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Non-Cooperative Multicast and Facility Location

Games

Chandra Chekuri, Julia Chuzhoy, Liane Lewin-Eytan,

Joseph (Seffi) Naor and Ariel Orda

Abstract

We consider a multicast game with selfish non-cooperative players. There is a special source node and each

player is interested in connecting to the source by making a routing decision that minimizes its payment. The

mutual influence of the players is determined by a cost sharing mechanism, which in our case evenly splits the

cost of an edge among the players using it. We consider two different models: an integral model, where each

player connects to the source by choosing a single path, and a fractional model, where a player is allowed to split

the flow it receives from the source between several paths. In both models we explore the overhead incurred in

network cost due to the selfish behavior of the users, as well as the computational complexity of finding a Nash

equilibrium.

The existence of a Nash equilibrium for the integral model was previously established by the means of a

potential function. We prove that finding a Nash equilibrium that minimizes the potential function is NP-hard.

We focus on the price of anarchy of a Nash equilibrium resulting from the best-response dynamics of a game

course, where the players join the game sequentially. For a game with n players, we establish an upper bound of

O(
√

n log2 n) on the price of anarchy, and a lower bound of Ω(log n/ log log n). For the fractional model, we prove

the existence of a Nash equilibrium via a potential function and give a polynomial time algorithm for computing

an equilibrium that minimizes the potential function. Finally, we consider a weighted extension of the multicast

game, and prove that in the fractional model, the game always has a Nash equilibrium.
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I. INTRODUCTION

In many networking scenarios, including the Internet, network users are free to act according to their

individual interests, without taking into account overall network performance. Users thus may make selfish

decisions (strategy choices) based on the state of the network, which depends (among other factors) on the

behavior of other users, resulting in a non-cooperative game. Naturally, these scenarios call for a game-

theoretic approach for studying both the behavior of such non-cooperative users, as well as their impact

on the network performance. More specifically, we are interested in the properties of Nash equilibrium

solutions which are the stable outcomes of a non-cooperative game. We note that there is a considerable

amount of research dealing with non-cooperative games in networks [16], [19], [26], [29], [30], [32].

A scenario frequently encountered is the situation where each edge has a load-dependent latency

function, and each user aims to minimize the total latency from its source to its destination. In this

framework, both simple and general network topologies were studied, as well as various types of latency

functions and different constraints on the strategies of the users [16], [26], [29], [30], [32].

While unicast is the traditional form of routing, it results in a waste of resources (e.g., bandwidth) when

a source transmits the same data to multiple destinations. Multicast routing schemes provide adequate

solutions for such transmissions, and are an important emerging area. An essential question that has been

studied extensively in this context is how to distribute the cost of the transmission among the various

receivers [1], [5], [9], [12], [15]. However, these works do not consider non-cooperative game scenarios.

We consider a multicast game with selfish non-cooperative players. There is a special source node and

each player is interested in connecting to the source by making a routing decision that minimizes its

payment. Thus, the strategies of the players in the game correspond to the different paths by which the

players can connect to the source. Each player independently chooses a strategy minimizing its payment.

The mutual influence of the players is determined by a cost sharing mechanism that stipulates how the cost

of each edge in the network is shared among its users. While typical models for non-cooperative games

in networks have focused on congestion effects, where a resource utility deteriorates with the number of

users that share it, an important class of resource sharing problems occurs when a fixed cost needs to be

shared between a set of users. This game was recently introduced by Anshelevich et al. [4]. In this paper

we study a natural cost sharing mechanism that falls into the above framework, where the cost of an edge

is split evenly among all the players using it. More precisely, if k players use edge e of cost ce, then each

player pays ce/k for this edge. This cost sharing formula has an intuitive appeal and it was investigated

in several studies [9], [12]; it is also the outcome of the Shapley value [31].

Further motivation for the multicast game we consider is provided by the facility location problem,

which is of fundamental interest in operations research. In a facility location game, we are given a set of

facilities, with an opening cost associated with each facility. Additionally, we have a set of clients, and

for each client-facility pair, we are given a cost that the client must pay for connecting to the facility.

Each client needs to connect to one facility. A natural cost sharing mechanism for facility location is

splitting the opening cost of each facility between the clients served by it. Additionally, each client pays

for connecting to the facility serving it. Naturally, the clients seek to minimize their total payment, thus

defining a non-cooperative game. This game constitutes a special case of the directed multicast game:

given an instance of the facility location game, we add a source, connect each facility to the source with

an edge of cost equal to the opening cost of the facility, and then connect each client to each facility with

a directed edge of cost equal to the corresponding connection cost.

We consider two different models: an integral model, where each user connects to the source through

a single path, and a fractional model, where each user is allowed to split (fractionally) its connection

to the source into several paths, i.e., one unit of flow is sent fractionally by the source to the user. The

fractional model, in addition to being a relaxation of the integral model, is interesting in its own right, as

it is a splittable multicast model which can be implemented via network coding [2], [3], [18]. The games

resulting from these models are referred to as the integral multicast game and the fractional multicast

game, respectively.
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A crucial property of our multicast game is that the per-user cost share on an edge is non-increasing in

the number of users of the edge. Although, in this respect, the game differs from a classic congestion game,

the integral multicast game does belong to the well known class of congestion games, that was first defined

by Rosenthal [28] and has been widely investigated [13], [23], [25], [31], [33]. Rosenthal showed that a

potential function can be defined for each congestion game with the property that the potential decreases

if a player makes a move that improves its selfish cost. This shows that every congestion game has a Nash

equilibrium. Moreover, there is a one-to-one correspondence between Nash equilibrium solutions and the

solutions defining a local minimum of Rosenthal’s potential function. Since the integral multicast game

belongs to the class of congestion games, it has a Nash equilibrium and a potential function. We note

that, for the integral model, the cost sharing mechanism guarantees that a Nash equilibrium induces a tree.

The Nash equilibrium of the multicast game raises several natural questions. We focus in this paper on

the inefficiency resulting from the selfish behavior of the players, and on the computational complexity

of finding a Nash equilibrium.

We quantify the inefficiency resulting from a non-cooperative game through the ratio between the cost

of a Nash equilibrium multicast tree and the cost of an optimal Steiner tree spanning the players. In

keeping with common terminology [20], [27], this ratio is called the price of anarchy and it quantifies

the “penalty” incurred by lack of cooperation (or coordination) between the players in a non-cooperative

game.

r t

...

...

n

1

Fig. 1. Cost of a Nash equilibrium tree can be n times the cost of an optimum Steiner tree.

Consider the graph in Figure 1 consisting of a source r and a node t with two parallel paths connecting

them. The cost of one path is n, while the cost of the other path is 1. There are n players at t who

want to connect to the source r. A solution where all players use the expensive path, each paying one

unit, is a Nash equilibrium with a cost of n. A different and much cheaper Nash equilibrium is the

one in which the players use the path of cost 1. Note that this second equilibrium is also the minimum

cost Steiner tree connecting the players to the source. Thus, the price of anarchy for this game can be

very large. Notice however that the expensive solution cannot be reached if the players join an initially

empty game one-by-one, each of them choosing the cheapest path to connect to the source. In this paper,

we investigate the price of anarchy of the integral multicast game for such scenarios. Motivated by the

existence of large-cost Nash equilibria, the notion of price of stability was introduced in [4]: it is defined

as the ratio between the cost of a Nash equilibrium of minimum cost and the cost of an optimal Steiner

tree. In the above example, the price of stability is 1 in contrast to the price of anarchy which is n. For

directed graphs, it was shown in [4] that the price of stability is Θ(log n); for undirected graphs, an upper

bound of O(log n) on the price of stability is known [4], however, no non-trivial lower bounds are known.

The price of stability of the multicast game in undirected graph was recently investigated by [10]. It is

shown in [10] that for the special case where every vertex is associated with a selfish player, the price of

stability is O(log log n).
Even if the price of stability in undirected graphs is small, we still have two important questions

to answer. Can a Nash equilibrium achieving (or approximating) the price of stability be computed

in polynomial time? Second, can a good equilibrium be achieved as a consequence of best-response

dynamics? That is, a course of the game where each player, in its turn, makes a routing decision that

minimizes its cost. The price of anarchy of such a solution strongly depends on the initial configuration

from which the players start. For example, if the starting solution is a Nash equilibrium with a large price
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of anarchy, as in the example in Figure 1, then best-response dynamics would not alter the solution. It

is shown in [4] that even in directed graphs, if the initial configuration is a Steiner tree of cost C, then

the best-response dynamics would lead to a Nash equilibrium of cost at most O(C log n). This is shown

using Rosenthal’s potential function, which can only decrease with each best-response move. This is also

a constructive proof that the price of stability is O(log n). In [4], the above argument is used to suggest a

mechanism in which a central authority starts the process by first computing a near-optimal Steiner tree

on the receivers, and then allows the users to follow their best-response dynamics.

In this paper we take an approach that does not rely on a central trusted authority starting the game

in a specific starting configuration. There are several situations in which having such an authority is

expensive or infeasible. Further, not all players might be available at the same time. In an online setting,

players might arrive one by one to join a multicast service from the source. Motivated by these issues,

we explore in this paper the following two-round setting. In the first round, players join the game one

by one starting from an “empty” configuration. Upon arrival, each player picks a path selfishly. Once

reaching the solution constructed by the players joining one by one, the natural game course induced

by best-response dynamics continues in the second round until a Nash equilibrium is reached. We stress

that in the second round, unlike the first one, a player may play many times. We assume that the arrival

of the players in the first round, as well as the order in which the players play in the second round, is

adversarial. Our model is inspired by the round model considered by Mirrokhni and Vetta [24] to analyze

convergence issues in competitive games.

Our Results: We focus on undirected graphs. For the integral multicast game, we establish an upper

bound of O(
√

n log2 n) on the price of anarchy of the best-response dynamics in the setting where the

players join the game sequentially starting from an “empty” configuration. We then present a lower

bound of Ω( log n
log log n

) on the price of anarchy of this game. It is an interesting open question whether a

polylogarithmic upper bound can be shown in this setting. We also prove that the problem of computing a

Nash equilibrium minimizing Rosenthal’s [28] potential function is NP-hard. It remains an open question

whether a Nash equilibrium of the integral multicast game can be computed in polynomial time. We note

that Fabrikant et al. [8] investigated the complexity of computing a pure Nash equilibrium for the class

of congestion games, where the cost of a facility is a non-decreasing function of the number of its users,

and showed that it is PLS-complete for general network congestion games. However, their proof heavily

depends on the non-decreasing property of the cost sharing mechanism, and therefore does not seem to

hold in our model.

For the fractional multicast game, we prove the existence of a Nash equilibrium by extending Rosenthal’s

potential function. Our main result for this model is that a Nash equilibrium minimizing Rosenthal’s

potential function can be computed in polynomial time using linear programming. This result should

be contrasted with our proof that it is NP-hard to compute an integral Nash equilibrium minimizing

Rosenthal’s potential function. We observe that the fractional Nash equilibrium minimizing the potential

function has a price of anarchy of O(log n).
The results obtained for the fractional model hold also for more general settings, where the cost sharing

mechanisms are cross monotone, which intuitively means that the share of a player on an edge cannot

increase when additional players use it. Furthermore, the results also hold in the setting where there are

multiple sources and each player needs to connect to at least one source. We note that the fact that our

cost sharing mechanism is non-increasing in the number of players using an edge allows us to define a

fractional extension. This does not seem possible with a non-decreasing cost sharing mechanism.

Finally, we consider a weighted extension of the multicast game, where each player has a weight, and

the cost sharing mechanism splits the cost of an edge among its downstream receivers proportionally to

their weights. That is, the cost share of a player for an edge equals the ratio between the player’s weight

and the total weight of all the players using this edge. For this game we prove that a Nash equilibrium

exists in the fractional model. This result should be contrasted with the result of Chen and Roughgarden [6]

who showed that a Nash equilibrium does not necessarily exist in the integral weighted multicast game.
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II. THE MODEL

We model our network by an undirected graph G = (V,E). Let c : E → R+ be a non-negative edge-

cost function, and we denote by ce the cost of edge e ∈ E. There is a special vertex r ∈ V called root (or

source) and a multi-set of n vertices N = {t1, t2, . . . , tn} representing multicast users (also called players

or terminals).

In the integral model, the goal of each user is to choose a single path P connecting it to the root, while

minimizing its payment, which consists of the sum of the payments for the edges along P . A course of

action chosen by player i at any time is called its strategy and is denoted by si. In the integral model,

a strategy of player i is a path connecting ti to the root. The strategy space of player i (i.e., the set of

all its possible strategies) is denoted by Si, and in our integral game, it is the set of all the possible

paths between ti and the root. The space of all the possible strategy profiles is denoted by S, and it is

the Cartesian product of the strategy spaces of all the players, S = S1 × S2 × · · · × Sn. At any given

moment, a strategy profile (or a configuration) of the game s ∈ S is the vector of all the strategies of

the players, s = (s1, . . . , sn). We use s−i to denote vector s without its ith coordinate, and (s−i, s̃i) to

denote the strategy profile identical to s, except that the ith coordinate is replaced by s̃i. Given a strategy

profile s, ci(s) ≡ c(si) denotes the payment of player i (the cost of its path si), and ne(s) denotes the

number of players using edge e. Payment of user i for edge e is denoted by ci
e(s) and is determined by

the cost sharing mechanism. We consider a natural cost sharing mechanism, where the cost of every edge

is split evenly between the players sharing it. Thus, the payment of player i for edge e is ci
e(s) = ce

ne(s)
.

We denote by c(s) the sum of the costs of the edges participating in s (we say that edge e participates

in a strategy profile s, if and only if at least one player chooses a path containing s to connect to the

source). Let H(k) denote the Harmonic number
∑k

j=1
1
j
.

A strategy profile s ∈ S is at Nash equilibrium if no player has an incentive to change its routing

strategy, assuming that the strategies of the other players are fixed. We assume that a player changes its

routing choice if and only if it reduces its payment. A change of strategy by any player is called a Nash

defection and the corresponding player is called Nash defector. We assume that at each step the acting

player chooses a strategy that minimizes the cost of its path, given the strategies of the other players. We

therefore say that at each step the strategy of the current player is a best response to the other players’

strategies. Thus, at Nash equilibrium, the strategy of each player is the best response to the strategy

choices of the other players.

III. THE INTEGRAL MULTICAST GAME

The integral multicast game is a special case of a congestion game, formulated by Rosenthal [28],

who defined a potential function to show that every congestion game possesses a Nash equilibrium. A

congestion model is denoted by Γ = (N,M, (Si)i∈N , (σj)j∈M), where N denotes the set of n players

{1, 2, . . . , n}, and M denotes set of facilities {1, 2, . . . ,m}. For each user i ∈ N , Si is the set of its

possible strategies, where each si ∈ Si is a subset of facilities from M . For each facility j ∈ M , σj ∈ R
n

denotes the payoffs vector of j, where σj(k) is the payoff of each player for using facility j in case

exactly k players use j. Finally, xj(s) denotes the number of players using facility j according to their

strategies defined by the strategy profile s ∈ S. Given a strategy profile s and a facility j, we say that

j ∈ s iff xj(s) > 0.

Rosenthal [28] showed that every congestion game possesses a Nash equilibrium by constructing an

appropriate potential function. Later, Monderer and Shapley [25] characterized the class of finite potential

games, showing that they coincide with the class of congestion games, where each step performed by a

player improving its payoff also decreases (or increases) the value of a global potential function Φ on

the strategy space. Consequently, if Φ admits a minimal (maximal) value in S, then the respective game

possesses a (pure-strategy) equilibrium.

The potential function Φ(s) defined by Rosenthal for the congestion model is the following:
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Φ(s) =
∑

j∈s

( xj(s)∑

k=1

σj(k)

)
.

For completeness, we sketch the proof of the following theorem, presented in [28].

Theorem 1 (Rosenthal [28]): Every congestion game has a pure Nash equilibrium.

Proof: The function Φ is an exact potential for any congestion game. That is, for every i ∈ N , and

every pair of strategy profiles (s−i, si
1) and (s−i, si

2), if ci(s−i, si
1) < ci(s−i, si

2), then

ci(s−i, si
2) − ci(s−i, si

1) = Φ(s−i, si
2) − Φ(s−i, si

1).

In other words, the decrease in the value of the potential function following a Nash defection is equal to

the decrease in the payoff of the respective Nash defector.

For our multicast game, given a strategy profile s, the potential function Φ of [28] is

Φ(s) =
∑

e

( ne(s)∑

k=1

ce

k

)
.

It is easy to see that for every instance of our game, a Nash equilibrium solution is a tree rooted at r
spanning N .

We now analyze the price of anarchy of a multicast game in an undirected graph. We are interested in a

Nash equilibrium that is a consequence of best-response dynamics, where each Nash defector, in its turn,

chooses a path to the source minimizing its payment. Finding such a path can be done in polynomial time

by using a standard shortest path algorithm. Initially, the players join the game one by one starting from

an “empty” configuration and picking a path to the root that minimizes their payment. Once all players

are connected to the root, they continue playing until reaching Nash equilibrium. Note that we assume

that the order by which the players play is adversarial. In Section III-A we establish an upper bound

of O(
√

n log2 n) on the price of anarchy for this game course, and in Section III-B we prove a lower

bound of Ω( log n
log log n

) on the price of anarchy. We also prove that finding a Nash equilibrium minimizing

Rosenthal’s [28] potential function is NP-hard in Section III-C.

A. Upper Bound

In this section we establish an upper bound of O(
√

n log2 n) on the price of anarchy of a Nash

equilibrium obtained from best-response dynamics. Our analysis is performed in two steps. We first

analyze (in Section III-A.1) the first round of the game in which the players connect one-by-one to the

root via a cheapest path. The first round finishes when all players are connected to the root. However,

the configuration reached by the players after the first round is not necessarily a Nash equilibrium. In the

second round, we start from the solution obtained in the first round and follow the natural game course

until a Nash equilibrium is reached. In order to bound the price of anarchy of the strategy profile T
obtained from the first round, we define the notion of a level tree that serves as a basis of reference for

proving the upper bound.

A greedy online Steiner tree [14] is defined as follows. It is the tree obtained when terminals arrive

online one by one. Upon arrival, each terminal connects via a cheapest path to the root, where the path

cost only consist of the costs of the edges that do not currently belong to the tree. Thus, the ith terminal

connects by a cheapest path to the tree induced by the choices of terminals 1, . . . , i − 1. The total cost

of the greedy online Steiner tree is known to be at most a factor of O(log n) away from the cost of an

optimal Steiner tree [14]. We consider the greedy online Steiner tree obtained from the same sequence of

arrivals as in the first round of the game. Our goal is to prove that the cost of the solution obtained by

the selfish moves of the players is related to the cost of the online Steiner tree. We are, however, unable

to show this directly. We overcome this difficulty by first transforming the online Steiner tree to a level
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tree with reduced height using a procedure due to Zelikovsky [34]. The height reduction increases the

cost, but maintains ancestor relationships that are critical for the analysis. We prove that the cost of the

solution obtained from the first round is at most O(
√

n log n) times the cost of an optimal Steiner tree.

We complete our analysis in Section III-A.2. Starting from the solution obtained from the first round,

we follow the natural game course until a Nash equilibrium is reached. The Nash defections performed in

the second round can only decrease the potential function value, and thus we lose at most another factor

of O(log n) with respect to the cost of the solution obtained from the first round.

We paraphrase below the height reduction lemma of Zelikovsky that we need. A bound claimed in [34]

proved to be incorrect and a weaker correct bound is established in [11].

Lemma 3.1: Let T = (V,A) be an in-tree rooted at r ∈ V and let c : A → R+ be a non-negative cost

function on A. Let G = (V,AG) be the transitive closure of T and let c′ : AG → R+ be such that c′(u, v)
is the shortest c-path from u to v in T . Then, given integer h > 1, there exists an in-tree tree T ′ = (V,A′)
in G, where A′ ⊆ AG, of height at most h such that

∑
a∈A′ c′(a) ≤ h · |V |1/h

∑
a∈A c(a).

1) The First Round: We begin by analyzing the first round of the game in which players arrive one by

one and pick a path selfishly. Let the sequence of arrivals of the terminals be t1, t2, . . . , tn (renumber

if necessary), and let T be the resulting solution. We assume that the players start from an empty

configuration. Note that T need not be a tree.

Definition 1: A level tree T ′ on the vertex set {r(= t0), t1, t2, . . . , tn}, with a cost function d : E → R,

is defined to be a tree having the following properties for each terminal ti. (i) For 1 ≤ i ≤ n, the ancestor

of terminal ti in T ′ belong to t0, t1, t2, . . . , ti−1, i.e., terminals that have arrived before ti. (ii) Let t and

ti be two terminals in T ′, such that t is the parent of ti. Then the cost of the edge (ti, t) in T ′, denoted

by d(i), is no less than the cost of the cheapest path between ti and t in G.

Define c(T ′) =
∑n

i=1 d(i). Let T (i) denote the state of T after the arrival of t1, . . . , ti. Let Pi denote

the path chosen by ti to the root r in T . We denote by B(i) the set of new edges that are added to T
when ti joins T (i − 1). Let b(i) =

∑
e∈B(i) ce. Clearly, c(T ) =

∑n
i=1 b(i). Let c(i) be the cost paid by

ti when it joins T . Clearly, c(i) ≥ b(i). Note that in the single round case the cost paid by a player can

only decrease during the round.

Given an edge e, let ne(i) denote the number of paths (terminals) using e in T (i). We use ce(i) to

denote the cost of e as seen by a selfish player in T (i), i.e., ce/ne(i). We use c+
e (i) to denote ce/(ne(i)+1)

which is the cost per player for using edge e if an additional player were to use e in T (i). We define

c+(i) to be
∑

e∈Pi
c+
e (i). The following is immediate.

Fact 3.1: c+(i) ≤ (c(i) − b(i)) + b(i)/2 = c(i) − b(i)/2.

The edge set of T is partitioned by the sets B(i), 1 ≤ i ≤ n. We now show how we charge the cost

of edges in B(i) to d(1), . . . , d(i). Assume that we are given a level tree T ′ rooted at r having height 2.

Let ti1 , . . . , tim be the first level terminals, i.e., the children of r in T ′. The second level terminals are the

children of ti1 , . . . , tim , i.e., leaves of T ′. Denote by A(tij) the children of first level terminal tij .

We first analyze the cost of the edges added to T by the first level terminals.

Lemma 3.2: For the first level terminals,

m∑

j=1

b(ij) ≤
m∑

j=1

c(ij) ≤
m∑

j=1

d(ij).

Proof: By Definition 1, for each first level terminal tij , 1 ≤ j ≤ m, there is a path to the root r of

cost at most d(ij) (without taking into account cost sharing). Therefore, b(ij) ≤ c(ij) ≤ d(ij).
We now analyze the cost of the edges added to T by the second level terminals.

Lemma 3.3: Let tj be a first-level terminal with children tj1 , tj2 , . . . , tjk
in T ′. Then

k∑

i=1

b(ji) ≤ 2c+(j) + 4
k∑

i=1

d(ji).
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Proof: Assume w.l.o.g. that the arrival order is tj1 , tj2 , . . . , tjk
. Consider what happens when tj1

arrives: it can connect to tj , and then connect to the root via the path connecting tj to the root. Hence,

c(j1) ≤ d(j1)+c+(j). Now consider terminal tji
for i > 1. It can connect to tji−1

(paying at most d(ji−1)+
d(ji)), and then follow Pji−1

to the root. Hence, the cost of this path is at most d(ji−1)+d(ji)+ c+(ji−1),
which by Fact 3.1 is at most d(ji−1) + d(ji) + c(ji−1) − b(ji−1)/2. Thus, we have for 1 < i ≤ k,

c(ji) ≤ d(ji−1) + d(ji) + c(ji−1) − b(ji−1)/2.

Adding up the above inequalities, we obtain:

c(jk) +
1

2
(b(j1) + b(j2) + . . . + b(jk−1)) ≤

c+(j) + d(jk) + 2(d(j1) + d(j2) + . . . d(jk−1)).

Since b(jk)/2 ≤ b(jk) ≤ c(jk), we obtain the desired inequality:

k∑

i=1

b(ji) ≤ 2c+(j) + 4
k∑

i=1

d(ji).

We conclude with the next theorem.

Theorem 2: c(T ) ≤ 4c(T ′).
Proof: We combine Lemmas 3.2 and 3.3 and get:

c(T ) =
n∑

i=1

b(i) =
m∑

j=1


b(ij) +

∑

tℓ∈A(tij )

b(ℓ)




≤
m∑

j=1

b(ij) +
m∑

j=1


2c+(ij) +

∑

tℓ∈A(tij )

4d(ℓ)




≤
m∑

j=1

d(ij) +
m∑

j=1


2d(ij) +

∑

tℓ∈A(tij )

4d(ℓ)




≤ 4
n∑

i=1

d(i) ≤ 4c(T ′).

An interesting question is whether the use of level trees which have depth greater than two can lead to

better bounds on the price of anarchy. The difficulty with this approach is that for trees with more than

two levels, a recursive use of Lemma 3.3 is necessary. However, the recursion introduces extra charges,

and it is not clear how to bound them.

2) Completing the Analysis: We first generate the level tree T ′. Note that the greedy online Steiner

tree obtained from the sequence of arrivals of the first round of the game has all the properties required

by a level tree. The difficulty is that the height of the greedy online Steiner tree can be Ω(n). We generate

a new level tree T ′ from the greedy online Steiner tree by applying Lemma 3.1. The transformation

preserves ancestral relationship and thus T ′ remains a level tree, while allowing us to restrict the height

of the tree to be h at the expense of increasing its cost by a factor of h ·n1/h. By choosing h = 2, we get

a two level tree T ′ and cost at most 2
√

n times the cost of the greedy online Steiner tree. As the cost of

a greedy online Steiner tree is within a factor of O(log n) away from the cost of an optimal Steiner tree,

we get that c(T ′) = O(
√

n log n) · c(T ∗), where T ∗ is an optimal Steiner tree. Therefore, by Theorem 2,

c(T ) = O(
√

n log n) · c(T ∗).
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Finally, after reaching the solution T constructed by the terminals in the first round, the natural best

response dynamics are followed in the second round until a Nash equilibrium is reached. It is easy to see

that the value of the potential function of any configuration is at most log n times the total cost of the

edges used in this configuration. Therefore, the potential function value of T is within at most a factor of

O(log n) away from c(T ). The potential function value can only decrease throughout the second round.

As the value of the potential function of a solution is always an upper bound on the cost of the edges

participating in the solution, we get that the price of anarchy of our game is O(
√

n log2 n).
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Fig. 2. (a) Price of anarchy of 2− ǫ. (b) Price of anarchy of Ω( log n

log log n
).

B. Lower Bound

In this section we present an undirected instance in which best-response dynamics converges to a

Nash equilibrium with price of anarchy of Ω( log n
log log n

). We start with a simple example whose price of

anarchy is at least 2 − ǫ. After that we show how to extend the ideas used in this example to show an

Ω(log n/ log log n) lower bound on the price of anarchy.

Let q be a large integer. Our first example is constructed as follows. We start from a root vertex r and

additional vertex u1 connected to the root by a unit-length edge. We now add another unit-length path

from the root to a new vertex u2. The edges and the vertices of this path are as follows. Apart from r
and u2, there are log q vertices v1, . . . , vlog q that are placed between r and u2 in this order, with vertex

v1 adjacent to r. The distance between v1 and r is 1
2
, and for every i > 1, the distance between vi and

vi−1 is 2−i, thus the distance between vlog q and u2 is less than 1
q
. Finally, there is an edge of length 1

q
between u1 and u2.

The idea is as follows. The first q players joining the game are placed on vertex u1. They connect

to r via the unit-length edge (r, u1) and pay 1
q

each. In the next step we place q players on vertex v1.

Naturally, they prefer to connect to r via edge (v1, r) whose cost is 1
2
, instead of connecting via u2 and

u1. Now the cost of the edge (v1, r) becomes 1
2q

. When we place the next q players on vertex v2, they

connect via (v2, v1, r), as the cost of this path is less than 1
4

+ 1
2q

while connecting via u2 and u1 costs

more than 1
4
+ 1

q
. We continue in the same way, placing q users on vertices v3, . . . , vlog q, where the users

placed on vertex vi all connect via path (vi, vi−1, . . . , v1, r). Finally, we place q players on vertex u2, who

also prefer to connect via path (u2, r), as its cost is less than 1
q
. It is easy to see that this configuration is

a Nash equilibrium. The cost of this solution is 2, while the cost of the optimal solution is 1 + 1
q
, which
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is achieved by connecting all the players on path (u2, r) via this path and connecting all the players on

vertex u1 via u2. See Figure III-A.2(a) for the resulting instance.

We now show how to generalize the above construction to obtain the bound of Ω( log n
log log n

) on the price

of anarchy. The basic gadget we use in our construction is a log-division of an edge.

Definition 2: Suppose we have an edge (a, b) of length c. A log-division of this edge is performed by

converting this edge into a path a, v1, v2, . . . , vlog q, b of the same length. The length of the edge (a, v1) is
c
2
, and for each i > 1, the length of edge vi, vi−1 is c

2i . Thus, the length of edge (vlog q, b) is less than c
q
.

A building block of our construction is a path p defined below. We use ℓ = Ω( log q
log log q

) copies of p.

The construction of path p is as follows. We start from an edge (v, u) of length 1. Vertex u is called a

level-1 vertex. We now perform ℓ iterations. In each iteration, we perform a log-division of every edge

e = (w,w′) on path (v, u). When doing this division, the endpoint of e that is closer to v on the path (say,

w) serves as a and the other endpoint (w′) serves as b. For each iteration i, we call the vertices added

to the path in this iteration “level i vertices”. In our construction, we use ℓ copies of path p, denoted

by p1, p2, . . . , pℓ. The endpoints v of these paths are merged together and form the root r. The other

endpoints of the paths are denoted by u1, u2, . . . , uℓ. Finally, for each i, 1 ≤ i < ℓ, we connect each of

the level-1, 2, . . . , i vertices on path pi to the corresponding vertex on path pℓ by an edge of length 2
q
.

The players are added to the game as follows. First we add q players on vertex u1. They connect via

path p1 to the root. Then, we add players on paths p2, . . . , pℓ in this order. For i > 1, we add players on

all the vertices of levels 1, 2, . . . , i belonging to path pi, as well as on vertex ui, in the order by which

the vertices appear on the path starting from the root. See Figure III-A.2(b) for the resulting instance.

Claim 1: For each i : 1 ≤ i ≤ ℓ, for each player α on path pi, α connects to the root r via the subpath

(x, r) of path pi, where x is the vertex on which α lies.

Proof: The proof is by induction on the order in which the players are being added. Let α be some

player lying on vertex x of path pi.

If x is the first vertex on path pi, then it is a level-i vertex. Let z be its closest level-i − 1 vertex.

Player α has two options to connect to the root. One is via the path segment (x, r), and the other is via

the path segment (x, z), and then use the edge connecting z to pℓ whose cost is 2/q (all other options are

clearly more expensive). However, since the costs of (x, r) and (x, z) are the same, the cheaper option is

the path (x, r).
Assume now that x is not the first vertex on path pi. Let y be the vertex lying next to x on the sub-path

of pi connecting x to r. Assume first that x is a level-i vertex. By the induction hypothesis, all the players

that were already added to path pi chose to connect to r via this path. Hence the cost of the segment

(y, r) is currently at most 1/q. Thus, connecting to r via the path (x → y → r) costs at most 1/q plus

the cost of (x, y). The other possibility is to connect to z (the closest vertex of levels 1, . . . , i − 1 lying

on path pi but not on the segment (x, r) of this path), and then use the 2/q-cost edge connecting z to pl.

Since the cost of (x, z) is the same as the cost of (x, y), this is more expensive than connecting via the

(x, r) segment of pi.

Finally, assume that x is a vertex of pi that belongs to one of the levels 1, . . . , i − 1. Again, using the

induction hypothesis, all the players already added to path pi connect via the path pi to the root. Since

the distance from x to the next level-i vertex on the path (x, r) is less than 1/q, it means that the cost of

connecting x to r via the sub-path (x, r) of pi is less than 2/q. The other option would be connecting to

path pℓ using a cost 2/q edge, which is clearly more expensive.

Thus, a Nash equilibrium consists of all paths p1, p2, . . . , pℓ, and its cost equals ℓ. In the optimal solution,

all players are connected via path pℓ. In order to connect some player belonging to path pi, i 6= ℓ, we

use the edge of length 2
q

connecting this player to path pℓ. Note that the total number of players M is

bounded by 2qk, where k is the number of vertices on path pℓ. Clearly, k ≤ (log q)ℓ. Fixing ℓ = log q
log log q

,

we get k ≤ q. The total cost of the optimal solution is less than 1 + 2k
q
≤ 3 and the price of anarchy is

therefore Ω(ℓ) = Ω( log q
log log q

). As M ≤ 2qk ≤ 2q2, the price of anarchy is Ω(ℓ) = Ω( log M
log log M

).
We have thus proved the following theorem.
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Theorem 3: The cost of anarchy in the best-response dynamics of the integral multicast game is at

least Ω(log n/ log log n).

C. Intractability of Optimizing the Potential Function

In this section we prove that finding a Nash equilibrium that minimizes the potential function is NP-hard.

As a building block we use a variation of the Lund-Yannakakis proof [22] of hardness of approximation

for the set cover problem.

The input to the set cover problem is a ground set of elements U and a collection S of subsets of U .

The goal is to choose a minimum cardinality collection of sets in S covering all elements. The reduction

of [22] is performed from the 3SAT problem.

We use a straightforward and standard variation of the construction of [22] to obtain the following

theorem (see, for instance Section 2 in [7], which contains the complete description of the construction

and its analysis).

Theorem 4: Given a 3SAT formula ϕ, an instance of the set cover problem can be constructed in

polynomial time, such that:

• All sets have equal size (denoted by s).

• If ϕ is satisfiable (yes-instance), then there is a solution to the set cover instance that uses X sets,

and each element is covered by exactly one set in this solution.

• If ϕ is not satisfiable (no-instance), then the size of any solution to the set cover instance is at least

αX , where α > 1 is some constant.

In the rest of this section we prove the following theorem:

Theorem 5: The problem of finding a Nash equilibrium of the integral multicast game that minimizes

the potential function is NP-hard.

Proof: Given a 3SAT formula ϕ, we first construct a set cover instance as in Theorem 4, and then

create an integral multicast game based on this instance, as follows. There is a vertex for each set and

each element in the set cover problem, and additionally we have a special vertex r. The players are the

vertices that represent the elements. Each vertex representing a set is connected to r with a unit-length

edge. Each vertex representing some element i is connected to a vertex representing set S if and only

if i ∈S. The length of the edge is a large integer q, which will ensure that each user (element) chooses

a path that contains only one such edge (i.e., connects via a set to which it belongs). Let N denote the

total number of users (elements) in the above example. It is enough to choose q ≥ N .

Suppose ϕ is a yes-instance. Then there is a solution S ′ of size X to the set cover instance. This

solution naturally induces a Nash equilibrium in our game, where each element connects to the set that

covers it in S ′ and all the sets in S ′ are connected to the root. Observe that there are exactly s users on

every edge that connects some set in S ′ to the root. The value of the potential function in this solution

is qN + X · H(s).
Assume now that ϕ is a no-instance and suppose we are given some Nash equilibrium. This Nash

equilibrium defines a solution to the set cover instance, since each element has to connect to one of the

sets to which it belongs. However, the number of sets used in this solution is at least αX , and some of

the edges connecting these sets to the root are used by less than s users. Thus, the value of the potential

function in this solution is strictly greater than qN + X · H(s).
As determining whether a given 3SAT formula is satisfiable is NP-hard, it is NP-hard to find a Nash

equilibrium minimizing the value of the potential function.

IV. THE FRACTIONAL MULTICAST GAME

In this section we introduce a fractional model of the multicast game, where each user is allowed to split

(fractionally) its connection to the source into several paths. The fractional model represents a splittable

multicast model. While one unit of flow can be sent fractionally by the source to each user, the data (i.e.,
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a flow fraction) is sent once on each edge of the multicast topology, independently from the number of

its users. In the sequel we discuss how to efficiently implement this via network coding.

The cost of each flow fraction on an edge is evenly split between its users. Thus, the total cost of

the flow on an edge is simply the cost of the flow fraction sent on that edge. We present our results for

undirected graphs, yet they hold for directed graphs as well. In the fractional model, each user i has to

route one unit of flow from ti to the source r. User i can split its unit of flow among any number of

paths connecting r to ti. Denote the flow of user i on edge e by fe,i and the number of users on edge e
by ne. Given a strategy profile s, assume without loss of generality that fe,1 ≤ fe,2 ≤ · · · ≤ fe,ne

≤ 1.

Define fe,0 = 0. Edge e has capacity equal to fe,ne
, and for convenience we think of the capacity of e as

defining an “address space” in the range [0, fe,ne
], where user j uses [0, fe,j]. The cost of each fraction of

the capacity of e is equally split between its users, as follows: [fe,j−1, fe,j] is shared by ne − j + 1 users,

where each user pays ce
fe,j−fe,j−1

ne−j+1
. Therefore, the total cost ci

e paid by user i for the use of edge e is:

ci
e = ce ·

i∑

k=1

fe,k − fe,k−1

ne − k + 1
.

As the total flow fraction sent on edge e is fe,ne
, the total cost of the edge is simply ce · fe,ne

.

We denote by P i the set of paths used by user i. The cost of a path p ∈ P i is the sum of its edge

costs, that is
∑

e∈p ci
e. The total cost ci of a user i is the sum of its path costs, that is

∑
p∈P i

∑
e∈p ci

e.

Each user i aims to establish its flow from the source r to ti so as to minimize its cost. Thus, a flow f
is at Nash equilibrium if no user has any incentive of changing its flow to the root. An instance of the

fractional model, consisting of a graph G, a source r, a set of receivers N , and a cost vector c is denoted

by frac(G, r,N, c). We introduce a potential function Φ for the fractional multicast game which is based

on Rosenthal’s potential function [28], as follows:

Φ =
∑

e∈s

( ne(s)∑

j=1

ne+1−j∑

i=1

ce
fe,j − fe,j−1

i

)
.

The proof of the next theorem follows from the proof of Rosenthal’s potential function [28].

Theorem 6: The potential fuction Φ is an exact potential for the fractional multicast game. That is,

for every k ∈ N , and every pair of strategy profiles (s−k, sk
1) and (s−k, sk

2), if ck(s−k, sk
1) < ck(s−k, sk

2),
where ck denotes the total cost of user k, then

ck(s−k, sk
2) − ck(s−k, sk

1) = Φ(s−k, sk
2) − Φ(s−k, sk

1).

The proof of Theorem 6 appears in Appendix A1. As a fractional flow configuration defining a local

minimum of the potential function constitutes a Nash equilibrium, we get:

Theorem 7: A Nash equilibrium exists for every instance frac(G, r,N, c).

We now explain how a fractional solution can be implemented via network coding. A Nash equilibrium

configuration determines a directed flow network (note that if an edge is used in both directions, then it

should be replaced by two directed edges). We define the capacity of a cut separating r from a terminal

ti ∈ N as the sum of the capacities of the forward edges in the cut, where the capacity of edge e is fe,ne
.

By allowing each user i to split its connection to r as described above, it follows that the capacity of any

cut separating r from ti ∈ N is at least 1. Koetter and Medard [18] (see also [3], [21]) showed that the

transmission rate of a fractional multicast transmission is bounded by the capacity of the minimum cut

(taken over all i) separating r from ti ∈ N , and this bound is tight. This means that in our case, where

the capacity of the minimum cut is at least 1, the transmission rate is the same as in a tree. Therefore, a

Nash equilibrium of the fractional game is a stable operating point, where the users share the cost of a

solution achieving the minimum cut property and no player can unilaterally reduce its cost by changing

its strategy.
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A. Computing a Minimum Potential Nash Equilibrium

We proceed to describe how a Nash equilibrium of the fractional game can be computed in polynomial

time using linear programming. Moreover, the computed Nash equilibrium minimizes the potential function

Φ. Compare that with the hardness of finding an integral solution minimizing the potential function. In

addition, as shown later, the minimum potential Nash equilibrium is within a factor of O(log n) away

from the cost of an optimal fractional Steiner tree.

Given an instance frac(G, r,N, c), we create a new graph G′ = (V,E ′) by replacing each edge e by

n copies e1, e2, . . . , en. The cost of a unit flow on edge ej is ce/j. For a path p from ti to r in G′, we

denote by f i
p the amount of flow of commodity i sent on it. Note that different paths can use an edge in

opposite directions.

We formulate a linear program with an objective function that is equal to the potential of the fractional

multicast game. The variables of the linear program are the flows of the users sent on the set of paths in

G′ from the terminals t1, . . . , tn to the root r, and the capacities of the edges in E ′. Denote a path from

ti to r by ti  r. The capacity of edge ej is denoted by xej
, where 0 ≤ xej

≤ 1. The linear program is

as follows.

minimize
∑

e∈E

n∑

j=1

( j∑

i=1

ce · xej

i

)
s.t.

For each commodity i:
∑

p:ti r

f i
p ≥ 1 (1)

For each edge e, copy j, commodity i:
∑

p:ti r|ej∈p

f i
p ≤ xej

(2)

For each edge e, copy j:

n∑

i=1

∑

p:ti r|ej∈p

f i
p = j · xej

(3)

0 ≤ xej
≤ 1, f i

p ≥ 0 (4)

The total flow of user i, summed up over all paths from ti to r, is at least 1 (Constraint (1)). Constraint

(2), the non-aggregating flow constraint, restricts the flow of each user i on edge ej to be at most its

capacity xej
. The total flow, taken over all commodities on edge ej , is constrained to be precisely j · xej

,

as restricted by Constraint (3), the aggregating flow constraint. This constraint is satisfied in the integral

case: if j commodities are sent on edge e, then edge ej is “bought”, and the number of users on this edge

is j. The sum of the costs of the commodities on ej is then exactly ce.

Note that the above linear program uses an exponential number of variables. However, it can be solved

in polynomial time via the dual program using the Ellipsoid algorithm. Alternatively, it can be formulated

with a polynomial number of variables by using the flows of the users on the different edges in G′ as

variables.

1) Characterizing an Optimal Solution: We say that a flow f on instance G′ is canonical if it has, for

every edge e ∈ E, the following structure. Denote by fe,j the sum of the flows of user j on all copies

of e (fe,j =
∑n

k=1

∑
p:tj r|ek∈p f j

p ). Suppose that without loss of generality fe,1 ≤ fe,2 ≤ · · · ≤ fe,ne
≤ 1,

where ne denotes the number of users with positive flow. Then, the flows routed on ene
, . . . , e2, e1 are

fe,1, (fe,2 − fe,1), . . . , (fe,j − fe,j−1), . . . , (fe,ne
− fe,ne−1), respectively, and the non-aggregating flow on

copies ei for i ≥ ne +1 is zero. Notice that there is a one-to-one correspondence between canonical flows

in the instance G′ and fractional multicast flows in G. We now turn to prove that there exists a canonical

flow minimizing the potential function.

Let f be the output flow of the linear program. We first consider the flow fek
on each copy ek of edge

e, and rearrange it to be a canonical flow. Then, we merge these resulting canonical flows into a single
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canonical flow on e. These two steps are performed for each edge e ∈ E. We show that the resulting

potential of the new (canonical) flow is not larger than the potential of the original flow f .

Lemma 4.1: Consider edge ek ∈ E ′, 1 ≤ k ≤ n. There exists a canonical flow on ek with potential

value not greater than that of the original flow on ek.

Proof: Without loss of generality, suppose that fek,1 < fek,2 < · · · < fek,ℓ are the different amounts

of flow routed on ek by the users, where fek,ℓ = xek
. For ease of notation, we denote this ordering as

f1 < f2 < · · · < fℓ, where fℓ = xek
. Assume that the number of users routing a flow value ≤ fi is ki,

and thus k1 > k2 > · · · > kℓ. We rearrange the flow fek
to be a canonical flow by sending each amount

of flow to its proper edge copy, i.e. by “buying” capacity f1 on edge ek1 , capacity (f2 − f1) on edge ek2 ,

etc.

The potential of the resulting canonical flow derived from fek
is thus

ce

ℓ∑

i=1

ki∑

j=1

fi − fi−1

j
= ce

ℓ∑

i=1

(fi − fi−1)H(ki),

where f0 = 0. On the other hand, the potential of the original flow on ek is

ce

k∑

i=1

xek

i
= ce · H(k)xek

= ce · H(k)fℓ.

The total flow on ek is constrained to be k · xek
= k · fℓ (Constraint (3)), which is equal to the total

canonical flow derived from fek
, and thus

k · fℓ =
ℓ∑

i=1

ki(fi − fi−1).

Since 0 ≤ (fi−fi−1)
fℓ

≤ 1 and
∑ℓ

i=1
(fi−fi−1)

fℓ
= 1, by Jensen’s inequality,

ℓ∑

i=1

H(ki)
fi − fi−1

fℓ

≤ H

( ℓ∑

i=1

ki ·
fi − fi−1

fℓ

)
= H(k),

and thus
∑ℓ

i=1 H(ki)(fi − fi−1) ≤ H(k)fℓ.

Lemma 4.2: Consider edge e ∈ E and two canonical flows fe and f ′
e. Then fe and f ′

e can be added up

yielding a canonical flow with potential value not greater than the sum of the potentials of fe and f ′
e.

Proof: Consider two canonical flows f and f ′, and assume that their respective flows on ek are xk

and x′
k. That is, xk (resp., x′

k) is the amount of flow routed by each player using ek according to f (resp.,

f ′). We denote by Gk and G′
k the sets of players that use ek according to f and f ′ respectively, where

|Gk| = |G′
k| = k. Assume, without loss of generality that x′

k ≥ xk. By merging these two flows into a

single canonical flow, we “buy” capacity xk on copy |Gk ∪G′
k| of edge e, capacity (x′

k − xk) on ek, and

capacity xk on copy |Gk ∩ G′
k| of edge e. We thus get a new canonical flow with potential

H(|Gk ∪ G′
k|)xk + H(k)(x′

k − xk) + H(|Gk ∩ G′
k|)xk.

On the other hand, the sum of potentials of the original flows on ek is H(k)xk + H(k)x′
k. As

2H(k) ≥ H(|Gk ∪ G′
k|) + H(|Gk ∩ G′

k|),
we get that the potential of the new canonical flow is not larger than the sum of potentials of the original

flows.

In case Gk 6= G′
k, the potential of the new canonical flow is strictly less than the sum of the potentials

of the original canonical flows. In this case, capacity has to be bought on other copies of e except for ek,

and thus other merging steps should be performed for each such copy. As each such step strictly decreases
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the potential, the merging process is finite.

Theorem 8: There exists an optimal solution to the linear program which is a canonical flow.

Proof: Let f be the output flow of the linear program. As f is a flow of minimum potential, it is

either canonical, or can be easily rearranged as such by performing the two steps described by Lemmas

4.1 and 4.2 on all copies of each edge e.

The linear program presented for computing the minimum potential Nash equilibrium of the fractional

model can be used for more general settings, not necessarily egalitarian, where the cost sharing mechanisms

are cross-monotonic, i.e. the cost functions are non-increasing in the number of users. Furthermore, it can

also be used for settings where the users are not restricted to have a common source. Recall that finding

an integral solution with minimum potential is NP-hard.

There are instances for which there is a gap between the minimum potential fractional Nash equilibrium

and the minimum potential integral Nash equilibrium. Consider Figure 3, which depicts an instance

(G, r, {t1, t2, t3}, c), for which the minimum potential fractional Nash equilibrium is smaller than the

minimum potential integral Nash equilibrium. The edge costs are as follows: the cost of each edge (r, vi)
(i = 1, 2, 3) is x, and the cost of each edge from vi to the terminals connected to it is q ≫ x. The

fractional Nash equilibrium that minimizes the potential is as follows: each terminal ti sends 1/2 unit of

flow through each of the two vertices vj (j = 1, 2, 3) connecting it to r. Therefore, the fractional potential

is Φfrac = 3x/2(1 + 1/2) + 6q/2 = 9x/4 + 3q. On the other hand, the integral Nash equilibrium that

minimizes the potential is as follows: two out of the three terminals send their flow through the same

vertex vi to r, and the third terminal sends its flow through one out of the other two vertices vj connecting

it to r. Therefore, the integral potential is Φint = x(1 + 1/2) + x + 3q = 10x/4 + 3q.

x xx

M
M

MM
M

M

v0

t1

v1 v2 v3

t2 t3

Fig. 3. Instance in which the minimum potential fractional Nash equilibrium is smaller than the minimum potential integral Nash equilibrium.

We define the price of anarchy of the fractional game as the ratio between the cost of a Nash equilibrium

solution and the cost of an optimal fractional solution to the Steiner tree problem.

We show that the price of anarchy of a minimum potential fractional Nash equilibrium solution is

O(log n). This follows since this solution has potential that is not higher than the potential of an optimal

fractional Steiner tree, and the potential of a solution is within at most a factor of O(log n) away from

its cost. Also, note that the potential of a solution is an upper bound on its cost.

More formally, for any fractional solution T , let Φ(T ) denote the value of its potential function and let

C(T ) denote the total cost of edges participating in T . We denote by TNash the fractional Nash equilibrium

tree with minimum potential, and by TSteiner the fractional optimal Steiner tree. We get that

C(TNash) ≤ Φ(TNash) ≤ Φ(TSteiner) ≤ log n · C(TSteiner).

The first and third inequalities follow from the properties of the potential function, where each fraction

of flow fe,j on an edge e is multiplied by 1 ≤ H(k) ≤ log n, and k, 1 ≤ k ≤ n, is the number of users
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generating this flow fraction. The second inequality follows from the fact that the potential value of TNash
is minimal.

We observe that the Ω( log n
log log n

) lower bound on the price of anarchy for the integral model holds also

for the fractional model. That is, the ratio of the cost of some Nash equilibrium (not necessarily the one

that minimizes the potential function) and the Steiner tree cost can be as large as Ω( log n
log log n

).

B. The Weighted Fractional Multicast Game

We consider a weighted extension of our multicast game, where each user i is associated with a positive

weight wi. The payment of each player is proportional to its weight. Let Wj =
∑j

i=1 wi. Given a flow

vector f , let fe,i denote the flow of user i on e and let ne be the number of users with non-zero flow

on e. Assume that the users are numbered such that 0 = fe,0 < fe,1 ≤ fe,2 ≤ . . . ≤ fe,ne
. Consider some

j ≤ ne. User j shares the capacity fe,1 with users 1 to ne, shares fe,2 − fe,1 with users 2 to ne and so

on. The payment for any share is in proportion to weights. Hence, for the capacity fe,1, user j ≤ ne pays

ce · fe,1 · wj/Wne
. Thus the overall cost paid by j ≤ ne on edge e is

ce · wj ·
j∑

i=1

fe,i − fe,i−1

Wne
− Wi−1

.

The overall payment of a user is the sum of its payments for the flow fractions it uses on all edges in all

its paths. Each user j aims to establish its flow from the source r to tj so as to minimize its cost. Thus,

a flow f is at Nash equilibrium if no user has an incentive to change its flow.

An instance of the weighted fractional model, consisting of a graph G, a source r, a set of receivers N
with weight vector w, and a cost vector c is denoted by frac(G, r,N, c, w). The proof of the following

theorem uses Kakutani’s fixed point theorem [17], and appears in Section A2 of the Appendix.

Theorem 9: A Nash equilibrium (in pure strategies) exists for every instance frac(G, r,N, c, w).
This theorem should be contrasted with the result of Chen and Roughgarden [6] who showed that a

Nash equilibrium does not necessarily exist in the integral weighted multicast game.
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APPENDIX

A1. PROOF OF THEOREM 6

Theorem 6. The potential fuction Φ is an exact potential for the fractional multicast game. That is, for

every k ∈ N , and every pair of strategy profiles (s−k, sk
1) and (s−k, sk

2), if ck(s−k, sk
1) < ck(s−k, sk

2), where

ck denotes the total cost of user k, then

ck(s−k, sk
2) − ck(s−k, sk

1) = Φ(s−k, sk
2) − Φ(s−k, sk

1).

Proof:

Consider a player k ∈ N and strategies s−k ∈ S−k, and sk, (sk)∗ ∈ Sk such that ck(s−k, (sk)∗) <
ck(s−k, sk). We denote by s and s∗ the strategy profiles (s−k, sk) and (s−k, (sk)∗) respectively, and by

ne and n∗
e the number of players using edge e according to the strategy profiles s and s∗ respectively.

As before, we generate an ordering fe,1 ≤ fe,2 ≤ · · · ≤ fe,ne
≤ 1 on the flow fe routed by the ne users

on e according to s and an ordering f ∗
e,1 ≤ f ∗

e,2 ≤ f ∗
e,n∗

e
≤ 1 on the flow f ∗

e routed by the n∗
e users on

e according to s∗. We assume that fe,0 = f ∗
e,0 = 0. We denote by fk

e and (fk
e )∗ the flow of user k on

edge e according to strategies sk and (sk)∗ respectively. Assuming fk
e > 0, ike denotes the index of user

k’s flow on edge e according to this ordering, otherwise ike = 0. Similarly, (ike)
∗ is the index of user k’s

flow on edge e assuming (fk
e )∗ > 0, and equals 0 otherwise. We now compare the total cost ck of user k

according to s and the corresponding cost (ck)∗ according to s∗:

(ck)∗ =
∑

e∈(sk)∗

( (ike )∗∑

j=1

ce ·
f ∗

e,j − f ∗
e,j−1

n∗
e + 1 − j

)
(1)

<
∑

e∈sk

( ike∑

j=1

ce ·
fe,j − fe,j−1

ne + 1 − j

)
= ck.
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... ...
fl−1 fl fik−1 fik fik+1

f ∗
(ik)∗−1

f ∗
(ik)∗ f ∗

(ik)∗+1 f ∗
m∗ f ∗

m∗+1

Fig. 4. Flow on edge e in case fk
e > (fk

e )∗ (for simplicity, subscripts of e are omitted).

... ...
fik−1 fik fik+1 fm fm+1

f ∗
l∗−1 f ∗

l∗
f ∗

(ik)∗−1
f ∗

(ik)∗ f ∗
(ik)∗+1

Fig. 5. Flow on edge e in case fk
e < (fk

e )∗ (for simplicity, subscripts of e are omitted).

We can split each sum on both sides of the above inequality to two sums, one sum describing the flows

that are equal according to (s−k, sk) and (s−k, (sk)∗), and the other sum describing the flows that differ

according to these two strategy profiles. We thus remain with the differing flows:

∑

{e|fk
e <(fk

e )∗}

ce ·
(

f ∗
e,l∗e

− fe,ike

n∗
e + 1 − l∗e

+

(ike )∗∑

j=l∗e+1

f ∗
e,j − f ∗

e,j−1

n∗
e + 1 − j

)
(2)

<
∑

{e|fk
e >(fk

e )∗}

ce ·
(

fe,le − f ∗
e,(ike )∗

ne + 1 − le
+

ike∑

j=le+1

fe,j − fe,j−1

ne + 1 − j

)

where, for fk
e > (fk

e )∗, le is the index of the flow for which fe,le = f ∗
e,(ike )∗+1

according to the ordering of

fe, while for fk
e < (fk

e )∗, l∗e is the index of the flow for which f ∗
e,l∗e

= fe,ike+1 according to the ordering of

f ∗
e (see Figures 4 and 5).

Note that, for an edge e where fk
e = fe,ike

< f∗
e,(ike )∗

= (fk
e )∗, it holds that the number of users using each

segment in the range [fe,ike
, f ∗

e,(ike )∗
] according to the ordering of f ∗

e is larger by one than the number of

users using each segment in this range according to the ordering of fe, as user k is the only user changing

its flow. We thus get:

∑

{e|fk
e <(fk

e )∗}

ce ·
( me∑

j=ike+1

fe,j − fe,j−1

ne + 2 − j
+

f ∗
e,(ike )∗

− fe,me

ne + 2 − (me + 1)

)
(3)

<
∑

{e|fk
e >(fk

e )∗}

ce ·
(

fe,le − f ∗
e,(ike )∗

ne + 1 − le
+

ike∑

j=le+1

fe,j − fe,j−1

ne + 1 − j

)
,

where for fk
e < (fk

e )∗, me is the index of the flow for which fe,me
= f ∗

e,(ike )∗−1
(see Figure 5).

We now compare the potential Φ(s) with the potential Φ(s∗).
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Φ(s∗) =
∑

e∈s∗

( n∗

e∑

j=1

n∗

e+1−j∑

i=1

ce

f ∗
e,j − f ∗

e,j−1

i

)
(4)

=
∑

e∈s

( ne∑

j=1

ne+1−j∑

i=1

ce
fe,i − fe,i−1

i

)
+

∑

{e|fk
e <(fk

e )∗}

ce ·
( me∑

j=ike+1

fe,j − fe,j−1

ne + 2 − j
+

f ∗
e,(ike )∗

− fe,me

ne + 2 − (me + 1)

)
−

∑

{e|fk
e >(fk

e )∗}

ce ·
(

fe,le − f ∗
e,(ike )∗

ne + 1 − le
+

ike∑

j=le+1

fe,j − fe,j−1

ne + 1 − j

)

<
∑

e∈s

( ne∑

j=1

ne+1−j∑

i=1

ce
fe,j − fe,j−1

i

)
= Φ(s)

Therefore, it follows that ck − (ck)∗ = Φ(s) − Φ(s∗).

A2. PROOF OF THEOREM 9

Theorem 9. A Nash equilibrium exists for every instance frac(G, r,N, c, w).

For each player i we define a best reply correspondence Ψi from S to Si as follows. For any s ∈ S, let

Ψi(s) = {si ∈ Si|ci(s−i, si) ≥ ci(s−i, s̃i) for every s̃i ∈ Si}.
Each set Sj consists of player j’s possible flow patterns from r to dj . Thus, it is nonempty, compact

(finite and closed), and convex. It follows that the set S is a compact and convex subset of Euclidian

space, since each Sj is such.

By definition, Ψi(s) is the set of strategies that minimizes i’s cost given the strategies of the other

players prescribed by s. According to the definition of our model, this set is nonempty as it represents

user i’s minimum cost sets of paths, given the flow pattern of the other users.

We prove the existence of a Nash equilibrium for every instance of a fractional multicast game. In

order to establish the proof, we first consider several properties of Ψi. We show that the correspondence

Ψi is convex-valued and upper hemicontinuous.

Lemma 1.1: The correspondence Ψi is convex-valued.

Proof: We prove that, given two strategies si
1, s

i
2 ∈ Ψi(s), then (αsi

1 + (1 − α)si
2) ∈ Ψi(s), where

0 ≤ α ≤ 1. Note that a strategy defined by αsi consists of the flow pattern characterized by si, but instead

of routing a flow of f i
e on an edge e, user i now routes a flow of αf i

e on e. As si
1, s

i
2 are best strategies

of i given s−i, it follows that ci(s−i, si
1) = ci(s−i, si

2) = ci
min(s

−i), where ci
min(s

−i) denotes the cost of

the minimum cost flow pattern of i given the flow patterns s−i of all other users. We thus have to prove

that this is also the cost of the strategy defined by (αsi
1 + (1 − α)si

2).
We show that, given s−i, the cost of a flow f i

e of user i on edge e is a convex function. Denote by ne

the number of users using e, and generate the ordering fe,1 ≤ fe,2 ≤ · · · ≤ fe,j−1 ≤ fe,j ≤ · · · ≤ fe,ne
on

the flow routed by the ne users on e as defined by s−i. Define fe,0 = 0. Denote by W(fe,j−fe,j−1) the total

weight of the ne − j + 1 players using the flow fraction [fe,j−1, fe,j]. Clearly, Wfe,1 ≥ W(fe,2−fe,1) ≥ · · · ≥
W(fe,j−fe,j−1) ≥ · · · ≥ W(fe,ne−fe,ne−1) (in case fe,j−1 = fe,j we define W(fe,j−fe,j−1) = W(fe,j−1−fe,j−2)).

Now, assume that user i wants to use edge e as well. The cost of each possible fraction of i’s flow on e
is described by Figure 6, and its total cost for routing an f i

e-value flow on e is described by Figure 7.
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... ... ...

ce·wi

Wfe,1
+wi

ce·wi

W(fe,2−fe,1)+wi

ce·wi

W(fe,j−fe,j−1)+wi

ce·wi

W(fe,ne−fe,ne−1)+wi

ce

f1 f2 fj−1 fj fne−1 fne 1

Fig. 6. Cost of each possible fraction of i’s flow on edge e.

... ...

...

...
ce ·

∑j
k=1

(fk−fk−1)·wi

W(fe,k−fe,k−1)+wi

ci
e

f1 f2 fj−1 fj fne−1 fne 1 f i
e

Fig. 7. Total cost of a flow of value f i
e routed by i on edge e.

Clearly, the cost of user i’s flow f i
e on edge e, denoted by ci

e(f
−i
e , f i

e), is a convex function, as for

each flow fraction (fj+1 − fj) the slope of the function is bigger than its slope for the previous fraction

(fj − fj−1). We denote by (f i
e)1, (f

i
e)2 the respective flows of i on edge e as defined by the strategies

si
1, s

i
2 ∈ Ψi(s). Therefore, it holds that

ci
e(f

−i
e , α(f i

e)1 + (1 − α)(f i
e)2) ≤ αci

e(f
−i
e , (f i

e)1) + (1 − α)ci
e(f

−i
e , (f i

e)2).

Thus, the same holds also for the total cost of i with respect to strategy (αsi
1 + (1 − α)si

2), namely:

ci(s−i, αsi
1 + (1 − α)si

2) ≤ αci(s−i, si
1) + (1 − α)ci(s−i, si

2)
= ci

min(s
−i),
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which implies that (αsi
1 + (1 − α)si

2) ∈ Ψi(s), completing the proof of lemma 1.1.

Lemma 1.2: The correspondence Ψi is upper hemicontinuous.

Proof: We consider a sequence sr in S converging to s, and a sequence si
r in Si converging to si,

where si
r ∈ Ψi(sr) for every r. To show that Ψi is upper hemicontinuous, we prove that si ∈ Ψi(s).

We take r to be sufficiently large, so that sr differs from sr−1 by a routing change of an ǫ-value flow.

That is, sr is obtained from sr−1 if user j reroutes an ǫ-value of its flow on path pj
1 to another path pj

2.

According to the way we defined the users’ costs on an edge, the change of j’s flow pattern can only

reduce the cost of an ǫ-value of the flow on each edge in pj
2, and increase the cost of an ǫ-value of the

flow on each edge in pj
1, for all players using this ǫ-value flow on the edges in pj

2 and pj
1 respectively.

Claim 2: An addition of an ǫ-value flow to an edge e can cause user i to change the routing of

no more than an ǫ-value of its flow. Equivalently, the same holds for a deduction of an ǫ-value

flow from an edge e.

Proof: In case of the addition of an ǫ-value flow to edge e, only the fractional cost of an

ǫ-value of flow on e is reduced for user i, and all other flow costs remain the same. Therefore,

any change in i’s best reply involving a δ-value of i’s flow, where δ > ǫ, implies that the cost

of a (δ − ǫ)-value of user i’s flow could have been reduced prior to the flow addition on e.

Equivalently, the same holds in case of a deduction of an ǫ-value flow from edge e. In this

case, only the fractional cost of an ǫ-value of flow on e is increased.

Following the change of j’s flow pattern, the most significant change in si
r compared to si

r−1 would be

if i was to reroute a value of 2ǫ of its flow to different paths: an ǫ-value rerouted from a set of paths,

each containing an edge in pj
2 (where its cost was increased); and an ǫ-value rerouted to a set of paths,

each containing another edge in pj
2 (where its cost was reduced). Denoting the number of edges in G by

|E| = m, i would therefore reroute no more than a (2m · ǫ)-value of its flow.

We denote by d(x, y) the distance between two vectors x, y in an Euclidian space R
k. In our context, a

flow vector is in S. Thus, for every ǫ > 0, there is an index R such that r ≥ R implies that d(si
r, s

i) < ǫ
and d(sr, s) < ǫ, where si

r ∈ Ψi(sr). From the continuity property of Ψi(sr) shown above, it follows that

si ∈ Ψi(s).
We prove the existence of a Nash equilibrium using Kakutani’s Fixed Point Theorem [17]:

Theorem 10 (Kakutani): If T is a nonempty, compact, and convex subset of an Euclidian space, and

Ψ is an upper hemicontinuous, nonempty, and convex-valued correspondence from T to T , then Ψ has a

fixed point, that is, there is an x ∈ T such that x ∈ Ψ(x).
We now finish the proof of Theorem 9.

Proof: We define a correspondence Ψ from S to S by

Ψ(s) = Ψ1(s) × · · · × Ψn(s).

As shown before, the set S is a compact and convex subset of the Euclidian space. The correspondence

Ψ is upper hemicontinuous, nonempty, and convex-valued, since so is each Ψi, as shown in lemmas 1.1

and 1.2. Thus, by Kakutani’s Fixed Point Theorem, there is a fixed point s ∈ Ψ(s). It is easy to see that

such a fixed point s of Ψ is a Nash equilibrium of Γ, as for each player i, its strategy prescribed by s
minimizes its cost given the strategies of the other players prescribed by s.




