized by

dividing them by the corresponding dc value for that colour channel, enabling the ratio of

ratios of equation (5) to be computed. The A and B coefficients in that equation are estimated

by obtaining the ‘ground-truth’ SpO2 values from the pulse oximeter and then finding the

best-fit linear equation for that 100 s section (lower left panel). The ratio of ratios over the

87%–95% SpO2 range of that section is noisy (coefficient of determination, r2 = 0.64), but

its time evolution is clearly correlated with the changes in oxygen saturation during the 100 s.

The close correspondence between the estimated values and the reference SpO2 values from

the pulse oximeter is shown in the bottom right-hand panel, where the values of the ratio of

ratios over time are given by the magenta crosses and the grey waveform represents the SpO2

values measured at the same time by the finger-attached pulse oximeter.

5. Discussion

Most of the previous work on non-contact video-based vital sign monitoring has tended to

rely on normal ambient lighting (occasionally sunlight) rather than strong fluorescent lights as

in clinical environments. All the work has also been carried out on healthy human volunteers

under controlled conditions, over narrow ranges of heart rates and respiratory rates.

We have found in our clinical studies that the 100 Hz flicker frequency component from

strong artificial lighting can be aliased down to (varying) frequencies which may be close to

the heart rate. We have shown in this paper how the use of AR methods to model both a ROI

(for example, the forehead) and the background can eliminate these unwanted components. A

further advantage of AR models is that they are not affected by quantization as are discrete

Fourier transforms; thus accurate estimates of heart rate and respiratory rate can be obtained

from the models, unlike FFT-based methods which give significant quantization errors at
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(a)

(b)

(c)

Figure 12. The top plot (a) shows the RGB reflectance data stream from a 100 ×

100 pixel region of interest recorded during one of the dialysis sessions. The vertical
black lines either side of t = 800 s indicate a 100 s stable section during which
the patient experiences three cyclical desaturations; see SpO2 values from the pulse
oximeter attached to the finger, in the middle plot (b). The lower plot (c) also indicates
that the shutter time is relatively constant during these 100 s, and hence there is no
real change of exposure during that time. The baseline value for the shutter time was
2 147 486 ns. The offset from this baseline value is shown on the vertical axis.

typical frame rates. It should be remembered, however, that both AR models and FFT-based

methods rely on the use of sliding windows. Hence there is an in-built latency in the estimation

of vital sign values: a delay of 7.5 s for the estimation of heart rate as a result of using 15 s

windows, and a delay of 15 s for the estimation of respiratory rate with a 30 s window. In

some clinical scenarios, for example the detection of apnoea, the effect of this in-built delay

will need to be taken into account.

Our analysis of the reflectance signals, mainly from the green channel, leads us to

agree with the latest hypotheses that the camera PPG waveform, which is predominantly a

cardiac signal, arises from cardiac-synchronous colour changes combined with blood volume

pulsations. We have also observed, however, that a small proportion of the cardiac-synchronous

signal is due to the motion of face landmarks in time with the heart beat (not shown).

Most of the authors in the literature have used HRV to estimate respiratory rate in healthy

young adult volunteers. This is not likely to translate well to typical hospital or chronic disease

patients, who are elderly and have multiple co-morbidities. We therefore focused on extracting

the breathing-synchronous changes in PPG amplitude, again in (smaller) ROIs of the green

reflectance signal. We showed that this approach led to respiratory rate estimates which were
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Figure 13. The various steps required to estimate oxygen saturation from the changes
in reflectance at the red and blue wavelengths, for the 100 s section of camera data
indicated by the vertical red lines in figure 12. The top two panels show the ac values
(computed over sliding 10 s windows) for the two wavelengths, with the two panels
below showing the corresponding dc values. From these the ratio of ratios of equation (5)
can be derived and correlated, for that 100 s section, with ground truth from the pulse
oximeter. The bottom-right panel shows that the calibrated ratio of ratios is able to track
the changes in SpO2 over time.

more accurate than the so-called reference values (derived from a thoracic expansion sensor

in a chest belt) in our clinical studies.

There is a further factor which needs to be considered here: the activities of daily living

modify the very parameter (respiratory rate) which is to be estimated. For example, the
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activities of engaging in phone conversation, moving or and interacting with the clinical staff

can all change the value of the patient’s respiratory rate, for variable amounts of time (for

example, because of the influence of exertion on the need for gas exchange). The advantage of

having camera data for estimating respiratory rate is that it provides knowledge of the patient’s

behaviour (and hence of the possible effect on respiratory rate), unlike the traditional methods

of vital sign monitoring using wearable sensors.

The respiratory rate maps tended to confirm the hypothesis that motion is the main cause

of the breathing-synchronous changes in the reflectance PPG signal recorded by the remote

camera: the highest-magnitude respiratory pole can be found in the upper thorax region

(as well as on the edge of the pillow). However, there are also high-strength poles in the

patient’s forehead and in regions close to the nose. It may also be the case that there is some

influence by the phenomena which give rise to the amplitude modulation of the contact PPG

waveform (Meredith et al 2012). Firstly, inspiration results in a momentary reduction in stroke

volume and hence a corresponding reduction in cardiac output, which in turn will reduce the

amplitude of the PPG waveform. Secondly, there will be tissue blood volume changes during

the respiratory cycle as a result of the changes in thoracic pressure: a reduction in intra-thoracic

pressure during inspiration is transmitted through the venous system, effectively siphoning

blood from the vascular bed within the tissue.

The validation of any new method of deriving oxygen saturation is hampered by the

difficulties associated with trying to obtain SpO2 values over the most clinically relevant

range, from 80% to 95%. The significant minority of male dialysis patients with intermittent

hypoventilation provided us with desaturation data which enabled us to circumvent this

problem. We showed that adaptation of the method of ratio of ratios does have promise

for the estimation of SpO2 from camera-derived signals using two colour channels but the ac

component amplitude is only marginally greater than the camera noise level. This has led us

to investigate the possibility of using higher-resolution camera (12 bits) for our next clinical

studies.

The issue of SpO2 calibration remains a challenge fully to be solved. Angle changes

caused by subject motion, as well as changes in the spectrum of the incident illumination, will

affect the amplitude of the ac signal for each of the two colour channels differently, and it is not

clear yet how this issue may be resolved. There may be alternative methods of processing the

reflectance signals from each channel, and most clinical scenarios only require the detection

of changes in SpO2 values rather than an accurate knowledge of the absolute value of oxygen

saturation at any one time.

Throughout this study, the red and blue channels have been used to detect changes in

SpO2, as the difference between the average absorptions of oxy- and deoxy-haemoglobin

is greatest within the range of wavelengths that characterize the spectral responses of these

channels. Nonetheless, future work in this field is likely to benefit from the additional use of

the dc and ac values of the green channel, which could potentially be used as a normalizing

factor.

6. Conclusion

In this paper we have described the results from the use of our novel methods for non-contact

vital sign monitoring in a clinical environment. There are specific challenges which we have

had to overcome in order to acquire non-contact vital sign data from patients in the clinic who

are double-monitored, rather than from healthy volunteers. Full quantitative results for heart

rate and respiratory rate for all the patients in our dialysis study, against reference values, will

be presented elsewhere (Villarroel 2014).
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We are now extending the use of our novel non-contact sensing algorithms to other clinical

studies where there is an advantage in non-contact estimation of vital signs, for example in the

monitoring of the vital signs of premature infants in neonatal intensive or high-dependence

care. In addition, cost-effective solutions for non-contact vital sign monitoring, cheaper than

conventional contact monitoring, may be highly appropriate for patients being cared for in

single hospital rooms or at home. Finally, non-contact vital sign monitoring could also be

applied to other inter-disciplinary fields, such as human–machine interaction analysis.
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