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Abstract— Channel allocation has been extensively studied in
the framework of cellular networks, but the emergence of new
system concepts, such as cognitive radio systems, bring this topic
into the focus of research again. In this paper, we study the
problem of competitive multi-radio multi-channel allocation in
wireless networks in detail. We characterize the Nash equilibria
in a static game and we conclude that in spite of the non-
cooperative behavior of such devices, their channel allocation
results in a system-efficient and load-balancing solution. In
addition, we consider the fairness properties of the resulting
channel allocations and their resistance to the possible coalitions
of a subset of devices. Finally, we present three algorithms to
achieve a load-balancing Nash equilibrium channel allocation,
each of them using a different set of available information. To
the best of our knowledge, our paper is the first contribution to
this important topic.

I. INTRODUCTION

Wireless networks provide a flexible and cost-efficient

method to establish communication between different parties.

Each wireless network operates in a frequency band assigned

by the authorities that regulate the frequency spectrum in

the given country. In general, the communication medium as-

signed to a given network is shared among the communication

devices using some multiple access technique.

Frequency Division Multiple Access (FDMA) is one of the

widely used techniques to enable several users to share a

communication medium that consists of a given frequency

band [17], [18]. The basic principle of FDMA is to split up

the available bandwidth to distinct sub-bands called channels.

Assigning the radio transceivers to these channels is commonly

referred to as the channel allocation problem1. Not surpris-

ingly, an efficient channel allocation is a cornerstone of the

design of existing wireless networks.

In this paper, we present a game-theoretic analysis of fixed

channel allocation strategies of devices using multiple radios.

Using a static non-cooperative game, we analyze the scenario

of a single collision domain, i.e., if each of the devices can

interfere with a transmission of every other device. We derive

the Nash equilibria in this game and show that they are system

efficient and they achieve a load balancing solution. We also

study the fairness issues and the problem of coalition forming

in the channel allocation problem. We show that a Nash

equilibrium that resists to coalitions of users is necessarily

fair as well. Furthermore, we propose three algorithms to

achieve the system-efficient Nash equilibrium solutions. The

first is a sequential algorithm that needs global coordination;

1In the literature, the terms channel assignment and frequency assignment
are also used for the channel allocation problem.

the second is a distributed algorithm that needs a local, but

perfect information and the third is a distributed algorithm

that is based on imperfect local information. We provide the

proof for the convergence properties of these algorithms.

This work is a first step towards the deeper understanding of

the non-cooperative behavior of such devices and is applicable

in a broad context of wireless communications, with particular

attention to the emerging field of cognitive radio systems [10].

To the best of our knowledge, our paper is the first to address

the problem of multi-radio channel allocation in competitive

networks, and hence it can give a guideline, how to study the

impact of selfishness in these novel technologies.

The paper is organized as follows. First, we present related

work on channel allocation and channel access in wireless

networks in Section II. In Section III, we introduce our system

model along with a game-theoretic description of competi-

tive channel allocation. Section IV provides a comprehensive

analysis of the Nash equilibria in the channel allocation

game. We study fairness issues in Section V. In addition,

we provide some results on coalition-proof Nash equilibria in

Section VI. In Section VII, we propose three simple algorithms

to reach the desired Nash equilibria. Finally, we conclude in

Section VIII.

II. RELATED WORK

There has been a significant amount of work on channel

allocation in wireless networks, notably for cellular networks.

Channel allocation schemes in cellular networks can be di-

vided into three categories: fixed channel allocation (FCA),

dynamic channel allocation (DCA) and hybrid channel allo-

cation (HCA), which combines the two former methods.

In a fixed channel allocation scheme, the same number of

channels are permanently allocated to the radios at the base

stations. To study fixed channel allocation, most authors used

graph coloring / labelling techniques (e.g., in [19]). The FCA

method performs very well under high traffic load, but it

cannot adapt to changing traffic conditions or user distributions

To overcome the inflexibility of FCA, many authors pro-

posed dynamic channel allocation (DCA) methods (e.g. as

presented in [6], [20]). In contrast to FCA, there is no constant

relationship between the base stations in a cell and their

respective channels. All channels are available for each base

station and they are assigned dynamically as new users arrive.

Typically, the available channels are evaluated according to

a cost function and the one with the minimum cost is used

[7]. Due to its dynamic property, the DCA can adapt to

changing traffic demand. Because adaptation implies some



cost, it performs worse in case of a heavy traffic load. For

a comprehensive survey on the topic, we refer the reader to

[11].

Due to the emergence of alternative communication tech-

nologies, channel allocation schemes became a focus of re-

search again. Mishra et al. [14] propose a channel allocation

method for wireless local area networks (WLANs) based

weighted graph coloring.

Recently, several researchers have considered devices using

multiple radios, notably in mesh networks (for a survey on

mesh networks, see [2]). In the multi-radio communication

context, channel allocation and access also became one of the

crucial topics. Related work on multi-radio medium access

includes, but not restricted to [1], [3], [16].

In all the related work cited so far, their authors assumed

that the radio devices cooperate to achieve a high system

performance. This assumption might not hold, as the users of

these devices are usually selfish and they want to maximize

their own performance without necessarily respecting the

system objectives. Game theory provides a straightforward

tool to study medium access problems in competitive wireless

networks and has been applied to the CSMA/CA protocol

[8], [12] and to the Aloha protocol [13]. Furthermore, a fixed

channel allocation game was presented in [9] based on graph

coloring. For cognitive radio networks, the authors of [15]

propose a dynamic channel allocation schemes based on a

potential game. In addition, they suggest another technique

based on machine learning with different utility functions.

III. SYSTEM MODEL AND CONCEPTS

We assume an available frequency band divided into or-

thogonal channels of the same bandwidth using the FDMA

method (e.g., 11 orthogonal channels in case of the 802.11a

protocol). We also assume that these channels have the same

expected channel characteristics. We denote the set of available

orthogonal channels by C.

In our model, pairs of users want to communicate with each

other over a single hop. We assume that each user participates

in only one such communication session, hence we denote

the set of such communication links by N . Each user owns

a device equipped with k ≤ |C| radio transmitters, all having

the same communication capabilities. The communication be-

tween two devices is bidirectional and they always have some

packets to exchange. We assume that each communicating pair

is a selfish player, whose objective is to maximize its total

rate or channel utilization. We will use this term to denote

both the communicating pair of users and the communication

link between them. In this paper, we further assume that each

device can hear the transmissions of every other device if they

are using the same channel. This means that the players reside

in a single collision domain. We make this assumption to avoid

the hidden terminal problem described for example in [17],

[18].

We assume that there is a mechanism that enables the

players to use multiple channels to communicate at the same

time (as it is implemented in [1] for example). We denote the

number of radios of player i using channel c by ki,c for every

c ∈ C. For the simplicity of presentation, let us denote the

set of channels used by player i by Ci, where Ci ⊂ C and

0 ≤ |Ci| ≤ k. We further assume that there is no limitation on

the number of radios per channel.

We formulate the multi-radio channel allocation problem as

a non-cooperative game as follows. We define the strategy of

player i as its channel allocation vector:

si = {ki,1, . . . , ki,|C|} (1)

Hence, its strategy consists in defining the number of radios

on each of the channels2. The strategy vector of all players

defines the strategy matrix S, where the row i of the matrix

corresponds to the strategy vector of player i:

S =





s1

. . .
s|N |



 (2)

Furthermore, we denote the strategy matrix except for the

strategy of player i by S−i as shown in (3):

S−i =

















s1

. . .
si−1

si+1

. . .
s|N |

















(3)

Figure 1 presents an example channel allocation with six

available channels (|C| = 6), four players (|N | = 4) and each

user device equipped by four radios (k = 4). Figure 2 presents

the strategy matrix that corresponds to this example.

channels

c1 c2 c3 c4 c5

channels: c1 - c6
number of radios

p1 p1 p1 p1

p2 p2 p2

p3 p3

p3

p3

p4

p4

players (pairs): p1 - p4

c6

p2

Fig. 1. An example for a channel allocation, where |C| = 6, |N | = 4 and
k = 4.

The total number of radios employed by player i can

be written as ki =
∑

c ki,c. Similarly, we can obtain the

number of radios using a particular channel kc =
∑

i ki,c. In

Figure 1, each player has a radio on channel c1, but channel

c5 is occupied only by player p2. Player p3 employs two

radios on channel c2 to get more bandwidth on that particular

channel. Regarding the number of radios per player, we have

kp1
= kp2

= kp3
= 4 and kp4

= 2, meaning that player p4 is

not using all of his radios.

2Note that this number can be zero.
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p2

p3

p4

c6

Fig. 2. Strategy matrix of the example in Figure 1.

We assume that the players are rational and their objective is

to maximize their utility in the network. We denote the utility

of player i by Ui. For simplicity, we assume that each player

i wants to maximize his total rate (Ri) in the system and thus

the utility function is the achieved bitrate. We leave the study

of other utility functions for future work.

We assume that the total rate on channel c is shared equally

among the radio transmitters using that channel. This fair rate

allocation is achieved for example by using a reservation-based

TDMA schedule on a given channel. A similar result was

reported by Bianchi in [5] for the CSMA/CA protocol using

optimal backoff window values. Even if the radio transmitters

are controlled by selfish users in the CSMA/CA protocol,

they can achieve this fair sharing as shown in [8]. We further

assume that the total available bitrate Rc(kc) on a channel c
(i.e., the sum of the achieved bitrate of all players on channel

c) is a non-increasing function of the number of radios kc

deployed on this channel. In fact Rc(kc) is independent of kc

for a TDMA protocol and for the CSMA/CA protocol using

optimal backoff window values [5]. In practice, the backoff

window values used in the CSMA/CA protocol implementa-

tion (e.g., in the 802.11 standard) are not optimal; and due

to packet collisions Rc(kc) becomes a decreasing function

for kc > 1. Since we assume that channels have the same

bandwidth and channel characteristics, the rate function does

not depend on the channel and thus we can write that R(kc)
for any channel c ∈ C. If kc = 0, we define R(0) = 0; note

however that this case has no relevance in our model.

Figure 3 presents the total rate R(kc) as a function of the

number of radios using channel c.

kc

R(kc)

reservation TDMA

optimal CSMA/CA

practical CSMA/CA

Fig. 3. The total available rate R(kc) for different MAC protocols.

If player i chooses to operate ki,c radios in a given channel,

his rate on this channel can be written as Ri,c =
ki,c

kc
·R(kc).

We assume that the players do not cheat at the MAC layer

as in [8] for example. Thus, we can write that Ri,c > 0 for

all c ∈ C, where ki,c > 0. Recall that in Figure 1, the higher

is the number of radios in a given channel, the lower is the

rate per radio. Hence, for example for player p2, we have

R2,1 < R2,4 < R2,3 < R2,5. We can obtain the total rate Ri

for player i by Ri =
∑

c Ri,c.

In summary, we can write the utility function for player i
as:

Ui(S) = Ri =
∑

c∈C

Ri,c =
∑

c∈C

ki,c

kc

· R(kc) (4)

We model the channel allocation problem with a single stage

game, which corresponds to a fixed channel allocation among

the players.

In order to study the strategic interaction of the players, we

first introduce the concept of Nash equilibrium.

Definition 1: (Nash Equilibrium – NE): The strategy matrix

S∗ = {s∗1, . . . , s
∗
|N|} defines a Nash Equilibrium (NE), if for

every player i, we have:

Ui(s
∗
i , S

∗
−i) ≥ Ui(s

′

i, S
∗
−i) (5)

for every strategy s
′

i.

In other words, in a NE none of the players can unilaterally

change its strategy to increase its utility. A NE solution is often

inefficient from the system point of view. We characterize the

efficiency of the solution by the concept of Pareto-optimality.

Definition 2: (Pareto-Optimality): The strategy matrix Spo

is Pareto-optimal if ∄S
′

such that:

Ui(S
′

) ≥ Ui(S
po),∀i (6)

with strict inequality for at least one player i.
This means that in a Pareto-optimal channel allocation Spo no

player i can improve his utility without decreasing the utility

of at least one other player j.

IV. NASH EQUILIBRIA

In this section, we study the existence of Nash equilibria

in the single collision domain channel allocation game. Note

that we omit the proofs of many intermediate results due to

space limitations.

It is straightforward to see that if the total number of radios

is smaller than or equal to the number of channels, then a flat

channel allocation, in which the number of radios per channel

does not exceed one, is a Nash equilibrium.

Fact 1: If |N | · k ≤ |C|, then any channel allocation, in

which kc = 1,∀c ∈ C is a Pareto-optimal NE.

For the remainder of the paper, we assume that |N |·k > |C|,
hence the devices have a conflict during the channel allocation

process. In the following lemmas, we express necessary con-

ditions for a Nash equilibrium. The first necessary condition

shows that the players should use all of their radios.

First we show that a selfish player should use all of his

radios in order to maximize his total rate.



Lemma 1: In a NE of the multi-radio channel allocation

game, ki = k,∀i.
In the example presented in Figure 1, Lemma 1 does not

hold for players p4, because it uses only two radios. Hence,

the example cannot be a NE.

Proof: We can prove the lemma by contradiction. As-

sume that there exists a NE, in which player i uses only ki < k
radios. As mentioned previously, in our model we assume that

k ≤ |C| and we assumed that in the NE |Ci| ≤ ki < k, thus

we necessarily have |Ci| < |C|. This implies that there always

exists a channel c /∈ Ci. If the player deploys an additional

radio on this channel c, then he increases his utility due to the

fact that Ri,c > 0 for ki,c = 1. Hence, we have a contradiction

and the original allocation cannot be a NE.

Let us now consider a NE strategy matrix in the multi-radio

channel allocation game denoted by S∗, where s∗i ∈ S∗ is the

NE strategy of player i (i.e., the i-th row of the matrix). Let

us consider two arbitrary channels b and c in this NE strategy

allocation. Without loss of generality, we assume that there

are more radios using channel b, meaning that kb ≥ kc, and

denote their difference by:

δb,c = kb − kc (7)

Assume that player i moves one of his radios from channel

b to c. Let us define the benefit of change, i.e. the difference

in the utility of player i, as follows:

∆ = Ui(s
′

i, S
∗
−i) − Ui(s

∗
i , S

∗
−i)

=
ki,b − 1

kb − 1
· R(kb − 1) +

ki,c + 1

kc + 1
· R(kc + 1)

−
ki,b

kb

· R(kb) −
ki,c

kc

· R(kc) (8)

We can show a second necessary condition for a NE, namely

that player i has a benefit of moving one radio to a channel,

where he has no radios if the difference of the number of

radios deployed on the two channels exceeds one.

Lemma 2: If ki,b > 0, ki,c = 0 and δb,c > 1 for any player

i, then S∗ is not a NE channel allocation.

In the example presented in Figure 1, Lemma 2 holds e.g.

for player p1 and the channels b = c1 and c = c5. Hence, the

example cannot be a NE.

Proof: Assume that S∗ is a NE channel allocation.

Suppose that player i moves one of his radios from channel

b to c. Using the conditions in the lemma, we can write the

benefit of change defined in (8) as:

∆ =
ki,b − 1

kb − 1
R(kb − 1) +

1

kc + 1
R(kc + 1) −

ki,b

kb

R(kb)

=
ki,b

kb − 1
R(kb − 1) −

1

kb − 1
R(kb − 1)

+
1

kc + 1
R(kc + 1) −

ki,b

kb

R(kb)

Let us notice that the sum of the first and last terms is always

strictly greater than 0, because δb,c > 1 implies that kb > 1.

Hence, it is enough to investigate the sign of the sum of the

two other terms. Using (7), we can rewrite the sum of the two

middle terms as:

R(kc + 1)

kc + 1
−

R(kc − 1)

kc − 1
=

R(kc + 1)

kc + 1
−

R(kc + δb,c − 1)

kc + δb,c − 1

Due to the assumption δb,c > 1 and the non-increasing rate

function R(·), we have:

R(kc + 1)

kc + 1
−

R(kc + δb,c − 1)

kc + δb,c − 1
≥ 0

Hence, the benefit of change is positive and thus S∗ cannot

be a NE. This contradiction concludes the proof.

Let us now derive the third necessary condition. This

condition shows that player i should again change the position

of one of his radios, if he has at least two radios more on

channel b than channel c and overall, there are more radios

on channel b than on channel c. The rationale of the lemma

is that player i can decrease the imbalance of his radios by

reallocating them between the channels b and c.

Lemma 3: If ki,b > 1, ki,c = 0 and δb,c = 1 for any player

i, then S∗ is not a NE.

In the example presented in Figure 1, the conditions of

Lemma 3 hold for player p3 and the channels b = c2 and

c = c3. Hence, the example cannot be a NE. The proof of the

lemma is similar to the previous proof and hence we omit it.

Suppose now that we have two channels b and c such that

kb = kc (which is equivalent to δb,c = 0), that means that

the total number of radios is the same on the two channels.

Assume that we have a player i with ki,b > ki,c > 0. Let us

define the integer value γi,b,c as:

γi,b,c = ki,b − ki,c (9)

Using the value γi,b,c introduced above, we can derive the

fourth necessary condition. The lemma shows that if there

exist these two channels with an equal number of radios and

a user has no radio on one of them and more than one radio

on the other, than he should reallocate one of his radios to the

channel, in which he is not present yet.

Lemma 4: If γi,b,c ≥ 2, ki,c = 0 and δb,c = 0 for any

player i, then S∗ is not a NE.

In Figure 1, the conditions of Lemma 3 hold for player p3

and the channels b = c2 and c = c4. Thus, this is not a NE.

The proof of the lemma is similar to the proof of the previous

lemmas.

Let us now consider a channel allocation S and let us divide

the channels into three sets. We define the set of channels

Cmax with the maximum number of radios, i.e., where b ∈
Cmax has kb = maxl∈C kl. Similarly, let us define the set

of the least occupied channels Cmin, where c ∈ Cmin has

kc = minl∈C kl. We denote the set of the remaining channels

by Crem. In Figure 1, Cmax = {c1}, Cmin = {c5, c6} and

Crem = {c2, c3, c4}.

Using Lemmas 1, 2, 3 and 4, we conclude on a fifth

necessary condition. This shows that in a Nash equilibrium,

the difference in the total number of radios between any two

channels cannot exceed one.



Proposition 1: In a NE S∗ in the multi-radio channel

allocation game, we have δb,c ≤ 1 for all b, c ∈ C.

Basically, in the proof we divide the possible scenarios into

group and show that either of the lemmas apply to the

members of these groups.

Combining our results so far, we can establish a set of

necessary and sufficient conditions for the NE.

Theorem 1: Assume that we have |N | · k > |C|. Then a

channel allocation S∗ is a NE iff the two following conditions

hold:

• δb,c ≤ 1 for any b, c ∈ C and

• ki,c ≤ 1 for any b, c ∈ C and i ∈ N except for players

j with ∄c ∈ Cmin such that kj,c = 0. For such a player

j, the second condition changes as follows: kj,c ≤ 1 if

c ∈ Cmax and γi,a,c ≤ 1 for any channel a, c ∈ Cmin.

An example of a NE channel allocation is shown in Figure 4,

where the second condition of the theorem has an exception

for player p1. Figure 5 presents an example with no exception

on the second condition for any player.

channels

c1 c2 c3 c4 c5

p1

p1

p1 p2 p2p2

p6

p3 p3p3

p4p4 p4

p5

p5p5

p6p6

c6

p1

p2 p3

p4

p5 p6

p7 p7 p7 p7

Fig. 4. An example for a NE channel allocation. Here |C| = 6, |N | = 7
and k = 4. Note that the second condition of Theorem 1 has an exception
for player p1.

channelsc1 c2 c3 c4 c5

p1 p1p1

p2

p2

p2 p3

p3

p3

p4

p4 p4

c6

p1

p2 p3

p4

Fig. 5. A NE channel allocation with no exception of the second condition
of Theorem 1. Here |C| = 6, |N | = 4 and k = 4.

Proof: Let us show that the above conditions are nec-

essary. Proposition 1 established that the first condition is

necessary. Lemmas 2, 3 and 4 make the second condition

necessary.

Now we prove that these conditions are sufficient as well.

According to the first condition of the theorem, the difference

between the number of radios on any two channels cannot

be more than one, thus the set Crem does not exist. This

also means that any change consists in moving some radios

from channels in Cmax to channels in Cmin. Consequently,

the moves can be considered separately.

Let us thus consider the moving of one radio from a channel

b ∈ Cmax to a channel c ∈ Cmin which results in a strategy

s
′

i for player i. Substituting γi,b,c = ki,b − ki,c ≤ 1, we can

write the benefit of change expressed in (8) as follows:

∆ =
ki,c + γi,b,c − 1

kc

R(kc) +
ki,c + 1

kc + 1
R(kc + 1)

−
ki,c + γi,b,c

kc + 1
R(kc + 1) −

ki,c

kc

R(kc)

= (γi,b,c − 1)

(

R(kc)

kc

−
R(kc + 1)

kc + 1

)

Note that second factor is always positive and hence the

difference is non-positive for γi,b,c ≤ 1. For this value, the

strategy matrix S∗ defines a NE.

Theorem 1 establishes an interesting property about NE:

In fact, all NE channel allocations achieve load-balancing

over the channels in C. In the next theorem, we will show

that allowing selfish channel allocation over a wide band of

frequencies results in an efficient spectrum utilization.

Theorem 2: Assume that we have |N | · k > |C|. Then any

NE channel allocation S∗ is Pareto-optimal.

Proof: The proof is straightforward. In a NE channel

allocation S∗ we have kc > 0 for each c ∈ C. Note that in

S∗, the sum of the utility of all players Utotal = maxi

∑

i Ui

which implies both Pareto- and system-optimality.

Usually, there is a way to improve the efficiency of the

non-cooperative NE solution using a cooperative solution,

e.g., the Nash bargaining framework. Note that in this case,

as shown in the proof of the theorem, the Pareto-optimal

NE channel allocation is also system-optimal. All channels

are fully utilized, and hence the system efficiency cannot be

further improved. This implies that no cooperative solution

can further increase the system’s efficiency.

V. FAIRNESS ISSUES

In this section, we study the fairness properties of the

selfish multi-radio channel allocation game. Fairness is an

important aspect of resource allocation problems in general,

and of computer networks in particular. We have seen in

Section IV that in the selfish multi-radio channel allocation

problem, the NE solutions are Pareto-optimal and also system-

efficient. Unfortunately, these Pareto-optimal allocations might

be highly unfair by giving advantage to some players while

neglecting others. For example, in the channel allocation

presented in Figure 4 assuming that the rate function R(·)
is constant, player p1 has the total rate U1 = 19

20 , while player

p4 has the total rate U4 = 16
20 . In order to study the fairness

properties of the NE channel allocations, we use a particular

metric called max-min fairness (MMF) as defined in [4]:

Definition 3: (Max-Min Fairness – MMF): The strategy

matrix Smmf is max-min fair if the utility of player i cannot

be increased without decreasing the utility of another player

j for which Ui(S
mmf ) ≥ Uj(S

mmf ).
Using this concept, we identify the max-min fair NE channel

allocations as expressed in Theorem 3.

Theorem 3: A NE channel allocation S∗ is max-min fair

if and only if |Cmin| · kc ≡ 0 (mod |N |). This implies that

Ui = Uj ,∀i, j ∈ N .



In other words, if the total number of radios in the least

allocated channels are equal for every player, the NE allocation

is max-min fair. In the proof, we will show that the condition

implies an equal utility for each player.

Proof: First, we will prove that |Cmin| · kc ≡ 0
(mod |N |) implies Ui = Uj ,∀i, j ∈ N . Then we will show

that the latter condition implies max-min fairness.

Let us now express the utility of any player i in a NE

allocation S∗. In the equation below, kc denotes the number

of radios that use channel c ∈ Cmin.

Ui =

∑

c∈Cmin
ki,c

kc

R(kc) +
k −

∑

c∈Cmin
ki,c

kc + 1
R(kc + 1)

=
∑

c∈Cmin

ki,c(
R(kc)

kc

−
R(kc + 1)

kc + 1
) + k

R(kc + 1)

kc + 1

Similarly, we can express the utility of another player j:

Uj =
∑

c∈Cmin

kj,c(
R(kc)

kc

−
R(kc + 1)

kc + 1
) + k

R(kc + 1)

kc + 1

If |Cmin| ·kc = |N | ·κ, where κ is an integer, then we have

an equal number of radios in the channels in Cmin, meaning

that
∑

c∈Cmin
ki,c =

∑

c∈Cmin
kj,c = κ and vice versa. If

and only if every player has an equal number of radios in the

channels c ∈ Cmin, do we have Ui = Uj .

Second, we prove by contradiction that the equality of the

utilities is necessary to max-min fairness.

Let us suppose that there exist a max-min fair NE channel

allocation S∗ in which Ui < Uj for some i, j ∈ N . We

know from Lemma 1 that ki = kj = k, and hence we can

interchange the radios of player i with the radios of player j.

This results in Ui > Uj while the utilities of other players do

not change. Hence, the original channel allocation S∗ is not

max-min fair. Conversely, if Ui = Uj , this implies max-min

fairness by definition.

From this theorem, we can immediately see that the per-

fectly balanced channel allocation is also max-min fair.

Corollary 1: The NE S∗ in which Cmin = Cmax (i.e., kb =
kc, ∀b, c ∈ C) is max-min fair as well.

We can easily check max-min fairness given the values of

|C|, |N | and k.

kc =
N · k − |Cmin|

C
(10)

Due to the fact that |Cmin| ≤ |C|, we can write that:

kc =

⌊

N · k

C

⌋

(11)

We can also compute |Cmin| as follows:

|Cmin| = N · k − kc · |C| (12)

If |Cmin| = 0, then every channel has the same number of

radios (i.e., kb = kc,∀b, c ∈ C). If |Cmin| > 0, then we can

easily verify the condition of Theorem 3.

VI. COALITION-PROOF NASH EQUILIBRIA

The definition of NE expresses the resistance to the devi-

ation of a single player. In a realistic situation, it might be

possible that several players collude to increase their payoff

at the expense of other players. Such a collusion is called a

coalition. The problem of how these coalitions are formed is

a separate research topic itself, thus in this paper we assume

that any players can form a coalition. We can generalize the

notion of NE for coalitions as follows.

Definition 4: (Coalition-Proof Nash Equilibrium – CPNE):

The strategy matrix Scpne defines a coalition-proof Nash

equilibrium if there does not exist any coalition Γ ∈ N and

any strategy of this coalition S
′

Γ such that the following set of

conditions is true:

Ui(S
′

Γ, Scpne
−Γ ) > Ui(S

cpne
Γ , Scpne

−Γ ),∀i ∈ Γ (13)

This means that no coalition can deviate form Scpne such that

the utility of all of its members increases.

The definition of coalition-proof Nash equilibrium is very

restrictive. We can define this notion in the broader sense:

Definition 5: (Strong Coalition-Proof Nash Equilibrium –

SCPNE): The strategy matrix Sscpne defines a coalition-proof

Nash equilibrium if there does not exist any coalition Γ ∈ N
and any strategy of this coalition S

′

Γ such that the following

set of conditions is true:

Ui(S
′

Γ, Sscpne
−Γ ) ≥ Ui(S

scpne
Γ , Sscpne

−Γ ),∀i ∈ Γ (14)

with strict inequality for at least one player i ∈ Γ.

This means that no coalition can deviate form Scpne such

that the utility of some of its members increases while the

utility of other members do not change. From the definition,

we can immediately see the following fact:

Fact 2: If in the NE S∗, we have Cmin = Cmax (i.e., kb =
kc, ∀b, c ∈ C), then S∗ is (strong) coalition-proof.

The intuition is that in a channel allocation S∗ for which

kb = kc, ∀b, c ∈ C, any player that changes necessarily

decreases his utility, hence S∗ is a (strong) coalition-proof

NE by definition.

In the remainder of this section, we assume that Cmin 6=
Cmax and we derive results that highlight the strong coalition-

proof NE. First, we prove a necessary condition that enables

a given NE allocation to be strong coalition-proof in addition.

Theorem 4: If NE channel allocation Sscpne is strong

coalition-proof then there does not exist two channels b ∈
Cmax and c ∈ Cmin and two players i, j ∈ N such that

ki,b > 0 and kj,b > 0 while ki,c = 0 and kj,c = 0.

To illustrate the condition of Theorem 4, let us emphasize

that the example shown in Figure 5 is not a strong coalition-

proof NE.

We provide an example for a strong coalition-proof NE in

Figure 6.

Proof: It is easy to see that if the conditions of the

theorem do not hold, then i and j can form a coalition and

one of them (for example player i) can increase the utility

of the other by moving one radio from b to c. Hence it is a

necessary condition.
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Fig. 6. An example for a strong coalition-proof NE channel allocation, where
|C| = 6, |N | = 4 and k = 5.

We could not prove that the set of conditions in Theorem 4

is sufficient to establish a strong coalition-proof NE, but we

could not find a counterexample, where the conditions hold

and the channel allocation is not strong coalition-proof NE.

Hence, we provide the following conjecture.

Conjecture 1: If there does not exist two channels b ∈
Cmax and c ∈ Cmin and two players i, j ∈ N such that

ki,b > 0 and kj,b > 0 while ki,c = 0 and kj,c = 0 then the

NE channel allocation Sscpne is strong coalition-proof. Hence

the above condition is a sufficient condition.

Nonetheless, we can show that the set of strong coalition-

proof NE channel allocations is a subset of the max-min fair

channel allocations.

To prove this result, we first prove the following lemmas.

Due to lack of space, we omit their proof.

Lemma 5: For any NE channel allocation S∗ in which

Cmax > 0, we have kc < |N |.
Note that Lemma 5 applies to any NE channel allocation,

not only to the the max-min fair NE.

Lemma 6: For any NE channel allocation S in which

Cmax > 0 and S is not MMF, we have kc + 1 < |N |.
Using Lemma 6, we can show in the following theorem that

all strong coalition-proof NE channel allocations are max-min

fair as well.

Theorem 5: If NE channel allocation S is strong coalition-

proof (strictly speaking if the necessary condition expressed

in Theorem 4 holds) then it is max-min fair as well.

We again omit the proof of the theorem due to space

limitations.

As a summary, Figure 7 shows all channel allocations by

properties.

all channel allocations

Pareto-optimal channel allocations

Nash equilibria

Max-min fair Nash equilibria

Strong coalition-proof Nash equilibria

Coalition-proof Nash equilibria

Fig. 7. Summary of channel allocations with different properties.

VII. CONVERGENCE TO A NASH EQUILIBRIUM

We have demonstrated in Section IV that the non-

cooperative behavior of the selfish players lead to Pareto-

optimal, load balancing Nash equilibria. In this section, we

propose three different algorithms, each using a different set of

available information to enable the selfish players to converge

to one of these Nash equilibria from an arbitrary initial config-

uration. The three algorithms are the following: 1) centralized

algorithm using perfect information, 2) distributed algorithm

using perfect information, and 3) distributed algorithm using

imperfect (local) information, respectively.

A. Centralized Algorithm Using Perfect Information

We have proven in Theorem 1 that a Nash equilibrium

channel allocation has a load-balancing property. In addition,

we have shown in Theorem 2 that all the Nash equilibria

are Pareto-optimal as well. Now, let us propose a simple

centralized algorithm to achieve one of these efficient Nash

equilibria.

Algorithm 1 Pareto-optimal NE channel allocation with global

coordination and perfect information

1: for i = 1 to |N | do

2: for j = 1 to k do

3: if kc = kl,∀c, l ∈ C then

4: use the radio on a channel c, where ki,c = 0
5: else

6: use the radio on a channel c, where kc = minl∈C kl

7: end if

8: end for

9: end for

Notice that the algorithm requires the sequential action of

the players and hence it needs global coordination. In addition,

the players have to have a perfect information about the

number of radios on each of the channels. This can be achieved

by the global coordination mentioned before or by having

an extra radio per device for scanning the channels. Global

coordination is unlikely to exist in a wireless networking

scenario with selfish players. The second assumption about

perfect information might not hold either, because selfish

players should allocate all of their radios for communication

as shown in Lemma 1. It is possible to model the cost of

scanning with one radio instead of using it for communication.

The investigation of this issue is part of our future work.

B. Distributed Algorithm Using Perfect Information

In order to overcome the limitations of the centralized

algorithm proposed in Section VII-A, we suggest a second

algorithm that does not require global coordination, but still

assumes a perfect information about the available channels.

We define a round-based distributed algorithm that works

as follows. First we assume that there exist a random radio

assignment of the players over the channels. For simplicity, we

exclude the specific Nash equilibria that result in an exception

of the second condition of Theorem 1. This means that we



assume that no players allocates more than one device on

any channel. After the initial channel assignment, each player

evaluates the number of radios (which defines the approximate

length of the round) on each of the channels c ∈ C and

tries to improve his total rate by reorganizing his radios.

Unfortunately, this procedure might result in a continuous

reallocation of the radios for all players. An example for such a

continuous reorganization is shown in Figure 8, where channel

c6 is empty and thus each player moves his radio from c1 to

c6. In the next round, the same effect happens and they all

move their radios back from c6 to c1.
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Fig. 8. An example for a channel allocation which results in a continuous
reallocation of the radios for all players (i.e., each player moves his radio from
c1 to c5 and back) if there is no randomized backoff mechanism implemented.
In this example, |C| = 6, |N | = 4 and k = 4.

To avoid these instable channel allocations, we leverage the

technique of backoff mechanism well known in the 802.11

medium access technology [18]. We define a backoff win-

dow W and each player chooses a random initial value for

his backoff counter with uniform probability from the set

{1, . . . ,W}. Then in every round each player decreases his

backoff counter by one and applies the re-allocation of his

radios only when the backoff counter reaches zero. After the

he changed his channel allocation, he will reset the backoff

counter as described previously. We can notice that using

the backoff mechanism, the players play a game in a quasi-

sequential order.

We provide the pseudo-code for the distributed algorithm

described previously in Algorithm 2.

We can prove that Algorithm 2 stabilizes in one of the load-

balancing Nash equilibrium channel allocations.

Theorem 6: Algorithm 2 converges to one of the NE chan-

nel allocations.

To prove the theorem, let us introduce the notion of state

graph G. We represent each possible channel allocation as

a node in G. We call the NE channel allocations a stable

state and the other states as transitional states. The transition

between any two states depends only on the set of nodes which

have their backoff counter equal to zero. Hence, our algorithm

has the Markov-property.

Proof: To prove the theorem, one has to prove two

properties: 1) The algorithm does not stabilize in a transitional

state and 2) there exists a path with positive probability from

any transitional state to one of the stable states.

The first property is easy to prove, because in each transi-

tional state (non-NE) there exists at least one player, who has

Algorithm 2 Distributed Pareto-optimal NE channel allocation

algorithm using perfect information

1: RandomChannelAllocation()

2: while there is change do

3: ChannelUpdate()

4: for i = 1 to |N | do

5: if backoff counter is 0 then

6: reorganize the radios of i in the to maximize the

total rate:

7: for j = 1 to k do

8: assume that radio j uses channel b
9: move the radio j from b to channel cmin if

∃cmin ∈ C, cmin = arg minc kc such that

ki,cmin
= 0 and kcmin

< kb − 1
10: end for

11: reset the backoff counter to a new value from the

set {1, . . . , W}
12: else

13: decrease the backoff counter value by one

14: end if

15: end for

16: end while

the motivation to change. The second property holds as well,

because we have a positive probability that only one player

changes in each round with no repetition of the players until

a NE is reached. This special case is exactly the procedure

described in Algorithm 1.

C. Distributed Algorithm Using Local Information

The distributed algorithm presented in Section VII-B used

perfect information. This assumption requires that the either

the players share their local information about the channel

allocation, or that each of them uses a separate radio for

scanning the channels he is not using at the moment. These

assumptions might not hold in a selfish networking context.

The first assumption requires that the players collaborate,

which might not be their best interest. The second assumption

contradicts with Lemma 1, which proves that selfish players

should use all of their radios for communication3.

In this subsection, we assume that players have only a

local information about the channels, on which they operate

a radio. In order to improve their performance, they proceed

as follows. The players apply the random backoff mechanism

we introduced in Section VII-B. In each round where player

i’s backoff counter is equal to zero, he calculates the average

number of devices on the channels he knows (recall that we

denote this set by Ci). We denote the average number of

devices on the channels in Ci by mi. For each channel b ∈ Ci

with kb − mi ≥ 1 player i moves his radio with a uniform

random probability to another channel c /∈ Ci. This is the first

property of the algorithm with imperfect information.

3In our future work, we will model the cost of scanning, which might result
in a temporary decrease of the total rate, but with the promise of better total
rate in the future.



Similarly to Theorem 6, one can show that the above

procedure reaches a stable state. Unfortunately, the available

local information might be insufficient for the players to

identify if the achieved stable state is Nash equilibrium. We

show an example for such a “false Nash equilibrium” in

Figure 9.
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Fig. 9. An example for a stability state using the distributed algorithm with
imperfect information. Each player believes that this is a Nash equilibrium
due to the insufficient local information. Here |C| = 6, |N | = 5 and k = 3.

In order to solve the problem of inefficient stable states,

we introduce the following mechanism: player i checks the

number of radios for each of the channels b ∈ Ci as suggested

above and with a small probability ǫ he moves his radio to

another channel c /∈ Ci even if 0 < kb − mi < 1. He

chooses the new channel c with a uniform random probability

as presented before. This second property allows us to resolve

the inefficient stability states, but in the same time, it will also

cause the instability of the Nash equilibria.

We provide the description of our algorithm below. Note

that this algorithm now includes both properties: 1) the backoff

mechanism and 2) the mechanism to break inefficient stable

states.

Due to the second property of our algorithm, its does

not perfectly converge to the existing Nash equilibria (more

precisely, it converges there with high probability, but it does

not stay in a Nash equilibrium solution). Nevertheless, we can

observe that the algorithm remains in states that are “close”

to Nash equilibria in terms of load-balancing. We demonstrate

this intuition by the simulations presented in Section VII-D.

D. Simulation Results for Algorithm 3

We implemented Algorithm 3 in MATLAB 7.0.0.1 and with

a special focus on wireless 802.11a protocol (meaning that we

have chosen 11 orthogonal channels as a default value for N )

In this subsection, we present our simulation results that we

we will investigate the performance of algorithm 3 in terms of

convergence time and efficiency. In each of the simulations,

we assumed a constant rate function R(·), note however, that

the algorithm shows similar properties for any decreasing rate

function introduced in Section III.

Let us first highlight the best and worst case in terms of

the desired load-balancing. The best case is one of the NE

channel allocations, while the worst case is characterized by

the fact that there exist k channels where each of the players

have a radio, while the rest of the channels have no radios at

all. In Figure 10, we present the worst case channel allocation

Algorithm 3 Distributed Pareto-optimal NE channel allocation

algorithm using local information

1: RandomChannelAllocation()

2: while there is change do

3: ChannelUpdate()

4: for i = 1 to |N | do

5: if backoff counter is 0 then

6: if (maxc∈Ci
(kc) − minc∈Ci

(kc) > 1) then

7: for j = 1 to k do

8: assume that radio j uses channel b
9: if kb > mi then

10: move the radio j from b to c /∈ Ci, where c
is chosen with uniform random probability

from the set C\Ci

11: end if

12: end for

13: else

14: for j = 1 to k do

15: assume that radio j uses channel b
16: if kb ≥ mi then

17: move the radio j from b to c /∈ Ci with

probability ǫ, where c is chosen with uni-

form random probability from the set C\Ci

18: end if

19: end for

20: end if

21: else

22: decrease the backoff counter value by one

23: end if

24: end for

25: end while

that is opposed to the best case NE in Figure 5 and we refer

to it as unbalanced (UB).
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Fig. 10. An example for a worst case channel allocation that is completely
unbalanced, as opposed to a NE (best case) shown in Figure 5. Here |C| = 6,
|N | = 4 and k = 4.

We calculate the average number of radios per channel as

m = |N |·k
|C| . We can compare the utilization of every channel

c to the average to achieve the total balance of the channel

allocation S:

Definition 6: (Balance:) The balance β of a channel allo-

cation S is defined as the sum β(S) =
∑

c∈|C| |kc − m|.
The notion of balance allows us to define the efficiency of

a given channel allocation as a proportion between the worst

case and the best case channel allocations.



Definition 7: (Efficiency:) The efficiency φ of a channel

allocation S is defined as φ(S) = β(SUB)−β(S)
β(SUB)−β(SNE) .

Let us emphasize that for any channel allocation S, we have

0 ≤ φ(S) ≤ 1. Furthermore, φ(SNE) = 1 and φ(SUB) = 0 as

desired by this measure.

Let us now we define the average efficiency over time and

efficiency ratio. To this end, we denote the efficiency in round

t by φ(t, S).

Definition 8: (Average efficiency and efficiency ratio:) The

average efficiency φ at round T is defined as the sum φ(T ) =
∑T

t=1 φ(t, S). From this definition, we derive the efficiency

ratio as Φ = limT→∞
φ(T )

T

Note that the efficiency ratio expresses the performance of

the distributed channel allocation algorithm per round over a

long period of time. In our simulations, we applied a finite

simulation time, hence we measured the efficiency ratio at

T = 10000.

Finally, let us define the convergence time of Algorithm 3

as follows.

Definition 9: (Convergence Time): We define the conver-

gence time of Algorithm 3, as the time when the channel

allocation efficiency first reaches the value of one (i.e., the

efficiency of a NE, φ(SNE)).

Suppose that there are a few players in the game and they

use the 802.11a medium access protocol. We assume that the

length of one round in the updating algorithm is 10ms. This

duration of one round corresponds roughly to the time until

these devices all transmit one MAC layer packet, i.e., the time

that the devices can learn about other devices in the channel.

For each simulation result, where we present average val-

ues, we have performed 100 simulation runs. As mentioned

previously, we run each simulation for 10000 rounds that

corresponds to 100s according to the assumption above. For

the convergence time simulations, we present our results with

a 0.95 confidence level on the mean value.

Let us first present an example run for our distributed

algorithm with imperfect information in Figure 11. One can

notice that the algorithm quickly reaches the NE state and

thus the average efficiency converges to one. Also, one can

observe that the system sometimes leaves the NE state due to

the second property (change a radio on a channel c ∈ Cmax

in a stable state with probability ǫ), but the system quickly

returns to a NE.

First, we investigate the effect of the number of radios per

device on the efficiency ratio (shown in Figure 12a) and on the

convergence time of the algorithm (presented in Figure 12b).

We can observe on the figures that the efficiency is basically

one if there are more than two radios per device. This means

that the algorithm drives the system into one of the NE state

and it stays in these NE for most of the time. For two radios

per devices, the effect of changing the channel for even one

radio has a significant impact that undermines the stability of

the NE more easily. Note however, that even in this case, the

efficiency ratio is very high (close to the efficiency of the NE).

It is also worth to mention that the higher the number of radios
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Fig. 11. One simulation run: Efficiency and averaged efficiency vs. time
using the values |C| = 11, |N | = 10, k = 3 and W = 15.

per device, the more channels the players know. Hence, the

increasing amount information helps their decisions.

Next, we investigate the effect of the number of players,

each device having three radios and present our results in

Figures 12c and 12d. We can see that our distributed algorithm

keeps the system in an efficient state, although the efficiency is

slightly lower for particular values of |N |. The reason is that

our algorithm is designed to lead the players to any possible

NE. Indeed, the number of possible NE depends on the value

of |Cmin| as derived in (12). If |Cmin| = 0, there exists

only one NE, which is perfectly load-balanced. The higher

the absolute value ||Cmin| − |Cmax|| = | |C|2 − |Cmin||, the

lower the number of possible NE, hence it is more difficult

to reach one of them. This explains the higher convergence

time in Figure 12d for |N | = 11, 15, 22. One can notice that

for |N | = 11, 22, we have |Cmin| = 0, thus the relatively

high convergence time. Furthermore, if there exist only a few

NE, then the algorithm is likely to break them due to the

property caused by ǫ. This results in a lower efficiency for

these values. Let us emphasize that even for these cases, our

algorithm performs very well resulting in a high efficiency

ratio.

In the second set of simulations, we study the effect of the

two parameters that introduce the randomness to Algorithm 3.

First, we show the effect of ǫ on the efficiency ratio and the

convergence time in Figures 13a and 13b. One can observe

that the efficiency ratio is very high, but slightly decreases

as ǫ increases. The reason is that with a higher ǫ value it is

more likely that the algorithm does not stay in a NE, once it

has reached it. As a tradeoff, for low ǫ values, the algorithm

converges slower, because it might stabilize in “false stable

states” for a longer time. It is interesting to observe that some

values of ǫ achieve a good balance between efficiency and

convergence time, which motivated our choice ǫ = 0.0001 for

the default value.

Finally, we study the effect of the size of the backoff win-

dow in Figures 13c and 13d. Intuitively, efficiency increases

with the backoff window size, because of the decreasing
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Fig. 12. The effect of the total number of radios: (a) The efficiency ratio and (b) the convergence time as a function of the number of radios per device k.
Similarly, we show (c) the efficiency ratio and (d) the convergence time as a function of the number of players |N |. The simulation parameters are |C| = 11,
ǫ = 10−4 and W = 15. In addition, we used the following default values |N | = 10 and k = 3, where they did not correspond to the measured parameter.

number of simultaneous channel changes. Interestingly, this

increase is very rapid and the algorithm is very efficient for

quite small backoff window values. With a larger backoff

window, there is a high chance that our algorithm realizes

a sequential procedure similar to the centralized algorithm

with perfect information described in Algorithm 1. Note

however that setting a very high backoff window value is

not reasonable, because it makes the players waiting for an

unnecessary long time. Due to the same reason, convergence

time drops quickly as the backoff window value increases.

In summary, we can observe that, in spite of the fact

that convergence is not theoretically ensured, the proposed

distributed algorithm based on imperfect information ensures

high system performance and good convergence time.

VIII. CONCLUSION

In this paper, we have considered the problem of compet-

itive channel allocation among devices using multiple radios.

Our main conclusion is that in spite of the non-cooperative

behavior of such devices, their Nash equilibrium channel

allocations result in a Pareto-optimal solution, which means

that they are system-efficient as well. These Nash equilibria are

characterized by the fact that the devices occupy the available

channels almost evenly. We have also studied fairness and

coalitions in the selfish context. Finally, we have provided

three algorithms to achieve this efficient Nash equilibrium

channel allocation and we study their convergence properties

either theoretically or numerically.

In terms of future work, we will pursue our theoretical

investigations of selfish multi-radio channel allocation in mul-

tiple collision domains. We will pay a particular attention to

the application of study of existing fairness metrics in the

competitive context. In addition, we will take the cost of

channel scanning into consideration. Last but not least, we

will study the convergence properties of our algorithms that

achieve Nash equilibria in the single collision domain and we

will extend them (or design new algorithms) to the general

case of multiple collision domains.
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Fig. 13. The effect of randomness parameters: (a) Efficiency ratio and (b) convergence time as a function of ǫ. Furthermore, we present (c) the efficiency
ratio and (d) the convergence time as a function of the backoff window size W . The simulation parameters are |C| = 11, |N | = 10 and k = 3. In addition,
we used the following default values ǫ = 10−4 and W = 15, where they did not correspond to the measured parameter.
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