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Abstract

A vast majority of machine learning algorithms train their models and

perform inference by solving optimization problems. In order to capture

the learning and prediction problems accurately, structural constraints

such as sparsity or low rank are frequently imposed or else the objective

itself is designed to be a non-convex function. This is especially true

of algorithms that operate in high-dimensional spaces or that train

non-linear models such as tensor models and deep networks.

The freedom to express the learning problem as a non-convex op-

timization problem gives immense modeling power to the algorithm

designer, but often such problems are NP-hard to solve. A popular

workaround to this has been to relax non-convex problems to convex

ones and use traditional methods to solve the (convex) relaxed opti-

mization problems. However this approach may be lossy and neverthe-

less presents significant challenges for large scale optimization.

On the other hand, direct approaches to non-convex optimization

have met with resounding success in several domains and remain the

methods of choice for the practitioner, as they frequently outperform

relaxation-based techniques – popular heuristics include projected gra-

dient descent and alternating minimization. However, these are often

poorly understood in terms of their convergence and other properties.

This monograph presents a selection of recent advances that bridge

a long-standing gap in our understanding of these heuristics. We hope

that an insight into the inner workings of these methods will allow the

reader to appreciate the unique marriage of task structure and genera-

tive models that allow these heuristic techniques to (provably) succeed.

The monograph will lead the reader through several widely used non-

convex optimization techniques, as well as applications thereof. The

goal of this monograph is to both, introduce the rich literature in this

area, as well as equip the reader with the tools and techniques needed

to analyze these simple procedures for non-convex problems.

P. Jain and P. Kar. Non-convex Optimization for Machine Learning. Foundations
and Trends R© in Machine Learning, vol. 10, no. 3-4, pp. 142–336, 2017.
DOI: 10.1561/2200000058.
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Preface

Optimization as a field of study has permeated much of science and

technology. The advent of the digital computer and a tremendous sub-

sequent increase in our computational prowess has increased the impact

of optimization in our lives. Today, tiny details such as airline sched-

ules all the way to leaps and strides in medicine, physics and artificial

intelligence, all rely on modern advances in optimization techniques.

For a large portion of this period of excitement, our energies were

focused largely on convex optimization problems, given our deep un-

derstanding of the structural properties of convex sets and convex func-

tions. However, modern applications in domains such as signal process-

ing, bio-informatics and machine learning, are often dissatisfied with

convex formulations alone since there exist non-convex formulations

that better capture the problem structure. For applications in these

domains, models trained using non-convex formulations often offer ex-

cellent performance and other desirable properties such as compactness

and reduced prediction times.

Examples of applications that benefit from non-convex optimization

techniques include gene expression analysis, recommendation systems,

clustering, and outlier and anomaly detection. In order to get satisfac-

tory solutions to these problems, that are scalable and accurate, we

require a deeper understanding of non-convex optimization problems

that naturally arise in these problem settings.

2
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Preface 3

Such an understanding was lacking until very recently and non-

convex optimization found little attention as an active area of study,

being regarded as intractable. Fortunately, a long line of works have re-

cently led areas such as computer science, signal processing, and statis-

tics to realize that the general abhorrence to non-convex optimization

problems hitherto practiced, was misled. These works demonstrated

in a beautiful way, that although non-convex optimization problems

do suffer from intractability in general, those that arise in natural set-

tings such as machine learning and signal processing, possess additional

structure that allow the intractability results to be circumvented.

The first of these works still religiously stuck to convex optimiza-

tion as the method of choice, and instead, sought to show that cer-

tain classes of non-convex problems which possess suitable additional

structure as offered by natural instances of those problems, could be

converted to convex problems without any loss. More precisely, it was

shown that the original non-convex problem and the modified convex

problem possessed a common optimum and thus, the solution to the

convex problem would automatically solve the non-convex problem as

well! However, these approaches had a price to pay in terms of the time

it took to solve these so-called relaxed convex problems. In several in-

stances, these relaxed problems, although not intractable to solve, were

nevertheless challenging to solve, at large scales.

It took a second wave of still more recent results to usher in provable

non-convex optimization techniques which abstained from relaxations,

solved the non-convex problems in their native forms, and yet seemed

to offer the same quality of results as relaxation methods did. These

newer results were accompanied with a newer realization that, for a

range of domains such as sparse recovery, matrix completion and ro-

bust learning, these direct techniques are faster, often by an order of

magnitude or more, than their relaxation-based cousins.

This monograph wishes to tell the story of this realization and the

wisdom we gained from it from the point of view of machine learning

and signal processing applications. The monograph will introduce the

reader to a lively world of non-convex optimization problems with

rich structure that can be exploited to obtain extremely scalable

Full text available at: http://dx.doi.org/10.1561/2200000058



4 Preface

solutions to these problems. Put a bit more dramatically, it will seek

to show how problems that were once avoided, having been shown

to be NP-hard to solve, now have solvers that operate in near-linear

time, by carefully analyzing and exploiting additional task structure!

It will seek to inform the reader on how to look for such structure in

diverse application areas, as well as equip the reader with a sound

background in fundamental tools and concepts required to analyze

such problem areas and come up with newer solutions.

How to use this monograph We have made efforts to make this

monograph as self-contained as possible while not losing focus of the

main topic of non-convex optimization techniques. Consequently, we

have devoted entire sections to present a tutorial-like treatment to

basic concepts in convex analysis and optimization, as well as their

non-convex counterparts. As such, this monograph can be used for a

semester-length course on the basics of non-convex optimization with

applications to machine learning.

On the other hand, it is also possible to cherry pick portions of

the monograph, such the section on sparse recovery, or the EM algo-

rithm, for inclusion in a broader course. Several courses such as those

in machine learning, optimization, and signal processing may benefit

from the inclusion of such topics. However, we advise that relevant

background sections (see Figure 1) be covered beforehand.

While striving for breadth, the limits of space have constrained

us from looking at some topics in much detail. Examples include the

construction of design matrices that satisfy the RIP/RSC properties

and pursuit style methods, but there are several others. However, for

all such omissions, the bibliographic notes at the end of each section

can always be consulted for references to details of the omitted topics.

We have also been unable to address several application areas such

as dictionary learning, advances in low-rank tensor decompositions,

topic modeling and community detection in graphs but have provided

pointers to prominent works in these application areas too.

The organization of this monograph is outlined below with Figure 1

presenting a suggested order of reading the various sections.

Full text available at: http://dx.doi.org/10.1561/2200000058



Preface 5

INTRODUCTION

MATHEMATICAL 

TOOLS

SPARSE

RECOVERY

LOW-RANK

MATRIX RECOV.

ROBUST

REGRESSION

PHASE

RETRIEVAL

NON-CONVEX

PROJECTED GD

ALTERNATE 

MINIMIZATION

STOCHASTIC 

OPTIMIZATION

PART I PART II PART III

EXPECTATION 

MAXIMIZATION

Figure 1: A schematic showing the suggested order of reading the sections. For
example, concepts introduced in § 3 and 4 are helpful for § 9 but a thorough reading
of § 6 is not required for the same. Similarly, we recommend reading § 5 after going
through § 4 but a reader may choose to proceed to § 7 directly after reading § 3.

Part I: Introduction and Basic Tools

This part will offer an introductory note and a section exploring some

basic definitions and algorithmic tools in convex optimization. These

sections are recommended to readers not intimately familiar with

basics of numerical optimization.

Section 1 - Introduction This section will give a more relaxed

introduction to the area of non-convex optimization by discussing

applications that motivate the use of non-convex formulations. The

discussion will also clarify the scope of this monograph.

Section 2 - Mathematical Tools This section will set up notation

and introduce some basic mathematical tools in convex optimization.

This section is basically a handy repository of useful concepts and

results and can be skipped by a reader familiar with them. Parts of the

section may instead be referred back to, as and when needed, using

the cross-referencing links in the monograph.

Part II: Non-convex Optimization Primitives

This part will equip the reader with a collection of primitives most

widely used in non-convex optimization problems.

Full text available at: http://dx.doi.org/10.1561/2200000058



6 Preface

Section 3 - Non-convex Projected Gradient Descent This

section will introduce the simple and intuitive projected gradient

descent method in the context of non-convex optimization. Variants

of this method will be used in later sections to solve problems such as

sparse recovery and robust learning.

Section 4 - Alternating Minimization This section will introduce

the principle of alternating minimization which is widely used in

optimization problems over two or more (groups of) variables. The

methods introduced in this section will be later used in later sections

to solve problems such as low-rank matrix recovery, robust regression,

and phase retrieval.

Section 5 - The EM Algorithm This section will introduce the

EM algorithm which is a widely used optimization primitive for

learning problems with latent variables. Although EM is a form of

alternating minimization, given its significance, the section gives it

special attention. This section will discuss some recent advances in the

analysis and applications of this method and look at two case studies

in learning Gaussian mixture models and mixed regression to illustrate

the algorithm and its analyses.

Section 6 - Stochastic Non-convex Optimization This section

will look at some recent advances in using stochastic optimization tech-

niques for solving optimization problems with non-convex objectives.

The section will also introduce the problem of tensor factorization as

a case study for the algorithms being studied.

Part III - Applications

This part will take a look at four interesting applications in the

areas of machine learning and signal processing and explore how the

non-convex optimization techniques introduced earlier can be used to

solve these problems.

Full text available at: http://dx.doi.org/10.1561/2200000058



Preface 7

Section 7 - Sparse Recovery This section will look at a very basic

non-convex optimization problem, that of performing linear regression

to fit a sparse model to the data. The section will discuss conditions

under which it is possible to do so in polynomial time and show how

the non-convex projected gradient descent method studied earlier can

be used to offer provably optimal solutions. The section will also point

to other techniques used to solve this problem, as well as refer to

extensions and related results.

Section 8 - Low-rank Matrix Recovery This section will address

the more general problem of low rank matrix recovery with specific

emphasis on low-rank matrix completion. The section will gently

introduce low-rank matrix recovery as a generalization of sparse

linear regression that was studied in the previous section and then

move on to look at matrix completion in more detail. The section

will apply both the non-convex projected gradient descent and

alternating minimization methods in the context of low-rank ma-

trix recovery, analyzing simple cases and pointing to relevant literature.

Section 9 - Robust Regression This section will look at a widely

studied area of machine learning, namely robust learning, from the

point of view of regression. Algorithms that are robust to (adversarial)

corruption in data are sought after in several areas of signal processing

and learning. The section will explore how to use the projected

gradient and alternating minimization techniques to solve the robust

regression problem and also look at applications of robust regression

to robust face recognition and robust time series analysis.

Section 10 - Phase Retrieval This section will look at some recent

advances in the application of non-convex optimization to phase

retrieval. This problem lies at the heart of several imaging techniques

such as X-ray crystallography and electron microscopy. A lot re-

mains to be understood about this problem and existing algorithms

often struggle to cope with the retrieval problems presented in practice.

Full text available at: http://dx.doi.org/10.1561/2200000058



8 Preface

The area of non-convex optimization has considerably widened

in both scope and application in recent years and newer methods

and analyses are being proposed at a rapid pace. While this makes

researchers working in this area extremely happy, it also makes

summarizing the vast body of work in a monograph such as this, more

challenging. We have striven to strike a balance between presenting

results that are the best known, and presenting them in a manner

accessible to a newcomer. However, in all cases, the bibliography notes

at the end of each section do contain pointers to the state of the art

in that area and can be referenced for follow-up readings.

Prateek Jain, Bangalore, India

Purushottam Kar, Kanpur, India

December 2, 2017
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Mathematical Notation

• The set of real numbers is denoted by R. The set of natural

numbers is denoted by N.

• The cardinality of a set S is denoted by |S|.

• Vectors are denoted by boldface, lower case alphabets for exam-

ple, x, y. The zero vector is denoted by 0. A vector x ∈ R
p will

be in column format. The transpose of a vector is denoted by x⊤.

The ith coordinate of a vector x is denoted by xi.

• Matrices are denoted by upper case alphabets for example, A, B.

Ai denotes the ith column of the matrix A and Aj denotes its jth

row. Aij denotes the element at the ith row and jth column.

• For a vector x ∈ R
p and a set S ⊂ [p], the notation xS denotes the

vector z ∈ R
p such that zi = xi for i ∈ S, and zi = 0 otherwise.

Similarly for matrices, AS denotes the matrix B with Bi = Ai

for i ∈ S and Bi = 0 for i 6= S. Also, AS denotes the matrix B

with Bi = Ai for i ∈ S and Bi = 0⊤ for i 6= S.

• The support of a vector x is denoted by supp(x) := {i : xi 6= 0}.

A vector x is referred to as s-sparse if |supp(x)| ≤ s.

• The canonical directions in R
p are denoted by ei, i = 1, . . . , p.

9

Full text available at: http://dx.doi.org/10.1561/2200000058



10 Mathematical Notation

• The identity matrix of order p is denoted by Ip×p or simply Ip. The

subscript may be omitted when the order is clear from context.

• For a vector x ∈ R
p, the notation ‖x‖q = q

√∑p
i=1 |xi|

q denotes its

Lq norm. As special cases we define ‖x‖∞ := maxi |xi|, ‖x‖−∞ :=

mini |xi|, and ‖x‖0 := |supp(x)|.

• Balls with respect to various norms are denoted as Bq(r) :={
x ∈ R

p, ‖x‖q ≤ r
}

. As a special case the notation B0(s) is used

to denote the set of s-sparse vectors.

• For a matrix A ∈ R
m×n, σ1(A) ≥ σ2(A) ≥ . . . ≥ σmin{m,n}(A)

denote its singular values. The Frobenius norm of A is defined

as ‖A‖F :=
√∑

i,j A2
ij =

√∑
i σi(A)2. The nuclear norm of A is

defined as ‖A‖∗ :=
∑

i σi(A).

• The trace of a square matrix A ∈ R
m×m is defined as tr(A) =∑m

i=1 Aii.

• The spectral norm (also referred to as the operator norm) of a

matrix A is defined as ‖A‖2 := maxi σi(A).

• Random variables are denoted using upper case letters such as

X, Y .

• The expectation of a random variable X is denoted by E [X].

In cases where the distribution of X is to be made explicit, the

notation EX∼D [X], or else simply ED [X], is used.

• Unif(X ) denotes the uniform distribution over a compact set X .

• The standard big-Oh notation is used to describe the asymp-

totic behavior of functions. The soft-Oh notation is employed

to hide poly-logarithmic factors i.e., f = Õ (g) will imply f =

O (g logc(g)) for some absolute constant c.
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Introduction

This section will set the stage for subsequent discussions by motivating

some of the non-convex optimization problems we will be studying

using real life examples, as well as setting up notation for the same.

1.1 Non-convex Optimization

The generic form of an analytic optimization problem is the following

min
x∈Rp

f(x)

s.t. x ∈ C,

where x is the variable of the problem, f : Rp → R is the objective func-

tion of the problem, and C ⊆ R
p is the constraint set of the problem.

When used in a machine learning setting, the objective function allows

the algorithm designer to encode proper and expected behavior for the

machine learning model, such as fitting well to training data with re-

spect to some loss function, whereas the constraint allows restrictions

on the model to be encoded, for instance, restrictions on model size.

An optimization problem is said to be convex if the objective is a

convex function, as well as the constraint set is a convex set. We refer

12
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1.2. Motivation for Non-convex Optimization 13

the reader to § 2 for formal definitions of these terms. An optimiza-

tion problem that violates either one of these conditions, i.e., one that

has a non-convex objective, or a non-convex constraint set, or both, is

called a non-convex optimization problem. In this monograph, we will

discuss non-convex optimization problems with non-convex objectives

and convex constraints (§ 4, 5, 6, and 8), as well as problems with non-

convex constraints but convex objectives (§ 3, 7, 9, 10, and 8). Such

problems arise in a lot of application areas.

1.2 Motivation for Non-convex Optimization

Modern applications frequently require learning algorithms to operate

in extremely high dimensional spaces. Examples include web-scale doc-

ument classification problems where n-gram-based representations can

have dimensionalities in the millions or more, recommendation systems

with millions of items being recommended to millions of users, and sig-

nal processing tasks such as face recognition and image processing and

bio-informatics tasks such as splice and gene detection, all of which

present similarly high dimensional data.

Dealing with such high dimensionalities necessitates the imposition

of structural constraints on the learning models being estimated from

data. Such constraints are not only helpful in regularizing the learning

problem, but often essential to prevent the problem from becoming ill-

posed. For example, suppose we know how a user rates some items and

wish to infer how this user would rate other items, possibly in order

to inform future advertisement campaigns. To do so, it is essential to

impose some structure on how a user’s ratings for one set of items

influences ratings for other kinds of items. Without such structure, it

becomes impossible to infer any new user ratings. As we shall soon see,

such structural constraints often turn out to be non-convex.

In other applications, the natural objective of the learning task is

a non-convex function. Common examples include training deep neu-

ral networks and tensor decomposition problems. Although non-convex

objectives and constraints allow us to accurately model learning prob-

lems, they often present a formidable challenge to algorithm designers.
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This is because unlike convex optimization, we do not possess a handy

set of tools for solving non-convex problems. Several non-convex op-

timization problems are known to be NP-hard to solve. The situation

is made more bleak by a range of non-convex problems that are not

only NP-hard to solve optimally, but NP-hard to solve approximately

as well [Meka et al., 2008].

1.3 Examples of Non-Convex Optimization Problems

Below we present some areas where non-convex optimization problems

arise naturally when devising learning problems.

Sparse Regression The classical problem of linear regression seeks to

recover a linear model which can effectively predict a response variable

as a linear function of covariates. For example, we may wish to predict

the average expenditure of a household (the response) as a function of

the education levels of the household members, their annual salaries

and other relevant indicators (the covariates). The ability to do al-

lows economic policy decisions to be more informed by revealing, for

instance, how does education level affect expenditure.

More formally, we are provided a set of n covariate/response pairs

(x1, y1), . . . , (xn, yn) where xi ∈ R
p and yi ∈ R. The linear regression

approach makes the modeling assumption yi = x⊤
i w∗ + ηi where w∗ ∈

R
p is the underlying linear model and ηi is some benign additive noise.

Using the data provided {xi, yi}i=1,...,n, we wish to recover back the

model w∗ as faithfully as possible.

A popular way to recover w∗ is using the least squares formulation

ŵ = arg min
w∈Rp

n∑

i=1

(
yi − x⊤

i w
)2

.

The linear regression problem as well as the least squares estimator,

are extremely well studied and their behavior, precisely known. How-

ever, this age-old problem acquires new dimensions in situations where,

either we expect only a few of the p features/covariates to be actually

relevant to the problem but do not know their identity, or else are

working in extremely data-starved settings i.e., n ≪ p.
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EDUCATION LEVEL

FAMILY SIZE

TOTAL INCOME

HOUSE NO (ODD/EVEN)

RENTED/SELF OWNED

NO OF CHILDREN

SURNAME LENGTH

EYE COLOR

DIET (VEG/NON-VEG)

(EXPENDITURE)

Figure 1.1: Not all available parameters and variables may be required for a pre-
diction or learning task. Whereas the family size may significantly influence family
expenditure, the eye color of family members does not directly or significantly influ-
ence it. Non-convex optimization techniques, such as sparse recovery, help discard
irrelevant parameters and promote compact and accurate models.

The first problem often arises when there is an excess of covariates,

several of which may be spurious or have no effect on the response. § 7

discusses several such practical examples. For now, consider the exam-

ple depicted in Figure 1.1, that of expenditure prediction in a situation

when the list of indicators include irrelevant ones such as whether the

family lives in an odd-numbered house or not, which should arguably

have no effect on expenditure. It is useful to eliminate such variables

from consideration to promote consistency of the learned model.

The second problem is common in areas such as genomics and sig-

nal processing which face moderate to severe data starvation and the

number of data points n available to estimate the model is small com-

pared to the number of model parameters p to be estimated, i.e., n ≪ p.

Standard statistical approaches require at least n ≥ p data points to

ensure a consistent estimation of all p model parameters and are unable

to offer accurate model estimates in the face of data-starvation.

Both these problems can be handled by the sparse recovery ap-

proach, which seeks to fit a sparse model vector (i.e., a vector with

say, no more than s non-zero entries) to the data. The least squares

formulation, modified as a sparse recovery problem, is given below

ŵsp = arg min
w∈Rp

n∑

i=1

(
yi − x⊤

i w
)2

s.t. w ∈ B0(s),
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Although the objective function in the above formulation is convex,

the constraint ‖w‖0 ≤ s (equivalently w ∈ B0(s) – see list of math-

ematical notation at the beginning of this monograph) corresponds

to a non-convex constraint set1. Sparse recovery effortlessly solves

the twin problems of discarding irrelevant covariates and countering

data-starvation since typically, only n ≥ s log p (as opposed to n ≥ p)

data points are required for sparse recovery to work which drastically

reduces the data requirement. Unfortunately however, sparse-recovery

is an NP-hard problem [Natarajan, 1995].

Recommendation Systems Several internet search engines and e-

commerce websites utilize recommendation systems to offer items to

users that they would benefit from, or like, the most. The problem of

recommendation encompasses benign recommendations for songs etc,

all the way to critical recommendations in personalized medicine.

To be able to make accurate recommendations, we need very good

estimates of how each user likes each item (song), or would benefit from

it (drug). We usually have first-hand information for some user-item

pairs, for instance if a user has specifically rated a song or if we have

administered a particular drug on a user and seen the outcome. How-

ever, users typically rate only a handful of the hundreds of thousands

of songs in any commercial catalog and it is not feasible, or even ad-

visable, to administer every drug to a user. Thus, for the vast majority

of user-item pairs, we have no direct information.

It is useful to visualize this problem as a matrix completion problem:

for a set of m users u1, . . . , um and n items a1, . . . , an, we have an m×n

preference matrix A = [Aij ] where Aij encodes the preference of the ith

user for the jth item. We are able to directly view only a small number

of entries of this matrix, for example, whenever a user explicitly rates an

item. However, we wish to recover the remaining entries, i.e., complete

this matrix. This problem is closely linked to the collaborative filtering

technique popular in recommendation systems.

Now, it is easy to see that unless there exists some structure in

matrix, and by extension, in the way users rate items, there would be

1See Exercise 2.6.
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ITEM FEATURES

USER FEATURES

Figure 1.2: Only the entries of the ratings matrix with thick borders are observed.
Notice that users rate infrequently and some items are not rated even once. Non-
convex optimization techniques such as low-rank matrix completion can help recover
the unobserved entries, as well as reveal hidden features that are descriptive of user
and item properties, as shown on the right hand side.

no relation between the unobserved entries and the observed ones. This

would result in there being no unique way to complete the matrix. Thus,

it is essential to impose some structure on the matrix. A structural

assumption popularly made is that of low rank: we wish to fill in the

missing entries of A assuming that A is a low rank matrix. This can

make the problem well-posed and have a unique solution since the

additional low rank structure links the entries of the matrix together.

The unobserved entries can no longer take values independently of the

values observed by us. Figure 1.2 depicts this visually.

If we denote by Ω ⊂ [m] × [n], the set of observed entries of A, then

the low rank matrix completion problem can be written as

Âlr = arg min
X∈Rm×n

∑

(i,j)∈Ω

(Xij − Aij)2

s.t. rank(X) ≤ r,

This formulation also has a convex objective but a non-convex rank

constraint2. This problem can be shown to be NP-hard as well. In-

terestingly, we can arrive at an alternate formulation by imposing the

2See Exercise 2.7.
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low-rank constraint indirectly. It turns out that3 assuming the ratings

matrix to have rank at most r is equivalent to assuming that the ma-

trix A can be written as A = UV ⊤ with the matrices U ∈ R
m×r and

V ∈ R
n×r having at most r columns. This leads us to the following

alternate formulation

Âlv = arg min
U∈R

m×r

V ∈R
n×r

∑

(i,j)∈Ω

(
U⊤

i Vj − Aij

)2
.

There are no constraints in the formulation. However, the formulation

requires joint optimization over a pair of variables (U, V ) instead of a

single variable. More importantly, it can be shown4 that the objective

function is non-convex in (U, V ).

It is curious to note that the matrices U and V can be seen as

encoding r-dimensional descriptions of users and items respectively.

More precisely, for every user i ∈ [m], we can think of the vector

U i ∈ R
r (i.e., the i-th row of the matrix U) as describing user i, and for

every item j ∈ [n], use the row vector V j ∈ R
r to describe the item j

in vectoral form. The rating given by user i to item j can now be seen

to be Aij ≈
〈
U i, V j

〉
. Thus, recovering the rank r matrix A also gives

us a bunch of r-dimensional latent vectors describing the users and

items. These latent vectors can be extremely valuable in themselves as

they can help us in understanding user behavior and item popularity,

as well as be used in “content”-based recommendation systems which

can effectively utilize item and user features.

The above examples, and several others from machine learning, such

as low-rank tensor decomposition, training deep networks, and training

structured models, demonstrate the utility of non-convex optimization

in naturally modeling learning tasks. However, most of these formula-

tions are NP-hard to solve exactly, and sometimes even approximately.

In the following discussion, we will briefly introduce a few approaches,

classical as well as contemporary, that are used in solving such non-

convex optimization problems.

3See Exercise 3.3.
4See Exercise 4.1.
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1.4 The Convex Relaxation Approach

Faced with the challenge of non-convexity, and the associated NP-

hardness, a traditional workaround in literature has been to modify

the problem formulation itself so that existing tools can be readily ap-

plied. This is often done by relaxing the problem so that it becomes

a convex optimization problem. Since this allows familiar algorithmic

techniques to be applied, the so-called convex relaxation approach has

been widely studied. For instance, there exist relaxed, convex problem

formulations for both the recommendation system and the sparse re-

gression problems. For sparse linear regression, the relaxation approach

gives us the popular LASSO formulation.

Now, in general, such modifications change the problem drastically,

and the solutions of the relaxed formulation can be poor solutions to

the original problem. However, it is known that if the problem possesses

certain nice structure, then under careful relaxation, these distortions,

formally referred to as a“relaxation gap”, are absent, i.e., solutions

to the relaxed problem would be optimal for the original non-convex

problem as well.

Although a popular and successful approach, this still has limi-

tations, the most prominent of them being scalability. Although the

relaxed convex optimization problems are solvable in polynomial time,

it is often challenging to solve them efficiently for large-scale problems.

1.5 The Non-Convex Optimization Approach

Interestingly, in recent years, a new wisdom has permeated the fields

of machine learning and signal processing, one that advises not to re-

lax the non-convex problems and instead solve them directly. This ap-

proach has often been dubbed the non-convex optimization approach

owing to its goal of optimizing non-convex formulations directly.

Techniques frequently used in non-convex optimization approaches

include simple and efficient primitives such as projected gradient de-

scent, alternating minimization, the expectation-maximization algo-

rithm, stochastic optimization, and variants thereof. These are very

fast in practice and remain favorites of practitioners.
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Figure 1.3: An empirical comparison of run-times offered by various approaches to
four different non-convex optimization problems. LASSO, extended LASSO, SVT
are relaxation-based methods whereas IHT, gPGD, FoBa, AM-RR, SVP, ADMiRA
are non-convex methods. In all cases, non-convex optimization techniques offer rou-
tines that are faster, often by an order of magnitude or more, than relaxation-based
methods. Note that Figures 1.3c and 1.3d, employ a y-axis at logarithmic scale. The
details of the methods are present in the sections linked with the respective figures.

At first glance, however, these efforts seem doomed to fail, given

to the aforementioned NP-hardness results. However, in a series of

deep and illuminating results, it has been repeatedly revealed that

if the problem possesses nice structure, then not only do relaxation

approaches succeed, but non-convex optimization algorithms do too.

In such nice cases, non-convex approaches are able to only avoid NP-

hardness, but actually offer provably optimal solutions. In fact, in prac-

tice, they often handsomely outperform relaxation-based approaches in

terms of speed and scalability. Figure 1.3 illustrates this for some ap-

plications that we will investigate more deeply in later sections.
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Very interestingly, it turns out that problem structures that allow

non-convex approaches to avoid NP-hardness results, are very similar

to those that allow their convex relaxation counterparts to avoid dis-

tortions and a large relaxation gap! Thus, it seems that if the problems

possess nice structure, convex relaxation-based approaches, as well as

non-convex techniques, both succeed. However, non-convex techniques

usually offer more scalable solutions.

1.6 Organization and Scope

Our goal of this monograph is to present basic tools, both algorithmic

and analytic, that are commonly used in the design and analysis of

non-convex optimization algorithms, as well as present results which

best represent the non-convex optimization philosophy. The presenta-

tion should enthuse, as well as equip, the interested reader and allow

further readings, independent investigations, and applications of these

techniques in diverse areas.

Given this broad aim, we shall appropriately restrict the number of

areas we cover in this monograph, as well as the depth in which we cover

each area. For instance, the literature abounds in results that seek to

perform optimizations with more and more complex structures being

imposed - from sparse recovery to low rank matrix recovery to low rank

tensor recovery. However, we shall restrict ourselves from venturing

too far into these progressions. Similarly, within the problem of sparse

recovery, there exist results for recovery in the simple least squares

setting, the more involved setting of sparse M-estimation, as well as

the still more involved setting of sparse M-estimation in the presence

of outliers. Whereas we will cover sparse least squares estimation in

depth, we will refrain from delving too deeply into the more involved

sparse M-estimation problems.

That being said, the entire presentation will be self contained and

accessible to anyone with a basic background in algebra and probabil-

ity theory. Moreover, the bibliographic notes given at the end of the

sections will give pointers that should enable the reader to explore the

state of the art not covered in this monograph.
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