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Abstract

A new Volume of Fluid (VOF) method ia applied to the problem of

surface evolution in two dimensions (2D). The VOFtetilque is applied
to problems that are representativeof those that arise in semiconduc-
tor manufacturing, specifically photolithography and ion-millbg. The
types of surface motion considered are those whose etch rates vary as
a function of both surface position and orientation. IMnctionality is
demonstrated for etch rates that are non-convex in regard to surface
orientation. A new method of computing surface curvature using di-
vided differencesof the volume fractions is also introduced, and applied
to the advancement of surfaces as a vanishingdMusive term.

1 Introduction

Volume of Fluids methods (VOF) [11] are techniques for representing bound-

aries between two materials in Computational Fluid Dynamics (CFD) calcu-

lations. They are typically used when it is necessary to d~tinguish between

two immiscible fluids. When two fluids cannot possesa mixed states, it is

often useful to represent them in terms of volume fractions. The volume frac-

tion is defined as the fraction of the volume of a region of space (typically

a grid cell) occupied by Fluidl divided by the total volume of the region.

Each cell has a volume fktion amount (Vl ) between O and 1. (Figure 1) In

a two fluid state, the rest of the region is occupied by the otherfluid with a

corresponding volume fraction V2 where V2 = 1- VI. In simulationswhere
more than fluids are present, additional fraction numbers can be employed

to represent them: VI, V2 and V3 = 1 – Vi. – Vz.

*Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720.
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Previously VOF techniques were employed for models where the velocity

field of the interface was mostly generated by dynamics that occurred off the

boundary. Thmedynarnics operated onatime scale similmtothe rate of

motion of the interface. Ifthetime scale of off boundary dynamic.s, however,

insignificantly smaller than the motion of the interface, then these dynamics

can be simplified. The interface motion will mostly be determined by the

properties of the interface. The rate of motion of the interface, therefore,

can becompletely derived from the location and orientation of the interface,

as in the cases of the semiconductor manufacturing processes [14] of pho-

tolithography orunshaded ion milling. Thk also holds true ifthe interface

dynamics can besuf3ciently simplified. Twoexamples ofthk simplification,

also from semiconductor processing, areplssma etching and chemical vapor

deposition, whose off interface dynamics resemble low opacity ra&ative heat

transfer. [15] In this paper, reintroduce specially designed computational

methods for employing VOF techniques for determining interface motion,

when that motion is only a function of the position and the orientation of

the interface. Volume of Fluids is then compared to other techniques that

have been applied to these problems, such w the string method developed by

S. Hamaguchi [5] and the level set method developed by J. Sethian [I] [2][9].
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2 Surface Motion using Volume of Fluids

2.1 The Hamilton-Jacobi Equation

All first order motion of the interface between two n dimensional regions

can be described as special cases of the Hamilton-Jacobi equation:

#t+H(h1?4z2?-”” ~zn3x13x23’-. ‘n~t)=o (1)

with certain restrictions on ~. Describing surface evolution in this manner is

known as the Level Set approach, and was first described in [9] by S. Osher

and J. Sethian. First, the physical location of the interface is represented

by@ = O, (Figure 2) or the O level-set contour of @ This contour represents

the n – 1 dimensional surface. The value of @ is positive inside Fluidl and

negative inside FJuid2. In addition, @ is monotonic along paths leaving the

surface. (I @ I increases away from the surface and has no local mmima or

minima, although saddle points may be allowed.) #& evaluated at # = O,

represents the outward unit surface normal of the region occupied by Fluadz.

@ is an abstract function that is used only to represent the position of

the surface and has no other physical significance. Because the surface is

represented only by the Olevel set, the surface properties are gauge invariant
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with respect to IIV~l\. Therefore, the only valid equations of motion of the

surface must be invariant with respect to the gauge. Since the method used

to simulate surface advancement will be first order in time, or second order

using predictor-corrector techniques, the t dependence in H will be ignored.

Therefore, the function can be rewritten M:

Vrp
—, Z1, Z2,.. . ,zn)llvt#ll = o“ +C(IIv(jll

(2)

where all derivatives of i#Jare divided by [[V+II, in order to maintain llV@ll

invariance. In two dimensions, this may be written as:

%
where d = arctan z. The two dimensional example will be used for the rest

of the paper for the purpdse of brevity.

Because equation (3) is a first order non-linear equation of the form

F(x, Y, #t, & #y) = O, it can be solved by the method of characteristics.

The characteristic curve equations using the curve parameter t’ are:

(4)

ax
— . F+=
&l

= co(t?, z, g) cos O+ c(~, x, g) sin O (5)

8$/—. F4, =
&l

-co(6, x, y) sin O+ c(O, z, g) cos tJ (6)

a+y=Fv = cJ&z,Y)llT7@11.~ (8)

By combining equations (7) and (8) the characteristic for O can also be

found.

m c9arctan(*)
—=
W ~1 = G(O, z,y)cos O- ~(0, z,9)sin0 (9)

By integrating equations (4), (5) and (6) the equations of motion of the

surface can be derived:

‘=E21=JMI=’I+c (lo)
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‘=/%”=1~(0, x, g) cos O+ c(O, z, y) sin Odt’

= (ce(O, X,?J)C0s6 + c(O, z, g) sind)t’ + C (11)

Y= J%tl=l
-cfJ(8, z, y)sin e + C(e, z, y) Cos M’

= (–c~(8, z, g) sin@ + c(O, z,y) cosf3)t’ + C (12)

Therefore, in regions near the surf%e (i.e. where equation (9) does not

significantly contribute) the surface moves according to equations (10), (11)

and (12). The constants C are set according to a known position of of the

surface at a known time (ZO, yo, to).

2.2 The Volume of Fluids Approach

A moving interface can be solved by the Volume of Fluids approach if the

interface is considered to be the boundary of a fluid that is being transported

in the characteristic direction of the interface. Flow of volume fkactions

according to a given velocity field is described by:

f~+i7. vf=o, (13)

where f = O is the value of f in the section of the plane on the inward side

of the curve, and ~ = 1 is-the valugof ~ on the outward side of the curve.

The vector identity V o(ah)= aV” b + b” Va generates the equation:

ft+v”(f~=fv’o” (14)

Equation (14) is in conservation form, with the left hand side representing

the conservation terms and the right hand side representing the source term.

In the particular application of surface motion, the velocity # is given by

the characteristics defined in equations (5) and (6):

;= (csin~ + co COSO)7+ (CCOSe – co sinO)~ (15)

Z can also be written as:

“=cn+qt,v (16)

where ii is the inward surface normak

ii= c sin W+ c cos @j’ (17)
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and i?is the oriented tangent vector:

Z= ccos W– csint?~ (18)

It is important to note that the flow of the fluid contains a tangential com-

ponent that is not immediately apparent from inspection of equation (3).

This tangential flow will greatly assist the generation of stable solutions at

corners.

3 Implementation of Volume of Fluids Approach

3.1 Interface Calculation

To advance the surface, given a collection of volume fkactions that define

the surface, it is first necessary to determine the orientation of the inter-

face in each cell, since the flow of the fluid is dependent upon the interface

orientation. Three conditions of a good interface solver are enforced in the

following algorithm. First, the technique must exactly reconstruct the in-

terface if the interface is perfectly linear. Second, if the interface is to be

determined at a corner of the interface, it is desirable that a surface normal

be found that is between the normals of each edge of the angle. Finally, it

is desirable that the method be as fast as possible. For slopes in the range

of 45° to –45° (assuming Ax = Au), a 5x3 stencil vertically a@ned is ad-

equate to satisfy all three conditions. Methods employing 3x3 stencils were

employed, but were found to be inadequate as they tended to violate the

second and third conditions stated above. Use of a 5x3 stencil guarantees

that the interface will intersect both the left and right hand sides of the

stencil, thereby considerably simplifying the problem of interface determi-

nation. Because use of a 5x3 stencil only allows proper determination of the

interface in one 90° section of the plane, the four possible 5x3 stencils are

pre-evaluated to determine which stencil will be used. ThE is performed by

selecting the stencil with the largest total volume fkaction in its bottom 2x3

region, thereby properly orienting the stencil. Therefore, the total stencil for

computing the interface for a single cell, is the intersection of two 5x3 rect-

angles (Figure 3), one vertical and one horizontal. This stencil is equivalent

to a 5x5 stencil with the corner cells disregarded.

Once the 5x3 stencil has been determined, (Figure 4) the total volume

fractions in each column are determined. The three fraction totals FL, F“,

and FR are the totals of the left, center and right hand columns respectively.
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Figure 4: 5x3 stencil after 0° Rotation
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The slope of the interface p is determined by the rein-mod slope limiting

method with centered differencing. First, the terms S and @ are determined:

S = sgn(FR – FL) (19)

@ = (Fc– FL)(F’R - Fc) (20)

If@ <0 then p = O, otherwise:

p = Smin(l 2(FR – Fc) 1,I 2(Fc - FL) [, I 0.5(~R – FL) ])~ (21)

Once p is determined, it is easily converted either to a unit surface normal

or an angle 8. The interface line segment inside the cell is determined by

using p as the slope for the line segment. An offset for the line is chosen, so

that the area of the intersection of the half plane determined by the line and

the boundaries of the cell yield a volume fraction equivalent to the original

volume fraction in the cell. After all cells with volume fractions greater than

O and less than 1 have had their interfaces determined, then the interface

will be represented by a collection of line segments that are not necessarily

connected at the endpoints.

3.2 Surface Curvature Calculation

Fortunately, surface curvature can be determined concurrently with the cal-

culation of the interface slope. Given a function y = u(x) representing the

interface, the surface curvature [12] of this line K is known to be:

K=
—u==

(22)
(l+ug)*”

This can be computed after the determination of the slope of the interface

P = Uz in equation (21) using the totals of the volume fractions in the

columns FL, Fc and FR.

2FC -FL – FR
K=

(1 +p@(Ax)2 ‘y
(23)

This calculation of the surface curvature gives a cell centered value for the

curvature. Because the surface velocities are edge centered values, a curva-

ture at the edges of the interface cells must be determined. This is performed

by averaging the curvature values at each edge, if the edge is between two
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interface cells, or by assigning the center value to the edge, if the edge bor-

ders only one interface cell. Addition of diffusive curvature to the Volume

of Fluids method is added by subtracting eK from the etch rate function,

where e is a constant proportional to Ax.

3.3 Edge Velocity Calculation

Because the direction of the surface normal (8) is constant across each cell

and is discontinuous at cell boundaries the source term in equation (14) can

be split into a part that varies with position and is constant in O and one

that varies with O and is constant in position. Expanding; out, the source

term is:

fv . (&i + CJ) (24)

which becomes via vector identities:

f(vc%+cv+i +vce”$+cwij (25)

where f(Vc . ii + VQ - f) is cell centered and f(cV “ ii + coV “ ~ is edge

centered. The cell centered term can be discretized (in two dimensions) as:

where Ci+~(Oi)fizi is the value of the etch rate computed using the right

hand position of the cell with the cell centered value for O multiplied by the

x component of the surface normal vector. The other terms are similar, but

use the left hand side of the cell, the tangent vector or the y component. On

an edge, the x edge in this example, the edge centered term is discretized

as:

fi++j(ci+$,j(ei+ l,j)fi~i+ld– ci+*j(oiti)fi~J +

+
C9i+*j(ei+lJ)tZi+l J — ctli+~j (eij)~zi.j) (26)

The definition of fi+~,j is, unfortunately, not directly defined aS a result of

the mathematical derivation. Therefore, a suitable value is defined through
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the use of geometrical insight. If the condition

ci+*J(ei+L.i)nti+lJ — C. 1 .(OiJ)fizij +
l+~d

-D

.(OiJ)Fzi.j <0Cei+*,j(@i+lJ)tZi+ l,j — COi+$,~ (27)

holds, this represents, in the convex case, the continued propagation of the

discontinuity in 0. The removal of material is handled in a geometric manner,

which implicitly defines ~.+l .
.’ 2J

as being the appropriate value to match the

amount of material that ls removed geometrically. The condition:

corresponds to the generation of a rarefaction fan at the edge. New material

must be introduced. Because maintaining the entropy condition is equivalent

to maintaining a slightly rounded corner, ji+; ~ is chosen as the lowest of

~ij and ,fi+lti if the curvature K >0, and as the largest of .fz~ and fi+l~

if the curvature K <0. This maximal or minimal setting of ~i+~ti acts as

a small curvature term added to the advancement rate, thereby helping to

maintain the entropy condition.

To determine the speed and direction of shocks, and to accurately com-

pute the behavior of the front in cases of non-convex flow, the theory of

conservation laws is applied. The particular method of determining the S*

lution of the non-convex case that is employed here is mostly an application

of work done by Hamaguchi [5]. If the shock proceeds from a corner formed

by line segments with angles 01 and 13,, where 0 = O represents a surface

whose outward normal points in the positive y direction, and 6 = ~ points

along the positive z direction. The shock that is formed between them

proceeds along a parametric line (X(t), Y(t)), where:

dx(t) = Cose,cl – Cosetcr
dt

(29)
sin (01– Or) ‘

dY(t) = sin 191G– sin O,C1

dt sin (~1– %) ‘
(30)

where c1 = C(O1,Z, y) and % = c(07, z,y).

In the case of non-convex flow, it is possible to have combinations of

alternating shocks and rarefaction fans emerging fkom a single corner. Be-

cause rarefaction fans emerging from a corner all take on the same value
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for ~i+~J, all fans, and shocks between fans, can be considered as one large

rarefaction fan. Therefore, the only possibilities of behavior at edges are 1)

a single shock, 2) a single fan, 3) a fan bounded on one side by a shock, 4)

a fan bounded on two sides by a shock. In order to determine which case

arises, it is necessary to examine a selection of the values of @ between 01

and Or.

A user sssigned refinement parameter A@m@ is used to determine the

refinement A8 between 01 and Or. AO is first set to 116$– OfII, and is mul-

tipliedby ~ until AO < A&=c. The values of Oz that me evaluated as

(assuming 01< Or). Once these angles are set, the Hamaguchi method is

used to determine the condition of the characteristics that are generated at

the discontinuity. Once these characteristics are determined, the horizontal

velocities of both the left and rightmost sides of the shock/rarefaction fan

generated by the discontinuity are returned to the method. These velocities

axe designated m shockl and shockr.

If shockl = shockr then a single shock has been generated. If shockl < q,

where vi and Vr are the horizontal velocity components of ci+; ~(~i~)fiti~ +

.(O~+~,~)&+lJ respectively,coi+~ti(ei~)~zij and ci+~ti(~i+lti)fizi+lj + coi+~,j

then material is entering a shock from the left hand side. If shockr > Vr, then

material is entering a shock from the right hand side. If shockl < shock,,

then material is being generated in the rarefaction fan. It is possible for all

three of the first conditions to hold simultaneously, as well as all three of

the last conditions.

3.4 Flux Calculation

To determine the amount of material that is flowing across the edges, and

to determine the amount that is being created or destroyed according to

the source term. Geometrical methods are employed. Given the parameters

shockl , shockr, Vl , Vr, fi+~ ~ and the geometrical representations of the

surface in each neighboring cell, the operations necessary for the method

may be specified. The first major decision point is based on the signs of

shockl and shockr. Three possibilities exist. In the case of shoclq <0 and

shockr < 0 (Figure 7), the entire fan and shock structure penetrates into

the left hand cell. Second, for shocki >0 and shock, >0 (Figure 6), the fan

and shock structure penetrates into the right hand cell. Third, if shockl <0

and shockr >0, (Figure 5) then the shock and fan structure is split in two

through the fan. For the above cases, a smooth transition from one case to
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Figure 5: Racefaction Fan where shoclq <0 and .dm& >0
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~ ulAt = shocklAt

~ shocklAt = vlAt

~ (shock. – shockJAt

Figure 6: Rarefaction Fan and Shock where shock-[ >0 and shock, >0



— Across Edge

— u,At

— –shock[At

— (shock, - v,)At

— –shock,At

Figure 7 Shock where shodw <0 and shock, <0

another exists through shodq = O and shock, = O, so these special cases

will not be considered explicitly.

If both shockl and shock, have the same sign and are # O, then there

is transport of material across the edge (Figures 6 & 7). In thk caee, the

amount of material enclosed by a rectaugle that abuts the edge is removed

from one cell and added to the other to represent the flow. The rectangle is

located in the upwind cell. The height of the rectangle is the height of the

edge, and the width of the rectangle is vrAt if the right hand cell is upwiud

or rJIAt otherwise.

If a shock exists in the simulation (i.e., VI # shockl or v, # shock,),

then the material on both sides of the shock or shorks is removed (Figures

6 & 7). The amount removed is the amount contained in a rectangle that

borders the edge with the height of the edge aud a width of (w -shockl)At if

w # shock~ (Figure 6)or a width of (shock, – v,)At if v, # shockr (Figures 6

& 7). The rectangle is in the left hand cell for the shockl case and the right
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hand cell in the shockr case. If shockl >0, then the material is subtracted

horn the right hand cell, otherwise it is subtracted from the left hand cell.

The same case holds for shockr. These alterations of material are in addition

to the alterationa above that represent flow across the edge.

If shocki < shock, then a rarefxtion &n has occurred (Figures 5 & 6).

If shockz <0 and shock. <0, then material of an amount ~i+~J(s- –

shockl)AtAy is added to the left cell, assuming that the two cells are ad-

jacent in the x-coordinate direction. If shockl >0 and SW >0 (Figure

6), then the same amount is added, but to the right cell. If shockl <0 and

shoch >0 (Figure 5), then ji+~ ~(shock~)AtAy is added to the right cell_..

ad ti++ ~ (–shockl)AtAy is added

case of shockl > shock~ to occur.

3.5 Divergence Calculation

to the left cell. It is not possible for the

Now that the edge flux and edge centered divergence term has been ac-

counted for, it is necessary to determine the cell centered divergence term.

There are two methods for computing the divergence term, implicit and

explicit. Generally, sweep methods in two dimensions alternate between im-

plicit and explicit methods in the pattern: x-implicit, y-explicit, y-implicit,

x-explicit. This alternation generates O(h2) accuracy under some condi-

tions. However, since the edge centered divergence calculation is performed

in an explicit manner for all coordinate sweeps, only O(h) accuracy can be

obtained without using a significantly more complicated predictor-corrector

method for the edge centered divergence term.

The values ,fi,j represent the volume frac~ions at the beginning of the

entire advancement procedure. The values ~gj represent the volume frac-

tions after the application of the edge flux and the edge divergence terms

are applied to /iJ. The values ~~~ will be the final volume fractio~ at the

end of the advancement procedure.

To compute the cell centered divergence terms implicitly, assuming the

x-sweep is being employed, the following equation is used.

f;ti =

f;j

(31)
1 – &(~ti+lJ – %iti)

To compute the cell centered divergence term explicitly:

~;~ = .f;j + .fiti~ (Vli+l,j – %iti) (32)
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4 Results

Four different rate functions were used to test the operation of the algorithm.

The functions are listed in order of increasing complexity and represent

different types of mathematical models encountered in semiconductor profile

simulation. Each of the simulations occurs in a 10x1O unit space, with

the (0,0) point in the upper left. The x direction is horizontal, and y is

represented as the vertical. The numbers given in the captions represent the

number of cells employed in the simulation along the x and the y directions.

4.1 Lithography

Lithography is a process that entails the dissolution of a energy sensitive

compound. This process is employed to transfer a pattern from either an

image mask or the path of a directed beam to the surface of the chip. Ex-

posure of the resist material to an energy source alters the etch rate of the

material to a post-exposure developing solution, thereby exposing selected

sections of the surface. Although, there are many lithography processes (i.e.

e-beam, optical, X-ray, ion-beam), each generates a resist whose dissolution

can be described purely in terms of the etch rate as a function of position

[3][4][6][8][13].

In this example, the etch rate function is:

I?(z, y) = e
–0.32(z-5)2 ((c(_js (o.4yT + ;))2 + ooo5) (33)

This equation is similar to the conditions encountered during optical

photolithography when an optical beam exhibits self-interference in the re-

sist upon encountering a reflective substrate. A small amount of curvature

rate dependence was added for stability of the simulation @ml to e = ~.

The etch time is 35.5 time units, ~ = 0.25 and the contours were plotted

every 3.55 time units. (Figures 8, 9 and 10).

4.2 Vertical Etching

In this example, the etch rate function is:

l?(z, y,O) = e
–0.32(m–5)2Cos8 (34)

This equation does not exactly correspond to any particular process,

but is useful in examining the behavior of simulators under anisotropic con-

ditions. The characteristics of the surface all point directly downwards,
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Figure 8: Photolithography 100x1OO
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Figure9: Photolithography 200x200

17



thereby allowing easy detection of incorrectly determined characteristics.

The etch time is 9.5 time units, g = 0.25 and the contours were plotted

every 0.25 time units. The added curvature was c = ~. (Figures 11, 12

and 13).

4.3 Ion Milling Applied to Uneven Topography

In this example, the etch rate function is:

R(e) = Cose (1.454743 Cose

–0.464719 COS30

+0.015573 cos 50

–0.005669 COS70

–0.010000 Cos9(9

+0.010552 COS110

–0.0006204 COS130

+0.005725 COS150)

The trench is formed by a rectangle extending from x = 3 to z = 7 and

y = O to y = 5. This example is similar to an example found in [5]. The

rate function is identical, although the size of the trench may be different,

since it wsa not specified in the original reference. This particular etch

rate function describes a non-convex sputter yield curve. Because of the

non-convexity of this function, the faceting that is exhibited at the upper

corners and the rarefaction fan at the lower corners develop. These faceting

behaviors are characteristic of non-convex functions, and are difficult to

simulate for many approaches. The etch time is 4.5 time units, ~ = 0.25

and the contours were plotted every 0.25 time units. The added curvature

was ~ = ~. (Figures 14, 15 and 16).

4.4 Ion Milling with Uneven Ion Beams

In this example, the etch rate function is:

R(z, Y,8) = e~ cose (1.454743cose

–0.464719 COS30

+0.015573 cos 50

–0.005669 COS76
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Figure lO: Photolithography 400x400

w

Figurell: Exponential VerticaJIOOxlOO
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~igure 12: Exponential Vertical 200x200

Figure 13: Exponential Vertical 400x400

20



Figure 14: Ion Milled Trench 100x1OO

Figure 15: Ion Milled Trench 200x200
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–0.oloooocos90

+0.010552 COS118

–0.0006204cos 139

+0.005725 COS158)

This example is identical to an example found in [5]. Non-convex and

spatially varying etdh rates are combined here, to give a simulation of ion

milling of a surface using an exponentially varying ion beam. While the

surface first shows a gaussian shape, as in the vertical etching example, the

non-convex term gradually dominates. This is evidenced by the formation

of the ‘floor’ of the etch profile. The ability to perform this example, shows

that the simulator can generate accurate results for a wide variety of different

types of etch rates. The etch time is 9.5 time units, ~ = 0.25 and the

contours were plotted every 0.25 time units. The added curvature was e =

~. (Figures 17, 18 and 19).

5 Conclusions

The Volume of Fluids method of representing boundaries between two fluids

has been applied to the problem of surface evolution in two dimensions.

The Volume of Fluids picture of surface evolution has been rigidly defined.

A new, and significantly faster method of evaluating the orientation of the

surface in each boundary cell has been developed and applied. A fast method

of evaluat ing surface curvature has been presented and included as a diffusive

term. Techniques for advancing the volume fractions have been shown that

include the ability to evaluate edge centered divergence terms as well as cell

centered divergence terms.

The Volume of Fluid surface advancement algorithm hss been shown to

be capable of accurately simulating several problems of interest to the semi-

conductor manufacturing community. The algorithm has also been shown

to be accurate on problems whose etch rates are spatially varying and are

non-convex with respect to surface orientation. The technique is also fully

two-dimensional and able to handle complex undercutting.

To maintain a valid surface according to the entropy condition, it is

necessary to add a diffusive term that is dependent on the curvature of

the surface. This term is critical at strong shocks and at rarefaction fans

whose bounding characteristics have velocities with opposite signs. In this

implementation, a modi~ing effect to the etch rate that is proportional to
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Figure 16: Ion Milled Trench 400x400

Figure 17: Exponential Ion Beam 100x1OO
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Figure 18: Exponential Ion Beam 200x200

Figure 19: Exponential Ion Beam 400x400
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the curvature was added. Methods of selectively adding curvature to only

these locations are being investigated.

The accuracy of the algorithm seems to be quite good, based on the simi-

larity of the profiles for differing grid sizes. (The ripples in the surface in the

low resolution plots are an artifact of the plotting program.) The amount

of CPU resources consumed seems quite significant. The demand on the

program to solve the Riemann problem at each cell edge contributes signif-

icant overhead, as opposed to methods used by other simulators [1][2] such

as Lax-l?reidrichs [7]. These methods, however, utilize significant amounts

of numerical diffusion to maintain stability in the non-convex case, thereby

requiring smaller grid sizes to improve accuracy. Improvements to the ex-

isting implementation of the software, in addition, will decrease the number

of CPU cycles currently consumed. This approach, therefore, is expected

to be competitive with other first order techniques, because it can operate

accurately with coarser grids. In addition, it is also possible to remove the

necessity of performing the Riemann solve in the VOF approach entirely by

converting to a Lax-Freidrichs based advancement scheme.

Extension to three dimensions is straightforward. All the major compo-

nents of the algorithm have clear three dimensional equivalents.

6 Future Work

Improvements in the code will be implemented to accelerate the rate of

execution. Application of thh technique to more complex problems in semi-

conductor manufacturing will be performed. The algorithm will be improved

to handle etch rates that contain simultaneous etching and deposition terms

and advancement rates that are determined by radiative transport of ma-

terial. The Volume of Fluid surface advancement method will be extended

to three dimensions. Comparison to higher order PDE schemes will be

performed. Second order accuracy through the use of predictor-corrector

methods can be achieved.
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