Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples

Non-contiguous pattern avoidance in binary trees

Michael Dairyko (Pomona College)
Lara Pudwell (Valparaiso University)
Samantha Tyner (Augustana College/lowa State) Casey Wynn (Hendrix College/Kent State)

> Permutation Patterns 2012
> June 15, 2012

Partially supported by NSF grant DMS-0851721

Key Question

University

Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions
Connection to permutations Sets of tree patterns
Summary

How many permutations of length n avoid a given permutation pattern?

Key Question

University

Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions
Connection to permutations Sets of tree patterns
Summary

How many binary trees with n leaves avoid a given tree pattern?

Key Question

University

Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions
Connection to permutations Sets of tree patterns Summary

How many binary trees with n leaves avoid a given tree pattern?

Concerned with rooted, ordered, full binary trees (each vertex has exactly 0 or 2 children)

History of Tree Patterns: Labelled Trees

University

Non-
contiguous
pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous patterns

Definitions \&

 Examples Generating functions Connection to permutations Sets of tree patterns Summary- 1983: Flajolet and Steyaert
- focus on asymptotic probability of avoiding a given pattern
- 1990: Flajolet, Sipala, and Steyaert
- every leaf of pattern must be matched by a leaf of the tree
- motivated by compactly storing expressions in computer memory
- e.g. $\frac{d}{d x}\left(\sin \left(x \cos ^{2}\left(e^{x+1}\right)\right)\right)=$

History of Tree Patterns: Labelled Trees

Non-
contiguous
pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions Connection to permutations Sets of tree patterns Summary

- 1983: Flajolet and Steyaert
- focus on asymptotic probability of avoiding a given pattern
- 1990: Flajolet, Sipala, and Steyaert
- every leaf of pattern must be matched by a leaf of the tree
- motivated by compactly storing expressions in computer memory
- 2012: Dotsenko
- pattern may occur anywhere in tree
- motivated by operad theory

History of Tree Patterns: Unlabelled Trees

Non-
contiguous
pattern
avoidance in
binary trees
Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions Connection to permutations Sets of tree patterns Summary

- 2009: Rowland
- contiguous pattern avoidance in binary trees
- patterns can be anywhere, not just at leaves
- 2010: Gabriel, Peske, P., Tay
- extended Rowland's results to m-ary trees
- 2011: Dairyko, P., Tyner, Wynn
- non-contiguous pattern avoidance in binary trees

Contiguous tree pattern (Rowland)

Tree T contains tree t if and only if T contains t as a contiguous rooted ordered subtree.

Brief History

Contiguous
tree patterns
Non-
contiguous

Valparaiso University

Contiguous pattern enumeration data

Non-

contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns

Definitions \&

 Examples Generating functions Connection to permutations Sets of tree patterns Summary| Pattern t | Number of n leaf trees avoiding t |
| :---: | :---: |
| \bullet | 0 |
| 0 | $\begin{cases}1 & n=1 \\ 0 & n>1\end{cases}$ |

M_{n-1} (Motzkin numbers)

Contiguous tree pattern enumeration

Rowland

- Devised algorithm to find functional equation for avoidance generating function for any set of tree patterns.
- Generating functions are always algebraic.
- Enumerated trees containing specified number of copies of a given tree pattern.
- Completely determined Wilf classes for tree patterns with at most 8 leaves.

Tree patterns

Non-
contiguous
pattern
avoidance in
binary trees
Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous patterns

Definitions \&

 Examples
Non-contiguous tree pattern (Dairyko, P., Tyner, Wynn)

Tree T contains tree t if and only if there exists a sequence of edge contractions of T that produce T^{*} which contains t as a contiguous rooted ordered subtree.

Example:

contains

Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous

patterns

Definitions \&

 Examples
Generating

 functionsConnection to permutations Sets of tree patterns Summary

Pattern t	Number of n leaf trees avoiding t
	$\begin{cases}1 & n=1 \\ 0 & n>1\end{cases}$

The Main Theorem

Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns

Notation

- Let $\mathrm{av}_{t}(n)$ be the number of n-leaf trees that avoid t non-contiguously.
- Let $g_{t}(x)=\sum_{n=1}^{\infty} \operatorname{av}_{t}(n) x^{n}$.

The Main Theorem

Non-

contiguous
pattern
avoidance in
binary trees
Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous

Notation

- Let $\mathrm{av}_{t}(n)$ be the number of n-leaf trees that avoid t non-contiguously.
- Let $g_{t}(x)=\sum_{n=1}^{\infty} \mathrm{av}_{t}(n) x^{n}$.

Theorem

Fix $k \in \mathbb{Z}^{+}$. Let t and s be two k-leaf binary tree patterns. Then $g_{t}(x)=g_{s}(x)$.

Notation and Computation

Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History

(More) Notation

- Given tree t,
- let t_{ℓ} be the subtree whose root is the left child of t 's root.
- let t_{r} be the subtree whose root is the right child of t 's root.

(More) Notation

- Given tree t,
- let t_{ℓ} be the subtree whose root is the left child of t 's root.
- let t_{r} be the subtree whose root is the right child of t 's root.

Notice

$$
g_{t}(x)=x+g_{t_{\ell}}(x) \cdot g_{t}(x)+g_{t}(x) \cdot g_{t_{r}}(x)-g_{t_{\ell}}(x) \cdot g_{t_{r}}(x)
$$

Notation and Computation

Non-

contiguous
pattern
avoidance in
binary trees
Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns

(More) Notation

- Given tree t,
- let t_{ℓ} be the subtree whose root is the left child of t 's root.
- let t_{r} be the subtree whose root is the right child of t 's root.

Notice

$$
g_{t}(x)=x+g_{t_{\ell}}(x) \cdot g_{t}(x)+g_{t}(x) \cdot g_{t_{r}}(x)-g_{t_{\ell}}(x) \cdot g_{t_{r}}(x)
$$

Solving...

$$
g_{t}(x)=\frac{x-g_{t_{\ell}}(x) \cdot g_{t_{r}}(x)}{1-g_{t_{\ell}}(x)-g_{t_{r}}(x)}
$$

Proposition

University
Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \&

$$
g_{t}(x)=\frac{x-g_{t_{\ell}}(x) \cdot g_{t_{r}}(x)}{1-g_{t_{\ell}}(x)-g_{t_{r}}(x)}
$$

Proposition

For any tree pattern $t, g_{t}(x)$ is a rational function of x.

Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction

Context

Brief History
Contiguous
tree patterns

Non-

contiguous
patterns
Definitions \& Examples Generating functions
Connection to permutations Sets of tree patterns Summary

Let c_{k} be the k-leaf left comb (the unique k-leaf binary tree where every right child is a leaf).

$$
c_{1}=\cdot, c_{2}=\therefore, c_{3}=\therefore, c_{4}=\therefore c_{5}=\therefore \text {,etc. }
$$

Valparaiso
University

A special case...

Non-
contiguous
pattern avoidance in binary trees

Lara Pudwell

Introduction

Context

Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples

Let c_{k} be the k-leaf left comb (the unique k-leaf binary tree where every right child is a leaf).

$$
c_{1}=\cdot, c_{2}=\therefore, c_{3}=\therefore, c_{4}=\therefore c_{5}=\therefore \text {,etc. }
$$

If $t=c_{k}$, then $t_{\ell}=c_{k-1}$ and $t_{r}=\cdot$.
For $k \geq 2$, we have

$$
g_{c_{k}}(x)=\frac{x-g_{c_{k-1}}(x) \cdot g .(x)}{1-g_{c_{k-1}}(x)-g .(x)}=\frac{x}{1-g_{c_{k-1}}(x)}
$$

Non-

contiguous
pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous

Back to the main result

Theorem

Fix $k \in \mathbb{Z}^{+}$. Let t and s be two k-leaf binary tree patterns. Then $g_{t}(x)=g_{s}(x)$.

Proof sketch

Inductive step:

- Assume the theorem holds for tree patterns with ℓ leaves where $\ell<k$.
- Then any ℓ-leaf tree has avoidance generating function $g_{c_{\ell}}(x)$.
- Consider tree t with ℓ leaves to the left of its root and tree s with $\ell+1$ leaves to the left of its root.
- Do algebra with previous work to show that $g f_{t}(x)=g f_{s}(x)$.

Generating functions

Non-
contiguous
pattern
avoidance in
binary trees
Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions Connection to permutations Sets of tree patterns Summary

k	$g_{c_{k}}(x)$	OEIS number
1	0	trivial
2	x	trivial
3	$\frac{x}{1-x}$	trivial
4	$\frac{x-x^{2}}{1-2 x}$	A000079
5	$\frac{x-2 x^{2}}{1-3 x+x^{2}}$	A001519
6	$\frac{x-3 x^{2}+x^{3}}{1-4 x+3 x^{2}}$	A007051
7	$\frac{x-4 x^{2}+3 x^{3}}{1-5 x+6 x^{2}-x^{3}}$	A080937
8	$\frac{x-5 x^{2}+6 x^{3}-x^{4}}{1-6 x+10 x^{2}-4 x^{3}}$	A024175
9	$\frac{x-6 x^{2}+10 x^{3}-4 x^{4}}{1-7 x+15 x^{2}-10 x^{3}+x^{4}}$	A080938

Introduction

Context

Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions Connection to permutations Sets of tree patterns Summary

An explicit formula

Theorem

Let $k \in \mathbb{Z}^{+}$and let t be a binary tree pattern with k leaves. Then

$$
g_{t}(x)=\frac{\sum_{i=0}^{\left.\frac{k-2}{2}\right\rfloor}(-1)^{i} \cdot\binom{k-(i+2)}{i} \cdot x^{i+1}}{\sum_{i=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}(-1)^{i} \cdot\binom{k-(i+1)}{i} \cdot x^{i}}
$$

Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction

Context

Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions
Connection to permutations Sets of tree patterns Summary

We know that the Catalan numbers count:

- the number of binary trees
- the number of 231-avoiding permutations

Can we say more?

We know that the Catalan numbers count:

- the number of binary trees
- the number of 231-avoiding permutations

Can we say more?

Theorem

Let t be any binary tree pattern with $k \geq 2$ leaves. Then

$$
\operatorname{av}_{t}(n)=s_{n-1}(231,(k-1)(k-2) \cdots 21)
$$

Example

Non-

contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples
Generating functions
Connection to permutations
Sets of tree patterns
Summary

Example

Non-
contiguous
pattern
avoidance in
binary trees
Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns

Non-

contiguous
patterns
Definitions \& Examples
Generating functions
Connection to permutations Sets of tree patterns
Summary

Example

Non-

contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction

Context

Brief History
Contiguous
tree patterns

Non-

contiguous
patterns
Definitions \& Examples
Generating
functions
Connection to permutations Sets of tree patterns
Summary

1423756

Avoiding multiple tree patterns

University

Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction

Context

Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions
Connection to permutations Sets of tree patterns Summary

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
- Generating functions are still rational.

Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions Connection to permutations Sets of tree patterns Summary

Avoiding multiple tree patterns

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
- Generating functions are still rational.
- No longer one Wilf class per size of tree pattern

Valparaiso University

Wilf classes for avoiding a 4 leaf and a 5 leaf tree pattern

Non-
contiguous
pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions
Connection to permutations
Sets of tree
patterns
Summary

Pattern representatives	OEIS
$\{\therefore, \therefore \therefore\}$	0 for $n \geq 11$
$\{\therefore, \therefore \therefore\}$	A016777 $(3 k+1)$
$\{\therefore \therefore \therefore\}$	$\begin{gathered} \mathrm{A} 152947 \\ \left(\frac{(k-2) \cdot(k-1)+1}{2}\right) \end{gathered}$
$\{\therefore, \therefore \therefore\}$	A000071 (Fibonacci numbers -1)
$\{\therefore \therefore \therefore\}$	A000073 (Tribonacci Numbers)

Avoiding multiple tree patterns

Non-
contiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions Connection to permutations Sets of tree patterns Summary

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
- Generating functions are still rational.
- No longer one Wilf class per size of tree pattern (Open: Find a combinatorial characterization of when two sets of tree patterns are Wilf equivalent.)

Avoiding multiple tree patterns

Non-
contiguous
pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous patterns
Definitions \& Examples Generating functions Connection to permutations Sets of tree patterns Summary

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
- Generating functions are still rational.
- No longer one Wilf class per size of tree pattern (Open: Find a combinatorial characterization of when two sets of tree patterns are Wilf equivalent.)
- Some sets of patterns have enumeration sequences that obviously count a set of pattern-avoiding permutations. Others clearly aren't (classical) permutation sequences.

Avoiding multiple tree patterns

University

Non-
contiguous
pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous patterns
Definitions \& Examples Generating functions Connection to permutations Sets of tree patterns Summary

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
- Generating functions are still rational.
- No longer one Wilf class per size of tree pattern (Open: Find a combinatorial characterization of when two sets of tree patterns are Wilf equivalent.)
- Some sets of patterns have enumeration sequences that obviously count a set of pattern-avoiding permutations. Others clearly aren't (classical) permutation sequences. Example:

Avoiding multiple tree patterns

University

Non-
contiguous
pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples Generating functions Connection to permutations Sets of tree patterns Summary

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
- Generating functions are still rational.
- No longer one Wilf class per size of tree pattern (Open: Find a combinatorial characterization of when two sets of tree patterns are Wilf equivalent.)
- Some sets of patterns have enumeration sequences that obviously count a set of pattern-avoiding permutations. Others clearly aren't (classical) permutation sequences. (Open: Precisely characterize which sets of tree patterns correspond to classical permutation sequences.)

Avoiding multiple tree patterns

University

Noncontiguous pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous patterns
Definitions \& Examples Generating functions Connection to permutations Sets of tree patterns Summary

- Methods extend naturally to trees avoiding multiple tree patterns simultaneously:
- Generating functions are still rational.
- No longer one Wilf class per size of tree pattern (Open: Find a combinatorial characterization of when two sets of tree patterns are Wilf equivalent.)
- Some sets of patterns have enumeration sequences that obviously count a set of pattern-avoiding permutations. Others clearly aren't (classical) permutation sequences. (Open: Precisely characterize which sets of tree patterns correspond to classical permutation sequences.)
(Open: Let f be the vertex-labelling bijection between binary trees and 231 -avoiding permutations given before. Let S be a set of tree patterns. Characterize which permutations correspond to S-avoiding trees under f.)

Summary

University
Non-
contiguous
pattern
avoidance in
binary trees
Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples

- $g_{t}(x)$ is rational and of a very nice form for any non-contiguous tree pattern t.
- Only one Wilf class for each number of leaves!
- Trees avoiding a k-leaf tree pattern are in bijection with permutations avoiding 231 and $(k-1)(k-2) \cdots 1$.
- Several open questions remain for trees avoiding sets of non-contiguous patterns.

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous
patterns
Definitions \& Examples
Generating functions
Connection to permutations
Sets of tree
patterns
Summary

Thank You!

References

University

Non-
contiguous
pattern avoidance in binary trees

Lara Pudwell

Introduction
Context
Brief History
Contiguous
tree patterns
Non-
contiguous patterns
Definitions \& Examples Generating functions Connection to permutations Sets of tree patterns Summary

- M. Dairyko, L. Pudwell, S. Tyner, and C. Wynn, Non-contiguous pattern avoidance in binary trees, preprint, http://arxiv.org/abs/1203.0795
- V. Dotsenko, Pattern avoidance in labelled trees, S'em. Lothar. Combin., B67b (2012), 27 pp.
- P. Flajolet, P. Sipala, and J. M. Steyaert, Analytic variations on the common subexpression problem, Automata, Languages, and Programming: Proc. of ICALP 1990, Lecture Notes in Computer Science, Vol. 443, Springer, 1990, pp. 220-234.
- N. Gabriel, K. Peske, L. Pudwell, and S. Tay, Pattern avoidance in ternary trees, J. Integer Seq. 15 (2012), 12.1.5.
- E. S. Rowland, Pattern avoidance in binary trees, J. Combin. Theory, Ser. A 117 (2010), 741-758.
- J. M. Steyaert and P. Flajolet, Patterns and pattern-matching in trees: an analysis, Info. Control 58 (1983), 19-58.

