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Abstract

In this paper, we investigate the problem of distributivelyallocating transmission data rates to users in the

Internet. We allow users to have concave as well as sigmoidalutility functions as appropriate for different

applications. In the literature, for simplicity, most works have dealt only with the concave utility function.

However, we show that applying rate control algorithms developed for concave utility functions in a more

realistic setting (with both concave and sigmoidal types ofutility functions) could lead to instability and high

network congestion. We show that a pricing based mechanism that solves the dual formulation can be developed

based on the theory of subdifferentials with the property that the prices “self-regulate” the users to access the

resources based on the net utility. We discuss convergence issues and show that an algorithm can be developed

that isefficientin the sense of achieving the global optimum when there are many users.

I. I NTRODUCTION

Over the last decades, there has been a significant amount of interest in the area of Internet rate con-

trol, which aims at providing satisfactory services and alleviating congestion in the Internet. Currently,

most services in the Internet are elastic to some degree, i.e., the sources can adjust their transmission

This research has been supported in part by NSF grants ANI-0073359, ANI-9805441, and ANI-0207728.



2

data rates in response to congestion levels within the network. Hence, by appropriately exploiting the

elasticity through rate control, one can maintain high network efficiency while at the same time allevi-

ating network congestion. To that end, it is necessary to have an appropriate model to characterize the

elasticity of the service. This is typically done using the well-known concept of a utility function that

represents the level of user satisfaction or Quality of Service (QoS) at the allocated rate.

We can classify services in the Internet into two classes based on the shape of the utility function.

One corresponds to traditional data services, such as file transfer and email. These services can adjust

their transmission data rates gradually, resulting in graceful degradation of the QoS in the presence of

network congestion. The elasticity of these services can bemodeled by concave utility functions [1].

The other corresponds to delay and rate adaptive services, such as streaming video and audio services.

These services are less elastic than data services. In response to network congestion, they can decrease

their transmission data rates up to a certain level with a corresponding graceful degradation in the QoS.

However, decreasing the transmission data rate below a certain threshold results in a significant drop

in the QoS (e.g., below a certain bit rate, the quality of audio communication falls dramatically). The

elasticity of these services can be modeled by using sigmoidal-like utility functions [1]. We call an

increasing functionf(x) a sigmoidal-like function, if it has one inflection pointxo, and d2f(x)
dx2 > 0, for

x < xo and d2f(x)
dx2 < 0, for x > xo, as shown in Fig. 1.

In the past few years, utility based rate control problems have begun to be addressed by the network-

ing research community [2], [3], [4], [5], [6], [7], [8], [9]. They have almost exclusively dealt with the

situation where the utilities are concave for which there exist extensive theories and algorithms such as
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Fig. 1. A sigmoidal-like function.
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the Karush-Kuhn-Tucker (KKT) conditions and the duality theorem. However, as mentioned before,

concave utility functions are appropriate only for modeling traditional data services, and do not capture

the characteristics of services such as audio and video thatare becoming increasingly popular in the

Internet. Hence, for the efficient allocation of transmission rates among services with diverse character-

istics, a rate control algorithm must be able to efficiently handle delay and rate adaptive services with

sigmoidal-like utility functions as well as data services with concave utility functions. But this results

in the non-convexity of the system, which is, in general, difficult to handle.

A natural and logical approach to dealing with the issue of non-convexity is to simply approximate

a sigmoidal-like utility function with a concave function and use one of the algorithms developed for

concave utility functions. However, this approach could result in a highly inefficient solution. For

example, suppose that a system has a single bottleneck link with capacity 10 Mbps and 11 users.

Further, suppose that each user has the same utility function U(x) that is a step function described

below:

U(x) =











0, if x < 1 Mbps

1, if x ≥ 1 Mbps
.

Note that the step function is an extreme case of a sigmoidal-like function. If we approximateU(x)

with a concave function,U ′(x), we can apply an algorithm for concave utility functions that has been

proposed in the literature to maximize the total system utility. In this case, since all users have the same

concave utility functions, at the global optimal solution,each user is allocated the same amount of rate,

x∗ = 10
11

Mbps, which providesU(x∗) = 0. Hence, with this approach, we achieve zero total system

utility for the original utility function. However, by allocating 1 Mbps to 10 users and zero to one user,

we can achieve a total system utility of 10 units. Even thoughthis example considers an extreme case,

it emphasizes that to efficiently accommodate diverse services in the Internet, it is necessary to develop

a rate allocation algorithm that takes into account the properties of both concave and sigmoidal-like

utility functions.

Recently, the implications of non-convexity of the system have begun to be addressed in the literature

[10], [11], [12]. In fact, in [12], the author showed that even though each individual user has a concave

utility function, the overall problem might be non-convex in a system with multi-class services. This
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implies that non-convexity is an important issue for rate control in the Internet. In this paper, we will

study this problem by considering a situation similar to thecurrent Internet. In the Internet, there is no

central authority in the system that performs admission control or rate control and each user behaves

in a selfish manner. Thus, a rate control algorithm must be implemented in a distributed manner taking

into account the selfish behavior of users. In the papers mentioned earlier, it has been shown that if

all users have concave utility functions, efficient distributed rate allocations can be obtained by using

an appropriate congestion indicator in the network, in spite of the selfish behavior of users. However,

as we will show later, if such algorithms developed for concave functions are now applied to non-

concave functions, they may result in the situation when thesystem cannot support all the users causing

instability and excessive congestion in the system. To prevent this situation from happening, some users

must be turned off and this decision must be made by the user itself, since there is no central authority

in the system. To this end, we will develop the algorithm withwhich each user “self-regulates” its

access to the network based on the local information.

The rest of the paper is organized as follows. In Section II, we describe the system model and present

the problem that is being considered in this paper. We develop and study the rate control algorithm in

Section III. We provide numerical results for our algorithmin Section IV and conclude in Section V.

II. SYSTEM DESCRIPTION ANDBASIC PROBLEM

We consider a system that consists ofL links andN users. Each linkl has capacityCl, and each user

i has a utility functionUi and maximum transmission data rateMi (0 < Mi < ∞). We assume thatUi

has the following properties.

Properties of the utility function:

(U1) Ui is an increasing function ofxi theallocated ratefor useri.

(U2) Ui is twice continuously differentiable.

(U3) Ui is a sigmoidal-like or strictly concave function.

(U4) dUi(xi)
dxi

< ∞ for all 0 ≤ x ≤ Mi.

In the following, if Ui is a sigmoidal-like function, we letxo
i be its inflection point. Otherwise (i.e., if

Ui is a concave function), we letxo
i = 0.
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Our objective is to obtain a data rate allocation for the users that maximizes the total system utility.

This is formulated as:

(A) max
N

∑

i=1

Ui(xi)

subject to Ax̄ ≤ C̄

0̄ ≤ x̄ ≤ M̄,

wherex̄ = (x1, x2, · · · , xN)T 1, C̄ = (C1, C2, · · · , CL)T , 0̄ = (0, 0, · · · , 0)T , M̄ = (M1,M2, · · · ,MN)T ,

andA = (aij) is anL × N matrix such that

aij =











1, if userj uses linki

0, otherwise
.

We define

T (i) = {l | ali = 1, 1 ≤ l ≤ L}, i = 1, 2, · · · , N

and

S(l) = {i | ali = 1, 1 ≤ i ≤ N}, l = 1, 2, · · · , L.

Hence,T (i) is a set of links that useri is using andS(l) is a set of users that are using linkl.

Note that since we allow non-concave utility functions, problem (A) is a non-convex programming

problem, which, is usually more difficult to solve than a convex programming problem. In [11], [13],

similar problems to (A) were studied. In [13], the problem was studied in the context of the power

allocation in wireless environment. However, in [13], we looked at this problem only in the context of a

single cell, which can be viewed as corresponding to a singlelink in the Internet. Further, the algorithm

in [13] requires a central controller, such as a base-station in cellular systems, which is clearly not

applicable to decentralized networks, such as the Internet. In [11], which is an earlier conference

version of the this paper, the rate control problem in the Internet for a single link was considered. In

this paper, we have studied the rate control problem in the Internet with multiple links.
1
x̄

T is a transpose of a vectorx̄.



6

III. R ATE CONTROL

In this section, we develop a distributed rate control algorithm for problem (A) by using the theory

of subdifferentials. For background, we first provide definitions and properties of subdifferentials. We

refer readers to [14], [15], [16] for details.

Definition 1: A vectord ∈ Rn is a subgradient of a convex functionf : Rn → R at x ∈ Rn, if

f(z) ≥ f(x) + (z − x)T d, for all z ∈ Rn.

Definition 2: The set of all subgradients of a convex functionf at x ∈ Rn is called the subdifferential

of f at x and denoted by∂f(x).

Properties of the subgradient:

(S1) A functionf(x) is differentiable atx, if and only if it has a unique subgradient atx. In this

case, the subgradient is equal to the gradient off atx.

(S2) x ∈ X ⊂ Rn minimizes a convex functionf over a convex setX, if and only if there exists a

subgradientd such thatdT (z − x) ≥ 0, for all z ∈ X.

(S3) If x is an interior point ofX, then (S2) implies thatx minimizes a convex functionf over a

convex setX, if and only if 0 ∈ ∂f(x).

A. Dual Problem

As mentioned before, problem (A) is a non-convex programming problem, which is difficult to solve.

Hence, we will consider its dual since the dual has some advantages over the primal problem. For

example:

• The dual is a convex programming problem and thus easier to solve.

• The separable property of the dual makes it easy to implementthe algorithm in a distributed fash-

ion.

• From a networking perspective, the dual will usually have a smaller dimension and simpler con-

straints than the primal. This will reduce the complexity ofthe algorithm. In our case, the primal

has a dimension ofN and the dual has a dimension ofL, whereN is the number of users in the

network andL is the number of links in the network. In general, we haveL ≪ N .
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However, since the primal is not a convex programming problem (e.g., if some of the utility functions

are sigmoidal), there could be a duality gap between the primal and its dual. Hence, by solving the dual,

we may not obtain the optimal primal solution. This is one of the difficulties that we will overcome in

this work, especially in the context of many users.

We now define a Lagrangian function associated with problem (A) as:

L(x̄, λ̄) =
N

∑

i=1

Ui(xi) + λ̄T (C̄ − Ax̄), (1)

whereλ̄T = (λ1, λ2, · · · , λL). Then, the dual of problem (A) is defined by

(B) min Q(λ̄)

subject to λ̄ ≥ 0̄,

where

Q(λ̄) = max
0̄≤x̄≤M̄

L(x̄, λ̄). (2)

It can easily be shown thatQ(λ̄) is a convex function of̄λ [16]. However, as we will show later,Q(λ̄)

may not be everywhere differentiable. Hence, even thoughQ(λ̄) is a convex function, we cannot use a

simple gradient based algorithm to find a minimizer, as in [4]and [5], since clearlyQ(λ̄) does not have

a gradient at the point where it is not differentiable.

To solve problem (B), we first study the properties ofQ(λ̄) by using the theory of the subdifferentials.

We now characterize the subdifferentials ofQ(λ̄). First, we can rewriteL(x̄, λ̄) in (1) as:

L(x̄, λ̄) =
N

∑

i=1

Ui(xi) −
N

∑

i=1

xi

∑

j∈T (i)

λj +
L

∑

j=1

λjCj

=
N

∑

i=1

Ui(xi) −
N

∑

i=1

λT (i)xi +
L

∑

j=1

λjCj,

where

λT (i) =
∑

j∈T (i)

λj.

Since it is separable in̄x, x̄(λ̄) = (x1(λT (1)), x2(λT (2)), · · · , xN(λT (N)))
T solves (2) if and only if it

solves the following:

xi(λT (i)) = arg max
0≤x≤Mi

{NUi(λT (i), x)}, for i = 1, 2, · · · , N, (3)
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where

NUi(λT (i), x) = Ui(x) − λT (i)x.

The properties ofxi(λT (i)) were studied in [13]. First, we defineλmax
i for useri as:

λmax
i = min{λT (i) ≥ 0 | max

0≤x≤Mi

{NUi(λT (i), x)} = 0}. (4)

We can calculateλmax
i by solving the following equation [13]:

λmax
i =



























dUi(x)
dx

|x=0, if Ui is a concave function

dUi(x)
dx

|x=x′ , if Ui is a sigmoidal-like function andx′ exists

Ui(Mi)
Mi

, otherwise

,

wherex′ is a solution of the following equation:

Ui(x) − x
dUi(x)

dx
= 0, xo

i ≤ x ≤ Mi,

andxo
i is the inflection point ofUi, whenUi is sigmoidal. Also, defineλmin

i for useri as:

λmin
i = max{λT (i) ≥ 0|xi(λT (i)) = Mi}.

Obviously,0 < λmax
i < ∞ andλmax

i ≥ λmin
i . Then,xi(λT (i)) has the following properties [13]:

Properties ofxi(λT (i)):

(R1) If Ui is a sigmoidal-like function (i.e.,0 < xo
i < Mi), thenxi(λT (i)) has two values (zero

and positive) and is discontinuous atλmax
i . Otherwise,xi(λT (i)) has a unique value and is

continuous.

(R2) xi(λT (i)) is positive and a decreasing function ofλ, for λmin
i ≤ λT (i) < λmax

i .

(R3) xi(λT (i)) is zero, forλT (i) > λmax
i .

(R4) xi(λT (i)) is Mi, for λT (i) ≤ λmin
i .

(R5) Ui(xi(λ
max
i )) is achieved at the concave region ofUi.

Note that, ifUi is a concave function,xi(λT (i)) is a continuous and non-increasing function. However,

if Ui is a sigmoidal-like function,xi(λT (i)) is not only discontinuous but also has two values atλmax
i .

One is zero and the other is positive. In the sequel, unless explicitly mentioned otherwise,xi(λT (i)) will

denote a positive value, if (3) has two solutions.
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Since the Lagrangian function,L(x̄, .) is differentiable for all̄0 ≤ x̄ ≤ M̄ , and∇λ̄L(., λ̄) is contin-

uous for all0̄ ≤ x̄ ≤ M̄ , by Danskin’s Theorem [16], the subdifferential ofQ(λ̄), ∂Q(λ̄), is obtained

as:

∂Q(λ̄) = conv({∇λ̄L(x̄, λ̄) | x̄ ∈ x̄(λ̄)})

= conv({(C1 −
∑

i∈S(1)

xi, · · · , CL −
∑

i∈S(L)

xi)
T | x̄ ∈ x̄(λ̄)})

wherex̄(λ̄) is a set of solutions of (3) at̄λ, andconv(G) is a convex hull of a setG. Hence, by using

the properties ofxi(λT (i)), the subdifferential ofQ(λ̄), ∂Q(λ̄), is obtained as follows. Let̄q(λ̄) =

(q1(λ̄), q2(λ̄), · · · , qL(λ̄))T ∈ ∂Q(λ̄). Then, for eachl = 1, 2, · · · , L,

ql(λ̄)∈



























































{dl | Cl −
∑

i∈SH(l,λ̄)∪SS(l,λ̄)

xi(λT (i)) ≤ dl ≤ Cl −
∑

i∈SH(l,λ̄)

xi(λT (i))},

if there exists a user

i, i ∈ SS(l, λ̄) such

that0 < xo
i < Mi

{Cl −
∑

i∈SH(l,λ̄)

xi(λT (i))}, otherwise

,(5)

where we divided the set of users into three subsets associated with link l andλ̄ as

SH(l, λ̄) = {i | λmax
i > λT (i), i ∈ S(l)},

SS(l, λ̄) = {i | λmax
i = λT (i), i ∈ S(l)}, and (6)

SL(l, λ̄) = {i | λmax
i < λT (i), i ∈ S(l)}.

Hence, by the properties ofxi(λT (i)), xi(λT (i)) = 0, if i ∈ SL(l, λ̄), xi(λT (i)) > 0, if i ∈ SH(l, λ̄), and

xi(λT (i)) has two values (zero and positive), ifi ∈ SS(l, λ̄).

We now solve the dual problem (B). As shown in (5), if there exists useri whose utility function

is a sigmoidal-like function (i.e.,0 < xo
i < Mi), then the subgradient ofQ(λ̄) is not unique for all

λ̄. Hence, by properties (S1) and (R1),Q(λ̄) may not be differentiable everywhere and we cannot

use a gradient based method to solve problem (B). To overcome this, we will consider a subgradient

projection method, which is formulated using an iterative algorithm such as:

λ̄(n+1) = [λ̄(n) − α(n)(C̄ − Ax̄(λ̄(n)))]+, (7)
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wherex̄(λ̄(n)) is a solution of (3) at̄λ = λ̄(n) and[ā]+ = max{ā, 0̄} in component-wise sense. By (5),

C̄ − Ax̄(λ̄(n)) is a subgradient ofQ(λ̄) at λ̄ = λ̄(n). To makeλ̄(n) in (7) converge tōλo, the optimal

solution of the dual problem (B), we must have an appropriate sequence ofα(n). In gradient based

algorithms in [4] and [5], there exists a constant step size,α(n) = α, which ensures thatλ(n) converges

to λo. However, in the subgradient based algorithm, we cannot guarantee the convergence ofλ̄(n) with

a constant step size, since the subgradient,C̄ − Ax̄(λ(n)) that we use in (7), may not be zero atλ̄o.

Hence, we will consider the following sequence:

α(n) → 0, asn → ∞ and
∞
∑

n=1

α(n) = ∞. (8)

Then,λ̄(n) in (7) converges to the optimal solutionλo of the dual problem (B), with the sequence that

satisfies the conditions in (8) [17].

B. Distributed Algorithm for the Dual Problem

In the previous subsection, we have established that the solution of (3) and (7) with coefficients

satisfying (8) converges tōλo, the dual optimal solution. This algorithm can be implemented in a

distributed way. At iterationn, useri transmits its data at a rate determined by solving (3) withλT (i) =

λ
(n)
T (i). In this case, we can interpretλ

(n)
l as the price per unit rate at linkl at iterationn, andλ

(n)
T (i) as the

price per unit rate that useri must pay to use the links in setT (i) at iterationn. With this interpretation,

by solving (3), useri tries to maximizeNUi(λT (i), x), its net utility, at the priceλ = λ
(n)
T (i) without

considering other users. This is a natural property of selfishness (i.e., the non-cooperative property) of

the user in a public environment, such as the Internet. Also,we can interpretλmax
i as the maximum

willingness to pay per unit rate of useri, since if the price per unit rateλT (i) is higher thanλmax
i ,

xi(λT (i)) will be zero by property (R3) (i.e., useri does not transmit its data). Note that the utility

and the net utility must be calculated with the received rate(allocated rate). However, the user does

not know its received rate before it transmits data. Thus, the user maximizes its net utility with the

transmission data rate assuming that the received rate is same as the transmission data rate.

Based on the aggregate transmission data rate of users that use link l, link l updatesλ(n+1)
l , the price
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per unit rate of the next iteration, by solving the followingequation:

λ
(n+1)
l = [λ

(n)
l − α(n)(Cl −

∑

i∈S(l)

xi(λ
(n)
T (i))]

+, l = 1, 2, · · · , L. (9)

Note that solving (9) for each link is equivalent to solving (7). This implies that a link tries to obtain the

optimal price per unit rate that solves the dual problem by adjusting the price based on its congestion

level (i.e., the aggregate transmission rate of the users that use the link). Also, the link tries to maximize

the utilization of its capacity without causing congestionby equating the aggregate transmission data

rate of users with its capacity.

C. Properties of the Primal Solution

Thus far, we have considered the dual of problem (A) and developed an algorithm that converges to

an optimal solution̄λo of the dual. When there is no duality gap between the primal andits dual, the

dual solution also solves the optimal primal problem. However, when some of the utilities are non-

concave, the primal problem (A) is not a convex programming problem. In this case, there could exist

a duality gap between the primal and its dual, i.e., the solution of problem (B) need not result in the

optimal solution of problem (A). In this paper, we are more interested in the rate allocation (the primal

solution) than the price (the dual solution). Thus, it is important to study how “good” a primal solution

can be obtained by solving the dual. To this end, we next studythe properties of the primal solution

corresponding to the dual optimal solution.

Proposition 1: Suppose that̄λo is an optimal solution of the dual problem (B). Then, ifQ(λ̄) is

differentiable at̄λo, x̄(λ̄(n)) converges tōx(λ̄o). Moreover,x̄(λ̄o) is an optimal solution of the primal

problem (A). However, otherwise,x̄(λ̄(n)) may not converge even thoughλ̄(n) converges tōλo.

Proof: See Appendix A.

Proposition 2: IfQ(λ̄) is not differentiable at̄λo, then there exists a linkl∗ that satisfies one of the

following conditions:

∑

i∈SH(l∗,λ̄o)

xi(λ
o
T (i)) < Cl∗ − ǫ1 and

∑

i∈SH(l∗,λ̄o)∪SS(l∗,λ̄o)

xi(λ
o
T (i)) > Cl∗ + ǫ2,
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∑

i∈SH(l∗,λ̄o)

xi(λ
o
T (i)) ≤ Cl∗ and

∑

i∈SH(l∗,λ̄o)∪SS(l∗,λ̄o)

xi(λ
o
T (i)) > Cl∗ + ǫ3, or (10)

∑

i∈SH(l∗,λ̄o)

xi(λ
o
T (i)) < Cl∗ − ǫ4 and

∑

i∈SH(l∗,λ̄o)∪SS(l∗,λ̄o)

xi(λ
o
T (i)) ≥ Cl∗ ,

whereǫ1, ǫ2, ǫ3, andǫ4 are some positive constants, and subsets of users,SH(l∗, λ̄o) andSS(l∗, λ̄o) are

defined in (6).

Proof: See Appendix B.

Propositions 1 and 2 imply that when̄λ(n) converges tōλo, the rate allocation may oscillate between

two cases. In one case, the constraint is satisfied (i.e., theaggregate transmission rate of the users

does not exceed the capacity of the link), while in the other case, the constraint cannot be satisfied

(i,e., the aggregate transmission rate of the users exceedsthe capacity of the link). Since the aggregate

transmission data rate of users can exceed the capacity of the link, congestion may occur at the link.

Note that one of the conditions in (10) is satisfied only if there exists some useri such thatxi(λT (i))

is discontinuous at̄λo, i.e., the oscillation happens because of the discontinuity of xi(λT (i)) whenUi

is a sigmoidal-like function.Thus, if there exist users having sigmoidal-like utility functions, the rate

allocation resulting from solving the dual problem, such asthe algorithms in [4], [5] (that converges to

an efficient rate allocation with concave utility functions), may cause congestion without convergence.

This implies that the system cannot accommodate all the users and some of them must be interrupted

to alleviate the congestion in the system. Since there is no central authority in the Internet, this must

be done in a distributed way. Hence, to resolve this situation, we impose a “self-regulating” property

on the users. In the next subsection, we will study the “self-regulating” property and show that using

the this property, the algorithm converges to the solution that satisfies the constraint and is also an

asymptotically optimal rate allocation.

D. “Self-regulating” Property

To study the “self-regulating” property, we assume that thecondition in Proposition 2 is satisfied in

this subsection. Thus, there exists a linkl∗ that satisfies one of the conditions in (10). We first define

what we mean by the “self-regulating” property and make additional assumptions on the convergence
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of the algorithm having this property.

Self-regulating property: The property of a user that it does not transmit data even though the price is

less than its maximum willingness to pay, if it will always receive net utility that is less than or equal to

δ in the future.

We will show how to implement the “self-regulating” property in practice later. Note that, ifδ = 0, with

the “self-regulating” property, users continue to be selfish, i.e., they still preserve the non-cooperative

property. We call it the non-cooperative property (selfishness) in a strict sense. Ifδ > 0, but δ can be

made arbitrarily close to zero, we call it the non-cooperative property (selfishness) in a wide sense.

To exploit the “self-regulating” property of users in the rate control, we assume that the system has

the following properties.

Assumptions on the “self-regulating” property:

(A1) Each user is “self-regulating”, i.e., it satisfies the “self-regulating” policy.

(A2) Each useri has thresholds of tolerancethi andδi such that if it receives net utility less thanδi

by transmitting data forthi iterations consecutively, it stops transmitting data.

(A3) Link l allocates a ratex′
i(λT (i)) to each useri ∈ S(l) that is defined by

x′
i(λT (i)) =











xi(λT (i)), if
∑

j∈S(l) xj(λT (j)) ≤ Cl

f l
i (x̄

l(λ̄)), if
∑

j∈S(l) xj(λT (j)) > Cl

,

wherexi(λT (i)) is the transmission data rate of useri, x̄l(λ̄) is a vector for the transmission

rates of users inS(l), andf l
i is a continuous function of̄xl(λ̄) that satisfies the following

conditions:

f l
i (x̄

l(λ̄)) ≤ xi(λT (i)) and
∑

j∈S(l)

f l
j(x̄

l(λ̄)) = Cl.

A good candidate for functionf l
i is

f l
i (x̄

l(λ̄)) =
xi(λT (i))

∑

j∈S(l) xj(λT (j))
Cl,

which can be achieved by the First Come First Service (FCFS) policy.

In this subsection, we focus on linkl∗ that satisfies one of the conditions in (10) and divide users in

setS(l∗) into three subsets,SH(l∗, λ̄o), SS(l∗, λ̄o), andSL(l∗, λ̄o), as in (6). We now assume that the
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algorithm is at themth iteration such that for alln ≥ m, the following conditions are satisfied:

λ
(n)
T (i) < λmax

i , i ∈ SH(l∗, λ̄o) and λ
(n)
T (i) > λmax

i , i ∈ SL(l∗, λ̄o).

Sinceλ̄(n) converges tōλo, there exists anm that satisfies the above conditions. Hence, users in set

SL(l∗, λ̄o) do not transmit data anymore and users in setSH(l∗, λ̄o) always transmit data after iteration

m. However, users in setSS(l∗, λ̄o) may continue to resume and stop data transmission again. When

a user in setSS(l∗, λ̄o) transmits data, it may obtain positive net utility. However, the next proposition

implies that for anyδi > 0, if λ̄(n) is enough close tōλo, useri, i ∈ SS(l∗, λ̄o) always obtains net utility

that is less thanδi. The users inSS(l∗, λ̄o) would eventually stop transmitting at̄λo, and this limiting

behavior can be equivalently captured using theǫ − δ definition of convergence, thus giving rise to a

finite window for these users to stop transmitting.

Proposition 3: For anyδi > 0 and useri, i ∈ SS(l∗, λ̄o), there exists anmi(δi) such that

NUi(λ
(n)
T (i), x

′
i(λ

(n)
T (i))) ≤ δi for all n ≥ mi(δi) whereNUi(λ

(n)
T (i), x

′
i(λ

(n)
T (i))) is the received net utility of

useri with priceλ
(n)
T (i) and received ratex′

i(λ
(n)
T (i)).

Proof: See Appendix C

Hence, by “self-regulating” itself, useri, i ∈ SS(l∗, λ̄o) stops transmitting data after iterationmi(δi)

whereδi is a threshold of useri in the “self-regulating” property.

This procedure will be repeated for other users in the setSS(l∗, λ̄o) until any condition in Proposition

2 is not satisfied (i.e., the condition in Proposition 1 is satisfied) for the remaining users. After that, rate

allocation converges to a rate allocation that satisfies theconstraint, since it converges to an optimal

rate allocation for the remaining users by Proposition 1. Since Proposition 3 is true for anyδi > 0,

we can have an arbitrary smallδi > 0. With this property, we can say that each user still preserves

the non-cooperative property (i.e., selfishness) in a wide sense. Further, the next corollary shows that

if the system has a single bottleneck link, with the “self-regulating” property, each user preserves the

non-cooperative property (i.e., selfishness) in a strict sense [11].

Corollary 1: If the system has a single bottleneck linkl∗ that satisfies one of the conditions in (10),

for each useri, i ∈ SS(l∗, λ̄o), there exists anmi such thatNUi(λ
(n)
T (i), x

′
i(λ

(n)
T (i))) ≤ 0 for all n ≥ mi.
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However, even if there exists iterationmi(δi) for useri that satisfies the condition in Proposition 3,

it may not be possible for the user to ascertain this. For example, during a transient period, a user may

receive net utility that is lower thanδi, even though it would receive net utility that is much higherthan

δi in the future. Hence, it may not be a good strategy to stop transmitting data immediately after it

receives net utility that is lower thanδi. Thus, the idea behind (A2) is to not turn useri off immediately,

but only after it has received net utility that is less thanδi for thi consecutive iterations. This implies

that, by an appropriate choice ofthi, useri stops transmitting data only afterthi iterations of iteration

mi(δi). Note that, in this scheme, it is important to have an appropriate threshold,thi. If it is too small,

useri may stop transmitting data during the transient period evenif it can receive net utility that is

higher thanδi in the future. On the other hand, if it is too large, the algorithm may take very long to

converge.

As long as the users are “self-regulating,” our algorithm converges to the rate allocation that satisfies

the constraint. Hence, our rate control algorithm does not cause congestion within the network even

with non-concave utility functions. However, we still needto study the efficiency of our method in

general because even though it results in an optimal rate allocation for the remaining users, it may not

result in an optimal rate allocation for all users. To study this, we first define some variables as:

• x̄o: the optimal primal solution, i.e., the optimal rate allocation.

• λ̄o: the optimal dual solution.

• x̄∗: our rate allocation.

• x̄(λ̄o): the transmission data rate atλ̄o.

• Rs: a subset of users that stop transmitting data due to the “self-regulating” property in our rate

control algorithm.

Proposition 4: If
∑

i∈Rs Ui(xi(λ
o

T (i)
))

∑

N

i=1
Ui(xo

i
)

→ 0 asN → ∞, then
∑

N

i=1
Ui(x

∗

i
)

∑

N

i=1
Ui(xo

i
)
→ 1 asN → ∞.

Proof: See Appendix D.

Proposition 4 states that our rate allocation is asymptotically optimal. This means that we would expect

to have a good approximation of the global optimal rate allocation, when there are many users in a
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system with large capacity and the number of users in the setRs has vanishing proportion. Hence, for

our algorithm to converge to an efficient rate allocation, weneed the condition that the number of users

that stop transmitting data due to the “self-regulating” property has vanishing proportion. We will study

the effect that this condition has on the efficiency of our algorithm later and also propose methods to

make this number small.

Thus far, we have shown that the algorithm based on the subgradient and the “self-regulating” prop-

erty converges to an asymptotically optimal rate allocation without causing congestion within the sys-

tem. As mentioned before, in the subgradient based algorithm, we cannot guarantee convergence with

a constant step size. Hence, we use a step size that diminishes to zero. However, the constant step size

can more efficiently track system variations, such as initiation and completion of calls than a dimin-

ishing step size. In the next proposition, we will show that if each user applies the “self-regulating”

property with the following additional assumption for the utility function, there exists a constant step

sizeα with which the algorithm in (3) and (9) converges.

(U5) −d2Ui(x)
dx2 ≥ c > 0 for all xi(λ

max
i ) ≤ x ≤ Mi, i = 1, 2, · · · , N .

Proposition 5: Assuming that each user is “self-regulating,” there exists a constant step sizeα with

which our algorithm converges.

Proof: See Appendix E.

E. The Worst Case

In the previous subsection, we have shown that our rate allocation could be a good approximation

of the global optimal rate allocation. However, it could also be inefficient in certain cases. In this

subsection, we show an example of the worst case and provide solutions to resolve it. We consider a

system with a single bottleneck linkl with capacityCl. We assume that each useri has the same utility

functionU that is a sigmoidal-like function, the same thresholds of toleranceth andδ. By assuming

that each user has the same utility function, each user has the same maximum willingness to payλmax.

Further, assume that
∑N

i=1 xi(λ
max) > Cl. In this case,λo

l = λmax and we haveSH(l, λo
l ) = ∅,

SL(l, λo
l ) = ∅, andSS(l, λo

l ) = {1, 2, · · · , N}, and one of the conditions in (10) is satisfied, since
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∑

i∈SH(l,λo

l
) xi(λ

max) = 0 < Cl and
∑

i∈SH(l,λo

l
)∪SS(l,λo

l
) xi(λ

max) =
∑N

i=1 xi(λ
max) > Cl. Hence, there

exist some users in setSS(l, λo
l ) that stop transmitting data due to the “self-regulating” property. But,

since all users have the same thresholds of tolerance, all users stop transmitting data at the same time,

which results in zero total system utility.

Note that in the situation above, the parameters of each userare synchronized, i.e., each user has same

maximum willingness to pay and thresholds of tolerance. Furthermore, they use the same set of links,

i.e., they pay the same price per unit rate. Therefore, we expect this to occur very rarely in the Internet.

In general, users in the Internet may have different characteristics such as different utility functions

(i.e., different maximum willingness to pays). The status of links that each user uses may differ in a

high degree and, thus, each user may pay a different price perunit rate. Hence, the probability that

the parameters of many users are synchronized is very small in the Internet and, in most cases, our

rate allocation could be an efficient rate allocation. However, to further reduce the probability that the

parameters of many users are synchronized, we can use one of the following two methods. First, we can

slightly perturb (randomly) the utility function of each user. By doing this, each useri has a different

maximum willingness to pay,λmax
i , with high probability while making the effect on the performance

of each user small. Second, we can assume that the thresholdsof tolerance (thi andδi) of each user

depend on the preference of the user. This ensures that usersstop transmitting data at different iterations

even if they have the same maximum willingness to pay and the same price.

F. Complexity

In this subsection, we compare the complexity of our subgradient based algorithm that considers

both concave and sigmoidal-like utility functions with that of the gradient based algorithms in [4] and

[5] that consider only concave utility functions.

To calculate the price of the next iteration, the subgradient based algorithm uses a subgradient while

the gradient algorithm uses a gradient. Further, in general, we cannot guarantee the convergence of the

subgradient algorithm with a constant step size, while the gradient based algorithm converges with a

constant step size. However, in our algorithm, a subgradient is calculated from the difference between

the capacity and the aggregate transmission data rate of allusers that use the link, which is identical to
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Fig. 2. A system with a single bottleneck link.

how a gradient is computed in the gradient based algorithm. Moreover, in Proposition 5, we have shown

that our algorithm converges even with a constant step size when each user is “self-regulating,” as in the

gradient based algorithm . Thus, our algorithm and the algorithms in [4] and [5] have the same price

update rule at the link. Further, both the algorithms have the same update rule for the transmission data

rate in each user. Hence, the only modification that we need tomake is at the end users (i.e., imposing

the “self-regulating” property). This property is required becausexi(λT (i)) in (3) is not continuous at

λmax
i , if the utility function of useri is a sigmoidal-like function. If the utility function of user i is a

concave function,xi(λT (i)) is continuous and we do not need the “self-regulating” property for useri.

Hence, compared with the algorithms in [4] and [5], we have toadd the “self-regulating” property to

users with sigmoidal-like utility functions in our algorithm. This requires calculating the received net

utility by measuring the received rate. This can be easily done either by counting the number of ACK

packets or by explicit notification of the received rate fromthe destination.

IV. N UMERICAL RESULTS

In this section, we provide simulation results using an ns-2simulator. For the simulation, each link

updates its price per unit rate every 200 msec by solving (9) with a constant step size of 0.03. To forward

the price to users, we add a field for the price in the header of apacket that has zero as its initial value.

Whenever a packet passes through a link, the link adds its current price to the value in the field for the

price. At the destination, the price in the received packet is copied to the field of an acknowledgment
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(ACK) packet and is sent to the source. We assume that a data packet and an ACK packet consist of

500 bytes and 40 bytes, respectively. The source estimates the received rate by counting the number

of ACK packets and calculates the received utility and the received net utility by using the estimated

received rate. By the transmission data rate update rule, if the price becomes higher than its maximum

willingness to pay, a user does not transmit data packets. Ifthis happens in the transient period, the user

cannot be informed of the price for the next iteration, sincethe price is conveyed by ACK packets from

the destination in our simulation setting. Thus, we allow the user to transmit packets at a very low rate,

even though its transmission data rate that maximizes its net utility is zero during the transient period.

By doing this, the user can be informed the price for the next iteration by the ACK packets from the

destination. To that end, in the simulation, a user transmits two packets, each of which consists of 40

bytes, at every iteration (200 msec).

A. A System with a Single Bottleneck Link: Comparison with a System without the “Self-regulating”

Property

We first consider a system with a single bottleneck link in Fig. 2. In this figure, we provide the

capacity and the propagation delay of each link. Useri transmits packets from source nodeSi to

destination nodeDi with utility function Ui. Users 1 and 4 have a sigmoidal utility function given by

Ui(x) = ci(
1

1 + e−ai(x−bi)
+ di), (11)

whereci anddi are used for the normalization of the function andx is a rate in a unit of Megabit per

second (Mbps). Users 2 and 3 have a log utility function givenby

Ui(x) = ci(log(aix + bi) + di). (12)

In this simulation, we normalize the utility function such thatUi(0) = 0 andUi(Mi) = 1, whereMi

is the maximum transmission data rate of useri (it is not necessary to normalize the utility function).

Useri has its thresholds of tolerance,thi andδi, and starts transmitting data packets at timesti sec. We

provide parameters of each user in Table I and plot the utility function of each user in Fig. 3.

We compare two systems: a system with the “self-regulating”property and a system without the

“self-regulating” property. Note that the algorithm for the system without the “self-regulating” property
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TABLE I

PARAMETERS FORUSERS(SINGLE BOTTLENECK L INK )

Useri Type ai bi Mi thi δi sti λmax
i xi(λ

max
1 ) xi(λ

max
4 )

1 Sigmoid 15 0.6 1 20 0 0 1.210 0.756 0

2 Log 50 1 1 20 0 10 12.717 0.190 0.179

3 Log 10 1 1 20 0 20 4.170 0.245 0.226

4 Sigmoid 20 0.6 1 20 0 50 1.276 0.734 0.731

is the same as the gradient based algorithms in [4] and [5]. Thus, the results for this system show the

behavior of the algorithms developed in the literature for concave utility functions when applied to a

network supporting users with both concave and sigmoidal utility functions. We plot the transmission

data rate, the received data rate, and the received net utility of each user in Figs. 4, 5, and 6, respectively.

The results show that before user 4 starts transmitting packets (50 sec), the two systems yield the

same results. When only users 1, 2, and 3 are in the system, as shown in Table I,
∑3

i=1 xi(λ
max
1 ) =

1.191 (Mbps) < 1.5 (Mbps), whereλmax
1 is the smallest maximum willingness to pay among those of

users in the system. Thus, we can haveλo < λmax
1 , such that

∑3
i=1 xi(λ

o) = 1.5 (Mbps). Then, by

(S2),λo is a dual optimal solution and it satisfies the condition in Proposition 1. Hence, the algorithm

converges to the optimal rate allocation without relying onthe “self-regulating” property of users.

However, when all four users are in the system, as shown in Table I,
∑4

i=1 xi(λ
max
1 ) = 1.925 (Mbps)>
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Fig. 4. Transmission data rate (a single bottleneck link).
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Fig. 5. Received data rate (a single bottleneck link).

1.5 (Mbps) and
∑4

i=2 xi(λ
max
1 ) = 1.169 (Mbps) < 1.5 (Mbps), whereλmax

1 is the smallest maximum

willingness to pay among users. In this case, by (S2),λmax
1 is a dual optimal solution and it satisfies

the condition in Proposition 2 withSH(l∗, λmax
1 ) = {2, 3, 4} andSS(l∗, λmax

1 ) = {1}. Therefore, in the

system without the “self-regulating” property, after user4 starts transmitting packets, the transmission

data rate of user 1 (the primal solution) keeps oscillating,as shown in Fig. 4(a). In this case, when user

1 transmits packets, the aggregate transmission data rate of all users exceeds the capacity of the link.

This causes congestion at the link and a large number of packet losses for all users. Thus, as shown in

Figs. 4(a) and 5(a), each user has a large difference betweenthe transmission data rate and the received

data rate. Further, due to these packet losses, some users have negative received net utility, even though

each user determines its transmission data rate by solving (3) so that it has non-negative net utility if
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Fig. 6. Received net utility (a single bottleneck link).

there is no packet loss. As shown in Fig. 6(a), after user 4 starts transmitting packets, the net utility of

user 1 becomes non-positive and the net utility of user 4 oscillates between positive and negative values.

These results show that if there exist users with non-concave utility functions in the system, using a rate

control algorithm devised only for concave utility functions could result in an unstable system as well

as a large amount of network congestion.

However, in the system with the “self-regulating” property, as shown in Fig. 4(b), user 1 stops

transmitting packets due to the “self-regulating” property, after having received non-positive net utility

values forth1 consecutive iterations. After user 1 stops transmitting packets, as shown in Table I,
∑4

i=2 xi(λ
max
4 ) = 1.136 (Mbps)< 1.5 (Mbps), whereλmax

4 is the smallest maximum willingness to pay

among those of users that remain in the system. Thus, we can haveλ∗ < λmax
4 such that

∑4
i=2 xi(λ

∗) =

1.5 (Mbps). This satisfies the condition in Proposition 1 for theremaining users and the algorithm

converges to the global optimal rate allocation for the remaining users. In this case, the aggregate

transmission data rate for users converges to the capacity of the link (1.5 Mbps). Thus, as shown in

Figs. 4(b) and 5(b), the transmission data rate of each user converges and the received rate of each user

is almost same as its transmission data rate. This implies that with the “self-regulating” property, the

system stabilizes and congestion is alleviated.
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Fig. 7. A system with multiple bottleneck links.

TABLE II

PARAMETERS FORUSERS(MULTIPLE BOTTLENECK L INKS)

User ID Type ai bi Mi thi δi λmax
i

ODD Sigmoid 15 0.6 1 20 0 1.210

EVEN Log 50 1 1 20 0 12.717

B. A System with Multiple Bottleneck Links

We now consider a system with multiple bottleneck links, as shown in Fig. 7. Each useri transmits

packets from source nodeSi to destination nodeDi. If the user ID is an odd number, the user has a

sigmoid utility function given by (11) and, otherwise, it has a log utility function given by (12). The

parameters of the utility functions are provided in Table II. Users from 1 to 8 arrive at the system at time

0 sec and user 9 arrives at the system at time 50 sec. We plot thetransmission data rate, the received

data rate, and the net utility of each user from 1 to 8 in Figs. 8, 9, and 10, respectively. In Fig. 11, the

price of each link is provided. We call a link between nodesRl andRl+1 link l.

As shown in the figures, before user 9 arrives at the system (i.e., before 50 sec), the system can

accommodate all users and the transmission data rate of eachuser converges without congestion. In

this case, each link has the same demand for rate allocation,since each link has the same type of users.

Hence, as shown in Fig. 11, the prices for links 2 and 3 converge to the same value, since links 2 and 3

have the same capacity. However, since link 1 has a larger capacity than links 2 and 3, the price of link
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Fig. 8. Transmission data rate (multiple bottleneck links).
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Fig. 9. Received data rate (multiple bottleneck links).

1 converges to a lower value than that for links 2 and 3.

After user 9 arrives to the system (i.e., after 50 sec), as shown in Figs. 8 and 10, the transmission data

rate of user 1 begins to oscillate and user 1 obtains negativenet utility. Hence, by the “self-regulating”

property, it stops transmitting packets. In this case, all users with odd IDs have the same maximum

willingness to pay, since they have the same utility function. However, since user 1 uses all three

links while the others use only one link, the former must pay ahigher price than the latter. Thus, as

shown in Fig. 10, only user 1 achieves negative net utility and it stops transmitting packets due to the

“self-regulating” property, even though all users with oddIDs have the same maximum willingness to

pay. After user 1 stops transmitting packets, the transmission data rate for each user converges without

congestion. In this case, link 2 has a larger demand for rate allocation than link 3, since link 2 has an
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additional user 9 compared with link 3. Hence, as shown in Fig. 11, the price of link 2 converges to a

higher value than that of link 3, even though they have the same capacity.

C. Discussion

In the results, we note that a user (user 1 in both systems) that has already been in the system stops

transmitting packets due to the arrival of a new user (user 4 in the system with a single bottleneck link

and user 9 in the system with multiple bottleneck links). It may be undesirable to interrupt existing

services.2 However, recall that, in this paper, we consider the situation that is similar to the current
2This happens because of the property of utility and pricing based algorithms. Hence, this may happen even in the system in which all

users have concave utility functions, if users do not have the minimum ratethat must be guaranteed or their maximum willingness to pays

are not infinity.
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Internet in which the system does not have a central authority for call admission control and rate control,

and a user adjusts its transmission data rate according to a congestion indicator from the system without

considering the other users. In such a situation, as shown bythe results, by continuing to transmit

packets, user 1 has negative net utility value as well as a large number of packet losses that might be

unsatisfactory to the service. Therefore, it may be beneficial not only to the other users but also to user

1 itself for it to stop transmitting packets. User 1 may restart its transmission after some random time

or find an alternative route.3

The results also tell us the following. First, a service witha concave utility function can be better

adapted to congestion on the link than a service with a sigmoidal-like utility function. The former

can adjust its transmission data rate gradually according to the congestion level on the link, while the

latter can adjust its transmission data rate gradually onlyup to a certain level. Further, the former

has a higher degree of adaptation to the level of the congestion than the latter. This implies that by

modeling traditional data services with concave utility functions and real-time streaming services as

sigmoidal-like utility functions, we can exploit the characteristics of each service appropriately.

Second, from the viewpoint of the pricing, if a real-time service with a sigmoidal-like utility function

wants to have a higher priority to be served than a data service with a concave utility function, it must

have a higher maximum willingness to pay than the data service. In this case, in general, the real-time

service pays more for the service than the data service, since real-time service keep transmitting data

even though the data services stop transmitting because of the high price. This implies that the real-time

service must be more expensive than the data service.

Thirdly, if there is no call admission control in the system,when a new service enters into the net-

work, it may be inevitable to interrupt existing services topreserve the system efficiency without in-

curring congestion. Hence, to prevent this from happening,the system should have an appropriate,

preferably distributed, call admission control that admits a new service if it does not interrupt existing

(real-time) services.

Finally, as a by-product of rate control, the price of each link represents its supply and demand

relationship (i.e., its congestion level). Hence, the price of each link can be used as a parameter for a
3Finding a good strategy for this will be a topic for future research.
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QoS routing scheme.

V. CONCLUSION

In this paper, we have studied the distributed rate control algorithm by considering both sigmoidal-

like and concave utility functions. We have shown that in thepresence of sigmoidal-like utility func-

tions, an algorithm that converges to an efficient rate allocation for a system with only concave utility

functions, may not converge, exhibiting oscillatory behavior. Further, such algorithms may result in

excessive congestion within the network. This implies thatrate control algorithms that have been de-

veloped only for concave functions might be inefficient in more realistic settings. To overcome these

difficulties, we have developed a distributed algorithm where each user has a “self-regulating” property.

Our algorithm works for both sigmoidal-like and concave utility functions. We have shown that our al-

gorithm converges to the asymptotically optimal rate allocation and that its complexity is comparable

to that of algorithms developed only for concave utility functions. In this paper, we assume that there

exist only controllable services within the network. However, in general, there also exist uncontrollable

services within the network that may further affect the efficiency and the convergence of the rate control

algorithm. Hence, as shown in [18], the study of the effect ofuncontrollable services to rate control is

important and will be a topic for future research.

APPENDIX

A. Proof of Proposition 1

If Q(λ̄) is differentiable at̄λo, Q(λ̄) has a unique subgradient atλ̄o by (S1). Hence, by (5),̄x(λ̄o) is

unique and, thus, by (R1),̄x(λ̄) is continuous at̄λo. This implies that̄x(λ̄(n)) converges tōx(λ̄o), since

λ̄(n) converges tōλo. Further, sincēx(λ̄o) is a unique maximum in̄x of L(x̄, λ̄o) in (2), by property 6.5

in [15], the primal problem (A) has a saddle point(x̄(λ̄o), λ̄o) andx̄(λ̄o) is an optimal solution of the

primal problem (A).

If Q(λ̄) is not differentiable at̄λo, the subgradient ofQ(λ̄) at λ̄o is not unique by (S1). Hence, by (5),

there exists a useri such thatxo
i > 0 andλmax

i = λo
T (i). In this case, by (R1),xi(λT (i)) is discontinuous

atλo
T (i). Hence,xi(λ

(n)
T (i)) (i.e., x̄(λ̄(n))) may not converge, even thoughλ̄(n) converges tōλo.
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B. Proof of Proposition 2

We first prove the following lemma.

Lemma 1: Suppose thatλ̄o is an optimal solution of the dual problem (B) andλo
l > 0 for some link

l. Then, there exists a subgradient ofQ(λ̄), d̄(λ̄o), at λ̄o such thatdl(λ̄
o) = 0.

Proof: Sinceλ̄o is a minimizer ofQ(λ̄), by (S2), there exists a subgradient ofQ(λ̄), d̄(λ̄o), at λ̄o

such that

d̄(λ̄o)T (λ̄ − λ̄o) ≥ 0 for all λ̄ ≥ 0̄. (13)

If we takeλ̄ = λ̄′, whereλ′
i = λo

i , i 6= l andλ′
l = λo

l + ǫ, ǫ > 0. Then, by (13), we havedl(λ̄
o)ǫ ≥ 0

and, thus,dl(λ̄
o) ≥ 0. In a similar way, by takingǫ < 0, we havedl(λ̄

o) ≤ 0. Hence,dl(λ̄
o) = 0.

We now prove Proposition 2. IfQ(λ̄) is not differentiable at̄λo, from the proof of Proposition 1

in Appendix A, there exist a useri∗ such thatxo
i∗ > 0 and λmax

i∗ = λo
T (i∗). Hence,xi∗(λT (i∗)) is

discontinuous atλo
T (i∗) by Property (R1). Further, sinceλmax

i∗ > 0, λo
T (i∗) =

∑

l∈T (i∗) λo
l > 0 and, thus,

there exists a linkl∗ ∈ T (i∗) such thatλo
l∗ > 0. In this case, by Lemma 1, there exists a subgradient of

Q(λ̄), d̄(λ̄o), at λ̄o, such thatdl∗(λ̄
o) = 0. Hence, from (5) and the fact thatxi∗(λT (i∗)) is discontinuous

atλo
T (i), one of the following conditions is satisfied at linkl∗:

∑

i∈SH(l∗,λ̄o)

xi(λ
o
T (i)) < Cl∗ − ǫ1 and

∑

i∈SH(l∗,λ̄o)∪SS(l,λ̄o)

xi(λ
o
T (i)) > Cl∗ + ǫ2,

∑

i∈SH(l∗,λ̄o)

xi(λ
o
T (i)) ≤ Cl∗ and

∑

i∈SH(l∗,λ̄o)∪SS(l∗,λ̄o)

xi(λ
o
T (i)) > Cl∗ + ǫ3, or (14)

∑

i∈SH(l∗,λ̄o)

xi(λ
o
T (i)) < Cl∗ − ǫ4 and

∑

i∈SH(l∗,λ̄o)∪SS(l∗,λ̄o)

xi(λ
o
T (i)) ≥ Cl∗ ,

whereǫ1, ǫ2, ǫ3, andǫ4 are some positive constants.

C. Proof of Proposition 3

We first define the maximum net utility of useri at the pricēλ (i.e., atλT (i)) as

NUmax
i (λT (i)) = max

0≤r≤Mi

{Ui(r) − λT (i)r}.
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Then, to prove the proposition, we only have to show that

lim sup
n→∞

NUmax
i (λ

(n)
T (i)) = 0, i ∈ SS(l∗, λ̄o).

SinceNUmax
i (λT (i)) is a continuous function ofλT (i) and λ̄(n) converges tōλo, NUmax

i (λ
(n)
T (i)) con-

verges toNUmax
i (λo

T (i)). Further, sinceNUi(λ
(n)
T (i), x

′
i(λ

(n)
T (i))) ≤ NUi(λ

(n)
T (i), xi(λ

(n)
T (i))) = NUmax

i (λ
(n)
T (i))

andNUmax
i (λo

T (i)) = 0, for i ∈ SS(l∗, λo),

lim sup
n→∞

NUi(λ
(n)
T (i), x

′
i(λ

(n)
T (i))) ≤ lim sup

n→∞
NUi(λ

(n)
T (i), xi(λ

(n)
T (i))) = lim sup

n→∞
NUmax

i (λ
(n)
T (i)) = 0, i ∈ SS(l∗, λ̄o).

D. Proof of Proposition 4

We first divide users into three subsets at our rate allocation: R is a subset of users that keep trans-

mitting data,Rs is a subset of users that stop transmitting data due to the “self-regulating” property, and

Rc is a subset of users that stop transmitting data due to higherprices than their maximum willingness

to pays.

By the weak duality theorem [16],

Q(λ̄o) −
N

∑

i=1

Ui(x
o
i )

=
N

∑

i=1

Ui(xi(λ
o
T (i))) + λ̄oT (C̄ − Ax̄(λ̄o)) −

N
∑

i=1

Ui(x
o
i )

=
∑

i∈R

Ui(xi(λ
o
T (i))) +

∑

i∈Rc

Ui(xi(λ
o
T (i))) +

∑

i∈Rs

Ui(xi(λ
o
T (i))) + λ̄oT (C̄ − Ax̄(λ̄o)) −

N
∑

i=1

Ui(x
o
i )

≥ 0.

Since
∑

i∈Rc Ui(xi(λ
o
T (i))) = 0 andλ̄oT (C̄ − Ax̄(λ̄o)) ≤ 0,

∑

i∈R

Ui(xi(λ
o
T (i))) ≥

N
∑

i=1

Ui(x
o
i ) −

∑

i∈Rs

Ui(xi(λ
o
T (i))).

Further, since our rate allocation is a global optimal rate allocation for the remaining users,

N
∑

i=1

Ui(x
∗
i ) =

∑

i∈R

Ui(x
∗
i ) ≥

∑

i∈R

Ui(xi(λ
o
T (i))) ≥

N
∑

i=1

Ui(x
o
i ) −

∑

i∈Rs

Ui(xi(λ
o
T (i)))

and
∑N

i=1 Ui(x
∗
i )

∑N
i=1 Ui(xo

i )
≥ 1 −

∑

i∈Rs Ui(xi(λ
o
T (i)))

∑N
i=1 Ui(xo

i )
.
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Since
∑N

i=1 Ui(x
∗
i ) ≤

∑N
i=1 Ui(x

o
i ) and we assume that

∑

i∈Rs Ui(xi(λ
o

T (i)
))

∑

N

i=1
Ui(xo

i
)

→ 0 asN → ∞,

∑N
i=1 Ui(x

∗
i )

∑N
i=1 Ui(xo

i )
→ 1, asN → ∞.

E. Proof of Proposition 5

Before we prove Proposition 5, we first prove the following twolemmas.

Lemma 2: Suppose thatλ̄o is a dual optimal solution. Then, for anyǫ > 0, there existsαǫ > 0 such

that ||λ̄(m) − λ̄o|| ≤ ǫ for somem by solving (3) and (7) with a constant step size0 < α ≤ αǫ.

Proof: This can be proved in a similar way to the proof of Theorem 2.1 in [14].

Lemma 3: Suppose thatλ̄o is a dual optimal solution and at iterationn1, ||λ̄(n1) − λ̄o|| ≤ ǫ1. Then,

for any ǫ > ǫ1 and m, there existsαǫ,m > 0 such that||λ̄(n) − λ̄o|| ≤ ǫ at least form consecutive

iterations after iterationn1 by solving (3) and (7) with a constant step size0 < α ≤ αǫ,m.

Proof: Let us define

r = max{||C̄ − Ax̄(λ̄)|| | ||λ̄ − λ̄o|| ≤ ǫ, λ̄ ≥ 0̄}.

Suppose that we have a constant step sizeαǫ,m that satisfies the following inequality:

ǫ2
1 + m(α2

ǫ,mr2 + 2αǫ,mǫr) − ǫ2

= mr2α2
ǫ,m + 2mǫrαǫ,mǫ2

1 + ǫ2
1 − ǫ2

≤ 0.

Sinceǫ2
1 − ǫ2 < 0, there exists anαǫ,m that satisfies the above inequality. Then,

||λ̄(n1+1) − λ̄o||2 = ||[λ̄(n1) − αǫ,m(C̄ − Ax̄(λ̄(n1)))]+ − λ̄o||2

≤ ||λ̄(n1) − αǫ,m(C̄ − Ax̄(λ̄(n1))) − λ̄o||2

= ||λ̄(n1) − λ̄o||2 + α2
ǫ,m||C̄ − Ax̄(λ̄(n1))||2 − 2αǫ,m(λ̄(n1) − λ̄o)T (C̄ − Ax̄(λ̄(n1)))

≤ ||λ̄(n1) − λ̄o||2 + α2
ǫ,mr2 + 2αǫ,mǫr

≤ ǫ2
1 + α2

ǫ,mr2 + 2αǫ,mǫr

≤ ǫ2.
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Hence,||λ̄(n1+1) − λ̄o|| ≤ ǫ. In a similar way, we can show that

||λ̄(n1+k) − λ̄o||2 ≤ ǫ2
1 + k(α2

ǫ,mr2 + 2αǫ,mǫr)

≤ ǫ, k = 1, 2, · · · ,m.

Therefore,||λ̄(n) − λ̄o|| ≤ ǫ at least form consecutive iterations after iterationn1.

We now prove Proposition 5 considering two cases.

Case1:Suppose that the condition in Proposition 1 is satisfied, i.e., at the dual optimal solution,̄λo,

Q(λ̄) is differentiable. SinceQ(λ̄) is differentiable almost everywhere and it is differentiable at λ̄o,

there exists anǫ1 > 0 such that, for all̄λ that satisfies||λ̄ − λ̄o|| ≤ ǫ1, Q(λ̄) is differentiable. Let us

define

d = max
{λ̄ | ||λ̄−λ̄o||>ǫ1}

{Q(λ̄)}.

Then, sinceQ(λ̄) is a convex function, there exists anǫ ≤ ǫ1 such thatQ(λ̄) ≤ d for all λ̄ that

satisfies||λ̄ − λ̄o|| ≤ ǫ. Hence, for̄λ that satisfies||λ̄ − λ̄o|| ≤ ǫ, the subgradient projection algorithm

is equivalent to the gradient projection algorithm, sinceQ(λ̄) is differentiable for allλ̄ that satisfies

||λ̄ − λ̄o|| ≤ ǫ. With the assumption (U5), there exists a constantα1 that makes the gradient projection

algorithm converge with a descent property [4], [5]. Hence,once||λ̄(k) − λ̄o|| ≤ ǫ for some iterationk,

there exists a constantα1 such that||λ̄(n) − λ̄o|| ≤ ǫ for all n ≥ k andλ̄(n) converges tōλo. Further, by

Lemma 2, for anyǫ > 0, there exists a constantα2 that makes||λ̄(k) − λ̄o|| ≤ ǫ for somek. Hence, by

takingα = min{α1, α2}, λ̄(n) converges tōλo. SinceQ(λ̄) is differentiable at̄λo, x̄(λ̄(n)) converges to

x̄(λ̄o) by Proposition 1.

Case2:Suppose that the condition in Proposition 1 is not satisfied.Then, there exist anǫ and anm

such that when||λ̄(n) − λ̄o|| ≤ ǫ for m consecutive iterations, the condition in Proposition 1 is satisfied

for the remaining users after some users stop transmitting data due to the “self-regulating” property. By

Lemmas 2 and 3, there exists a constantα1 with which ||λ̄(n) − λ̄o|| ≤ ǫ for m consecutive iterations.

After that, since the condition in Proposition 1 is satisfiedfor the remaining users, as in Case 1, there

exists a constantα2 that makes the algorithm for the remaining users converge. Hence, by taking

α = min{α1, α2}, the algorithm converges.
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[4] H. Yäiche, R. R. Mazumdar, and C. Rosenberg, “A game theoretic framework for bandwidth

allocation and pricing of elastic connections in broadbandnetworks: theory and algorithms,”

IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 667–678, Oct. 2000.

[5] S. H. Low and D. E. Lapsley, “Optimization flow control-I:basic algorithm and convergence,”

IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 861–874, Dec. 1999.

[6] S. Athuraliya and S. H. Low. Optimization flow control-II: Implementation. Submitted for

publication. [Online]. Available: http://netlab.caltech.edu

[7] S. Kunniyur and R. Srikant, “End-to-end congestion control schemes: utility function, random

losses and ECN marks,” inIEEE Infocom’00, vol. 3, 2000, pp. 1323–1332.

[8] R. J. La and V. Anantharam, “Utility-based rate control inthe Internet for elastic traffic,”

IEEE/ACM Transactions on Networking, vol. 10, no. 2, pp. 272–286, Apr. 2002.

[9] K. Kar, S. Sarkar, and L. Tassiulas, “A simple rate control algorithm for maximizing total user

utility,” in IEEE Infocom’01, vol. 1, 2001, pp. 133–141.

[10] J.-W. Lee, R. R. Mazumdar, and N. B. Shroff, “Non-convex optimization and distributed pricing-

based algorithms for optimal resource allocation in high speed networks,” in17th IEEE Annual

Computer Communications Workshop, 2002.

[11] ——, “Non-convexity issues for Internet rate control with multi-class services: stability and opti-

mality,” to appear in the proceedings ofIEEE Infocom’04, 2004.



33

[12] S. Stidham. Pricing and congestion management in a network with heterogeneous users.

Submitted for publication. [Online]. Available: http://www.or.unc.edu/∼sandy

[13] J. W. Lee, R. R. Mazumdar, and N. B. Shroff, “Downlink power allocation for multi-class CDMA

wireless networks,” inIEEE Infocom’02, vol. 3, 2002, pp. 1480–1489.

[14] N. Z. Shor,Minimization methods for non-differentiable functions. Springer-Verlag, 1985.

[15] M. Minoux, Mathematical programming:theory and algorithms. Wiley, 1986.

[16] D. P. Bertsekas,Nonlinear programming. Athena Scientific, 1999.

[17] K. Kar, S. Sarkar, and L. Tassiulas, “Optimization based rate control for multirate multicast ses-

sions,” inIEEE Infocom’01, vol. 1, 2001, pp. 123–132.

[18] D. Qiu and N. B. Shroff, “Queueing properties of feedbackflow control systems,” to appear in the

IEEE/ACM Transactions on Networking, Dec. 2004.


