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Abstract— Current monitoring systems available to track
changes in the vital signs of patients (such as heart rate,
respiratory rate or peripheral oxygen saturation) require
contact with the subject. Most patients requiring regular
monitoring find the probes difficult to wear over prolonged
periods of time. Research in non-contact vital sign monitoring
has recently expanded through the use of off-the-shelf video
cameras; nevertheless, most of the current work in video-based
non-contact vital sign monitoring has so far been performed
over short time periods (typically up to a couple of minutes),
under tightly controlled conditions with relatively still and
healthy volunteer subjects.

Using an off-the-shelf camera, we have been able to compute
estimates of heart rate and respiratory rate, and also detect
changes in peripheral oxygen saturation in a real hospital
scenario, without interfering with regular patient care. Videos
were recorded for 369.1 hours from 40 patients undergoing
haemodialysis treatment in the Renal Unit of the Churchill
Hospital in Oxford, UK. The mean absolute error between the
heart rate estimates from the camera and the average from
two reference pulse oximeters (positioned at the finger and
earlobe respectively) was 2.8 beats per minute for over 65% of
the time, which was comparable to the error between the two
reference pulse oximeters. The mean absolute error between the
respiratory rate estimates from the camera and the reference
values (computed from the Electrocardiogram and a thoracic
expansion sensor - chest belt) was 2.1 breaths per minute for
over 69% of the time for which the reference signals were
valid. By calibrating the camera data with the reference pulse
oximeters, changes in peripheral oxygen saturation could also
be tracked during time periods with minimal patient motion.

I. INTRODUCTION

The measurement of the standard vital signs such as heart

rate (HR), respiratory rate (RR), peripheral oxygen saturation

(SpO2), blood pressure and temperature is a core component

of the physical assessment of most patients [1]. Of these

vital signs, heart rate, respiratory rate and SpO2 are of main

interest for this paper.

Heart rate is a measure of the rate at which the heart

beats. An appropriate monitoring of the heart’s pumping

mechanism is of vital importance as with each heart beat,

blood is sent throughout the body carrying gases, nutrients,

hormones and other substances used in metabolic processes

by the cells [2].
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Respiratory rate is recognised as an important vital

sign since it has been found to be predictive of lower

respiratory tract infections [3], the evaluation of the severity

of pneumonia [4], a risk factor for unplanned hospital

readmissions [5] and mortality risk assessment for paediatric

patients in intensive care units [6].

Oxygen is a chemical substance essential to the

functioning of each cell in the human body and, therefore,

necessary to sustain life. It is important to monitor if

organs are receiving a sufficient supply of oxygen as it is

being delivered to all the body parts. The measurement of

blood oxygenation, also known as oxygen saturation, is an

important indicator of a patient’s health. A prolonged lack of

oxygen can rapidly cause permanent damage to cell tissue,

leaving patients with devastating neurological handicaps and

has the potential to be life-threatening, if cells having high

metabolic rate in organs such as the brain, heart or the central

nervous system are damaged [2], [7].

Conventional patient monitoring systems require a probe

to be attached to the patient, such as the finger or ear in

a pulse oximeter or on the chest in an Electrocardiogram

(ECG) monitor. These have the potential to cause skin

irritation, increasing the risk of infection and increasing

the costs of implementing and maintaining new technology.

The ideal technology to estimate vital signs would involve

sensors with no direct contact with the patient (“non-contact

sensing”). This paper proposes algorithms for the remote

monitoring of heart rate, respiratory rate and identifying

changes in SpO2 using a standard colour camera and ambient

light.

The paper is organised as follows. A summary of the

clinical study is presented in the next section, followed by

the description of the proposed methods for non-contact

vital sign monitoring. Subsequently, the evaluation of these

algorithms against the reference signals are presented.

Finally, the paper ends with a discussion of the applicability

of non-contact vital sign monitoring in the clinic.

II. CLINICAL STUDY

The dataset for this paper was recorded from patients

undergoing haemodialysis treatment in the Renal Unit of

the Churchill Hospital in Oxford. The research application

was submitted to the Oxford University Clinical Trials

and Research Governance (CTRG) (reference number

11/SC/0207).

Dialysis is a process by which blood is removed

from the patient, filtered, and then replaced back into

the body. Haemodialysis, together with kidney transplant



Fig. 1. A typical dialysis data collection set-up with the red circle showing
the location of the video camera.

and peritoneal dialysis, are collectively known as renal

replacement therapy (RRT) methods. These methods are

commonly used in the United Kingdom (UK) for the

treatment of end stage renal disease (ESRD), the last stage

of chronic kidney disease occurring when the kidneys can

no longer meet the daily demands to remove waste products

and water from the body [8].

According to the last report from the UK Renal Registry

[9], there were 888 patients per million population receiving

renal replacement therapy in 2013, a 69% increase from

2000. Although kidney transplant is the most common

treatment (52%), haemodialysis accounts for 41.6% of the

cases and peritoneal dialysis for the rest. ESRD is a

predominantly adult disease, the median age of patients

receiving RRT being 58.4 years (haemodialysis 66.9 years,

peritoneal dialysis 63.7 years and transplant 52.8 years) [8].

One of the advantages of recording data from patients

undergoing haemodialysis treatment is that, in a relatively

short amount of time (a typical dialysis session lasts 4 hours),

these patients experience a wide range of physiological

values. This therefore helps to validate vital sign estimation

algorithms.

Figure 1 shows the typical recording set-up during

a dialysis session. Using technical information supplied

by the manufacturer, custom software was developed for

the real-time acquisition of video from a high-quality

5 megapixel camera (Grasshopper2 GigE Point Grey

Research, Richmond, Canada), positioned approximately 1m

away from the patient. Raw uncompressed video data with

8-bits-per-pixel resolution was recorded at a sampling rate

of 12 frames per second.

Conventional monitoring was provided by two devices:

a Bluetooth pulse oximeter (Model 4100, Nonin Medical,

Plymouth, MN, USA) and Hidalgo’s Equivital EQ02

LifeMonitor (EquivitalTM, Hidalgo, Cambridge, UK). These

reference devices were chosen as the primary means to

correlate the results of the analysis with the data extracted

from the video recordings. The Nonin pulse oximeter, a

device that is often used in patient care, was attached to

the patient’s finger tip recording a 4-beat average heart rate

and SpO2, both at 3Hz.

The Equivital EQ02 LifeMonitor is a FDA 510(k) certified

ambulatory multi-parameter vital signs telemetry device

intended for the monitoring of adults in hospital care

facilities, the home, workplace, and alternate care settings

[10]. It consists of a chest belt harness, ECG electrodes,

a thoracic expansion sensor, and a separate pulse oximetry

module which connects to the patient’s ear lobe. It records a

two-channel ECG at 256 Hz, a respiration signal at 25 Hz,

and reports heart rate and SpO2 estimates every 5 seconds.

As shown in table I, a total of 104 dialysis sessions were

recorded from 40 patients. The total length of video for all

sessions is 369.1 hours, with the average session lasting 3.5

hours. In dialysis studies, the patient population is usually

comprised of elderly patients [11], [12], hence the average

age for a patient in this study was 64.7 years. The majority

of patients were males (78 %) with a mean body mass index

(BMI) of 26.5. At the time of writing, out of the 40 patients,

18 have died (45%), 18 continue to receive haemodialysis

treatment in the hospital (45%) and 4 patients have received

a kidney transplant (10%).

III. METHODS

A. Reference signals

As discussed in the previous section, the reference heart

rate estimates were provided by two transmission-mode pulse

oximeters, one located on the finger and the other on the

ear lobe. Most of the studies reported in the literature use

only one pulse oximeter as a reference device, recording

the photoplethysmographic (PPG) waveform and heart rate

estimates from a single body site. There are limited studies of

multi-site PPG recordings. Allen et al [13] suggested that, by

studying pulses obtained simultaneously from different sites,

important information about the peripheral circulation can be

analysed.

Using the estimates from more than one pulse oximeter

introduces physiological and non-physiological factors to

be considered that can affect the timing and values of

the two recorded reference values. Consequently, a direct

TABLE I

POPULATION CHARACTERISTICS SUMMARY FOR THE STUDY.

Item Value

Total number of sessions 104
Total number of patients 40
Total video length 369.1 hours

Average video length of a session1 3.5 (±0.8) hours

Deceased patients2 3 18 (45%)

Receiving haemodialysis treatment2 18 (45%)

Patients with kidney transplant2 4 (10%)

Age (yrs)1 64.7 (±15.3)

Gender (males)2 36 (78.3%)

Height(cm)1 171.4 (±8.9)

Dry Weight(kg)1 77.1 (±15.3)

Body Mass Index1 26.5 (±5.4)

1 mean (± std)
2 N (percentage from total number of patients)
3 Number of patients who died in the curse of the study: 11



comparison (on a sample-by-sample basis) of the heart rate

estimates between the camera and each of the two pulse

oximeters can potentially be affected by factors not only

caused by physiology but also by the recording set-up

and each of the manufacturer’s processing context, leading

to incorrect analysis. Furthermore, the measurement of a

physiological process implies some degree of error; when

two sensing devices exist, neither provide an absolute correct

measurement. Since the true value is not known, the mean

of the two measurements is usually taken as a representative

value [14].

The heart rate estimates from the two pulse oximeters

were found to be within 2 beats per minute on average.

Both time series have a high positive correlation and are in

good agreement. Therefore, for the analysis in this paper, a

reference heart rate time series is computed from the average

of the reported values from the two pulse oximeters. This

“ground truth” reference heart rate is used to compare the

estimates derived from the camera.

Two simultaneous respiratory rate estimates are produced

by the Hidalgo kit, the first one computed from the chest

belt, and the second using the ECG. These estimates were

found to have large errors unrelated to physiology and

were not suitable as reference values to be compared with

the respiratory rate estimates computed from the camera.

Therefore, new respiratory rate estimates were computed

from the ECG and chest belt using current state-of-the-art

algorithms. Following published literature [15], [16], the

“ground truth” reference respiratory rate was taken as the

average of all the estimates from these algorithms that do

not differ for more than 2 breaths per minute.

Similarly to the heart rate estimates, a “ground truth”

reference SpO2 was computed from the average of the

reported values from the two pulse oximeters.

B. Video analysis

Most of the previous work in non-contact vital sign

monitoring has been performed over short time periods,

under tightly-controlled conditions with healthy volunteers.

While studies in controlled environments can potentially

produce usable data, the robustness of algorithms for

estimating the values of vital signs is challenged when

processing video data recorded from subjects under real-life

conditions.

Figure 2 shows some examples of typical patient behaviour

during the recordings. One of the goals of our study was

not to interfere with regular patient care. As a result, the

video recordings were affected by several external sources

of distortion, such as:

• Regular interaction between the patient and the clinical

staff

• Camera angle changed to allow for patient care ( see

figure 2c)

• Patient changing position during the 4-hour recording

(a regular occurrence as in figure 2b)

• Patient torso or head moving out of camera frame

(figure 2d)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Examples from typical dialysis sessions where the patient is:
(a) correctly in frame, (b) moving freely with limbs obstructing the frame,
(c) being filmed with the camera at an angle, (d) sleeping with torso half
frame, (e) reading the newspaper and obstructing the frame, (f) having tea,
(g) listening to music and speaking on a mobile phone, (h) sleeping and
correctly in frame.

• The use of electronic devices such as mobile phones,

music players or tablets (figure 2g)

• Regular consumption of beverages such as water or tea

(figure 2f)

• Objects obstructing the patient’s face such as

newspapers (figure 2e), magazines or limbs (figure 2b)

To estimate physiological signals, suitable time periods

need to be identified from the videos during which the patient

is stable and in the frame. Examples of such periods are

when the patient’s torso is frontal to the camera (figure 2a),

the patient is sleeping quietly (figure 2h) or when minimal

motion occurs (figure 2c if the image is rotated to portrait

mode).

The video analysis process starts with the task of detecting

and tracking the patient’s face. Subsequently, periods of high

activity or motion are found by tracking the movements

of the patient. The results of these tasks are combined to

identify time periods within the video for which the location

of the face is known and the patient is relatively still.

Several algorithms for face detection are reported in the

literature using cues such as skin colour, facial or head

shape, facial appearance, or a combination of more than one

technique [17]. Although the problems have received a lot of

attention, face detection and facial feature extraction are still

challenging, especially when illumination, subject expression

and object occlusion vary considerably [18].

Face detection and tracking was performed using the

method described by Zisserman et al [19], [18]. A

combination of frontal, left-profile and right-profile cascade

classifiers were computed from a custom training data set

extracted from the dialysis videos.

The centroid of the detected face is tracked as the patient

moves within the video frame and the Euclidean distance

between centroids is quantified for every successive frame.

When the movement of the face centroid crosses a given

threshold, the frame is considered as active and assigned



(a) (b) (c) (d) (e)

Fig. 3. Activity Index for a typical 4-hour dialysis session: (a) minute
10: wearing headphones to start listening to music, (b) minute 60: sleeping
(c) minute 106: awake and engaging in phone conversation, (d) minute
200: sleeping, (e) minute 240: movement and interaction with the clinical
staff, (f) Pixels in motion from the activity analysis: areas are labelled (in
blue) to correspond to the figures on top. (g) Activity index; a value of 0
is considered a period of patient motion and a value of 1 is considered a
stable period suitable for physiological estimation.

an activity index of 0, otherwise it is assigned a value of

1. Figure 3f shows the output of the activity analysis for a

typical 4-hour dialysis session.

As most of the video recordings from the dialysis clinical

data set were recorded in similar conditions, a fixed threshold

is applied to compute the activity index. As shown in figure

3g, the activity index is a binary value, where 0 is considered

a period of patient motion and a value of 1 is considered a

stable period suitable for physiological estimation.

C. Heart rate estimation

Heart rate estimation is an extension of previous work

presented in [20]. The process starts by identifying a

reference Region Of Interest, called ROIR, from areas

outside the subject’s face such as the background wall. Using

the location of the face detected by the algorithms described

in the previous section, a grid of multiple regions of interest,

labelled ROIS,i , is laid out evenly across the total area of

the patient’s face (in a similar manner to figure 5b).

A multi-channel photoplethysmographic imaging (PPGi)

signal is extracted by spatially averaging each ROIS,i
(typically 100×100 pixels) for every colour channel. The

average colour intensity is also computed from ROIR.

A beat-by-beat quality assessment is carried out on every

PPGi signal to identify data windows suitable for heart rate

estimation. Even during periods for which the patient is

quiet (sleeping or reading a magazine), video cameras still

automatically modify the gain for each colour channel to

compensate for changes in the scene, such as sudden changes

in the overall lighting (fluorescent lights turned on or off)

or shadows, as shown in figure 4a, corresponding to the

time when a fluorescent light was turned on. Therefore,

the PPGi quality assessment starts by applying a Bayesian

change point detection algorithm to find these step changes

and discard heart rate estimates during these periods.

Given a data sequence x of N samples from two

piece-wise constant inputs µ1 and µ2 with Gaussian noise

added [21], [22], the probability of a single step change m
given the data window provided is defined by:

P (m|x) ∝
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The PPGi waveform is later band-pass filtered to enhance

the frequency of interest. For heart rate estimation, the cut-off

frequencies of the band-pass filter will typically be 0.7 Hz

and 4 Hz (corresponding to 42 and 240 beats/min). These

cut-off limits represent the range of expected human heart

rates.

Similar to Li et al [23], once the beat onsets are located,

the input signal is then divided into 30-second running

windows with an overlap of 5 seconds. For each window,

a template is constructed from all the valid beats. If a

template cannot be computed or is invalid, the template

from the previous window is used. The template is used to

analyse the morphology of each individual beat within the

window. Firstly, beats corresponding to periods of motion

(as identified by the activity index algorithm described in

previous section or occurring during a step change are

flagged as invalid and are assigned a quality value of 0.

Secondly, beats that are clipped or are outside a valid

physiological or amplitude range are also flagged as invalid.

Finally, a multi-scale Dynamic Time Warping algorithm is

used to compute the minimum distance from the beat to the

window template. Beats for which this distance lies within

a given threshold are ruled to be of good quality, otherwise

they are flagged as invalid.

Heart rate estimates are computed from each of the ROIS,i
(simply labelled ROIS ), following the strategy below:

1) Each ROIS and ROIR is divided into 15-second

windows. A window length of 15 seconds corresponds

Fig. 4. Bayesian change point detection algorithm applied to a 30-second
window during which a fluorescent light was turned on producing a step
change : (a) Input PPGi signal with the change point marked around second
13, (b) The probability of the change point.



to approximately 20 cardiac cycles, a sufficient number

of cycles for accurate estimation, without introducing

too long a processing delay.

2) We fit an auto-regressive (AR) model to the time-series

derived from ROIR. At 12 frames/sec and for a

window of 15 seconds, there are 180 samples from

which to estimate the coefficients of the AR model

in each window. The choice of model order is a

compromise between the requirement to identify the

dominant cardiac frequency (which favours a low

model order), and the need to model the shape of

the spectrum between the cardiac frequency and the

half-sampling frequency (which favours a high model

order). A model order of 9 was found to be a

good compromise, as it allows a pole to be fitted

to the second harmonic of the cardiac frequency,

when the latter has sufficient energy (in sections of

high-quality signals) or the noise spectrum can be

modelled with higher-frequency poles (in section of

low-quality signals). For a more detailed discussion of

model order selection, the reader is referred to [24].

3) We then fit a separate AR model to the time-series

derived from ROIS in the same way as for ROIR.

4) We identify the poles in the AR model for ROIR
which are the poles corresponding to the aliased

components of the artificial light flicker frequency as

these are also present in the AR model for ROIS . The

test of identity allows for these poles in ROIR and

ROIS to be within k degrees of each other (k = 1 or

2, typically). Pole cancellation in ROIS gives the new

AR model (heart rate information only). More detail

on pole cancellation is given in [20].

5) The highest-magnitude pole between 0 Hz and the

half-sampling frequency in the AR model for ROIS
is the “heart rate pole”. Its angle corresponds to the

heart rate in beats/min, the latter being obtained by

multiplying θ by 60fs/2π, where θ is the angle in

radians and fs is the sampling frequency in Hz. Note

again that the poles below the horizontal axis in the

pole-zero plot, which are disregarded in the analysis,

are simply the complex conjugates of the poles above

the axis [25].

6) The radius of that pole (the distance to it from the

centre of the pole-zero plot) is an indication of the

amplitude of the heart rate component in the green

channel for that window.

7) We slide the 15-second window by one second and

repeat steps 1 to 8 for the new window. The use

of a one-second offset between consecutive windows

allows us to derive heart rate estimates (based on the

previous 15 seconds of data) every second.

Once the heart rate estimates are computed for each colour

channel from each ROIS,i , the overall heart rate estimate

is computed using a data fusion technique. Each colour

channel from every ROIS,i is tracked with an individual

Kalman filter, producing one estimate per ROI and per

(a) (b) (c)

Fig. 5. Regions of interest selection for respiratory rate estimation. (a) The
original image frame. (b) the 9x9 grid of all the ROI on the patient’s face,
used both for computing heart rate and respiratory rate. (c) the 9x9 grid of
all the ROI on the patient’s chest. 30-second sample waveforms extracted
using (d) the green channel from a region of interest on the patient’s face,
(e) the red channel from a region of interest on the patient’s face, (f) the
gray-scale image from a region of interest on the patient’s chest.

colour channel. The overall heart rate estimate for the current

window HRw is computed by combining the output from

each Kalman filter [26], [27] as:

HRw =

n
X

l=1
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i=1
(
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j )
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where l = 1, 2, ..., n is the list or ROIS . The

SQI-weighted residual σ is given by:

σ
2
i =

✓

ri
SQIi

◆2

(3)

where ri is the Kalman filter residual for the ROIS,i and

SQIi is the signal quality index for the data window for the

ROI.

D. Respiratory rate estimation

The previous section showed that heart rate can be

estimated using regions of interest on the patient’s face.

This can be expanded to analyse the image for frequency

content in the respiratory rate physiological range, typically

between 6 to 42 breaths per minute. As opposed to heart rate,

respiratory rate can be estimated not only from the subject’s

face, but also from the chest area, mostly due to tge patient’s

thoracic motion due to breathing [20].

For a robust estimation of respiratory rate, regions of

interest corresponding to areas on the patient’s skin and upper

torso have to be considered. The nature of these signals differ

in principle, as shown in figure 5. The signals extracted from

the patient’s skin are pulsatile time series, mainly caused by

colour changes due to blood flow (figure 5d and 5e ). The

signals extracted from the upper torso (such as the thorax)

are mainly affected by subject motion due to breathing, as

shown in figure 5f.



The breathing-related amplitude variations are extracted

from each region of interest in the patient’s face with

a separate band-pass filter (or low-pass filter, after

de-trending), with an upper cut-off frequency, for normal

breathing, of 0.7 Hz (corresponding to 42 breaths/minute).

The band-pass or low-pass filter requires a narrow transition

band so that the cardiac-frequency component (at 1 Hz or

above), which is a much stronger component in the camera

reflectance signal, is eliminated by the filtering.

As the patient’s upper torso is covered by clothing, the

signal extracted does not depend on colour changes due

to blood flow, but rather depend on the subject’s motion

patterns. Each colour image frame from the video data is

therefore converted to a gray-scale version and the mean

over each region of interest is computed, as shown in figure

5f.

As the number of respiration signals extracted from both

the patient’s face and torso is large, Principal Component

Analysis (PCA) is applied and the first three components

are selected. Similarly to heart rate, a data fusion algorithm

based on Kalman filters is used to combine the respiratory

rate estimates form all the selected PCA components.

E. Identifying changes in SpO2

The methods presented in the previous sections mainly

find a frequency component to estimate heart rate or

respiratory rate. Identifying changes in SpO2 depends on

the colour reproduction of the video camera sensor from skin

regions.

Unlike the photodiode used in a pulse oximeter, colour

cameras cannot directly measure the spectra of colour signals

because spectral accuracy is sacrificed for spatial resolution

[28]. Since the spectral data for a single point in the

scene is described with three values (called tristimulus

values), the (R,G,B) values are only an approximation of

the true incoming colour signal spectra. There exists another

major problem caused by this spectral data compression:

colour samples with different reflectances can become

metameric, so that different combinations of light across the

wavelength range can produce an equivalent sensor response.

This is more evident when the same colour object is

recorded as two different colours when affected by different

illumination sources, or when two different colours cannot

be discriminated under the effects of other illuminants [29].

Colour changes can be due to several factors such as varying

light levels, the temporary presence of shadows during the

intervention of the clinical staff, or the varying light colour

from changes in the spectral power distribution of light

sources (daylight, fluorescent or incandescent).

It is important, therefore, to properly balance the colour

reproduction of the video recordings and to choose the

right colour channels to be used for identifying changes in

SPO2. Once stable periods are identified from the video

recordings, the images are colour-balanced following the

generalised diagonal transformation white-balancing model

Fig. 6. Comparison of the extraction of a 30-second pulsatile signal
from a single region of interest (on the patient’s forehead) between the
original video (left column) and after colour processing (right column). (a)
Chromaticity diagram: the red colour represents the chromaticity for the
whole image, whereas the blue is computed from the skin areas only; the
pulsatile time series for the original red and green channels are shown in
(b) and (c) respectively. (d) Chromaticity diagram after colour balancing
and colour space conversion; the pulsatile time series for the NCCr and
NCCg channels are shown in (e) and (f) respectively.

[30] expressed in the following equation:

RGBout = Fout ×D × Fin ×RGBin (4)

where RGBin is a set of 3× 1 camera input RGB values

for a given pixel, Fin is 3× 3 matrix transforming RGB to

an intermediate colour space, D is 3 × 3 diagonal matrix

whose values vary with illuminant and effectively performs

the colour balancing, Fout is 3× 3 matrix transforming the

intermediate colour space value back into RGB colour space,

and RGBout is a set of 3× 1 colour balanced RGB values.

The matrix D is computed from colour values of the original

non-colour balanced image, in the intermediate colour space,

for a point manually selected as white.

Even after colour-balancing, the colours of objects

perceived by a colour camera, specifically skin tones, are

also dependent on the changing lightness (how dark or light

the scene is) and conditions that have a strong effect on the

intensities of the recorded colours. The choice of a colour

space representation for modelling the skin colour changes

under different illumination conditions is critical when

developing robust techniques against illumination changes.

Therefore, the colour-balanced RGB images from the video

recordings are converted to the Normal Colour Coordinates

(NCC) space as it has been shown to be among the most

usable colour spaces for skin chromaticity modelling [31],

[17].

From the NCC colour space, the “r,g” chromaticity values

(noted as r, g lowercase) are computed using equation 5.

Figure 6 shows the results of colour procesing.

r =
R

R+G+B

g =
G

R+G+B

(5)

Following the colour processing stage, the video is the

subdivided in 15-second windows. For each window, all



Fig. 7. Building a template for a 15-second window from the red channel.
(a) 99 PGGi signals for which the beat-by-beat SQI method used in heart
rate analysis labelled as valid, (b) location of the good quality ROI in the
image frames. (c) PPGi signals for which the correlation coefficient between
the ROI and the window template is greater than 0.8, only 84 ROI are valid;
(d) location of the new selected ROI on the image frame; (e) Representative
template for the window from which changes in SpO2 can be identified.
(f) The input image shown as a reference.

the regions of interest on the patient’s face (as detected

by the face-tracking algorithms) are processed using the

beat-by-beat signal quality methods used for heart rate

analysis. A template is computed from all regions of interest

of good quality. Subsequently, a representative PPGi signal is

extracted from the ROI for which the correlation coefficient

between the ROI and the template is greater than 0.8. This

process is shown in figure 7a. The median of the AC and

DC values are computed from the representative PPGi signal

(figure 7e) from which SpO2 can be estimated using the ratio

of ratios:

SpO2 = A−B
(IAC/IDC)λ1

(IAC/IDC)λ2

(6)

where A and B are empirically-determined coefficients,

IAC and IDC are respectively the amplitudes of the

pulsatile (AC) and DC components of the reflected light

at wavelengths λ1 and λ2. The coefficients A and B are

determined using the reported values from the two pulse

oximeters. The chosen wavelengths are from the “r,g” NCC

chromaticity conversion.

IV. RESULTS

A. Heart rate

According to the table I in the previous section, the

number of video sessions recorded was 104, comprising a

total video length of 369.1 hours. The mean video length per

dialysis session was 3.5 hours. For a total of 20 sessions, the

recordings were interrupted due to several reasons, including:

TABLE II

HEART RATE ESTIMATION RESULTS

Device MAE MAD Time %

Finger vs Ear pulse oximeter 1.87 bpm 1.73 bpm 100%
Camera vs Reference HR 2.8 bpm 2.6 bpm 65.3%

TABLE III

RESPIRATORY RATE ESTIMATION RESULTS

ROI locations MAE MED Time

Only face 2.2 bpm 2.1 bpm 60.3 %
Only upper torso 1.8 bpm 1.6 bpm 65.1 %
All combined 2.1 bpm 1.8 bpm 69.2 %

patient discomfort, medical intervention, family visits, video

equipment malfunction or other external factors.

The heart rate algorithms described in this paper require

video sessions during which the patient is stable and

the location of the face is known. Following the criteria

described in section III-B, a further 23 sessions were rejected.

Therefore, the resulting number of valid dialysis sessions

is 61, comprising a total video length of 219.8 hours

(approximately 60% of the total number of hours recorded),

with a mean video length of 3.6 hours per dialysis session.

Table II presents the overall heart rate estimation results.

The mean absolute error (MAE), mean absolute deviation

(MAD) and the proportion of estimated time are reported for

all the valid dialysis sessions, comprising a total recording

time of 219.8 hours. The errors are calculated by comparing

the heart rate estimates from the camera against the ground

truth heart rate, computed from the mean of the two estimates

from the pulse oximeters, as described in section III-A.

B. Respiratory rate

The total time for which the reference respiratory rates

(as computed from the ECG and PPG) agree with each

other within 2 breaths per minute is 108.82 hours. Table

III presents the overall respiratory rate estimation results

comparing when taking regions of interest on the subject’s

face only, torso or both.

C. SpO2

From all the dialysis sessions recordings, 10 segments,

each with a duration of 5 minutes, were manually selected.

For these, the SpO2 estimates provided by the two pulse

oximeters differ by less than 2% and the computed reference

SpO2 decreased by more than 5% in each 5-minute

recording. Table IV compares the reference SpO2 from the

pulse oximeters with the camera calibration.

Figure 8 shows a comparison between the camera

estimates and the reference signals for a 6-minute video

segment.

TABLE IV

SpO2 CALIBRATION RESULTS FROM CAMERA

Device MAE MAD

Finger vs Ear pulse oximeter 0.97 % 0.78 %
Camera vs Reference SpO2 2.5 % 1.7 %



Fig. 8. Summary of vital sign estimation using the proposed methods for a
6-minute video segment. The camera estimates are plotted in red, whereas
the reference signals are plotted in black: (a) Heart rate, (b) Respiratory
Rate, (c) SpO2

V. CONCLUSION

The accuracy of the heart rate and respiratory rate

estimates from the video camera, in periods during which the

subject is stable, is comparable to that of the reference signals

computed from devices used in regular clinical care. The

camera estimates show a strong positive correlation with the

reference signals, with minimal bias for approximately 65%

of heart rate estimates and 69% of respiratory rate estimates

when the reference signals are valid.

As most of the video recordings from the clinical data set

were recorded in similar conditions (patients’ upper torso at a

similar distance from the camera), some common thresholds

and parameters were chosen. The use of algorithms than

can learn from data, such as Convolutional Neural Networks

(CNN), will be needed to cope with changes in video

recording conditions.
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