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Abstract 

A new Volume of Fluid (VoF) method is applied to the problem of 
surface evolution in two dimensions (2D). The VoF technique is applied 
to problems that are representative of those that arise in semiconduc- 
tor manufacturing, specifically photolithography and i o n - d i g .  The 
types of surface motion considered are those whose etch rates vary as 
a function of both surface position and orientation. Functionality is 
demonstrated for etch rates that are non-convex in regard to surface 
orientation. A new method of computing surface curvature using di- 
vided differences of the volume fractions is also introduced, and applied 
to the advancement of surfaces as a vanishing diffusive term. 
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Figure 1: Volume Fractions 

1 Introduction 

Volume of Fluids methods (VoF) [ll] are techniques for representing bound- 

aries between two materials in Computational Fluid Dynamics (CFD) calcu- 

lations. They are typically used when it is necessary to distinguish between 

two immiscible fluids. When two fluids cannot possess mixed states, it is 
often useful to represent them in terms of volume fractions. The volume frac- 

tion is defined as the fraction of the volume of a region of space (typically 
a grid cell) occupied by FEuidl divided by the total volume of the region. 

Each cell has a volume fraction amount (VI) between 0 and 1. (Figure 1) In 
a two fluid state, the rest of the region is occupied by the other fluid with a 

corresponding volume fraction V2 where V2 = 1 - VI. In simulations where 

more than fluids are present, additional fraction numbers can be employed 

to representthem: VI, V2 and V3 = 1 - VI - V2. 

Previously VoF techniques were employed for models where the velocity 

field of the interface was mostly generated by dynamics that occurred off the 

boundary. These dynamics operated on a time scale similar to the rate of 

motion of the interface. If the time scale of off boundary dynamics, however, 

is significantly smaller than the motion of the interface, then these dynamics 
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can be simplified. The interface motion will mostly be determined by the 

properties of the interface. The rate of motion of the interface, therefore, 

can be completely derived from the location and orientation of the interface, 

as in the cases of the semiconductor manufacturing processes [14] of p h e  

tolithography or unshaded ion milling. This also holds true if the interface 

dynamics can be sufEiciently simplified. Two examples of this simplification, 

also from semiconductor processing, are plasma etching and chemical vapor 

deposition, whose off interface dynamics resemble low opacity radiative heat 

transfer. [15] In this paper, we introduce specially designed computational 

methods for employing VoF techniques for determining interface motion, 

when that motion is o n l i  a function of the position and the orientation of 

the interface. Volume of Fluids is then compared to other techniques that 
have been applied to these problems, such as the string method developed by 

S. Hamaguchi [5] and the level set method developed by J. Sethian [1][2][9]. 

2 Surface Motion using Volume of Fluids 

2.1 The Hamilton-Jacobi Equation 

All fist order motion of the interface between two n dimensional regions 

can be described as special cases of the Hamilton-Jacobi equation: 

with certain restrictions on 4. Describing surface evolution in this manner is 

known as the Level Set approach, and was first described in [9] by S. Osher 

and J. Sethian. First, the physical location of the interface is represented 

by 4 = 0, (Figure 2) or the 0 level-set contour of 4. This contour represents 

the n - 1 dimensional surface. The value of q5 is positive inside FZuidl and 

negative inside FZuid2. In addition, q5 is monotonic along paths leaving the 

surface. ( I  4 I increases away from the surface and has no local maxima or 

minima, although saddle points may be allowed.) & evaluated at = 0, 
represents the outward unit surface normal of the region occupied by FZuid2. 

4 is an abstract function that is used only to represent the position of 

the surface and has no other physical significance. Because the surface is 
represented only by the 0 level set, the surface properties are gauge invariant 

with respect to llV4ll. Therefore, the only valid equations of motion of the 

surface must be invariant with respect to the gauge. Since the method used 

to simulate surface advancement will be first order in time, or second order 
. 
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Figure 2: Contours of 4 

using predictor-corrector techniques, the t dependence in H will be ignored. 

Therefore, the function can be rewritten as: 

where all derivatives of 4 are divided by IlVq5fl, in order to maintain IlVq5ll 
invariance. In two dimensions, this may be written as: 

4t + 46,  x, Y)IlV4ll = 0 (3) 

where 8 = arctan 2. The two dimensional example will be used for the rest 
of the paper for the purpose of brevity. 

Because equation (3) is a first order non-linear equation of the form 

F(~,y,4t,$~,r$~) = 0, it can be solved by the method of characteristics. 

The characteristic curve equations using the curve parameter t' are: 

dX 
- = Fdz = ce (6, x, y) cos 6 + c(6, x, y) sin e 
at' ( 5 )  
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(8) - a4y = Fy = 5#,z, Y)llV4ll* 
at' 

By combining equations (7) and (8) the characteristic for B can also be 

found. 

By integrating equations (4), (5) and (6) the equations of motion of the 

surface can be derived: 

. t = 1 g d t '  = 1 ldt' = t' + C 

x = / E d t '  = 1 4 8 ,  x, y) cos 8 + c(e, x, y) sin Bdt' 

= (ce(0, X, 3) COS e + c(8, Z, Y) sin 0)t' + C 

= / * dt' = 1 -ce(e, Z, y) sin 8 + c(0, z, y) cos Bdt' 

= (-ce(e,~,Y)sin8+c(e,~,y)~ose)t '+ C 

Therefore, in regions near the surface (i.e. where equation (9) does not 
significantly contribute) the surface moves according to equations (lo), (11) 

and (12). The constants C are set according to a known position of of the 

surface at a known time (zo, yo, to). 

2.2 

A moving interface can be solved by the Volume of Fluids approach if the 
interface is considered to be the boundary of a fluid that is being transported 

in the characteristic direction of the interface. Flow of volume fractions 

according to a given velocity field is described by: 

The Volume of Fluids Approach 
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where f = 0 is the value off in the section of the plane on the inward side 

of the curve, and f = 1 is the value off on the outward side of the curve. 

The vector identity V - (u$) = aV - $+ b' - Vu generates the equation: 

ft +V-(fG) = fV-3. 

Equation (14) is in conservation form, with the left hand side representing 

the conservation terms and the right hand side representing the source term. 

In the particular application of surface motion, the velocity v' is given by 

the characteristics defined in equations (5) and (6): 

v' can also be written as: 

G=&+c& 

where n' is the inward surface normal: 

and t'is the oriented tangent vector: 

It is important to note that the flow of the fluid contains a tangential com- 

ponent that is not immediately apparent from inspection of equation (3). 

This tangential flow will greatly assist the generation of stable solutions at 
corners. 

3 Implementation of Volume of Fluids Approach 

3.1 Interface Calculation 

To advance the surface, given a collection of volume fractions that define 

the surface, it is first necessary to determine the orientation of the inter- 

face in each cell, since the flow of the fluid is dependent upon the interface 

orientation. Three conditions of a good interface solver axe enforced in the 

following algorithm. First, the technique must exactly reconstruct the in- 

terface if the interface is perfectly linear. Second, if the interface is to be 

determined at a corner of the interface, it is desirable that a surface normal 

be found that is between the normals of each edge of the angle. Finally, it 
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Figure 3: 5x5 Stencil before Rotation 

is desirable that the method be as fast as possible. For slopes in the range 

of 45" to -45" (assuming Ax = Ay), a 5x3 stencil vertically aligned is ad- 

equate to satisfy all three conditions. Methods employing 3x3 stencils were 

employed, but were found to be inadequate as they tended to violate the 

second and third conditions stated above. Use of a 5x3 stencil guarantees 

that the interface will intersect both the left and right hand sides of the 

stencil, thereby considerably simplifying the problem of interface determi- 

nation. Because use of a 5x3 stencil only allows proper determination of the 

interface in one 90" section of the plane, the four possible 5x3 stencils are 

pre-evaluated to determine which stencil will be used. This is performed by 

selecting the stencil with the largest total volume fraction in its bottom 2x3 

region, thereby properly orienting the stencil. Therefore, the total stencil for 

computing the interface for a single cell, is the intersection of two 5x3 rect- 

angles (Figure 3), one vertical and one horizontal. This stencil is equivalent 
to a 5x5 stencil with the corner cells disregarded. 

Once the 5x3 stencil has been determined, (Figure 4) the total volume 

fractions in each column are determined. The three fraction totals F', F', 
and FR are the totals of the left, center and right hand columns respectively. 

The slope of the interface p is determined by the min-mod slope limiting 
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Figure 4: 5x3 stencil after 0’ Rotation 

method with centered differencing. First, the terms S and CP are determined: 

@ = (Fc - FL)(~’R - f’c) 
If < 0 then p = 0, otherwise: 

Once p is determined, it is easily converted either to a unit surface normal 

or an angle 6. The interface line segment inside the cell is determined by 

using p as the slope for the line segment. An offbet for the line is chosen, so 
that the area of the intersection of the half plane determined by the line and 

the boundaries of the cell yield a volume fraction equivalent to the original 

volume fraction in the cell. After all cells with volume fractions greater than 

0 and less than 1 have had their interfaces determined, then the interface 

will be represented by a collection of line segments that are not necessarily 

connected at the endpoints. 
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3.2 Surface Curvature Calculation 

Fortunately, an approximation of the surface curvature can be determined 

concurrently with the calculation of the interface slope. Given a function 

y = u(z) representing the interface, the surface curvature [12] of this line K 
is known to be: 

-26x2 
K =  

(1 + .$)% - 
This can be computed after the determination of the slope of the interface 

p = ux in equation (21) using the totals of the volume fractions in the 

columns FL, F c  and FR. 

AY 
2Fc - F .  - FR 

K =  
(1 + ~ ~ ) j ( A s ) ~  

(23) 

This approximation of the surface curvature gives a cell centered value 

for the curvature. Because the surface velocities are edge centered values, 

a curvature at the edges of the interface cells must be determined. This 
is performed by averaging the curvature values at each edge, if the edge is 

between two interface cells, or by assigning the center value to the edge, if 

the edge borders only one interface cell. Addition of diffusive curvature to 

the Volume of Fluids method is added by subtracting EK from the etch rate 

function, where E is it constant proportional to Ax. 
The curvature values that are determined do not always represent the 

actual surface curvature. This is not a concern in this application, since 

the curvature calculation is only being employed for the addition of artiflcal 

viscosity. If the true surface that is being approximated enters the 5x3 

stencil from the left hand side and exits from the right, then equation (23) 

represents a reasonable calculation of the curvature. If, however, the surface 
does not intersect the sides of the stencil in this manner, then equation (23) 

is not accurate. Use of other stencils may correct this problem. 

3.3 Edge Velocity Calculation 

Because the direction of the surface normal (8) is constant across each cell 
and is discontinuous at cell boundaries the source term in equation (14) can 

be split into a part that varies with position and is constant in 8 and one 

that varies with 8 and is constant in position. Expanding v" out, the source 

term is: 

f v * (& + coo 
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which becomes via vector identities: 

f ( V C .  n'+ cv .n'+ V Q .  t'+ cf3v. 4 (25) 

where f ( 0 c  . n' + V C S  - f l  is cell centered and f (cV - n' + C O V  . f l  is edge 

centered. The cell centered term can be discretized (in two dimensions) as: 

fij ((ci+ i j (@i,j)Zzij - ci- 4 j ( 0 i j ) f G i j  

4 + 

+C()i+' .(&j)tzi,j - cei-ij (ei,j)tzij)/A.: 
2 J  

+(cij+$ (&j)%j - cij-3 (&j)n'yij  

+c&j+3 (&,j)&ij - C0ij-i (&j)&ij)/A?l) 

where ci++(&)iizi is the value of the etch rate computed using the right 

hand position of the cell with the cell centered value for 8 multiplied by the 
x component of the surface normal vector. The other terms are similar, but 

use the left hand side of the cell, the tangent vector or the y component. On 
an edge, the x edge in this example, the edge centered term is discretized 

as: 

f i+ 4 j (ci+ 4 j (oi+l,j)&i+1,j - ci+ 4 j (si j )&ij + 
cei+: j (&+lj)tzi+lj - cei++ j ( & j ) f z i j )  

+ 

(26) 
+ 

The definition of f i+i j  is, unfortunately, not directly defined as a result of 

the mathematical derivation. Therefore, a suitable value is defined through 

the use of geometrical insight. If the condition 

ci+ 4 j (Qi+l,j )fLi+la - ci+ i, j (eid) n'zij + 
4 - 

cei+ij(@i+l,j)tzi+lj - cei+id(ei,j)tzi,j <: 0 (27) 

holds, this represents, in the convex case, the continued propagation of the 
discontinuity in 6: The removal of material is handled in a geometric manner, 

which implicitly defines fi+ij as being the appropriate value to match the 

amount of material that is removed geometrically. The condition: 

ci+ 4 j (ei+l,j )fLi+~, j - ci+ 4 j (&,j )Gzi,j + 
4 + 

c~i+i,j  (&+l,j )tzi+lj  - c&+$ d (&,j)tzi,j >' 0 (28) 

. corresponds to the generation of a rarefaction fan at the edge. New material 
must be introduced. Because maintaining the entropy condition is equivalent 
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to maintaining a slightly rounded corner, f i + i  . is chosen as the lowest of 

fia and fi+rj if the curvature K > 0, and as the largest of f i j  and fj+l,j 

if the curvature K < 0. This maximal or minimal setting of f i+; , j  acts as 

a small curvature term added to the advancement rate, thereby helping to 

maintain the entropy condition. 

To determine the speed and direction of shocks, and to accurately com- 

pute the behavior of the front in cases of non-convex flow, the theory of 

conservation laws is applied. The particular method of determining the so- 

lution of the non-convex case that is employed here is mostly w~ application 

of work done by Hamaguchi [5]. If the shock proceeds from a corner formed 
by line segments with angles 81 and Or, where 8 = 0 represents a surface 

whose outward normal points in the positive y direction, and 8 = 5 points 

along the positive x direction. The shock that is formed between them 

proceeds along a parametric line ( X ( t ) ,  Y(t)) ,  where: 

2 J 

d X ( t )  COS ercl - COS Ole, 

dt sin (er - e,) ’ 
-= 

where CL = c(el;x,y) and c, = c(O,,x,y). 

In the m e  of non-convex flow, it is possible to have combinations of 
alternating shocks and rarefaction fans emerging from a single corner. Be- 
cause rarefbction fans emerging from a corner all take on the same value 

for fi+ij, all fans, and shocks between fans, can be considered as one large 

rarefaction fan. Therefore, the only possibilities of behavior at edges are 1) 
a single shock, 2) a single fan, 3) a fan bounded on one side by a shock, 4) 

a fan bounded on two sides by a shock. In order to determine which case 

arises, it is necessary to examine a selection of the values of 8 between 01 

a d  e,. 
A user assigned refinement parameter AO,, is used to determine the 

refinement A0 between Or and 8,- A0 is h t  set to Il8r - 8r11, and is mul- 

tiplied by 3 until A0 c At),,.-. The values of ei that are evaluated as 

(assuming 01 < e,). Once these angles are set, the Hamaguchi method is 
used to determine the condition of the characteristics that are generated at 

the discontinuity. Once these characteristics are determined, the horizontal 

velocities of both the left and rightmost sides of the shock/rarefaction fan 

generated by the discontinuity are returned to the method. These velocities 

are designated as shockl and shock. 
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If shock1 = shock, then a single shock has been generated. If shock1 < v ~ ,  

where vi and v, are the horizontal velocity components of c ~ + + ~ ( Q Q ) & ~ ~  + 
cOi+ + ,j (ei j )tzi,j and ci+ + (ei+l, j )jizi+l j + cei+ 4 j (ei+l,j )L+lj respectively, 

then material is entering a shock from the left hand side. If shoclc, > v,, then 

material is entering a shock from the right hand side. If shock1 < shockr, 

then material is being generated in the rarefaction fan. It is possible for all 

three of the first conditions to hold simultaneously, as well as all three of 

the last conditions. 

-d 

3.4 Flux Calculation 

To determine the amount of material that is flowing across the edges, and 

to determine the amount that is being created or destroyed according to 

the source term. Geometrical methods are employed. Given the parameters 

shoclcl, shod+, vl, v,, ji+ii and the geometrical representations of the 

surface in each neighboring cell, the operations necessary for the method 

may be specified. The first major decision point is based on the signs of 

shock1 and shock;. Three possibilities exist. In the case of shockl < 0 and 

shockr < 0 (Figure 7), the entire fan and shock structure penetrates into 

the left hand cell. Second, for shock! > 0 and Shockr > 0 (Figure 6), the fan 

and shock structure penetrates into the right hand cell. Third, if shock1 < 0 
and shock, > 0, (Figure 5) then the shock and fan structure is split in two 

through the fan. For the above cases, a smooth transition from one case to 

another exists through shock1 = 0 and shoclc, = 0, SO these special cases 
will not be considered explicitly. 

If both shock1 and shock, have the same sign and are # 0, then there 

is transport of material across the edge (Figures 6 & 7). In this case, the 

amount of material enclosed by a rectangle that abuts the edge is removed 

from one cell and added to the other to represent the flow. The rectangle is 

located in the upwind cell. The height of the rectangle is the height of the 

edge, and the width of the rectangle is v,At if the right hand cell is upwind 

or vrAt otherwise. 

If a shock exists in the simulation (Le., v1 # shock1 or t+ # shock,), 

then the material on both sides of the shock or shocks is removed (Figures 

6 & 7). The amount removed is the amount contained in a rectangle that 

borders the edge with the height of the edge and a width of (VI -shockl)At if 

v1 # shock1 (Figure 6)or a width of (shock, -v,)At if v, # shock, (Figures 6 
. & 7). The rectangle is in the left hand cell for the shoclcl case and the right 
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Figure 5: Rarefaction Fan where shockl < 0 and shock; > 0 
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- Added 
Across E d g e  

Figure 6: Rarefaction Fan and Shock where shocki > 0 and shockr > 0 
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Figure 7 Shock where shock1 < 0 and shockr < 0 
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hand cell in the shock,. case. If shock1 > 0, then the material is subtracted 

from the right hand cell, otherwise it is subtracted from the left hand cell. 

The same case holds for shock,. These alterations of material are in addition 

to the alterations above that represent flow across the edge. 

If shockl < shock then a rarefaction fan has occurred (Figures 5 & 6). 

If shock1 < 0 and shock,. < 0, then material of an amount fi+;3(shockr - 

shockl)AtAy is added to the left cell, assuming that the two cells are ad- 

jacent in the x-coordinate direction. If shock1 > 0 and shockr > 0 (Figure 

6), then the same amount is added, but to the right cell. If shock* < 0 and 

shock,. > 0 (Figure 5 ) ,  then fi+ij(shock,)AtAy is added to the right cell 

and fi+ij(-shock1)AtAy is added to the left cell. It is not possible for the 

case of shocki > shockr to occur. 

3.5 Divergence Calculation 

Now that the edge flux and edge centered divergence term has been ac- 

counted for, it is necessary to determine the cell centered divergence term. 

There are two methods for computing the divergence term, implicit and 

explicit. Generally, sweep methods in two dimensions alternate between im- 
plicit and explicit methods in the pattern: x-implicit, y-explicit, y-implicit, 

x-explicit. This alternation generates O(h2) accuracy under some condi- 
tions. However, since the edge centered divergence calculation is performed 

in an explicit manner for all coordinate sweeps, only O(h) accuracy can be 

obtained without using a significantly more complicated predictor-corrector 

method for the edge centered divergence term. 

The values f i j  represent the volume fractions at the beginning of the 

entire advancement procedure. The values 5,j represent the volume frac- 
tions after the application of the edge flux and the edge divergence terms 

are applied to f i j .  The values fi,j will be the final volume fractions at the 

end of the advancement procedure. 

To compute the cell centered divergence terms implicitly, assuming the 

x-sweep is being employed, the following equation is used. 

f-.= - fij 
at 27.7 

1 - ~ ( ~ + l , j  - "r id )  

To compute the cell centered divergence term explicitly: 
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Four different rate functions were used to test the operation of the algorithm. 

The functions are listed in order of increasing complexity and represent 

different types of mathematical models encountered in semiconductor profile 

simulation. Each of the simulations occurs in a 10x10 unit space, with 

the (0,O) point in the upper left. The x direction is horizontal, and y is 

represented as the vertical. The numbers given in the captions represent the 

number of cells employed in the simulation along the x and the y directions. 

4.1 Lithography 

Lithography is a process that entails the dissolution of a energy sensitive 

compound. This process is employed to .transfer a pattern from either an 

image mask or the path of a directed beam to the surface of the chip. Ex- 
posure of the resist material to an energy source alters the etch rate of the 

material to a post-exposure developing solution, thereby exposing selected 

sections of the surface. Although, there are many lithography processes (i.e. 

ebeam, optical, X-ray, ion-beam), each generates -a resist whose dissolution 

can be described purely in terms of the etch rate as a function of position 

[31[41 [SI PI 1131 - 
In this example, the etch rate function is: 

R(z, y) = e-0.32(2-5)2 ((cos (0.4~~ + t))2 + 0.05) (33) 

This equation is similar to the conditions encountered during optical 

photolithography when an optical beam exhibits self-interference in the re- 

sist upon encountering a reflective substrate. A small amount of curvature 
rate dependence was added for stability of the simulation equal to .E = g. 
The etch time is 35.5 time units, = 0.25 and the contours were plotted 

every 3.55 time units. (Figures 8 and 9). A superposition of the etch pro- 

files is given in Figure (lo), where the small dots represent the profile of the 
100x100 grid result, the large dots represent the 200x200 grid result, and 

the solid line represents the 400x400 grid result. Convergence studies have 

also been performed. The differences in area covered by the profiles were 
evaluated by the L1 norm. The difference between the 100x100 profile and 

the 200x200 profile was 0.0107119 and the difference between the 200x200 
profile and the 400x400 profile was 0.00267067. 
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Figure 8: Photolithography 100x100 Figure 8: Photolithography 100x100 

Figure 9: Photolithography 400x400 
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4.2 Vertical Etching 

In this example, the etch rate function is: 

This equation does not exactly correspond to any particular process, 

but is useful in examining the behavior of simulators under anisotropic con- 

ditions. The characteristics of the surface all point directly downwards, 
thereby allowing easy detection of incorrectly determined characteristics. 

The etch time is 9.5 time units, 2 = 0.25 and the contours were plotted 

every 0.25 time units. The added curvature was E = s. (Figures 11 and 

12). A superposition of the results is given in Figure (13). The L1 differ- 

ence between the 100x100 profile and the 200x200 profile was 0.00067636 
and the difference between the 200x200 profile and the 400x400 profle was 

0.000281635. 

4.3 Ion Milling Applied to Uneven Topography 

In this example, the etch rate function is: 

The trench is formed by a rectangle extending from x = 3 to x = 7 and 

y = 0 to y = 5. This example is similar to an example found in [5]. The 
rate function is identical, although the size of the trench may be different, 

since it was not specificed in the original reference. This particular etch 

rate function describes a non-convex sputter yield curve. Because of the 

non-convexity of this function, the faceting that is exhibited at the upper 

corners and the rarefaction fan at the lower corners develop. These faceting 

behaviors are characteristic of non-convex functions, and are difficult to 

- simulate for many approaches. The etch time is 4.5 time units, 2 = 0.25 
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Figure 10: Photolithography Results Superposition 

Figure 11: Exponential Vertical 100x100 
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Figure 12: Exponential Vertical 400x400 

Figure 13: Exponential Vertical Results Superposition 
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and the contours were plotted every 0.25 time units. The added curvature 

was E = F. (Figures 14 and 15). A superposition of the results is given 

in Figure (16). $ plots of the final profile centered on the left hand initial 
discontinuity are also given. The plots only show the left hand side of the 

simulation region, due to symmetry. The L1 difference between the 100x100 

profile and the 200x200 profile was 0.00813636 and the difference between 

the 200x200 profile and the 400x400 profile was 0.00441198. 

4.4 

In this example, the etch rate function is: 

Ion Milling with Uneven Ion Beams 

This example is identical to an example found in [5]. Non-convex and 

spatially Varying etch rates are combined here, to give a simulation of ion 

milling of a surface using an exponentially varying ion beam. While the 

surface first shows a gaussian shape, as in the vertical etching example, the 

non-convex term gradually dominates. This is evidenced by the formation 

of the 'floor' of the etch profile. The ability to perform this example, shows 
that the simulator can generate accurate results for a wide variety of different 

types of etch rates. The etch time is 9.5 time units, = 0.25 and the 

contours, were plotted every 0.25 time units. The added curvature was E = 
s. (Figures 20 and 21). A superposition of the etch profiles is given in 
Figure (22). The L1 difference between the 100x100 profile and the 200x200 

profile was 0.000916224 and the difference between the 200x200 profile and 
the 400x400 profile was 0.000415279. 
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Figure 14: Ion Milled Trench 100x100 

Figure 15: Ion Milled Trench 400x400 
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Figure 16: Ion Milled Trench Results Superposition 

Figure 17: $ plot for 100x100 grid 

26 



Figure 18: plot for 200x200 grid 

Figure 19: $ plot for 400x400 grid 

27 



W 

Figure 2 0  Exponential Ion Beam lQOxlOO 

Figure 21: Exponential Ion Beam 400x400 

28 



5 Conclusions 

The Volume of Fluids method of representing boundaries between two fluids 

has been applied to the problem of surface evolution in two dimensions. 

The Volume of Fluids picture of surface evolution has been rigidly defined. 

A new, and significantly faster method of evaluating the orientation of the 

surface in each boundary cell has been developed and applied. A fast method 

of evaluating surface curvature has been presented and included as a diffusive 

term. Techniques for advancing the volume fractions have been shown that 

include the ability to evaluate edge centered divergence terms as well as cell 

centered divergence terms. 
The Volume of Fluid surface advancement algorithm has been shown to 

be capable of accurately simulating several problems of interest to the semi- 

conductor manufacturing community. The algorithm has also been shown 

to be accurate on problems whose etch rates are spatially varying and x e  

non-convex with respect to surface orientation. The technique is also fully 

two-dimensional and able to handle complex undercutting. 

To maintain a valid surface according to the entropy condition, it is 
necessary to add a diffusive term that is dependent on the curvature of 

the surface. This term is critical at strong shocks and at rarefaction fans 

whose bounding characteristics have velocities with opposite signs. In this 

implementation, a modifying effect to the etch rate that is proportional to 

the curvature was added. Methods of selectively adding curvature to only 

these locations are being investigated. 

The accuracy of the algorithm seem to be quite good, based on the simi- 

larity of the profiles for differing grid sizes. (The ripples in the surface in the 

low resolution plots are an artifact of the plotting program.) The amount 

of CPU resources consumed seems quite si&cant. The demand on the 

program to solve the Riemann problem at each cell edge contributes signif- 

icant overhead, as opposed to methods used by other simulators [1][2] such 

as Lax-Freidrichs [7]. These methods, however, utilize significant amounts 

of numerical diffusion to maintain stability in the non-convex case, thereby 

requiring smaller grid sizes to improve accuracy. Improvements to the ex- 

isting implementation of the software, in addition, will decrease the number 

of CPU cycles currently consumed. This approach, therefore, is expected 
to be competitive with other first order techniques, because it can operate 

accurately with coxser grids. In addition, it is also possible to remove the 

necessity of performing the Riemann solve in the VoF approach entirely by 

converting to a Lax-F’reidrichs based advancement scheme. 
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Extension to three dimensions is straightforward. All the major compo- 

nents oY the algorithm have clear three dimensional equivalents. 

6 Future Work 

Improvements in the code will be implemented to accelerate the rate of 
execution. Application of this technique to more complex problems in semi- 

conductor manufacturing will be performed. The algorithm will be improved 

to handle etch rates that contain simultaneous etching and deposition terms 

and advancement rates that are determined by radiative transport of ma- 

terial. The Volume of Fluid surface advancement method will be extended 

to three dimensions. Comparison to higher order PDE schemes will be 

performed. Second order accuracy through the use of predictor-corrector 

methods can be achieved. 
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Figure 22: Exponential Ion Beam Results Superposition 
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