
Proceedings of Machine Learning Research vol 65:1–30, 2017

Non-Convex Learning via Stochastic Gradient Langevin Dynamics:

A Nonasymptotic Analysis

Maxim Raginsky MAXIM@ILLINOIS.EDU

University of Illinois

Alexander Rakhlin RAKHLIN@WHARTON.UPENN.EDU

University of Pennsylvania

Matus Telgarsky MJT@ILLINOIS.EDU

University of Illinois and Simons Institute

Abstract

Stochastic Gradient Langevin Dynamics (SGLD) is a popular variant of Stochastic Gradient De-

scent, where properly scaled isotropic Gaussian noise is added to an unbiased estimate of the gra-

dient at each iteration. This modest change allows SGLD to escape local minima and suffices to

guarantee asymptotic convergence to global minimizers for sufficiently regular non-convex objec-

tives (Gelfand and Mitter, 1991).

The present work provides a nonasymptotic analysis in the context of non-convex learning

problems, giving finite-time guarantees for SGLD to find approximate minimizers of both empirical

and population risks.

As in the asymptotic setting, our analysis relates the discrete-time SGLD Markov chain to a

continuous-time diffusion process. A new tool that drives the results is the use of weighted trans-

portation cost inequalities to quantify the rate of convergence of SGLD to a stationary distribution

in the Euclidean 2-Wasserstein distance.

1. Introduction and informal summary of results

Consider a stochastic optimization problem

minimize F (w) := EP [f(w,Z)] =

∫

Z

f(w, z)P (dz),

where w takes values in R
d and Z is a random element of some space Z with an unknown probability

law P . We have access to an n-tuple Z = (Z1, . . . , Zn) of i.i.d. samples drawn from P , and our

goal is to generate a (possibly random) hypothesis Ŵ ∈ R
d with small expected excess risk

EF (Ŵ )− F ∗, (1.1)

where F ∗ := infw∈Rd F (w), and the expectation is with respect to the training data Z and any

additional randomness used by the algorithm for generating Ŵ .

When the functions w 7→ f(w, z) are not convex, theoretical analysis of global convergence

becomes largely intractable. On the other hand, non-convex optimization is currently witnessing

an impressive string of empirical successes, most notably in the realm of deep neural networks.

Towards the aim of bridging this gap between theory and practice, this paper provides a theoretical
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justification for Stochastic Gradient Langevin Dynamics (SGLD), a popular variant of stochastic

gradient descent, in which properly scaled isotropic Gaussian noise is added to an unbiased estimate

of the gradient at each iteration (Gelfand and Mitter, 1991; Borkar and Mitter, 1999; Welling and

Teh, 2011).

Since the population distribution P is unknown, we attempt to (approximately) minimize

Fz(w) :=
1

n

n∑

i=1

f(w, zi), (1.2)

the empirical risk of a hypothesis w ∈ R
d on a dataset z = (z1, . . . , zn) ∈ Z

n. The SGLD algorithm

studied in this work is given by the recursion

Wk+1 = Wk − ηgk +
√

2ηβ−1ξk (1.3)

where gk is a conditionally unbiased estimate of the gradient ∇Fz(Wk), ξk is a standard Gaussian

random vector in R
d, η > 0 is the step size, and β > 0 is the inverse temperature parameter. Our

analysis begins with the standard observation (see, e.g., Borkar and Mitter (1999) for a rigorous

treatment or Welling and Teh (2011) for a heuristic discussion) that the discrete-time Markov pro-

cess (1.3) can be viewed as a discretization of the continuous-time Langevin diffusion described by

the Itô stochastic differential equation

dW (t) = −∇Fz(W (t))dt+
√

2β−1dB(t), t ≥ 0 (1.4)

where {B(t)}t≥0 is the standard Brownian motion in R
d. Under suitable assumptions on f , it

can be shown that the Gibbs measure πz(dw) ∝ exp(−βFz(w)) is the unique invariant distribu-

tion of (1.4), and that the distributions of W (t) converge rapidly to πz as t → ∞ (Chiang et al.,

1987). Moreover, for all sufficiently large values of β, the Gibbs distribution concentrates around

the minimizers of Fz (Hwang, 1980). Consequently, a draw from the Gibbs distribution is, with high

probability, an almost-minimizer of the empirical risk (1.2), and, if one can show that the SGLD

recursion tracks the Langevin diffusion in a suitable sense, then it follows that the distributions of

Wk will be close to the Gibbs measure for all sufficiently large k. Hence, one can argue that, for

large enough k, the output of SGLD is also an almost-minimizer of the empirical risk.

It is well-recognized, however, that minimization of the empirical risk Fz does not immediately

translate into minimization of the population risk F . A standard approach for addressing the issue

is to decompose the excess risk into a sum of two terms, F (Ŵ ) − Fz(Ŵ ) (the generalization

error of Ŵ ) and Fz(Ŵ ) − F ∗ (the gap between the empirical risk of Ŵ and the minimum of the

population risk), and then show that both of these terms are small (either in expectation or with high

probability). Taking Ŵ = Wk and letting Ŵ ∗ be the output of the Gibbs algorithm under which the

conditional distribution of Ŵ ∗ given Z = z is equal to πz, we decompose the excess risk (1.1) as

follows:

EF (Ŵ )− F ∗ =
(
EF (Ŵ )−EF (Ŵ ∗)

)
+
(
EF (Ŵ ∗)−EFZ(Ŵ

∗)
)
+
(
EFZ(Ŵ

∗)− F ∗),
(1.5)

where the first term is the difference of expected population risks of SGLD and the Gibbs algorithm,

the second term is the generalization error of the Gibbs algorithm, and the third term is easily upper-

bounded in terms of expected suboptimality E
(
FZ(Ŵ

∗) − minw FZ(w)
)

of the Gibbs algorithm
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for the empirical risk. Observe that only the first term pertains to SGLD, whereas the other two

involve solely the Gibbs distribution. The main contribution of this work is in showing finite-time

convergence of SGLD for a non-convex objective function. Informally, we can state our main result

as follows:

1. For any ε > 0, the first term in (1.5) scales as

ε · Poly
(
β, d,

1

λ∗

)
for k � Poly

(
β, d,

1

λ∗

)
· 1

ε4
and η ≤

(
ε

log(1/ε)

)4

, (1.6)

where λ∗ is a certain spectral gap parameter that governs the exponential rate of convergence

of the Langevin diffusion to its stationary distribution. This spectral gap parameter itself

might depend on β and d, but is independent of n.

2. The second and third terms in (1.5) scale, respectively, as

(β + d)2

λ∗n
,

d log(β + 1)

β
. (1.7)

1.1. Method of analysis: an overview

Our analysis draws heavily on the theory of optimal transportation (Villani, 2003) and on the analy-

sis of Markov diffusion operators (Bakry et al., 2014) (the necessary background on Markov semi-

groups and functional inequalities is given in Appendix A). In particular, we control the convergence

of SGLD to the Gibbs distribution in terms of 2-Wasserstein distance

W2(µ, ν) := inf
{
(E‖V −W‖2)1/2 : µ = L(V ), ν = L(W )

}
,

where ‖ · ‖ is the Euclidean (ℓ2) norm on R
d, µ and ν are Borel probability measures on R

d with

finite second moments, and the infimum is taken over all random couples (V,W ) taking values in

R
d × R

d with marginals V ∼ µ and W ∼ ν.

To control the first term on the right-hand side of (1.5), we first upper-bound the 2-Wasserstein

distance between the distributions of Wk (the kth iterate of SGLD) and W (kη) (the point reached

by the Langevin diffusion at time t = kη). This requires some heavy lifting: Existing bounds

on the 2-Wasserstein distance between a diffusion process and its time-discretized version due to

Alfonsi et al. (2015) scale like ηekη, which is far too crude for our purposes. By contrast, we

take an indirect route via a Girsanov-type change of measure and a weighted transportation-cost

inequality of Bolley and Villani (2005) to obtain a bound that scales like kη · η1/4. This step relies

crucially on a certain exponential integrability property of the Langevin diffusion. Next, we show

that the Gibbs distribution satisfies a logarithmic Sobolev inequality, which allows us to conclude

that the 2-Wasserstein distance between the distribution of W (kη) and the Gibbs distribution decays

exponentially as e−kη. Since W2 satisfies the triangle inequality, we can produce an upper bound

on the first term in (1.5) that scales as kη ·η1/4+e−kη. This immediately suggests that we can make

this term as small as we wish by first choosing a large enough horizon t = kη and then a small

enough step size η. Overall, this leads to the bounds stated in (1.6).

To control the second term in (1.5), we show that the Gibbs algorithm is stable in 2-Wasserstein

distance with respect to local perturbations of the training dataset. This step, again, relies on the
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logarithmic Sobolev inequality for the Gibbs distribution. To control the third term, we use a

nonasymptotic Laplace integral approximation to show that a single draw from the Gibbs distri-

bution is an approximate minimizer of the empirical risk. We use a Wasserstein continuity result

due to Polyanskiy and Wu (2016) and a well-known equivalence between stability of empirical min-

imization and generalization (Mukherjee et al., 2006; Rakhlin et al., 2005) to show that, in fact, the

Gibbs algorithm samples from near-minimizers of the population risk.

We remark that our result readily extends to the case when the stochastic gradients gk in (1.3)

are formed with respect to independent draws from the data-generating distribution P – e.g., when

taking a single pass through the dataset. In this case, the target of optimization is F itself rather

than Fz, and we simply omit the second term in (1.5). If the main concern is not consistency (as in

(1.1)) but rather the generalization performance of SGLD itself, then the same analysis applied to

the decomposition

EFZ(Ŵ )−EF (Ŵ ) =
(
EFZ(Ŵ )−EFZ(Ŵ

∗)
)

+
(
EFZ(Ŵ

∗)−EF (Ŵ ∗)
)
+
(
EF (Ŵ ∗)−EF (Ŵ )

)
(1.8)

gives an upper bound of (1.6) plus the first term of (1.7). In other words, while the rate of (1.1) may

be hampered by the slow convergence of d log β
β , the rate of generalization is not. Finally, if each

data point is used only once, the generalization performance is controlled by (1.6) alone.

1.2. Related work

The asymptotic study of convergence of discretized Langevin diffusions for non-convex objectives

has a long history, starting with the work of Gelfand and Mitter (1991). Most of the work has fo-

cused on annealing-type schemes, where both the step size η and the temperature 1/β are decreased

with time. Márquez (1997) and Pelletier (1998) studied the rates of weak convergence for both

the Langevin diffusion and the discrete-time updates. However, when η and β are kept fixed, the

updates do not converge to a global minimizer, but one can still aim for convergence to a stationary

distribution. An asymptotic study of this convergence, in the sense of relative entropy, was initiated

by Borkar and Mitter (1999).

Dalalyan and Tsybakov (2012) and Dalalyan (2016) analyzed rates of convergence of discrete-

time Langevin updates (with exact gradients) in the case of convex functions, and provided

nonasymptotic rates of convergence in the total variation distance for sampling from log-concave

densities. Durmus and Moulines (2015) refined these results by establishing geometric convergence

in total variation distance for convex and strongly convex objective functions, and provided some

results for non-convex objectives that can be represented as a bounded perturbation of a convex or

a strongly convex function. Bubeck et al. (2015) studied projected Langevin updates in the convex

case.

Our work is motivated in part by recent papers on non-convex optimization and, in particular,

on optimization problems related to neural networks. A heuristic analysis of SGLD was given by

Welling and Teh (2011), and a modification of SGLD to improve generalization performance was

recently proposed by Chaudhari et al. (2016). Deliberate addition of noise was also proposed by

Ge et al. (2015) as a strategy for escaping from saddle points, and Belloni et al. (2015) analyzed a

simulated anealing method based on Hit-and-Run for sampling from nearly log-concave distribu-

tions. While these methods aim at avoiding local minima through randomn perturbations, the line
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of work on continuation methods and graduated optimization (Hazan et al., 2016) attempts to create

sequences of smoothed approximations that can successively localize the optimum.

Hardt et al. (2015) studied uniform stability and generalization properties of stochastic gradient

descent with both convex and non-convex objectives. For the non-convex case, their upper bound

on stability degrades with the number of steps of the optimization procedure, which was taken by

the authors as a prescription for early stopping. In contrast, we show that, under our assumptions,

non-convexity does not imply loss of stability when the latter is measured in terms of 2-Wasserstein

distance to the stationary distribution. In addition, we use the fact that Gibbs distribution con-

centrates on approximate empirical minimizers, implying convergence for the population risk via

stability (Rakhlin et al., 2005; Mukherjee et al., 2006).

2. The main result

We begin by giving a precise description of the SGLD recursion. A stochastic gradient oracle, i.e.,

the mechanism for accessing the gradient of Fz at each iteration, consists of a collection (Qz)z∈Zn

of probability measures on some space U and a mapping g : Rd × U → R
d, such that, for every

z ∈ Z
n,

Eg(w,Uz) = ∇Fz(w), ∀w ∈ R
d (2.1)

where Uz is a random element of U with probability law Qz. Conditionally on Z = z, the SGLD

update takes the form

Wk+1 = Wk − ηg(Wk, Uz,k) +
√
2ηβ−1ξk, k = 0, 1, 2, . . . (2.2)

where {Uz,k}∞k=0 is a sequence of i.i.d. random elements of U with probability law Qz and {ξk}∞k=0

is a sequence of i.i.d. standard Gaussian random vectors in R
d. We assume that W0, (Z, {UZ,k}∞k=0),

and {ξk}∞k=0 are mutually independent. We impose the following assumptions (see the discussion

in Section 4 for additional details):

(A.1) The function f takes nonnegative real values, and there exist constants A,B ≥ 0, such that

|f(0, z)| ≤ A and ‖∇f(0, z)‖ ≤ B ∀z ∈ Z.

(A.2) For each z ∈ Z, the function f(·, z) is M -smooth: for some M > 0,

‖∇f(w, z)−∇f(v, z)‖ ≤ M‖w − v‖, ∀w, v ∈ R
d.

(A.3) For each z ∈ Z, the function f(·, z) is (m, b)-dissipative (Hale, 1988): for some m > 0 and

b ≥ 0,

〈w,∇f(w, z)〉 ≥ m‖w‖2 − b, ∀w ∈ R
d. (2.3)

(A.4) There exists a constant δ ∈ [0, 1), such that, for each z ∈ Z
n,1

E[‖g(w,Uz)−∇Fz(w)‖2] ≤ 2δ
(
M2‖w‖2 +B2

)
, ∀w ∈ R

d. (2.4)

1. We are reusing the constants M and B from (A.1) and (A.2) in (2.4) mainly out of considerations of technical

convenience; any other constants M ′, B′ > 0 can be substituted in their place without affecting the results.
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(A.5) The probability law µ0 of the initial hypothesis W0 has a bounded and strictly positive density

p0 with respect to the Lebesgue measure on R
d, and

κ0 := log

∫

Rd

e‖w‖2p0(w)dw < ∞.

We are now ready to state our main result. A crucial role will be played by the uniform spectral gap

λ∗ := inf
z∈Zn

inf

{∫
Rd ‖∇g‖2dπz∫

Rd g2dπz
: g ∈ C1(Rd) ∩ L2(πz), g 6= 0,

∫

Rd

gdπz = 0

}
, (2.5)

where πz(dw) ∝ e−βFz(w)dw is the Gibbs distribution. As detailed in Section 4, Assumptions

(A.1)–(A.3) suffice to ensure that λ∗ > 0. In the statement of the theorem, the notation Õ(·) and

Ω̃(·) gives explicit dependence on the parameters β, λ∗, and d, but hides factors that depend (at

worst) polynomially on the parameters A,B, 1/m, b,M, κ0. Explicit expressions for all constants

are given in the proof.

Theorem 1 Suppose that the regularity conditions (A.1)–(A.5) hold. Then, for any β ≥ 1 ∨ 2/m

and any ε ∈ (0, m
4M2 ∧ e−Ω̃(λ∗/β(d+β))), the expected excess risk of Wk is bounded by

EF (Wk)− F ∗ ≤ Õ


β(β + d)2

λ∗

(
δ1/4 log

(
1

ε

)
+ ε

)
+

(β + d)2

λ∗n
+

d log(β + 1)

β


 , (2.6)

provided

k = Ω̃

(
β(d+ β)

λ∗ε4
log5

(
1

ε

))
and η ≤

(
ε

log(1/ε)

)4

. (2.7)

3. Proof of Theorem 1

3.1. A high-level overview

Let µz,k := L(Wk|Z = z), νz,t := L(W (t)|Z = z), and Ez[·] := E[·|Z = z]. In a nutshell, our

proof of Theorem 1 consists of the following steps:

1. We first show that, for all sufficiently small η > 0, the SGLD recursion (2.2) tracks the

continuous-time Langevin diffusion process (1.4) in 2-Wasserstein distance:

W2(µz,k, νz,kη) = Õ
(
(β + d)(δ1/4 + η1/4)kη

)
(3.1)

(the precise statement with explicit constants is given in Proposition 8).

2. Next, we show that the Langevin diffusion (1.4) converges exponentially fast to the Gibbs

distribution πz:

W2(νz,kη, πz) = Õ
(
β + d√

λ∗

)
e−Ω̃(λ∗kη/β(d+β)).
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This, together with (3.1) and the triangle inequality, yields the estimate

W2(µz,k, πz) = Õ
(
(β + d)(δ1/4 + η1/4)kη

)
+ Õ

(
β + d√

λ∗

)
e−Ω̃(λ∗kη/β(d+β)) (3.2)

(see Proposition 10 for explicit constants). Observe that there are two terms on the right-

hand side of (3.2), one of which grows linearly with t = kη, while the other one decays

exponentially with t. Thus, we can first choose t large enough and then η small enough, so

that

W2(µz,k, πz) = Õ


β(d+ β)2

λ∗

(
δ1/4 log

(
1

ε

)
+ ε

)
 . (3.3)

The resulting choices of t = kη and η translate into the expressions for k and η given in

(A.14).

3. The upshot of Eq. (3.3) is that, for large enough k, the conditional probability law of Wk given

Z = z is close, in 2-Wasserstein, to the Gibbs distribution πz. Thus, we are led to consider the

Gibbs algorithm that generates a random draw from πz. We show that the resulting hypothesis

is an almost-minimizer of the empirical risk, i.e.,

∫

Rd

Fz(w)πz(dw)− min
w∈Rd

Fz(w) = Õ
(
d

β
log

β + 1

d

)
(3.4)

(see Proposition 11 for the exact statement), and also that the Gibbs algorithm is stable in the

2-Wasserstein distance: for any two datasets z, z̄ that differ in a single coordinate,

W2(πz, πz̄) = Õ
(
β(d+ β)

√
1 + d/β

λ∗n

)
.

This estimate, together with Lemma 6 below, implies that the Gibbs algorithm is uniformly

stable (Bousquet and Elisseeff, 2002):

sup
z∈Z

∣∣∣∣
∫

Rd

f(w, z)πz(dw)−
∫

Rd

f(w, z)πz̄(dw)

∣∣∣∣ = Õ
(
(β + d)2

λ∗n

)
(3.5)

(see Proposition 12). The almost-ERM property (3.4) and the uniform stability propery (3.5),

together with (3.3), yield the statement of the theorem.

3.2. Technical lemmas

We first collect a few lemmas that will be used in the sequel; see Appendix C for the proofs.

Lemma 2 (quadratic bounds on f ) For all w ∈ R
d and z ∈ Z,

‖∇f(w, z)‖ ≤ M‖w‖+B (3.6)

and

m

3
‖w‖2 − b

2
log 3 ≤ f(w, z) ≤ M

2
‖w‖2 +B‖w‖+A. (3.7)
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Lemma 3 (uniform L2 bounds on SGLD and Langevin diffusion) For all 0 < η < 1 ∧ m
4M2

and all z ∈ Z
n,

sup
k≥0

Ez‖Wk‖2 ≤ κ0 + 2

(
1 ∨ 1

m

)(
b+ 2B2 +

d

β

)
. (3.8)

and

Ez‖W (t)‖2 ≤ κ0e
−2mt +

b+ d/β

m

(
1− e−2mt

)
(3.9)

≤ κ0 +
b+ d/β

m
. (3.10)

Lemma 4 (exponential integrability of Langevin diffusion) For all β ≥ 2/m, we have

logEz

[
e‖W (t)‖2] ≤ κ0 + 2

(
b+

d

β

)
t. (3.11)

Lemma 5 (relative entropy bound) For any w ∈ R
d and any z ∈ Z

n,

D(µ0‖πz) ≤ log ‖p0‖∞ +
d

2
log

3π

mβ
+ β

(
Mκ0
3

+B
√
κ0 +A+

b

2
log 3

)
. (3.12)

Lemma 6 (2-Wasserstein continuity for functions of quadratic growth, Polyanskiy and Wu (2016))

Let µ, ν be two probability measures on R
d with finite second moments, and let g : Rd → R be a

C1 function obeying

‖∇g(w)‖ ≤ c1‖w‖+ c2, ∀w ∈ R
d (3.13)

for some constants c1 > 0 and c2 ≥ 0. Then

∣∣∣∣
∫

Rd

g dµ−
∫

Rd

g dν

∣∣∣∣ ≤ (c1σ + c2)W2(µ, ν) (3.14)

where σ2 :=
∫
Rd µ(dw)‖w‖2 ∨

∫
Rd ν(dw)‖w‖2.

3.3. The diffusion approximation

Recall that µz,k = L(Wk|Z = z) and νz,t = L(W (t)|Z = z), and we take µz,0 = νz,0 = µ0. In

this section, we derive an upper bound on the 2-Wasserstein distance W2(µz,k, νz,kη). The analysis

consists of two steps. We first upper-bound the relative entropy D(µz,k‖νz,kη) via a change-of-

measure argument following Dalalyan and Tsybakov (2012) (see also Dalalyan (2016)), except

that we also have to deal with the error introduced by the stochastic gradient oracle. We then use

a weighted transportation-cost inequality of Bolley and Villani (2005) to control the Wasserstein

distance W2(µz,k, νz,kη) in terms of D(µz,k‖νz,kη).
The proof of the following lemma is somewhat lengthy, and is given in Appendix D:
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Lemma 7 For any k ∈ N and any η ∈ (0, 1 ∧ m
4M2 ), we have

D(µz,k‖νz,kη) ≤ (C0βδ + C1η) kη,

with

C0 =


M2

(
κ0 + 2

(
1 ∨ 1

m

)(
b+ 2B2 +

d

β

))
+B2


 , C1 = 6M2 (βC0 + d) .

We now use the following result of Bolley and Villani (2005, Cor. 2.3): For any two Borel proba-

bility measures µ, ν on R
d with finite second moments,

W2(µ, ν) ≤ Cν

[
√

D(µ‖ν) +
(
D(µ‖ν)

2

)1/4
]
,

where

Cν = 2 inf
λ>0

(
1

λ

(
3

2
+ log

∫

Rd

eλ‖w‖2ν(dw)

))1/2

.

Let µ = µz,k, ν = νz,kη, and take λ = 1. Suppose kη ≥ 1. Since β ≥ 2
m , we can use Lemma 4 to

write

W2
2 (µz,k, νz,kη) ≤

(
12 + 8

(
κ0 + 2b+

2d

β

)
kη

)
·
(
D(µz,k‖νz,kη) +

√
D(µz,k‖νz,kη)

)
.

Moreover, for all k and η satisfying the conditions of Lemma 7, plus the additional requirement

kη ≥ 1, we can write

D(µz,k‖νz,kη) +
√

D(µz,k‖νz,kη) ≤
(
C1 +

√
C1

)
kη3/2 +

(
βC0 +

√
βC0

)
· kη

√
δ.

Putting everything together, we obtain the following result:

Proposition 8 For any k ∈ N and any η ∈ (0, 1 ∧ m
4M2 ) obeying kη ≥ 1, we have

W2
2 (µz,k, νz,kη) ≤

(
C̃2
0

√
δ + C̃2

1

√
η
)
· (kη)2, (3.15)

with

C̃2
0 :=

(
12 + 8

(
κ0 + 2b+

2d

β

))(
βC0 +

√
βC0

)

and

C̃2
1 :=

(
12 + 8

(
κ0 + 2b+

2d

β

))(
C1 +

√
C1

)
.

9



RAGINSKY RAKHLIN TELGARSKY

3.4. Wasserstein distance to the Gibbs distribution

We now fix a time t ≥ 0 and examine the 2-Wasserstein distance W2(νz,t, πz). At this point, we

need to use a number of concepts from the analysis of Markov diffusion operators; see Appendix A

for the requisite background. We start by showing the following:

Proposition 9 For β ≥ 2/m, all of the the Gibbs measures πz satisfy a logarithmic Sobolev

inequality with constant

cLS ≤ 2m2 + 8M2

m2Mβ
+

1

λ∗

(
6M(d+ β)

m
+ 2

)
.

Therefore,

W2(µ, πz) ≤
√
2cLSD(µ‖πz) (3.16)

by the Otto–Villani theorem, and, since D(νz,0‖πz) = D(µ0‖πz) < ∞ by Lemma 5, we also have

D(νz,t‖πz) ≤ D(µ0‖πz)e−2t/βcLS . (3.17)

by the theorem on exponential decay of entropy. Combining Eqs. (3.16) (with µ = νz,t) and (3.17)

and using Lemma 5, we get

W2(νz,t, πz) ≤

√√√√2cLS

(
log ‖p0‖∞ +

d

2
log

3π

mβ
+ β

(
Mκ0
3

+B
√
κ0 +A+

b

2
log 3

))
e−t/βcLS

=: C̃2e
−t/βcLS .

Letting t = kη and invoking Proposition 8, we obtain the following:

Proposition 10 For all k and η satisfying the conditions of Proposition 8, we have

W2(µz,k, πz) ≤
(
C̃0δ

1/4 + C̃1η
1/4
)
kη + C̃2e

−kη/βcLS .

3.5. Almost-ERM property of the Gibbs algorithm

In this section and the next one, we focus on the properties of the Gibbs algorithm that generates a

random hypothesis Ŵ ∗ with L(Ŵ ∗|Z = z) = πz. Let pz(w) = e−βFz(w)/Λz denote the density of

the Gibbs measure πz with respect to the Lebesgue measure on R
d, where Λz :=

∫
Rd e

−βFz(w)dw
is the normalization constant known as the partition function. We start by writing

∫

Rd

Fz(w)πz(dw) =
1

β

(
h(pz)− log Λz

)
, (3.18)

where

h(pz) = −
∫

Rd

pz(w) log pz(w)dw = −
∫

Rd

e−βFz(w)

Λz

log
e−βFz(w)

Λz

dw

is the differential entropy of pz (Cover and Thomas, 2006). To upper-bound h(pz), we estimate the

second moment of πz. From (3.17), it follows that W2(νz,t, πz)
t→∞−−−→ 0. Since convergence of

10



STOCHASTIC GRADIENT LANGEVIN DYNAMICS: A NONASYMPTOTIC ANALYSIS

probability measures in 2-Wasserstein distance is equivalent to weak convergence plus convergence

of second moments (Villani, 2003, Theorem 7.12), we have by Theorem 3

∫

Rd

‖w‖2πz(dw) = lim
t→∞

∫

Rd

‖w‖2νz,t(dw) ≤
b+ d/β

m
. (3.19)

The differential entropy of a probability density with a finite second moment is upper-bounded by

that of a Gaussian density with the same second moment, so we immediately get

h(pz) ≤
d

2
log

(
2πe(b+ d/β)

md

)
. (3.20)

Moreover, let w∗
z be any point that minimizes Fz(w), i.e., F ∗

z
:= minw∈Rd Fz(w) = Fz(w

∗
z).

Then ∇Fz(w
∗
z) = 0, and, since Fz is M -smooth, we have Fz(w) − F ∗

z ≤ M
2 ‖w − w∗‖2 by

Lemma 1.2.3 in Nesterov (2004). As a consequence, we can lower-bound log Λz using a Laplace

integral approximation:

log Λz = log

∫

Rd

e−βFz(w)dw

= −βF ∗
z + log

∫

Rd

eβ(F
∗
z
−Fz(w))dw

≥ −βF ∗
z + log

∫

Rd

e−βM‖w−w∗
z‖2/2dw

= −βF ∗
z +

d

2
log

(
2π

Mβ

)
. (3.21)

Using Eqs. (3.20) and (3.21) in (3.18) and simplifying, we obtain the following result:

Proposition 11 For any β ≥ 2/m,

∫

Rd

Fz(w)πz(dw)− min
w∈Rd

Fz(w) ≤
d

2β
log

(
eM

m

(
bβ

d
+ 1

))
.

3.6. Stability of the Gibbs algorithm

Our last step before the final analysis is to show that the Gibbs algorithm is uniformly stable. Fix

two n-tuples z = (z1, . . . , zn), z̄ = (z̄1, . . . , z̄n) ∈ Z
n with card|{i : zi 6= z̄i}| = 1. Then the

Radon–Nikodym derivative pz,z̄ = dπz

dπz̄

can be expressed as

pz,z̄(w) =
exp

(
−β

n

(
f(w, zi0)− f(w, z̄i0)

))

Λz/Λz̄

,

where i0 ∈ [n] is the index of the coordinate where z and z̄ differ. In particular,

∇
√

pz,z̄(w) =
β

2n

(
∇wf(w, z̄i0)−∇wf(w, zi0)

)√
pz,z̄(w).

11
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Therefore, since πz̄ satisfies a logarithmic Sobolev inequality with constant cLS given in Proposi-

tion 9, we can write

D(πz‖πz̄) ≤ 2cLS

∫ ∥∥∇√
pz,z̄
∥∥2 dπz̄

=
cLSβ

2

2n2

∫

Rd

∥∥∥∇wf(w, z̄i0)−∇wf(w, zi0)
∥∥∥
2
pz,z̄(w)πz̄(dw)

=
cLSβ

2

2n2

∫

Rd

∥∥∥∇wf(w, z̄i0)−∇wf(w, zi0)
∥∥∥
2
πz(dw)

≤ 2cLSβ
2

n2

(
M2

∫

Rd

‖w‖2πz(dw) +B2

)
,

where the last line follows from the quadratic growth estimate (3.6). Taking µ = πz in (3.16) and

using the above bound and the second-moment estimate (3.19), we obtain

W2(πz, πz̄) ≤
2cLSβ

n

√
B2 +

M2(b+ d/β)

m
.

Finally, observe that, for each z ∈ Z, the function w 7→ f(w, z) satisfies the conditions of Lemma 6

with c1 = M and c2 = B, while πz and πz̄ satisfy the conditions of Lemma 6 with σ2 = b+d/β
m .

Thus, we obtain the following uniform stability estimate for the Gibbs algorithm:

Proposition 12 For any two z, z̄ ∈ Z
n that differ only in a single coordinate,

sup
z∈Z

∣∣∣∣
∫

Rd

f(w, z)πz(dw)−
∫

Rd

f(w, z)πz̄(dw)

∣∣∣∣ ≤
C̃3

n

with

C̃3 := 4

(
M2 b+ d/β

m
+B2

)
βcLS.

3.7. Completing the proof

Now that we have all the ingredients in place, we can complete the proof of Theorem 1. Choose

k ∈ N and η ∈ (0, 1 ∧ m
4M2 ) to satisfy

kη = βcLS log

(
1

ε

)
and η ≤

(
ε

log(1/ε)

)4

.

Then, by Proposition 10,

W2(µz,k, πz) ≤ C̃0βcLSδ
1/4 log

(
1

ε

)
+
(
C̃1βcLS + C̃2

)
ε.

Now consider the random hypotheses Ŵ and Ŵ ∗ with L(Ŵ |Z = z) = µz,k and L(Ŵ ∗|Z = z) =
πz. Then

EF (Ŵ )− F ∗ = EF (Ŵ )−EF (Ŵ ∗) +EF (Ŵ ∗)− F ∗

=

∫

Zn

P
⊗n(dz)

(∫

Rd

F (w)µk,z(dw)−
∫

Rd

F (w)πz(dw)

)
+EF (Ŵ ∗)− F ∗.

12
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The function F satisfies the conditions of Lemma 6 with c1 = M and c2 = B, while the probability

measures µz,k, πz satisfy the conditions of Lemma 6 with

σ2 = κ0 + 2

(
1 ∨ 1

m

)(
b+B2(1 + δ) +

d

β

)
,

by Lemma 3. Therefore, for all z ∈ Z
n,

∫

Rd

F (w)µk,z(dw)−
∫

Rd

F (w)πz(dw) ≤ K0δ
1/4 log

(
1

ε

)
+K1ε (3.22)

with

K0 :=


M

√
κ0 + 2

(
1 ∨ 1

m

)(
b+ 2B2 +

d

β

)
+B


 C̃0βcLS

and

K1 :=


M

√
κ0 + 2

(
1 ∨ 1

m

)(
b+ 2B2 +

d

β

)
+B


 (C̃1βcLS + C̃2).

It remains to analyze the expected excess risk EF (Ŵ ∗)− F ∗ of the Gibbs algorithm. To that end,

we will use stability-based arguments along the lines of Bousquet and Elisseeff (2002) and Rakhlin

et al. (2005). We begin by decomposing the excess risk as

EF (Ŵ ∗)− F ∗ = EF (Ŵ ∗)−EFZ(Ŵ
∗)︸ ︷︷ ︸

T1

+EFZ(Ŵ
∗)− F ∗

︸ ︷︷ ︸
T2

.

The term T1 is the generalization error of the Gibbs algorithm. To upper-bound it, let Z
′ =

(Z ′
1, . . . , Z

′
n) ∼ P

⊗n be independent of Z and Ŵ ∗. Then

EF (Ŵ ∗)−EFZ(Ŵ
∗) = E[FZ′(Ŵ ∗)− FZ(Ŵ

∗)]

=
1

n

n∑

i=1

E[f(Ŵ ∗, Z ′
i)− f(Ŵ ∗, Zi)]. (3.23)

Using the fact that Z1, . . . , Zn, Z
′
1, . . . , Z

′
n are i.i.d., as well as the fact that Z′ is indepdenent of

Ŵ ∗, the ith term in the summation in (3.23) can be written out explicitly as follows:

E[f(Ŵ ∗, Z ′
i)− f(Ŵ ∗, Zi)]

=

∫

Zn

P
⊗n(dz)

∫

Z

P(dz′i)
∫

Rd

πz(dw)
[
f(w, z′i)− f(w, zi)

]

=

∫

Zn

P
⊗n(dz1, . . . , dz

′
i, . . . , dzn)

∫

Z

P(dzi)

∫

Rd

π(z1,...,z′i,...,zn)(dw)f(w, zi)

−
∫

Zn

P
⊗n(dz1, . . . , dzi, . . . , dzn)

∫

Z

P(dz′i)
∫

Rd

π(z1,...,zi,...,zn)(dw)f(w, zi)

=

∫

Zn

P
⊗n(dz)

∫

Z

P(dz′i)

(∫

Rd

π
z̄(i)

(dw)f(w, zi)−
∫

Rd

πz̄(dw)f(w, zi)

)
, (3.24)

13
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where z̄
(i) := (z1, . . . , zi−1, z

′
i, zi+1, . . . , zn). Noting that z̄(i) and z differ only in the ith coordi-

nate, we can use Proposition 12 to upper-bound the integral in (3.24). Since the resulting estimate

is uniform in i, from (3.23) we obtain

EF (Ŵ ∗)−EFZ(Ŵ
∗) ≤ C̃3

n
. (3.25)

The term T2 can be handled as follows: Let w∗ ∈ R
d be any minimizer of F (w), i.e., F (w∗) = F ∗.

Then

EFZ(Ŵ
∗)− F ∗ = E

[
FZ(Ŵ

∗)− min
w∈Rd

FZ(w)

]
+E

[
min
w∈Rd

FZ(w)− FZ(w
∗)

]

≤ E

[
FZ(Ŵ

∗)− min
w∈Rd

FZ(w)

]

≤ d

2β
log

(
eM

m

(
bβ

d
+ 1

))
, (3.26)

where the last step is by Proposition 11. From (3.25) and (3.26), we get

EF (Ŵ ∗)− F ∗ = EF (Ŵ ∗)−EFZ(Ŵ
∗) +EFZ(Ŵ

∗)− F ∗ ≤ C̃3

n
+

d

2β
log

(
eM

m

(
bβ

d
+ 1

))
.

(3.27)

Combining Eqs. (3.22) and (3.27), we obtain the claimed excess risk bound (2.6).

4. Discussion and directions for future research

Regularity assumptions. The first two assumptions are fairly standard in the literature on non-

convex optimization. The dissipativity assumption (A.3) merits some discussion. The term “dissipa-

tive” comes from the theory of dynamical systems (Hale, 1988; Stuart and Humphries, 1996), where

it has the following interpretation: Consider the gradient flow described by the ordinary differential

equation

dw

dt
= −∇f(w, z), w(0) = w0. (4.1)

If f is (m, b)-dissipative, then a simple argument based on the Gronwall lemma shows that, for

any ε > 0 and any initial condition w0, the trajectory of (4.1) satisfies ‖w(t)‖ ≤
√

b/m+ ε for

all t ≥ 1
2m log ‖w0‖2

ε . In other words, for any ε > 0, the Euclidean ball of radius
√
b/m+ ε

centered at the origin is an absorbing set for the flow (4.1). If we think of w(t) as the position of a

particle moving in R
d in the presence of the potential f(w, z), then the above property means that

the particle rapidly loses (or dissipates) energy and stays confined in the absorbing set. However,

the behavior of the flow inside this absorbing set may be arbitrarily complicated; in particular, even

though (2.3) implies that all of the critical points of w 7→ f(w, z) are contained in the ball of

radius
√

b/m centered at the origin, there can be arbitrarily many such points. The dissipativity

14
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assumption seems restrictive, but, in fact, it can be enforced using weight decay regularization

(Krogh and Hertz, 1992). Indeed, consider the regularized objective

f(w, z) = f0(w, z) +
γ

2
‖w‖2.

Then it is not hard to show that, if the function w 7→ f0(w, z) is L-Lipschitz, then f satisfies (A.2)

with m = γ/2 and b = L2/2γ. Thus, a byproduct of our analysis is a fine-grained characterization

of the impact of weight decay on learning.

Assumption (A.4) provides control of the relative mean-square error of the stochastic gradi-

ent, viz., E‖g(w,Uz)‖2 � (1 + δ)‖∇Fz(w)‖2, and is also easy to satisfy in practice. For ex-

ample, consider the case where, at each iteration of SGLD, we sample (uniformly with replace-

ment) a random minibatch of size ℓ. Then we can take Uz = (zI1 , . . . , zIℓ), where I1, . . . , Iℓ
i.i.d.∼

Uniform({1, . . . , n}), and

g(w,Uz) =
1

ℓ

ℓ∑

j=1

∇f(w, zIj ). (4.2)

This gradient oracle is clearly unbiased, and a simple calculation shows that (A.4) holds with δ =
1/ℓ. On the other hand, using the full empirical gradient clearly gives δ = 0.

Finally, the exponential integrability assumption (A.5) is satisfied, for example, by the Gaussian

initialization W0 ∼ N(0, σ2Id) with σ2 < 1/2.

Effect of gradient noise and minibatch size selection. Observe that the excess risk bound (2.6)

contains a term that goes to zero as ε → 0, as well as a term that grows as log ε−1, but goes to zero

as the gradient noise level δ → 0. This suggests selecting the minibatch size

ℓ ≥ 1

η
≥
(
log(1/ε)

ε

)4

.

to offset the log ε−1 term.

Uniform spectral gap. As shown in Appendix B, Assumptions (A.1)–(A.3) are enough to guar-

antee that the spectral gap λ∗ is strictly positive. In particular, we give a very conservative estimate

1

λ∗
= Õ

(
1

β(d+ β)

)
+ Õ

(
1 +

d

β

)
eÕ(β+d). (4.3)

Using this estimate in Eq. (2.6), we end up with a bound on the excess risk that has a dependence on

exp(Õ(β + d)). This in turn suggests choosing ε = 1/n and β = Õ(log n); as a consequence, the

excess risk will decay as 1/ log n, and the number of iterations k will scale as nÕ(1) exp(Õ(d)). The

alternative regime of conditionally independent stochastic gradients (e.g., using a fresh minibatch

at each iteration) amounts to direct optimization of F rather than Fz and suggests the choice of

β ≈ 1/ε. The number of iterations k will then scale like exp(d+ 1/ε).
Therefore, in order to apply Theorem 1, one needs to fully exploit the structural properties of the

problem at hand and produce an upper bound on 1/λ∗ which is polynomial in d or even dimension-

free. (By contrast, exponential dependence of 1/λ∗ on β is unavoidable in the presence of multiple

local minima and saddle points; this is a consequence of sharp upper and lower bounds on the
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spectral gap due to Bovier et al. (2005).) For example, consider replacing the empirical risk (1.2)

with a smoothed objective

F̃z(w) = − 1

β
log

∫

{‖v‖≤R}
e−βγ‖v−w‖2/2e−βFz(v)dv

=
γ

2
‖w‖2 − 1

β
log

∫

{‖v‖≤R}
eβγ〈v,w〉−βγ‖v‖2/2e−βFz(v)dv,

and running SGLD with ∇F̃z instead of ∇Fz. Here, γ > 0 and R > 0 are tunable parameters.

This modification is closely related to the Entropy-SGD method, recently proposed by Chaudhari

et al. (2016). Observe that the modified Gibbs measures π̃z(dw) ∝ e−βF̃z(w) are convolutions of a

Gaussian measure and a compactly supported probability measure. In this case, it follows from the

results of Bardet et al. (2015) that

1

λ∗
≤ 1

βγ
e4βγR

2
.

Note that here, in contrast with (4.3), this bound is completely dimension-free. A tantalizing line of

future work is, therefore, to find other settings where 1/λ∗ is indeed small.
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Appendix A. Background on Markov semigroups and functional inequalities

Our analysis relies on the theory of Markov diffusion operators and associated functional inequali-

ties. In this Appendix, we only summarize the key ideas and results; the book by Bakry et al. (2014)

provides an in-depth exposition.

Let {W (t)}t≥0 be a continuous-time homogeneous Markov process with values in R
d, and let

P = {Pt}t≥0 be the corresponding Markov semigroup, i.e.,

Psg(W (t)) = E[g(W (s+ t))|W (t)]

for all s, t ≥ 0 and all bounded measurable functions g : Rd → R. (The semigroup law Ps ◦ Pt =
Ps+t is just another way to express the Markov property.) A Borel probability measure π is called

stationary or invariant if
∫
Rd Ptg dπ =

∫
Rd g dπ for all g and t. Each Pt can be extended to a

bounded linear operator on L2(π), such that Ptg ≥ 0 whenever g ≥ 0 and Pt1 = 1 for all t. The

generator of the semigroup is a linear operator L defined on a dense subspace D(L) of L2(π) (the

domain of L), such that, for any g ∈ D(L),

∂tPtg = LPtg = PtLg.

In particular, L1 = 0, and π is an invariant probability measure of the semigroup if and only if∫
Rd Lg dπ = 0 for all g ∈ D(L). The generator L defines the Dirichlet form

E(g) := −
∫

Rd

gLg dπ. (A.1)

It can be shown that E(g) ≥ 0, i.e., −L is a positive operator (since L1 = 0, zero is an eigenvalue).

Let P be a Markov semigroup with the unique invariant distribution π and the Dirichlet form E .

We say that π satisfies a Poincaré (or spectral gap) inequality with constant c if, for all probability

measures µ ≪ π,

χ2(µ‖π) ≤ c E
(√

dµ

dπ

)
, (A.2)

where χ2(µ‖π) := ‖dµ
dπ − 1‖2L2(π) is the χ2 divergence between µ and π. The name “spectral gap”

comes from the fact that, if (A.2) holds with some constant c, then 1/c ≥ λ, where

λ := inf

{
E(g)∫

Rd g2dπ
: g ∈ C2, g 6= 0,

∫

Rd

g = 0

}

= inf




−〈g,Lg〉L2(π)

‖g‖2
L2(π)

: g ∈ C2, g 6= 0,

∫

Rd

g = 0



 .

Hence, if λ > 0, then the spectrum of −L is contained in the set {0} ∪ [λ,∞), so λ is the gap

between the zero eigenvalue and the rest of the spectrum. We say that π satisfies a logarithmic

Sobolev inequality with constant c if, for all µ ≪ π,

D(µ‖π) ≤ 2c E
(√

dµ

dπ

)
, (A.3)
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where D(µ‖π) =
∫
dµ log dµ

dπ is the relative entropy (Kullback–Leibler divergence). We record

a couple of key consequences of the logarithmic Sobolev inequality. Consider a Markov process

{W (t)}t≥0 with a unique invariant distribution π and a Dirichlet form E , such that π satisfies a

logarithmic Sobolev inequality with constant c. Then we have the following:

1. Exponential decay of entropy (Bakry et al., 2014, Th. 5.2.1): Let µt := L(W (t)). Then

D(µt‖π) ≤ D(µ0‖π)e−2t/c. (A.4)

2. Otto–Villani theorem (Bakry et al., 2014, Th. 9.6.1): If E(g) = α
∫
‖∇g‖2dπ for some

α > 0, then, for any µ ≪ π,

W2(µ, π) ≤
√

2cαD(µ‖π). (A.5)

Our analysis of SGLD revolves around Markov diffusion processes, so we particularize the

above abstract framework to this concrete setting. Let {W (t)}t≥0 be a Markov process evolving in

R
d according to an Itô SDE

dW (t) = −∇H(W (t))dt+
√
2 dB(t), t ≥ 0 (A.6)

where H is a C1 function and {B(t)} is the standard d-dimensional Brownian motion. (Replac-

ing the factor
√
2 by

√
2β−1 is equivalent to the time rescaling t 7→ βt.) The generator of this

semigroup is the second-order differential operator

Lg := ∆g − 〈∇H,∇g〉 (A.7)

for all C2 functions g, where ∆ := ∇ · ∇ is the Laplace operator. If the map w 7→ ∇H(w)
is Lipschitz, then the Gibbs measure π(dw) ∝ e−H(w)dw is the unique invariant measure of the

underlying Markov semigroup, and a simple argument using integration by parts shows that the

Dirichlet form is given by

E(g) =
∫

Rd

‖∇g‖2dπ. (A.8)

Thus, the Gibbs measure π satisfies a Poincaré inequality with constant c if, for any µ ≪ π,

χ2(µ‖π) ≤ c

∫

Rd

∥∥∥∥∥∇
√

dµ

dπ

∥∥∥∥∥

2

dπ (A.9)

and a logarithmic Sobolev inequality with constant c if

D(µ‖π) ≤ 2c

∫

Rd

∥∥∥∥∥∇
√

dµ

dπ

∥∥∥∥∥

2

dπ. (A.10)

If H is C2 and strongly convex, i.e., ∇2H � KId for some K > 0, then π satisfies a logarithmic

Sobolev inequality with constant c = 1/K. In the absence of convexity, it is in general difficult

to obtain upper bounds on Poincaré or log-Sobolev constants. The following two propositions give

sufficient conditions based on so-called Lyapunov function criteria:
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Proposition 13 (Bakry et al. (2008)) Suppose that there exist constants κ0, λ0 > 0, R ≥ 0 and a

C2 function V : Rd → [1,∞) such that

LV (w)

V (w)
≤ −λ0 + κ01{‖w‖ ≤ R}. (A.11)

Then π satisfies a Poincaré inequality with constant

cP ≤ 1

λ0

(
1 + Cκ0R

2eOscR(H)
)
, (A.12)

where C > 0 is a universal constant and OscR(H) := max‖w‖≤R H(w)−min‖w‖≤R H(w).

Remark 14 The term involving OscR(H) in (A.12) arises from a (very crude) estimate of the

Poincaré constant of the truncated Gibbs measure πR(dw) ∝ e−H(w)
1{‖w‖ ≤ R}dw, cf. the

discussion preceding the statement of Theorem 1.4 in Bakry et al. (2008).

Proposition 15 (Cattiaux et al. (2010)) Suppose the following conditions hold:

1. There exist constants κ, γ > 0 and a C2 function V : Rd → [1,∞) such that

LV (w)

V (w)
≤ κ− γ‖w‖2 (A.13)

for all w ∈ R
d.

2. π satisfies a Poincaré inequality with constant cP.

3. There exists some constant K ≥ 0, such that ∇2H � −KId.

Let C1 and C2 be defined, for some ε > 0, by

C1 =
2

γ

(
1

ε
+

K

2

)
+ ε and C2 =

2

γ

(
1

ε
+

K

2

)(
κ+ γ

∫

Rd

‖w‖2π(dw)
)
.

Then π satisfies a logarithmic Sobolev inequality with constant cLS = C1 + (C2 + 2)cP.

Remark 16 In particular, if K 6= 0, we can take ε = 2/K, in which case

C1 =
2K

γ
+

2

K
and C2 =

2K

λ

(
κ+ γ

∫

Rd

‖w‖2dπ
)
. (A.14)

Appendix B. A lower bound on the uniform spectral gap

Our goal here is to prove the crude lower bound on λ∗ given in Section 4. To that end, we will use

the Lyapunov function criterion due to Bakry et al. (2008), which is reproduced as Proposition 13

in Appendix A.

We will apply this criterion to the Gibbs distribution πz for some z ∈ Z
n. Thus, we have

H = βFz and

Lg = ∆g − β〈∇Fz,∇g〉.
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Consider the candidate Lyapunov function V (w) = emβ‖w‖2/4. From the fact that V ≥ 1 and from

the dissipativity assumption (A.3), it follows that

LV (w) =

(
mβd

2
+

(mβ)2

4
‖w‖2 − mβ2

2
〈w,∇Fz(w)〉

)
V (w)

≤
(
mβ(d+ bβ)

2
− (mβ)2

4
‖w‖2

)
V (w). (B.1)

Thus, V evidently satisfies (A.11) with R2 = 2κ
γ , κ0 = κ and λ0 = 2κ, where

κ :=
mβ(d+ bβ)

2
and γ :=

(mβ)2

4
. (B.2)

Moreover, from Lemma 2 and from the fact that Fz ≥ 0, it follows that

OscR(βFz) ≤ β

(
MR2

2
+BR+A

)
≤ β

(
(M +B)R2

2
+A+B

)
.

Thus, by Proposition 13, πz satisfies a Poincaré inequality with constant

cP ≤ 1

mβ(d+ bβ)
+

2C(d+ bβ)

mβ
exp

(
2

m
(M +B)(bβ + d) + β(A+B)

)
.

Observe that this bound holds for all z ∈ Z
n. Using this fact and the relation 1/λ ≤ cP between the

spectral gap and the Poincaré constant, we see that

1

λ∗
≤ 1

mβ(d+ bβ)
+

2C(d+ bβ)

mβ
exp

(
2

m
(M +B)(bβ + d) + β(A+B)

)
,

which proves the claimed bound.

Appendix C. Proofs for Section 3.2

Proof [Proof of Lemma 2] The estimate (3.6) is an easy consequence of conditions (A.1) and (A.2).

Next, observe that, for any two v, w ∈ R
d,

f(w, z)− f(v, z) =

∫ 1

0
〈w − v,∇f(tw + (1− t)v, z)〉dt. (C.1)

In particular, taking v = 0, we obtain

f(w, z) = f(0, z) +

∫ 1

0
〈w,∇f(tw)〉dt

(i)

≤ A+

∫ 1

0
‖w‖ ‖∇f(tw, z)‖ dt

(ii)

≤ A+ ‖w‖
∫ 1

0

(
Mt‖w‖+B

)
dt

= A+
M

2
‖w‖2 +B‖w‖,
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where (i) follows from (A.1) and from Cauchy–Schwarz, while (ii) follows from (3.6). This proves

the upper bound on f(w, z). Now take v = cw for some c ∈ (0, 1] to be chosen later. With this

choice, we proceed from Eq. (C.1) as follows:

f(w, z) = f(cw, z) +

∫ 1

c
〈w,∇f(tw, z)〉dt

(i)

≥
∫ 1

c

1

t
〈tw,∇f(tw, z)〉dt

(ii)

≥
∫ 1

c

1

t

(
mt2‖w‖2 − b

)
dt

=
m(1− c2)

2
‖w‖2 + b log c,

where (i) uses the fact that f ≥ 0, while (ii) uses the dissipativity property (2.3). Taking c = 1√
3
,

we get the lower bound in (3.7).

Proof [Proof of Lemma 3] From (2.2), it follows that

Ez‖Wk+1‖2 = Ez‖Wk − ηg(Wk, Uz,k)‖2 +
√

8η

β
Ez〈Wk − ηg(Wk, Uz,k), ξk〉+

2η

β
Ez‖ξk‖2

= Ez‖Wk − ηg(Wk, Uz,k)‖2 +
2ηd

β
, (C.2)

where the second step uses independence of Wk−g(Wk, Uz,k) and ξk and the unbiasedness property

(2.1) of the gradient oracle. We can further expand the first term in (C.2):

Ez‖Wk − ηg(Wk, Uz,k)‖2

= Ez

∥∥Wk − η∇Fz(Wk)
∥∥2 + 2ηEz〈Wk − η∇Fz(Wk),∇Fz(Wk)− g(Wk, Uz,k)〉

+ η2Ez‖∇Fz(Wk)− g(Wk, Uz,k)‖2

= Ez‖Wk − η∇Fz(Wk)‖2 + η2Ez‖∇Fz(Wk)− g(Wk, Uz,k)‖2, (C.3)

where we have used (2.1) once again. By (2.4), the second term in (C.3) can be upper-bounded by

Ez‖∇Fz(Wk)− g(Wk, Uz,k)‖2 ≤ 2δ(M2
Ez‖Wk‖2 +B2),

whereas the first term can be estimated as

Ez‖Wk − η∇Fz(Wk)‖2 = Ez‖Wk‖2 − 2ηEz〈Wk,∇Fz(Wk)〉+ η2Ez‖∇Fz(Wk)‖2

≤ Ez‖Wk‖2 + 2η(b−mEz‖Wk‖2) + 2η2(M2
Ez‖Wk‖2 +B2)

=
(
1− 2ηm+ 2η2M2

)
Ez‖Wk‖2 + 2ηb+ 2η2B2,

where the inequality follows from the dissipativity condition (2.3) and the bound (3.6) in Lemma 2.

Combining all of the above, we arrive at the recursion

Ez‖Wk+1‖2 ≤ (1− 2ηm+ 4η2M2)Ez‖Wk‖2 + 2ηb+ 4η2B2 +
2ηd

β
. (C.4)

Fix some η ∈ (0, 1 ∧ m
2M2 ). There are two cases to consider:
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• If 1− 2ηm+ 4η2M2 ≤ 0, then from (C.4) it follows that

Ez‖Wk+1‖2 ≤ 2ηb+ 4η2B2 +
2ηd

β

≤ Ez‖W0‖2 + 2

(
b+ 2B2 +

d

β

)
. (C.5)

• If 0 < 1− 2ηm+ 4η2M2 < 1, then iterating (C.4) gives

Ez‖Wk‖2 ≤ (1− 2ηm+ 4η2M2)kEz‖W0‖2 +
ηb+ 2η2B2 + ηd

β

ηm− 2η2M2

≤ Ez‖W0‖2 +
2

m

(
b+ 2B2 +

d

β

)
. (C.6)

The bound (3.8) follows from Eqs. (C.5) and (C.6) and from the estimate

Ez‖W0‖2 = E‖W0‖2 ≤ logEe‖W0‖2 = κ0, (C.7)

which easily follows from the independence of Z and W0 and from Jensen’s inequality.

We now analyze the diffusion (1.4). Let Y (t) := ‖W (t)‖2. Then Itô’s lemma gives

dY (t) = −2〈W (t),∇Fz(W (t))〉dt+ 2d

β
dt+

√
8

β
W (t)∗dB(t),

where W (t)∗dB(t) :=
∑d

i=1Wi(t)dBi(t). This can be rewritten as

2me2mtY (t)dt+ e2mtdY (t)

= −2e2mt〈W (t),∇Fz(W (t))〉dt+ 2me2mtY (t)dt+
2d

β
e2mtdt+

√
8

β
e2mtW (t)∗dB(t).

(C.8)

Recognizing the left-hand side of (C.8) as the total Itô derivative of e2mtY (t), we arrive at

d
(
e2mtY (t)

)
= −2e2mt〈W (t),∇Fz(W (t))〉dt+ 2me2mtY (t)dt

+
2d

β
e2mtdt+

√
8

β
e2mtW (t)∗dB(t), (C.9)

which, upon integrating and rearranging, becomes

Y (t) = e−2mtY (0)− 2

∫ t

0
e2m(s−t)〈W (s),∇Fz(W (s))〉ds

+ 2m

∫ t

0
e2m(s−t)Y (s)ds+

d

mβ

(
1− e−2mt

)
+

√
8

β

∫ t

0
e2m(s−t)W (s)∗dB(s).

(C.10)
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Now, using the dissipativity condition (2.3), we can write

−2

∫ t

0
e2m(s−t)〈W (s),∇Fz(W (s))〉ds ≤ 2

∫ t

0
e2m(s−t)

(
b−mY (s)

)
ds

= 2b

∫ t

0
e2m(s−t)ds− 2m

∫ t

0
e2m(s−t)Y (s)ds

=
b

m

(
1− e−2mt

)
− 2m

∫ t

0
e2m(s−t)Y (s)ds.

Substituting this into (C.10), we end up with

‖W (t)‖2 ≤ e−2mt‖W (0)‖2 + b+ d/β

m

(
1− e−2mt

)
+

√
8

β

∫ t

0
e2m(s−t)W (s)∗dB(s).

Taking expectations and using the martingale property of the Itô integral together with (C.7), we

get (3.9). Eq. (3.10) follows from maximizing the right-hand side of (3.9) over all t ≥ 0.

Proof [Proof of Lemma 4] For L(t) = e‖W (t)‖2 , Itô’s lemma gives

dL(t) = −2〈W (t),∇Fz(W (t))〉L(t)dt+ 4

β
L(t)‖W (t)‖2dt+ 2d

β
L(t)dt+

√
8

β
L(t)W (t)∗dB(t).

Integrating, we obtain

L(t) = L(0) +

∫ t

0

(
4

β
‖W (s)‖2 − 2〈W (s),∇Fz(W (s))〉

)
L(s)ds

+
2d

β

∫ t

0
L(s)ds+

√
8

β

∫ t

0
L(s)W (s)∗dB(s).

From the dissipativity condition (2.3) and from the assumption that β ≥ 2/m, it follows that

4

β
‖W (s)‖2 − 2〈W (s),∇Fz(W (s))〉 ≤ 2b+

(
4

β
− 2m

)
‖W (s)‖2 ≤ 2b,

hence

L(t) ≤ L(0) + 2

(
b+

d

β

)∫ t

0
L(s)ds+

√
8

β

∫ t

0
L(s)W (s)∗dB(s).

It can be shown (see, e.g., the proof of Corollary 4.1 in Djellout et al. (2004)) that∫ T
0 E‖L(t)W (t)‖2dt < ∞ for all T ≥ 0. Therefore, the Itô integral

∫
L(s)W (s)∗dB(s) is a

zero-mean martingale, so, taking expecations, we get

E[L(t)] ≤ E[L(0)] + 2

(
b+

d

β

)∫ t

0
E[L(s]ds

= eκ0 + 2

(
b+

d

β

)∫ t

0
E[L(s)]ds.
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Eq. (3.11) then follows by an application of the Gronwall lemma.

Proof [Proof of Lemma 5] Let pz denote the density of πz with respect to the Lebesgue measure on

R
d:

pz(w) =
e−βFz(w)

Λz

, where Λz =

∫

Rd

e−βFz(w)dw.

Since pz > 0 everywhere, we can write

D(µ0‖πz) =
∫

Rd

p0(w) log
p0(w)

pz(w)
dw

=

∫

Rd

p0(w) log p0(w)dw + log Λz + β

∫

Rd

p0(w)Fz(w)dw

≤ log ‖p0‖∞ + log Λz + β

∫

Rd

p0(w)Fz(w)dw. (C.11)

We first upper-bound the partition function:

Λz =

∫

Rd

e−βFz(w)dw

=

∫

Rd

exp


−β

n

n∑

i=1

f(w, zi)


 dw

≤ e
1
2
βb log 3

∫

Rd

e−
mβ‖w‖2

3 dw

= 3βb/2
(

3π

mβ

)d/2

,

where the inequality follows from Lemma 2. Thus,

log Λz ≤ d

2
log

3π

mβ
+

βb

2
log 3. (C.12)

Moreover, invoking Lemma 2 once again, we have

Fz(w) =
1

n

n∑

i=1

f(w, zi) ≤
M

3
‖w‖2 +B‖w‖+A. (C.13)

Therefore,

∫

Rd

Fz(w)p0(w)dw ≤
∫

Rd

µ0(dw)

(
M

3
‖w‖2 +B‖w‖+A

)

≤ M

3
κ0 +B

√
κ0 +A. (C.14)

Substituting (C.12), (C.13), and (C.14) into (C.11), we get (3.12).
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Proof [Proof of Lemma 6] The proof is a minor tweak of the proof of Proposition 1 in Polyanskiy

and Wu (2016); we reproduce it here to keep the presentation self-contained. Without loss of gen-

erality, we assume that σ2 < ∞, otherwise the bound holds trivially. For any two v, w ∈ R
d, we

have

g(w)− g(v) =

∫ 1

0
〈w − v,∇g((1− t)v + tw)〉dt

≤
∫ 1

0
‖∇g((1− t)v + tw)‖ ‖w − v‖ dt

≤
∫ 1

0

(
c1(1− t)‖v‖+ c1t‖w‖+ c2

)
‖w − v‖ dt

=

(
c1
2
‖v‖+ c1

2
‖w‖+ c2

)
‖w − v‖, (C.15)

where we have used Cauchy–Schwarz and the growth condition (3.13). Now let P be the coupling

of µ and ν that achieves W2(µ, ν). That is, P = L((W,V )) with µ = L(W ), ν = L(V ), and

W2
2 (µ, ν) = EP‖W − V ‖2.

Taking expectations in (C.15), we have

∫

Rd

gdµ−
∫

Rd

gdν = EP[g(W )− g(V )]

≤

√
EP

(
c1
2
‖W‖+ c1

2
‖V ‖+ c2

)2

·
√
EP[‖W − V ‖2]

≤
(
c1
2

√
E‖W‖2 + c1

2

√
E‖V ‖2 + c2

)
· W2(µ, ν)

= (c1σ + c2)W2(µ, ν).

Interchanging the roles of µ and ν, we complete the proof.

Appendix D. Proof of Lemma 7

Conditioned on Z = z, {Wk}∞k=0 is a time-homogeneous Markov process. Consider the following

continuous-time interpolation of this process:

W (t) = W0 −
∫ t

0
g(W (⌊s/η⌋η), Uz(s))ds+

√
2

β

∫ t

0
dB(s), t ≥ 0 (D.1)

where Uz(t) ≡ Uz,k for t ∈ [kη, (k + 1)η). Note that, for each k, W (kη) and Wk have the same

probability law µz,k. Moreover, by a result of Gyöngy (1986), the process W (t) has the same

one-time marginals as the Itô process

V (t) = W0 −
∫ t

0
gz,s(V (s))ds+

√
2

β

∫ t

0
dB(s)
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with

gz,t(v) := Ez

[
g(W (⌊t/η⌋η), Uz(t))

∣∣∣W (t) = v
]
. (D.2)

Crucially, V (t) is a Markov process, while W (t) is not. Let Pt
V := L

(
V (s) : 0 ≤ s ≤ t

∣∣Z = z
)

and P
t
W := L

(
W (s) : 0 ≤ s ≤ t

∣∣Z = z
)
. The Radon–Nikodym derivative of Pt

W w.r.t. Pt
V is

given by the Girsanov formula

dPt
W

dPt
V

(V ) = exp

{
β

2

∫ t

0

(
∇Fz(V (s))− gz,s(V (s))

)∗
dB(s)− β

4

∫ t

0
‖∇Fz(V (s))− gz,s(V (s))‖2ds

}

(D.3)

(see, e.g., Sec. 7.6.4 in Liptser and Shiryaev (2001)). Using (D.3) and the martingale property of

the Itô integral, we have

D(Pt
V ‖Pt

W ) = −
∫

dPt
V log

dPt
W

dPt
V

=
β

4

∫ t

0
Ez

∥∥∇Fz(V (s))− gz,s(V (s))
∥∥2 ds

=
β

4

∫ t

0
Ez

∥∥∥∇Fz(W (s))− gz,s(W (s))
∥∥∥
2
ds,

where the last line follows from the fact that L(W (s)) = L(V (s)) for each s.

Now let t = kη for some k ∈ N. Then, using the definition (D.2) of gz,s, Jensen’s inequality,

and the M -smoothness of Fz, we can write

D(Pkη
V ‖Pkη

W ) =
β

4

k−1∑

j=0

∫ (j+1)η

jη
Ez

∥∥∥∇Fz(W (s))− gz,s(W (s))
∥∥∥
2
ds

≤ β

2

k−1∑

j=0

∫ (j+1)η

jη
Ez

∥∥∥∇Fz(W (s))−∇Fz(W (⌊s/η⌋η))
∥∥∥
2
ds

+
β

2

k−1∑

j=0

∫ (j+1)η

jη
Ez

∥∥∥∇Fz(W (⌊s/η⌋η))− g(W (⌊s/η⌋η), Uz(s))
∥∥∥
2
ds

≤ βM2

2

k−1∑

j=0

∫ (j+1)η

jη
Ez

∥∥∥W (s)−W (⌊s/η⌋η)
∥∥∥
2
ds

+
β

2

k−1∑

j=0

∫ (j+1)η

jη
Ez

∥∥∥∇Fz(W (⌊s/η⌋η))− g(W (⌊s/η⌋η), Uz(s))
∥∥∥
2
ds.

(D.4)

We first estimate the first summation in (D.4). Consider some s ∈ [jη, (j + 1)η). From (D.1), we

have

W (s)−W (jη) = −(s− jη)g(Wj , Uz,j) +

√
2

β

(
B(s)−B(jη)

)

= −(s− jη)∇Fz(Wj) + (s− jη)
(
∇Fz(Wj)− g(Wj , Uz,j)

)
+

√
2

β

(
B(s)−B(jη)

)
.
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Therefore, using Lemmas 2 and 3 and the gradient noise assumption (A.4), we arrive at

Ez‖W (s)−W (jη)‖2

≤ 3η2Ez‖∇Fz(Wj)‖2 + 3η2Ez‖∇Fz(Wj)− g(Wj , Uz,j)‖2 +
6ηd

β

≤ 12η2
(
M2

Ez‖Wj‖2 +B2
)
+

6ηd

β

≤ 12η2


M2

(
κ0 + 2

(
1 ∨ 1

m

)(
b+ 2B2 +

d

β

))
+B2


+

6ηd

β
.

Consequently,

k−1∑

j=0

∫ (j+1)η

jη
Ez

∥∥∥W (s)−W (⌊s/η⌋η)
∥∥∥
2
ds

≤ 12


M2

(
κ0 + 2

(
1 ∨ 1

m

)(
b+ 2B2 +

d

β

))
+B2


 kη3 +

6d

β
kη2

≤


12


M2

(
κ0 + 2

(
1 ∨ 1

m

)(
b+ 2B2 +

d

β

))
+B2


+

6d

β


 · kη2

=: 6

(
2C0 +

d

β

)
· kη2. (D.5)

Similarly, the second summation on the right-hand side of (D.4) can be estimated as follows:

k−1∑

j=0

∫ (j+1)η

jη
Ez

∥∥∥∇Fz(W (⌊s/η⌋η))− g(W (⌊s/η⌋η), U(s))
∥∥∥
2
ds

= η
k−1∑

j=0

Ez

∥∥∇Fz(Wj)− g(Wj , Uz,j)
∥∥2

≤ ηδ
k−1∑

j=0

2
(
M2

Ez‖Wj‖2 +B2
)

≤ 2M2

(
κ0 + 2

(
1 ∨ 1

m

)(
b+ 2B2 +

d

β

))
kηδ + 2δB2kη

= 2


M2

(
κ0 + 2

(
1 ∨ 1

m

)(
b+ 2B2 +

d

β

))
+B2


 · kηδ

= 2C0 · kηδ. (D.6)

Substituting Eqs. (D.5) and (D.6) into (D.4), we obtain

D(Pkη
V ‖Pkη

W ) ≤ 6
(
βM2C0 +M2d

)
· kη2 + βC0 · kηδ.
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Now, since µz,k = L(W (kη)|Z = z) and νz,kη = L(W (kη)|Z = z), the data-processing inequality

for the KL divergence gives

D(µz,k‖νz,kη) ≤ D(Pkη
V ‖Pkη

W )

≤ 6
(
βM2C0 +M2d

)
· kη2 + βC0 · kηδ

=: C1kη
2 + βC0kηδ.

Appendix E. Proof of Proposition 9

To establish the log-Sobolev inequality, we will use the Lyapunov function criterion of Cattiaux

et al. (2010), reproduced as Proposition 15 in Appendix A.

We will apply this proposition to the Gibbs distribution πz for some z ∈ Z
n, so that H = βFz

and

Lg = ∆g − β〈∇Fz,∇g〉.
We consider the same Lyapunov function V (w) = emβ‖w‖2/4 as in Appendix B. From Eq. (B.1),

V evidently satisfies (A.13) with κ and γ given in (B.2), i.e., the first condition of Proposition 15 is

satisfied. Moreover, πz satisfies a Poincaré inequality with constant cP ≤ 1/λ∗. Thus, the second

condition is also satisfied. Finally, by the M -smoothness assumption (A.2), ∇2Fz � −MId, so the

third condition of Proposition 15 is satisfied with K = βM . Consequently, the constants C1 and

C2 in (A.14) are given by

C1 =
2m2 + 8M2

m2Mβ
and C2 ≤

6M(d+ β)

m
, (E.1)

where we have also used the estimate (3.19) to upper-bound C2. Therefore, from Proposition 15

and from (E.1) it follows that πz satisfies a logarithmic Sobolev inequality with

cLS ≤ 2m2 + 8M2

m2Mβ
+

1

λ∗

(
6M(d+ β)

m
+ 2

)
.
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