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Abstract

In this paper, we investigate the problem of distributivalipcating transmission data rates to users in the
Internet. We allow users to have concave as well as sigmaitildaly functions as appropriate for different
applications. In the literature, for simplicity, most werkave dealt only with the concave utility function.
However, we show that applying rate control algorithms tmsed for concave utility functions in a more
realistic setting (with both concave and sigmoidal typesitdity functions) could lead to instability and high
network congestion. We show that a pricing based mechahiahsolves the dual formulation can be developed
based on the theory of subdifferentials with the properat the prices “self-regulate” the users to access the
resources based on the net utility. We discuss convergesaes and show that an algorithm can be developed

that isefficientin the sense of achieving the global optimum when there arg/msers.

I. INTRODUCTION

Over the last decades, there has been a significant amounteodst in the area of Internet rate con-
trol, which aims at providing satisfactory services aneé\aditing congestion in the Internet. Currently,

most services in the Internet are elastic to some degregethieesources can adjust their transmission
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data rates in response to congestion levels within the mktwéence, by appropriately exploiting the
elasticity through rate control, one can maintain high rekvefficiency while at the same time allevi-
ating network congestion. To that end, it is necessary te laavappropriate model to characterize the
elasticity of the service. This is typically done using theliwknown concept of a utility function that
represents the level of user satisfaction or Quality of Ber{QoS) at the allocated rate.

We can classify services in the Internet into two classesdas the shape of the utility function.
One corresponds to traditional data services, such asdisfer and email. These services can adjust
their transmission data rates gradually, resulting in g@lcdegradation of the QoS in the presence of
network congestion. The elasticity of these services camb@eled by concave utility functions [1].
The other corresponds to delay and rate adaptive servieels as streaming video and audio services.
These services are less elastic than data services. Imsspmnetwork congestion, they can decrease
their transmission data rates up to a certain level with eesponding graceful degradation in the QoS.
However, decreasing the transmission data rate below aicehreshold results in a significant drop
in the QoS (e.qg., below a certain bit rate, the quality of auimmunication falls dramatically). The
elasticity of these services can be modeled by using sigahtilee utility functions [1]. We call an
increasing functiory (x) a sigmoidal-like functionif it has one inflection point,, and% > 0, for
r < x, and% <0, forz > z,, as shown in Fig. 1.

In the past few years, utility based rate control problem&Hmeegun to be addressed by the network-
ing research community [2], [3], [4], [5], [6], [7], [8], [9]They have almost exclusively dealt with the

situation where the utilities are concave for which therstextensive theories and algorithms such as
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Fig. 1. A sigmoidal-like function.
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the Karush-Kuhn-Tucker (KKT) conditions and the dualitgdhem. However, as mentioned before,
concave utility functions are appropriate only for modgliraditional data services, and do not capture
the characteristics of services such as audio and videatbabecoming increasingly popular in the
Internet. Hence, for the efficient allocation of transnosgsiates among services with diverse character-
istics, a rate control algorithm must be able to efficientyndle delay and rate adaptive services with
sigmoidal-like utility functions as well as data serviceighwoncave utility functions. But this results
in the non-convexity of the system, which is, in generalfjclift to handle.

A natural and logical approach to dealing with the issue af-oonvexity is to simply approximate
a sigmoidal-like utility function with a concave functiomé use one of the algorithms developed for
concave utility functions. However, this approach coulgutein a highly inefficient solution. For
example, suppose that a system has a single bottleneck lthkcapacity 10 Mbps and 11 users.
Further, suppose that each user has the same utility funttie) that is a step function described
below:

Ulr) = 0, if z <1 Mbps '

1, if x > 1 Mbps
Note that the step function is an extreme case of a sigmdldafunction. If we approximaté/(z)
with a concave function/’(x), we can apply an algorithm for concave utility functionstthas been
proposed in the literature to maximize the total systenitytiln this case, since all users have the same
concave utility functions, at the global optimal soluti@ach user is allocated the same amount of rate,
x* = % Mbps, which provided/(z*) = 0. Hence, with this approach, we achieve zero total system
utility for the original utility function. However, by allcating 1 Mbps to 10 users and zero to one user,
we can achieve a total system utility of 10 units. Even thotlnghexample considers an extreme case,
it emphasizes that to efficiently accommodate diverse sesvn the Internet, it is necessary to develop
a rate allocation algorithm that takes into account the grigs of both concave and sigmoidal-like
utility functions.

Recently, the implications of non-convexity of the systemelaegun to be addressed in the literature
[10], [11], [12]. In fact, in [12], the author showed that evaough each individual user has a concave

utility function, the overall problem might be non-convexa system with multi-class services. This
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implies that non-convexity is an important issue for ratatoa in the Internet. In this paper, we will
study this problem by considering a situation similar to¢herent Internet. In the Internet, there is no
central authority in the system that performs admissiortrobor rate control and each user behaves
in a selfish manner. Thus, a rate control algorithm must béemented in a distributed manner taking
into account the selfish behavior of users. In the papersiomad earlier, it has been shown that if
all users have concave utility functions, efficient disitéxd rate allocations can be obtained by using
an appropriate congestion indicator in the network, inespftthe selfish behavior of users. However,
as we will show later, if such algorithms developed for caectunctions are now applied to non-
concave functions, they may result in the situation whersyfs¢em cannot support all the users causing
instability and excessive congestion in the system. Togrethis situation from happening, some users
must be turned off and this decision must be made by the ws&df, isince there is no central authority
in the system. To this end, we will develop the algorithm withich each user “self-regulates” its
access to the network based on the local information.

The rest of the paper is organized as follows. In Sectionélgescribe the system model and present
the problem that is being considered in this paper. We dpwvehal study the rate control algorithm in

Section Ill. We provide numerical results for our algoritimSection IV and conclude in Section V.

II. SYSTEM DESCRIPTION ANDBASIC PROBLEM

We consider a system that consistd.dinks and/N users. Each linkhas capacity’;, and each user
i has a utility function/; and maximum transmission data radte (0 < M; < oo). We assume thdt;
has the following properties.
Properties of the utility function:

(U1) U;is an increasing function af; theallocated ratefor user;.

(U2) U; is twice continuously differentiable.

(U3) U, is a sigmoidal-like or strictly concave function.

(U4) ) < ooforall 0 <z < M.
In the following, if U; is a sigmoidal-like function, we let; be its inflection point. Otherwise (i.e., if

U, is a concave function), we lef = 0.
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Our objective is to obtain a data rate allocation for the sifleat maximizes the total system utility.

This is formulated as:

(A)  max)» Uz

=1

wherez = (z1, 22, -, xy5)T% C = (C1,Cy, -+, CL)T

o
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andA = (a;;) is anL x N matrix such that

1, if useryj uses linki
Clij =
0, otherwise

We define

T() = {l|ay=1,1<1<L}, i=12--- N
and

Sy = {ilay=1,1<i<N}, 1=1,2,---,L.

Hence,I'(i) is a set of links that useris using andS(!) is a set of users that are using lihk

Note that since we allow non-concave utility functions,lgem (A) is a non-convex programming
problem, which, is usually more difficult to solve than a cexyprogramming problem. In [11], [13],
similar problems to (A) were studied. In [13], the problemswsudied in the context of the power
allocation in wireless environment. However, in [13], weked at this problem only in the context of a
single cell, which can be viewed as corresponding to a siimiitén the Internet. Further, the algorithm
in [13] requires a central controller, such as a base-staticcellular systems, which is clearly not
applicable to decentralized networks, such as the Interfref11], which is an earlier conference
version of the this paper, the rate control problem in therimt for a single link was considered. In

this paper, we have studied the rate control problem in ttexret with multiple links.

1z7T is a transpose of a vectst



I11. RATE CONTROL

In this section, we develop a distributed rate control atgor for problem (A) by using the theory
of subdifferentials. For background, we first provide défoms and properties of subdifferentials. We

refer readers to [14], [15], [16] for detalils.

Definition 1: A vector € R"™ is a subgradient of a convex functign R* — Ratxz € R", if

f(z) > f(x) + (2 —2)"d, forall z € R".

Definition 2: The set of all subgradients of a convex funcfi@i = € R" is called the subdifferential
of f atz and denoted by f(x).
Properties of the subgradient:
(S1) A functionf(z) is differentiable atz, if and only if it has a unique subgradientaat In this
case, the subgradient is equal to the gradient affz.
(S2) =z € X C R™ minimizes a convex functiori over a convex seX, if and only if there exists a
subgradient! such thau” (> — x) > 0, forall z € X.
(S3) Ifzis an interior point ofX, then (S2) implies that minimizes a convex functiorf over a

convex setX, if and only if0 € 9f(z).

A. Dual Problem

As mentioned before, problem (A) is a non-convex prograngpitoblem, which is difficult to solve.
Hence, we will consider its dual since the dual has some adgas over the primal problem. For
example:

« The dual is a convex programming problem and thus easieihte.so

« The separable property of the dual makes it easy to impletheralgorithm in a distributed fash-

ion.

« From a networking perspective, the dual will usually havenalger dimension and simpler con-

straints than the primal. This will reduce the complexitytiod algorithm. In our case, the primal
has a dimension oV and the dual has a dimension bf whereN is the number of users in the

network andL is the number of links in the network. In general, we have< N.
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However, since the primal is not a convex programming prokje.g., if some of the utility functions
are sigmoidal), there could be a duality gap between thegbamd its dual. Hence, by solving the dual,
we may not obtain the optimal primal solution. This is onehd difficulties that we will overcome in
this work, especially in the context of many users.

We now define a Lagrangian function associated with probkehas:

i=1

whereA” = (A1, Ay, ---, A). Then, the dual of problem (A) is defined by

(B)  minQ(})

subject to A > 0,

where

QM) = max L(z,N). )

G2rLNt

It can easily be shown tha}()) is a convex function of [16]. However, as we will show late€)())
may not be everywhere differentiable. Hence, even thapgh) is a convex function, we cannot use a
simple gradient based algorithm to find a minimizer, as iraf#d [5], since clearly)()\) does not have
a gradient at the point where it is not differentiable.

To solve problem (B), we first study the propertiesxf\) by using the theory of the subdifferentials.
We now characterize the subdifferentials@f)). First, we can rewritd.(z, \) in (1) as:
L(z,\) = g:Ui(:cl le DA +ZA C;

=1

=1 jeT(%)
N

= Z Ul(x,) — Z )\T(z)xz + Z )\jCj,
i=1 i=1 j=1

where
= > A
JET (i)
Since it is separable in, Z(A) = (z1(Ar)), 22(Ar2)), - -+, n(Arvy))T solves (2) if and only if it

solves the following:

zi(Apm) = arg og%%j}{m{NUi()\T(i)’x)}’ fori=1,2,---, N, (3)



where

The properties of;(Ar(;)) were studied in [13]. First, we defing** for user: as:

)\?’Lam = mln{)\T(z) 2 0 ’ Omax {NUZ<)\T(Z)7 33')} = O} (4)

<e<M;

We can calculata*** by solving the following equation [13]:

dUd’f) l.—0, Iif U; is a concave function

AT = @) i U; is a sigmoidal-like function and’ exists
Ui Ml .
%, otherwise

wherex’ is a solution of the following equation:

dU;
Ui(z) —x Ifg(x) = 0 x; < a < M,
x

andz? is the inflection point ot/;, whenU; is sigmoidal. Also, define"" for user: as:
AP = max{ A > 0lzi(Arq) = M}

Obviously,0 < A"* < co andA7™** > A" Then,z;(Ar(;) has the following properties [13]:
Properties of z;(Ar;)):

(R1) If U; is a sigmoidal-like function (i.e) < z¢ < M;), thenz;(Ar;)) has two values (zero
and positive) and is discontinuous gt**. Otherwise,r;(Ar(;)) has a unique value and is
continuous.

(R2) Ar(;)) IS positive and a decreasing function’gffor Amin < A1) < A

(R4)

i(Ar()
(R3) xiO\T(i)) is zero, fOf)\T(i) > /\lmaa:.
(L‘z‘()\T(i)) is M;, for Ariy < )\;nm

(R5) U;(z;(A"**)) is achieved at the concave region(gf
Note that, ifU; is a concave function;;(Ar(;)) is a continuous and non-increasing function. However,
if U; is a sigmoidal-like functiong;(Ar(;)) is not only discontinuous but also has two valuesjt”.
One is zero and the other is positive. In the sequel, unlgd&itly mentioned otherwises; (Ar;)) will

denote a positive value, if (3) has two solutions.
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Since the Lagrangian functiof(z, .) is differentiable for all0 < z < M, andVL(., \) is contin-
uous for all0 < # < M, by Danskin’s Theorem [16], the subdifferential @f)), Q()), is obtained

as:

conv({V5L(z, ) | 7 € £(N)})
conv({(Cy — > @y, C— Y z)" |z ez(N)})

ieS(1) i€S(L)

0Q(N)

wherez () is a set of solutions of (3) at, andconv(G) is a convex hull of a sef. Hence, by using
the properties of;(Ar(;)), the subdifferential of)()\), dQ()), is obtained as follows. Lef(\) =
(Q1(;\)7 q2(5‘>a e 7QL(5‘))T € 8@(5‘) Then' for eacht = 17 27 Ty L1

if there exists a user
{dl ‘ Cl — Z xl()\T(z)) <d < Cl — Z l’l()\T(Z))},Z, 1€ Ss(l, 5\) such
- i€SH (L,A)USS (I,N) i€SH(I,N) h Y
ql()\)e that0 < T, < M; ’(5)
{C— > z(Mw)}, otherwise
i€SH(I,N)
where we divided the set of users into three subsets assdeidth link [ and )\ as

STULA) = {i| A" > My, i€ S()},
SSUA) = {i| A = Argy, i € S()}, and (6)
SELA) = {i| N < Apgy, i€ S(D)}

Hence, by the properties of (A7),

xz()\T(z)> =0, if 1 € SL(Z, 5\), x’L(AT(Z)) > 0, if 1 € SH(Z, 5\), and

z;(Ar@;)) has two values (zero and positive); i€ S(1, \).
We now solve the dual problem (B). As shown in (5), if there &xisseri whose utility function
is a sigmoidal-like function (i.e) < z¢ < M;), then the subgradient @(\) is not unique for all
\. Hence, by properties (S1) and (RQ)(A\) may not be differentiable everywhere and we cannot
use a gradient based method to solve problem (B). To overchimevie will consider a subgradient

projection method, which is formulated using an iteratilgoéathm such as:

5\(”+1) _ [)\(n) _ a(”)(C’ — A.Q_Z(S\(n)))]—l—a

(7)



10

wherez(A\™) is a solution of (3) ah = A(™ and[a]* = max{a,0} in component-wise sense. By (5),
C — Az(A\™) is a subgradient af)()\) at A = A, To makeA™ in (7) converge to\°, the optimal
solution of the dual problem (B), we must have an appropriatgience ofx™. In gradient based
algorithms in [4] and [5], there exists a constant step si#&€,= «, which ensures that™ converges
to \°. However, in the subgradient based algorithm, we cannatgiee the convergence df*) with
a constant step size, since the subgradi€nt; Az(\™) that we use in (7), may not be zero st
Hence, we will consider the following sequence:

o™ — 0, asn — oo and > o™ = oo. (8)

n=1

Then, A\ in (7) converges to the optimal solutior of the dual problem (B), with the sequence that

satisfies the conditions in (8) [17].

B. Distributed Algorithm for the Dual Problem

In the previous subsection, we have established that thei@olof (3) and (7) with coefficients
satisfying (8) converges ta°, the dual optimal solution. This algorithm can be impleneenin a
distributed way. At iteratiom, useri transmits its data at a rate determined by solving (3) With) =
)\g?()i). In this case, we can interprﬂﬁ") as the price per unit rate at lirdlat iterationn, and)\gfl()i) as the
price per unit rate that usémust pay to use the links in S&{:) at iterationn. With this interpretation,
by solving (3), uset tries to maximizeNU;(Ar¢;), x), its net utility, at the price\ = /\g’f()i) without
considering other users. This is a natural property of $eléss (i.e., the non-cooperative property) of
the user in a public environment, such as the Internet. Al&®can interpref!*** as the maximum
willingness to pay per unit rate of usérsince if the price per unit rat&,; is higher than\j***,
z;(Ar@)) will be zero by property (R3) (i.e., usérdoes not transmit its data). Note that the utility
and the net utility must be calculated with the received (aliecated rate). However, the user does
not know its received rate before it transmits data. Thus,uber maximizes its net utility with the
transmission data rate assuming that the received ratenis aa the transmission data rate.

n+1

Based on the aggregate transmission data rate of users ¢hatlug link [ updates\,( ) the price
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per unit rate of the next iteration, by solving the followiaquation:
A = Y a0 = Y W 1=1,2, L. (9)
ieS(l)
Note that solving (9) for each link is equivalent to solviffg.(This implies that a link tries to obtain the
optimal price per unit rate that solves the dual problem kusiohg the price based on its congestion
level (i.e., the aggregate transmission rate of the usatsiie the link). Also, the link tries to maximize
the utilization of its capacity without causing congestignequating the aggregate transmission data

rate of users with its capacity.

C. Properties of the Primal Solution

Thus far, we have considered the dual of problem (A) and deeel an algorithm that converges to
an optimal solutiom\® of the dual. When there is no duality gap between the primalitsndual, the
dual solution also solves the optimal primal problem. Hogsvewhen some of the utilities are non-
concave, the primal problem (A) is not a convex programmirgpiem. In this case, there could exist
a duality gap between the primal and its dual, i.e., the smiutf problem (B) need not result in the
optimal solution of problem (A). In this paper, we are morerasted in the rate allocation (the primal
solution) than the price (the dual solution). Thus, it is ortant to study how “good” a primal solution
can be obtained by solving the dual. To this end, we next stinelyproperties of the primal solution

corresponding to the dual optimal solution.

Proposition 1: Suppose that® is an optimal solution of the dual problem (B). Then@if)) is
differentiable at\°, z(A\™) converges ta(\°). Moreover,z(\°) is an optimal solution of the primal
problem (A). However, otherwisg(\(™) may not converge even thougft) converges to\°.

Proof: See Appendix A. [ |

Proposition 2: IfQ()) is not differentiable ai\?, then there exists a link that satisfies one of the

following conditions:

Z xl<)\%(l)) < Cl* — €1 and Z xl()\%(l)) > Cl* + €9,

i€SH (I* X°) i€SH (I* Xo)USS (1*,\°)
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Z .flfl()\%(l)) < Cp and Z Z’Z( %(7,)) > O + €3, Or (10)

i€SH (1*,X°) i€SH (I* Xo)USS (1*,)\°)
> (M) <G —e and > (A7) = Cre,
i€SH (1%, X°) i€SH (I* Xo)USS (I*,X°)

wheree,, e, €3, ande, are some positive constants, and subsets of usérg;, \°) and S%(I*, \°) are
defined in (6).
Proof: See Appendix B. [ |

Propositions 1 and 2 imply that wheW” converges to\°, the rate allocation may oscillate between
two cases. In one case, the constraint is satisfied (i.e.adljeegate transmission rate of the users
does not exceed the capacity of the link), while in the ottase¢ the constraint cannot be satisfied
(i,e., the aggregate transmission rate of the users extleedspacity of the link). Since the aggregate
transmission data rate of users can exceed the capacitg ¢ihi) congestion may occur at the link.
Note that one of the conditions in (10) is satisfied only ifrthexists some usérsuch thatz;(Ar)

is discontinuous ak, i.e., the oscillation happens because of the discongiraditz; (Ar(;)) whenU;

is a sigmoidal-like functionThus, if there exist users having sigmoidal-like utilitpdtions, the rate
allocation resulting from solving the dual problem, suchtasalgorithms in [4], [5] (that converges to
an efficient rate allocation with concave utility functionsjay cause congestion without convergence.
This implies that the system cannot accommodate all thes @@t some of them must be interrupted
to alleviate the congestion in the system. Since there isentral authority in the Internet, this must
be done in a distributed way. Hence, to resolve this sitnatiee impose a “self-regulating” property
on the users. In the next subsection, we will study the “ssdfilating” property and show that using
the this property, the algorithm converges to the solutlmat satisfies the constraint and is also an

asymptotically optimal rate allocation.

D. “Self-regulating” Property

To study the “self-regulating” property, we assume thatdtwedition in Proposition 2 is satisfied in
this subsection. Thus, there exists a likhat satisfies one of the conditions in (10). We first define

what we mean by the “self-regulating” property and make talttl assumptions on the convergence
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of the algorithm having this property.
Self-regulating property: The property of a user that it does not transmit data evergthtwe price is
less than its maximum willingness to pay, if it will alwaysesve net utility that is less than or equal to
0 in the future.
We will show how to implement the “self-regulating” propei practice later. Note that, & = 0, with
the “self-regulating” property, users continue to be skelfie., they still preserve the non-cooperative
property. We call it the non-cooperative property (selfeds) in a strict sense. df > 0, butd can be
made arbitrarily close to zero, we call it the non-coopeeatiroperty (selfishness) in a wide sense.

To exploit the “self-regulating” property of users in theéeg&ontrol, we assume that the system has
the following properties.
Assumptions on the “self-regulating” property:

(Al) Each useris “self-regulating”, i.e., it satisfies ttself-regulating” policy.

(A2) Each usef has thresholds of toleran¢k; andJ; such that if it receives net utility less than

by transmitting data foth; iterations consecutively, it stops transmitting data.

(A3) Link [ allocates a rate;(\r(;)) to each usei € S(1) that is defined by

, zi(Ar)), 1 Yjesw zi(Arg) < G
ri(Ar) = L :

fi(@), if >jes() zj(Argy) > Ci
wherez;(Ar(;)) is the transmission data rate of usef’()\) is a vector for the transmission
rates of users irf(1), and f! is a continuous function af!()\) that satisfies the following

conditions:
fi@(N) <ai(Are) and D0 fi(@'(N) = Cr.
jes)
A good candidate for functioif! is

l’i(>\T(i))
Zjes(l) %’(/\T(j))

Fi(E(N) Cy,

which can be achieved by the First Come First Service (FCF&)ypol
In this subsection, we focus on lirik that satisfies one of the conditions in (10) and divide users i

setS(I*) into three subsetss™ (I*, %), S¥(I*, \°), and S (1*, \°), as in (6). We now assume that the
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algorithm is at then'” iteration such that for alt > m, the following conditions are satisfied:
Ay < Aper e SH(F X0) and AT > AmeT i€ SE(IF ).

Since\™ converges to\°, there exists am: that satisfies the above conditions. Hence, users in set
SE(1*, )°) do not transmit data anymore and users in¥éti*, \°) always transmit data after iteration
m. However, users in set”(I*, A\°) may continue to resume and stop data transmission again. When
a user in sef“(I*, \°) transmits data, it may obtain positive net utility. Howewae next proposition
implies that for any; > 0, if A(™ is enough close ta°, useri, i € S°(I*, \°) always obtains net utility
that is less than,;. The users ir5°(I*, \°) would eventually stop transmitting at, and this limiting

behavior can be equivalently captured usingdhed definition of convergence, thus giving rise to a

finite window for these users to stop transmitting.

Proposition 3: For any; > 0 and useri, i € S¥(I*, \°), there exists am;(J;) such that
NU,»(/\%),xg(/\g?(i))) < ¢; forall n > m;(9;) WhereNUi()\(T”()i),:c;(Ag?()i))) is the received net utility of

user: with price Ag,f‘()i) and received rate:;()\rf,?()i)).
Proof: See Appendix C [ |

Hence, by “self-regulating” itself, uséri ¢ S%(I*, \°) stops transmitting data after iteration ()
whered; is a threshold of userin the “self-regulating” property.
This procedure will be repeated for other users in thes$ét*, A°) until any condition in Proposition

2 is not satisfied (i.e., the condition in Proposition 1 iss$gtd) for the remaining users. After that, rate
allocation converges to a rate allocation that satisfiectimstraint, since it converges to an optimal
rate allocation for the remaining users by Proposition Ihc&iProposition 3 is true for any > 0,

we can have an arbitrary small > 0. With this property, we can say that each user still preserve
the non-cooperative property (i.e., selfishness) in a wahsa. Further, the next corollary shows that
if the system has a single bottleneck link, with the “setfjtriating” property, each user preserves the

non-cooperative property (i.e., selfishness) in a stricts¢l11].

Corollary 1: If the system has a single bottleneck linkthat satisfies one of the conditions in (10),

for each uset, i € S¥(I*, \°), there exists am; such thatNUZ-()\g?()i) x’()\g?()i))) < 0forall n > m,.

y e
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However, even if there exists iteratiom;(J;) for user: that satisfies the condition in Proposition 3,
it may not be possible for the user to ascertain this. For @&nduring a transient period, a user may
receive net utility that is lower tha), even though it would receive net utility that is much higtiemn
0; in the future. Hence, it may not be a good strategy to stosinétting data immediately after it
receives net utility that is lower thar. Thus, the idea behind (A2) is to not turn useif immediately,
but only after it has received net utility that is less thdamor th; consecutive iterations. This implies
that, by an appropriate choice 6f;, user: stops transmitting data only afték; iterations of iteration
m;(d;). Note that, in this scheme, it is important to have an appatethresholdih;. If it is too small,
useri may stop transmitting data during the transient period evércan receive net utility that is
higher thany; in the future. On the other hand, if it is too large, the altion may take very long to
converge.

As long as the users are “self-regulating,” our algorithmweges to the rate allocation that satisfies
the constraint. Hence, our rate control algorithm does aase congestion within the network even
with non-concave utility functions. However, we still netdstudy the efficiency of our method in
general because even though it results in an optimal raieadibn for the remaining users, it may not
result in an optimal rate allocation for all users. To stuaig,twe first define some variables as:

« z°: the optimal primal solution, i.e., the optimal rate allboa.

« )\’ the optimal dual solution.

« Z*: our rate allocation.

« z(\°): the transmission data rate ¥t

« R®. a subset of users that stop transmitting data due to théeregllating” property in our rate

control algorithm.

A . Z,LERS U?(acz(/\oT(Z))) Zi\;l UZ(SC:)
Proposition 4: If AT — 0asN — oo, thenm — lasN — .
Proof: See Appendix D. [ |

Proposition 4 states that our rate allocation is asym@tyioptimal. This means that we would expect

to have a good approximation of the global optimal rate alfion, when there are many users in a
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system with large capacity and the number of users in th&skas vanishing proportion. Hence, for
our algorithm to converge to an efficient rate allocationnged the condition that the number of users
that stop transmitting data due to the “self-regulatingdgarty has vanishing proportion. We will study
the effect that this condition has on the efficiency of oualthm later and also propose methods to
make this number small.

Thus far, we have shown that the algorithm based on the sdiegitaand the “self-regulating” prop-
erty converges to an asymptotically optimal rate allocatigthout causing congestion within the sys-
tem. As mentioned before, in the subgradient based algoyite cannot guarantee convergence with
a constant step size. Hence, we use a step size that dingnshkero. However, the constant step size
can more efficiently track system variations, such as tntraand completion of calls than a dimin-
ishing step size. In the next proposition, we will show tHiagach user applies the “self-regulating”
property with the following additional assumption for thiity function, there exists a constant step
sizea with which the algorithm in (3) and (9) converges.

(UE) —LU) > o> forall z,(AM) < o < My, i=1,2,---, N,

Proposition 5: Assuming that each user is “self-regulafirigere exists a constant step siaewith
which our algorithm converges.

Proof: See Appendix E. [ |

E. The Worst Case

In the previous subsection, we have shown that our rateaditwt could be a good approximation
of the global optimal rate allocation. However, it couldaalse inefficient in certain cases. In this
subsection, we show an example of the worst case and providiosis to resolve it. We consider a
system with a single bottleneck lirikvith capacityC;. We assume that each ugdras the same utility
function U that is a sigmoidal-like function, the same thresholds tramceth andd. By assuming
that each user has the same utility function, each user kasthe maximum willingness to pay“*.
Further, assume that , z;(A™**) > ;. In this case)\! = A™* and we haveS? (I, \¢) = 0,

SE(,A) = 0, andS5(1, \) = {1,2,---, N}, and one of the conditions in (10) is satisfied, since
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Yiest o) Ti(A) = 0 < CrandYicgm g aoyuss g.ae) Ti(A") = SN zi(Ame®) > (). Hence, there
exist some users in sét’(1, \?) that stop transmitting data due to the “self-regulatingSperty. But,
since all users have the same thresholds of tolerance,eal gop transmitting data at the same time,
which results in zero total system utility.

Note that in the situation above, the parameters of eaclaussiynchronized, i.e., each user has same
maximum willingness to pay and thresholds of tolerancettfeaumore, they use the same set of links,
i.e., they pay the same price per unit rate. Therefore, weaxhis to occur very rarely in the Internet.
In general, users in the Internet may have different chartics such as different utility functions
(i.e., different maximum willingness to pays). The statfiinks that each user uses may differ in a
high degree and, thus, each user may pay a different pricarperate. Hence, the probability that
the parameters of many users are synchronized is very sm#lkilnternet and, in most cases, our
rate allocation could be an efficient rate allocation. Hosveto further reduce the probability that the
parameters of many users are synchronized, we can use dreefofiowing two methods. First, we can
slightly perturb (randomly) the utility function of eachars By doing this, each useémas a different
maximum willingness to pay\[***, with high probability while making the effect on the permance
of each user small. Second, we can assume that the threstidtnlsrance {h; andJ;) of each user
depend on the preference of the user. This ensures thattigptsansmitting data at different iterations

even if they have the same maximum willingness to pay andaimerice.

F. Complexity

In this subsection, we compare the complexity of our suligrdadbased algorithm that considers
both concave and sigmoidal-like utility functions with tlod the gradient based algorithms in [4] and
[5] that consider only concave utility functions.

To calculate the price of the next iteration, the subgradiased algorithm uses a subgradient while
the gradient algorithm uses a gradient. Further, in genperatannot guarantee the convergence of the
subgradient algorithm with a constant step size, while tiaglignt based algorithm converges with a
constant step size. However, in our algorithm, a subgradesalculated from the difference between

the capacity and the aggregate transmission data ratewsexk that use the link, which is identical to
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Fig. 2. A system with a single bottleneck link.

how a gradient is computed in the gradient based algorithorebVer, in Proposition 5, we have shown
that our algorithm converges even with a constant step demwach user is “self-regulating,” as in the
gradient based algorithm . Thus, our algorithm and the #lguos in [4] and [5] have the same price
update rule at the link. Further, both the algorithms haeestime update rule for the transmission data
rate in each user. Hence, the only modification that we neethie is at the end users (i.e., imposing
the “self-regulating” property). This property is requirbecauser;(Ar(;)) in (3) is not continuous at
Arerif the utility function of useri is a sigmoidal-like function. If the utility function of usé is a
concave functiong;(Ar(;)) is continuous and we do not need the “self-regulating” priypker user:.
Hence, compared with the algorithms in [4] and [5], we havadd the “self-regulating” property to
users with sigmoidal-like utility functions in our algdri. This requires calculating the received net
utility by measuring the received rate. This can be easilyedeither by counting the number of ACK

packets or by explicit notification of the received rate frtiva destination.

IV. NUMERICAL RESULTS

In this section, we provide simulation results using an rssfulator. For the simulation, each link
updates its price per unit rate every 200 msec by solving @) awconstant step size of 0.03. To forward
the price to users, we add a field for the price in the headepatket that has zero as its initial value.
Whenever a packet passes through a link, the link adds iterduprice to the value in the field for the

price. At the destination, the price in the received packebipied to the field of an acknowledgment
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(ACK) packet and is sent to the source. We assume that a datatgaad an ACK packet consist of
500 bytes and 40 bytes, respectively. The source estimaea®teived rate by counting the number
of ACK packets and calculates the received utility and theiwed net utility by using the estimated
received rate. By the transmission data rate update ruleg ibtice becomes higher than its maximum
willingness to pay, a user does not transmit data packettsisihappens in the transient period, the user
cannot be informed of the price for the next iteration, sitheeprice is conveyed by ACK packets from
the destination in our simulation setting. Thus, we alloe/tiser to transmit packets at a very low rate,
even though its transmission data rate that maximizes itatiigy is zero during the transient period.
By doing this, the user can be informed the price for the nexatton by the ACK packets from the
destination. To that end, in the simulation, a user trarstmid packets, each of which consists of 40

bytes, at every iteration (200 msec).

A. A System with a Single Bottleneck Link: Comparison with ae8ystithout the “Self-regulating”

Property

We first consider a system with a single bottleneck link in. F&y In this figure, we provide the
capacity and the propagation delay of each link. Us#&ansmits packets from source nodgto
destination nodé; with utility function U;. Users 1 and 4 have a sigmoidal utility function given by

1

Uz(I) = C’L(l —i-e_ai(m_bi)

+d;), (11)

wherec; andd; are used for the normalization of the function and a rate in a unit of Megabit per

second (Mbps). Users 2 and 3 have a log utility function givgn
Ui(x) = c¢i(log(a;z +b;) + d;). (12)

In this simulation, we normalize the utility function sudratU;(0) = 0 andU;(M;) = 1, wherel;
is the maximum transmission data rate of us@t is not necessary to normalize the utility function).
Useri has its thresholds of toleranaé, andJ;, and starts transmitting data packets at tihesec. We
provide parameters of each user in Table | and plot theyfiiction of each user in Fig. 3.

We compare two systems: a system with the “self-regulatprgperty and a system without the

“self-regulating” property. Note that the algorithm foeteystem without the “self-regulating” property
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Fig. 3. The utility function of each user.

TABLE |

PARAMETERS FORUSERS(SINGLE BOTTLENECK LINK)

User: Type | a; | b | M; | th; | 6 | sti | AP | z;( A7) | a;(A]*)
1 Sigmoid| 15/ 06| 1 |20, 0| O | 1.210 | 0.756 0
2 Log 50 1 1 (20|0]|10|12.717] 0.190 0.179
3 Log 10| 1 | 1 | 20| 0| 20| 4.170| 0.245 0.226
4 Sigmoid|{ 20 06| 1 | 20| 0| 50| 1.276 | 0.734 0.731

is the same as the gradient based algorithms in [4] and [5]s,Time results for this system show the
behavior of the algorithms developed in the literature fomaave utility functions when applied to a
network supporting users with both concave and sigmoiditiufunctions. We plot the transmission
data rate, the received data rate, and the received né&t ofikach user in Figs. 4, 5, and 6, respectively.
The results show that before user 4 starts transmittinggiad®0 sec), the two systems yield the
same results. When only users 1, 2, and 3 are in the systempas & Table [,Y2_ | 2;(A\7%?) =
1.191 (Mbps) < 1.5 (Mbps), where\7*** is the smallest maximum willingness to pay among those of
users in the system. Thus, we can hage< \7*%¢, such that"? , z;(\°) = 1.5 (Mbps). Then, by
(S2), \° is a dual optimal solution and it satisfies the condition iog@sition 1. Hence, the algorithm
converges to the optimal rate allocation without relyingloa “self-regulating” property of users.

However, when all four users are in the system, as shown ileTa ., z;(\7%*) = 1.925 (Mbps) >
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Fig. 5. Received data rate (a single bottleneck link).

1.5 (Mbps) andy_}_, 2;(A7**) = 1.169 (Mbps) < 1.5 (Mbps), where\** is the smallest maximum
willingness to pay among users. In this case, by (32) is a dual optimal solution and it satisfies
the condition in Proposition 2 with? (1*, \7e*) = {2, 3,4} andS® (I*, \7***) = {1}. Therefore, in the
system without the “self-regulating” property, after udestarts transmitting packets, the transmission
data rate of user 1 (the primal solution) keeps oscilla@sgshown in Fig. 4(a). In this case, when user
1 transmits packets, the aggregate transmission datafrateusers exceeds the capacity of the link.
This causes congestion at the link and a large number of phodses for all users. Thus, as shown in
Figs. 4(a) and 5(a), each user has a large difference betive@ransmission data rate and the received
data rate. Further, due to these packet losses, some usensdgative received net utility, even though

each user determines its transmission data rate by sol8jngp(that it has non-negative net utility if
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Fig. 6. Received net utility (a single bottleneck link).

there is no packet loss. As shown in Fig. 6(a), after userrisstansmitting packets, the net utility of
user 1 becomes non-positive and the net utility of user 4lates between positive and negative values.
These results show that if there exist users with non-canashity functions in the system, using a rate
control algorithm devised only for concave utility funat@could result in an unstable system as well
as a large amount of network congestion.

However, in the system with the “self-regulating” properag shown in Fig. 4(b), user 1 stops
transmitting packets due to the “self-regulating” propeafter having received non-positive net utility
values forth, consecutive iterations. After user 1 stops transmittingkpts, as shown in Table I,
S, 2 (Ae®) = 1.136 (Mbps) < 1.5 (Mbps), where\7** is the smallest maximum willingness to pay
among those of users that remain in the system. Thus, we saiha: \7** such that"?!_, z;(\*) =
1.5 (Mbps). This satisfies the condition in Proposition 1 for tkenaining users and the algorithm
converges to the global optimal rate allocation for the ri@mg users. In this case, the aggregate
transmission data rate for users converges to the capddiedink (1.5 Mbps). Thus, as shown in
Figs. 4(b) and 5(b), the transmission data rate of each as®ecges and the received rate of each user
is almost same as its transmission data rate. This implatsatih the “self-regulating” property, the

system stabilizes and congestion is alleviated.
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Fig. 7. A system with multiple bottleneck links.

TABLE Il

PARAMETERS FORUSERS(MULTIPLE BOTTLENECK LINKS)

User ID Type a; b; M; | th; (51 )\;maa:

ODD | Sigmoid| 15/06| 1 | 20| 0| 1.210

EVEN Log 50 1 | 1 |20 012717

B. A System with Multiple Bottleneck Links

We now consider a system with multiple bottleneck links, @@ in Fig. 7. Each usértransmits
packets from source nodg to destination nodé;. If the user ID is an odd number, the user has a
sigmoid utility function given by (11) and, otherwise, itdha log utility function given by (12). The
parameters of the utility functions are provided in TabldJsers from 1 to 8 arrive at the system at time
0 sec and user 9 arrives at the system at time 50 sec. We pltatismission data rate, the received
data rate, and the net utility of each user from 1 to 8 in Fig®, &nd 10, respectively. In Fig. 11, the
price of each link is provided. We call a link between nodeaind ;. ; link /.

As shown in the figures, before user 9 arrives at the system fiefore 50 sec), the system can
accommodate all users and the transmission data rate ofusaclttonverges without congestion. In
this case, each link has the same demand for rate allocatiwe each link has the same type of users.
Hence, as shown in Fig. 11, the prices for links 2 and 3 comverghe same value, since links 2 and 3

have the same capacity. However, since link 1 has a largecighan links 2 and 3, the price of link
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1 converges to a lower value than that for links 2 and 3.

After user 9 arrives to the system (i.e., after 50 sec), awshoFigs. 8 and 10, the transmission data
rate of user 1 begins to oscillate and user 1 obtains negagivetility. Hence, by the “self-regulating”
property, it stops transmitting packets. In this case, sdire with odd IDs have the same maximum
willingness to pay, since they have the same utility functidHowever, since user 1 uses all three
links while the others use only one link, the former must pdygher price than the latter. Thus, as
shown in Fig. 10, only user 1 achieves negative net utility &rstops transmitting packets due to the
“self-regulating” property, even though all users with dBd have the same maximum willingness to
pay. After user 1 stops transmitting packets, the transamstata rate for each user converges without

congestion. In this case, link 2 has a larger demand for thlteation than link 3, since link 2 has an
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additional user 9 compared with link 3. Hence, as shown in Eig the price of link 2 converges to a

higher value than that of link 3, even though they have theeszapacity.

C. Discussion

In the results, we note that a user (user 1 in both systemsh#saalready been in the system stops
transmitting packets due to the arrival of a new user (usartha system with a single bottleneck link
and user 9 in the system with multiple bottleneck links). Hynbe undesirable to interrupt existing

services. However, recall that, in this paper, we consider the situathat is similar to the current

2This happens because of the property of utility and pricing based algstitHence, this may happen even in the system in which all
users have concave utility functions, if users do not have the minimunth@ttenust be guaranteed or their maximum willingness to pays

are not infinity.
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Internet in which the system does not have a central augtforitall admission control and rate control,
and a user adjusts its transmission data rate accordingaogestion indicator from the system without
considering the other users. In such a situation, as showthdyesults, by continuing to transmit
packets, user 1 has negative net utility value as well asge laumber of packet losses that might be
unsatisfactory to the service. Therefore, it may be beranat only to the other users but also to user
1 itself for it to stop transmitting packets. User 1 may rdsta transmission after some random time
or find an alternative routé.

The results also tell us the following. First, a service watiboncave utility function can be better
adapted to congestion on the link than a service with a sidatdike utility function. The former
can adjust its transmission data rate gradually accordainiget congestion level on the link, while the
latter can adjust its transmission data rate gradually oplyo a certain level. Further, the former
has a higher degree of adaptation to the level of the comgestan the latter. This implies that by
modeling traditional data services with concave utilitpdtions and real-time streaming services as
sigmoidal-like utility functions, we can exploit the chateristics of each service appropriately.

Second, from the viewpoint of the pricing, if a real-timewsee with a sigmoidal-like utility function
wants to have a higher priority to be served than a data sewith a concave utility function, it must
have a higher maximum willingness to pay than the data serWicthis case, in general, the real-time
service pays more for the service than the data services seat-time service keep transmitting data
even though the data services stop transmitting becauke bfgh price. This implies that the real-time
service must be more expensive than the data service.

Thirdly, if there is no call admission control in the systamhen a new service enters into the net-
work, it may be inevitable to interrupt existing servicepteserve the system efficiency without in-
curring congestion. Hence, to prevent this from happenting,system should have an appropriate,
preferably distributed, call admission control that adnaitnew service if it does not interrupt existing
(real-time) services.

Finally, as a by-product of rate control, the price of eacik [fepresents its supply and demand

relationship (i.e., its congestion level). Hence, thego each link can be used as a parameter for a

3Finding a good strategy for this will be a topic for future research.
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QoS routing scheme.

V. CONCLUSION

In this paper, we have studied the distributed rate contgarahm by considering both sigmoidal-
like and concave utility functions. We have shown that inphesence of sigmoidal-like utility func-
tions, an algorithm that converges to an efficient rate atioa for a system with only concave utility
functions, may not converge, exhibiting oscillatory babav Further, such algorithms may result in
excessive congestion within the network. This implies th&e control algorithms that have been de-
veloped only for concave functions might be inefficient inrencealistic settings. To overcome these
difficulties, we have developed a distributed algorithm mereach user has a “self-regulating” property.
Our algorithm works for both sigmoidal-like and concavditytfunctions. We have shown that our al-
gorithm converges to the asymptotically optimal rate atmn and that its complexity is comparable
to that of algorithms developed only for concave utility étions. In this paper, we assume that there
exist only controllable services within the network. Howe\un general, there also exist uncontrollable
services within the network that may further affect the edficy and the convergence of the rate control
algorithm. Hence, as shown in [18], the study of the effeatrmdontrollable services to rate control is

important and will be a topic for future research.

APPENDIX

A. Proof of Proposition 1

If Q()\) is differentiable at\’>, Q()\) has a unique subgradientst by (S1). Hence, by (5);(\°) is
unique and, thus, by (R1J,()\) is continuous ah°. This implies thatz(A(™) converges ta(\°), since
(™) converges ta\°. Further, sincer(\°) is a unique maximum it of L(z, \°) in (2), by property 6.5
in [15], the primal problem (A) has a saddle pojm(\°), \°) andz(\°) is an optimal solution of the
primal problem (A).

If Q()) is not differentiable ak°, the subgradient aP(\) at\° is not unique by (S1). Hence, by (5),
there exists a usérsuch that:f > 0 and\*** = A%(i). In this case, by (R1);;(Ar(;)) is discontinuous

atAg ;- Hence,ri()\g?()i)) (i.e.,z(A™)) may not converge, even though" converges to\°.
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B. Proof of Proposition 2

We first prove the following lemma.

Lemma 1. Suppose that is an optimal solution of the dual problem (B) angl > 0 for some link
l. Then, there exists a subgradient@f)), d(\°), at \° such thaid;(\°) = 0.
Proof: Since)\° is a minimizer ofQ()\), by (S2), there exists a subgradient@f)), d(\°), at \°

such that

dA)T (A= X°) >0 forall A > 0. (13)

If we take\ = X, where)X; = \2,i # [ and )\, = \? + ¢, ¢ > 0. Then, by (13), we havé,(\°)e > 0
and, thusd;(A\°) > 0. In a similar way, by taking < 0, we haved;(\°) < 0. Henced;(\°) =0. N

We now prove Proposition 2. I©)()\) is not differentiable at\°, from the proof of Proposition 1

in Appendix A, there exist a user such thatz?. > 0 and A2** = A7,,.,. Hence,z;:(Ari-)) is
discontinuous ak7;., by Property (R1). Further, since:* > 0, AZ;.) = Yiera+) A7 > 0 and, thus,
there exists a link* € 7'(*) such that\. > 0. In this case, by Lemma 1, there exists a subgradient of
Q(N), d(X°), atA?, such thatl;- (\°) = 0. Hence, from (5) and the fact that (Ar(;+)) is discontinuous

at\7;, one of the following conditions is satisfied at liftk

Z $i(/\%(z‘)) <Cpr—¢ and Z z;( %(Z»)) > Cp + €9,
i€SH (1%, e) i€SH (1%, X)USS (1,2°)
;M) < C- and > 2i(App)) > Ci- + €3, OF (14)
i€ SH (1*,X°) i€SH (I* Xo)USS (1*,)\°)
xl()\%(z)) < Cl* — €4 and xl( %(,L)) 2 01*7
i€SH (1%, X\°) i€SH (I* Xo)USS (1*,\°)

whereeq, €9, €3, ande, are some positive constants.
C. Proof of Proposition 3
We first define the maximum net utility of useat the price) (i.e., athr)) as

NUP (M) = max {Ui(r) = A}

0<r<M;
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Then, to prove the proposition, we only have to show that

lim sup NUm”(/\(T())) =0, 7€ 55", \°).

Since NUI™** (Ar;) is a continuous function ofz(;) and (™) converges to\’, NU**(AY))) con-
verges taV U Ay, ). Further, sinceVU; (A, #1(AY0))) < NUAT) 2i(AG))) = NUM (AL

and NU™* (X)) = 0, fori € S5(1%, \°),

lim sup NU; (/\ (i) ;(/\(( )) < limsup NU; (/\( ),xz(/\(T( ) = hmsupNUm‘”(/\ )) =0, € 55", \°).

n—oo n—oo n—oo

D. Proof of Proposition 4

We first divide users into three subsets at our rate allocattbis a subset of users that keep trans-
mitting data,R* is a subset of users that stop transmitting data due to thferégpilating” property, and
R° is a subset of users that stop transmitting data due to hgieas than their maximum willingness
to pays.

By the weak duality theorem [16],

= Z Ui(x:( M) + A7 (C = Az(X)) — ; Ui(x7)
= Z Ui(xi( A7) + Z Ui(2i( A7) + Z Ui(x:( M) + A7 (C = Az(X)) — Z: Ui(7)
> 0.

SinceY e ge Ui(7:( M) = 0 and A" (C' — Az(X%)) <0,

N
> Uilzi(My)) = ;Ui — > Ui(@i(A))

1€ER 1€RS

Further, since our rate allocation is a global optimal réltcation for the remaining users,

Z:Ui(ﬂff) =Y Ui(x}) > D Us(xi(Moiy)) = D Ui(ag) = Y- Us(zi( M)

i€ER 1€ER =1 i€ RS

and
2 Ui(ay) 51 2 ieRs Ui(xi<>‘%(i)))'

f\il Ui@g) N z']il Ui(m‘o)

(2
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. s Ui(xi(AS,,.
SinceX N, Ui(z}) < =N, Uy(x9) and we assume th%legv (U(( OT)W)) — 0asN — oo,
i=1 J1\F

723\?1 UZ(:CZ) — 1, asN — oo.
>ity Ui(f)
E. Proof of Proposition 5

Before we prove Proposition 5, we first prove the following temmas.

Lemma 2: Suppose that is a dual optimal solution. Then, for ary> 0, there existsy, > 0 such
that ||\ — )\°|| < e for somem by solving (3) and (7) with a constant step size o < .

Proof: This can be proved in a similar way to the proof of Theorem &.[1L4]. |

Lemma 3: Suppose that is a dual optimal solution and at iteratiom;, [|\") — X°|| < ;. Then,
for anye > ¢ andm, there existsy.,,, > 0 such that/|\) — X\°|| < ¢ at least form consecutive
iterations after iteratiom, by solving (3) and (7) with a constant step dize o < a. .

Proof: Let us define
r = maX{HC'—Aj(/_\)H | HX—XOH <e N> 0}.

Suppose that we have a constant step sizgthat satisfies the following inequality:
€1 +m(al,,r* + 20 er) — €
= mrQaZm + 2merae m€; + € — €

< 0.
Sincee? — ¢* < 0, there exists an. ,, that satisfies the above inequality. Then,

||5\(n1+1) _ 5\o||2 _ ||[5\(n1) o a€7m(c_« _ Ai(j\(m)))]+ _ 5\0”2

IN

||/_\(n1) _ ae,m(é _ A:E(S\(nl))) . /_\o||2

— ") = R 402,10 = AT 20 (X = XY (C = AT(3"))

IN

||/_\("1) — X2+ af’mTQ + 200 mer

IN

2 2 2
€1+ Qg 1 + 20 mer

€.

IN
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Hence,|[|\1+1) — X°|| < e. In a similar way, we can show that

AR e 2 < @+ k(aimrQ + 20 mer)

< e k=1,2,---,m.

Therefore)|A™ — )\°|| < ¢ at least forn consecutive iterations after iteratien. u

We now prove Proposition 5 considering two cases.

Casel:Suppose that the condition in Proposition 1 is satisfied,atethe dual optimal solution\,
Q(\) is differentiable. Since&)()) is differentiable almost everywhere and it is differenkgaht \°,
there exists am, > 0 such that, for all\ that satisfies|\ — \°|| < e, Q()) is differentiable. Let us

define

d= max  {Q(\)}.

(X IIA=Xe|[>e1}
Then, sinceQ()) is a convex function, there exists an< ¢, such thatQ(\) < d for all \ that
satisfieg| A — \°|| < e. Hence, for) that satisfies|\ — \°|| < ¢, the subgradient projection algorithm
is equivalent to the gradient projection algorithm, siige\) is differentiable for all) that satisfies
[|A — A°|| < e. With the assumption (U5), there exists a constanthat makes the gradient projection
algorithm converge with a descent property [4], [5]. Herargge||A*) — \°|| < ¢ for some iteratiori,
there exists a constaat such that|\™ — \°|| < ¢ for all n > k and\™ converges to\°. Further, by
Lemma 2, for any > 0, there exists a constaat, that makesg|\*) — \°|| < ¢ for somek. Hence, by
takinga = min{ay, as}, A™ converges ta\°. SinceQ () is differentiable at\®, z(A\™) converges to
z(A\°) by Proposition 1.

Case2:Suppose that the condition in Proposition 1 is not satisfléten, there exist anand anm
such that wheA™ — \°|| < ¢ for m consecutive iterations, the condition in Proposition laiés$ied
for the remaining users after some users stop transmitatgdlie to the “self-regulating” property. By
Lemmas 2 and 3, there exists a constantvith which ||\ — \°|| < ¢ for m consecutive iterations.
After that, since the condition in Proposition 1 is satisfiedthe remaining users, as in Case 1, there
exists a constant, that makes the algorithm for the remaining users convergencekl, by taking

a = min{aq, ay }, the algorithm converges.
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