
Non-cooperative, Semi-cooperative, and Cooperative Games-based Grid

Resource Allocation

Samee Ullah Khan and Ishfaq Ahmad
Department of Computer Science and Engineering

University of Texas at Arlington, TX-76019, U.S.A.
{sakhan, iahmad}@cse.uta.edu

Abstract

In this paper we consider, compare and analyze

three game theoretical Grid resource allocation

mechanisms. Namely, 1) the non-cooperative sealed-bid

method where tasks are auctioned off to the highest

bidder, 2) the semi-cooperative n-round sealed-bid

method in which each site delegate its work to others if it

cannot perform the work itself, and 3) the cooperative

method in which all of the sites deliberate with one

another to execute all the tasks as efficiently as possible.

To experimentally evaluate the above mentioned

techniques, we perform extensive simulation studies that

effectively encapsulate the task and machine

heterogeneity. The tasks are assumed to be independent

and bear multiple execution time deadlines. The

simulation model is built around a hierarchical Grid

infrastructure where machines are abstracted into larger

computing centers labeled “federations,” each of which

are responsible for managing their own resources

independently. These federations are then linked together

with a primary portal to which Grid tasks would be

submitted. To measure the effectiveness of these game

theoretical techniques, the recorded performance is

evaluated against a conventional baseline method in

which tasks are randomly assigned to the sites without

any task execution guarantee.

1. Introduction

Computational Grids provide transparent access to

large-scale distributed computational resources and lend

themselves, by their size and geographic distribution, to

the creation of federations for sharing and aggregating

large repertoire of resources [11], [14]. These grids

consist of heterogeneous resources (PCs, workstations,

clusters and supercomputers), with varying resource

management requirements (single system image OS,

queuing systems, etc.). The resource management systems

for such grids should provide mechanisms and tools that

facilitate the realization of the goals of both resource

owners and users. Most of the existing work on resource

management and scheduling problems in grids adopts a

conventional style where a scheduling component decides

which jobs are to be executed at which site based on

certain cost functions (AppLeS [3], Netsolve [6], Legion

[9]). Such cost functions are often driven by system-

centric parameters that enhance system throughput and

utilization rather than improving the utility of application

processing.

This paper presents agent-based game theoretic

resource management techniques, classified as

cooperative, semi-cooperative and non-cooperative

games. Using game theory, the behavior of these agents

can be tailored to provide profitable contracts to the

various federations of the grid, and, therefore, can

provide allocation with a reasonable amount of

processing and communications overhead. Within each

federation care must be taken to ensure that the federation

as a whole operates profitably. The individual resources

that compose the federation also have their particular

interests (i.e. some sites may not wish to execute jobs).

Thus, the need to accommodate the wishes of the

individual resources and the need of the federation as a

whole to turn a profit must be balanced out.

The rules of resource management must decide

whether the individuals are free to cater for their own

interests or they have the option of planning as a group in

advance of choosing their actions. This leads to the main

question of whether or not the gaming mechanism

involves cooperation. This paper seeks to find answers to

these questions by proposing and comparing cooperative

and non-cooperative gaming mechanism, using

theoretical and experimental framework. The results are

not surprising but the study highlights the pros and cons

of each approach, describing as to how to best optimize

the system resources. The main highlights of this paper

are:

An economic model for grid environments: In this

model an agent represents a grid site (or machine) and

1-4244-0054-6/06/$20.00 ©2006 IEEE

thus has the knowledge of the available computational

resources, such as, CPU, memory, I/O, etc. Based on this

information the agents compete individually or

collectively to execute user submitted tasks.

Hierarchical policies for resource management in

grid environments: The hierarchical resource

management mechanism is a three-tier computational

model. At the top level is the global portal to which the

tasks are submitted to be executed by the Grid. This top

level is a control structure for the middle-level

federations, which are composed of individual sites. The

proposed architecture has various advantages, such as

ease of maintenance, decentralized control and fault

tolerance. This approach is also analogous to many real

life examples and consumer models, e.g. food chain

models [7].

Gaming mechanisms for grid resource

management: The paper proposes three game theoretical

mechanisms for resource management: (a) A non-

cooperative gaming mechanism where every site

competes to maximize its profit without having the option

for cooperation; (b) A cooperative method in which all of

the sites deliberate with one another to execute all the

tasks as efficiently as possible (each site negotiates with

the other sites to maximize the profit of the group as a

whole); (c) A semi-cooperative method in which each site

tries to delegate its work to others in a limited fashion. All

three methods are compared.

 A mathematical foundation for the use of

cooperative games in grid scheduling: Specifically, we

derive mathematical game theoretical results that enable

us to propose a cooperative Grid resource allocation

mechanism. Based on this mathematical model, we prove

that in any cooperative approach, global optima are only

achievable when cooperation occurs among all the agents.

The remainder of this paper is organized as follows:

Section 2 covers the related work pertaining to Grid

resource allocation. In Section 3 we provide some

necessary background game theoretical material and push

the case of choosing different gaming environments.

Section 4 focuses on describing the system architecture,

while Section 5 illustrates the Grid computing

environment. In Section 6 we focus on describing the

four game theoretical resource allocation models and also

describe the baseline method. We provide experimental

results and final concluding remarks in Sections 7 and 8,

respectively.

2. Related Work

Over the past several years, economic approaches to

resource allocation have been developed quite

successfully. They satisfy some basic requirements for a

Grid setting [20], namely: 1) they are naturally

decentralized, 2) decisions about whether to consume or

provide resources are taken locally by the clients or

service providers, 3) the use of currency provides

incentives for service providers to contribute resources,

and 4) clients have to act responsibly and cannot afford to

waste resources due to their limited budget. A number of

systems [1], [3], [10], [16], [26] have been built using a

market mechanism to allocate the computational

resources. However, all of them make the inherent

assumption that a market-based approach is per se better,

which is ad hoc, as the allocation depends on many

factors besides demand and supply, such as

communication delays, bandwidth, server speeds, etc.

Market mechanisms provide a way of representing

the system state. They value resources and achieve an

efficient match of supply and demand. While some

systems use only a price and match or offers and bids,

others employ more sophisticated auction protocols [20].

Spawn [26], POPCORN [16], and CPM [4] are examples

of systems which employ decentralized auctions with

resource accounting. Dynasty [3] pursues a different

approach: avoiding the communication overhead of

auctions, it uses brokering without any ongoing

negotiation. Prices are periodically fixed and there are

fees for migration and data transport services. A different,

yet interesting, approach is taken in Challenger [10],

which implements load balancing with a market approach

but without money. When a task is submitted, a request

for bids containing its priority value and information that

can be used to estimate its execution time is sent to the

agents in the network. These agents provide bids by

estimating the job execution time (incorporating certain

important parameters such as, message delays etc.). A

similar but more flexible approach is proposed in

Nimrod-G Resource Broker [1], which is a resource

management system for scheduling computations on

globally distributed resources with varying QoS.

In a resource allocation mechanism proposed in [11]

each computer optimizes its profits by considering the

payment and cost involved in handling a task. Another

approach, GameMosix, is adopted in [25], where agent

behavior is modeled using a “friendship” model. Through

this model, computers help each other (by sharing

resources) only when they have previously established

friendships. The main focus in both approaches is to

provide a load balanced environment, which in many

scenarios is a secondary issue.

Our work differs from all the above in: 1) providing a

new hierarchical grid resource management

infrastructure, 2) proposing various game theoretical

resource allocation techniques that fit well in the

proposed infrastructure, 3) extensively comparing the

gaming strategies, and 4) deriving a cooperative method

that focuses on optimizing the Grid usage as a whole.

3. The Case for Gaming Environments

Game theory is a collection of analytical tools

designed to help understand the phenomena observable

when players or decision makers interact. The basic

assumptions that underlie the theory are that players

pursue well-defined objectives, that are rational and take

into account their knowledge or expectations of other

player’s behavior. There are two basic types of games

[17]:

1. Non-cooperative game: It is a game structure in

which the players do not have the option of planning as a

group in advance of choosing their actions.

2. Cooperative game: A game structure in which the

players have the option of planning as a group in advance

of choosing their actions.

In essence, the three game theoretical methods

proposed here fall in one of the two (or some combination

of the two) basic categories. From the category of non-

cooperative games we choose to formulate the game of

Grid task allocation (or resource allocation) as a sealed-

bid auction. In such a setup, a task is awarded to the

highest bidder, meaning that the agent that is the best fit

to execute the task wins. Thus, each agent competes in a

non-cooperative environment to obtain the rights to

execute tasks. For the work done, each agent is

compensated by side-payments. If somehow an agent fails

to execute a task, the game has no procedure to allow

reallocation of the task.

To tackle the problem of immediate rejection of

tasks, we propose a semi-cooperative n-round sealed-bid

auction, which incorporates task reallocation. The agent

who is unable to execute the task, on random, chooses an

agent and passes the un-executable task to it. If the newly

chosen agent can execute the task then the reallocating

procedure finishes, otherwise, another agent is chosen on

random. This process is repeated n-1 times, where n is the

number of the agents. If even on the n-1 attempt the task

still remains un-executable, then it is rejected.

The cooperative approach is the pin-up of this paper.

All the agents collectively negotiate and deliberate to

come up with a task allocation that is beneficial to the

system as a whole. It is to be noted that some individual

agents may not be content with the decision of the

coalition, but the resulting allocation is efficient in the

sense that it aims to reduce the makespan and provides a

load balanced task allocation. We prove that this

approach results in a society-efficient allocation that is

superior to any non-cooperative or semi-cooperative

approach.

4. Hierarchical Management of Grids

For managing large-scale grid systems, a multi-tier

hierarchical organization is proposed which consists of:

Top level: A top-level resource manager is

responsible for handling tasks submitted to the Grid. This

manager could be either centralized or distributed.

Mid-level: Many mid-level federations: collections

of computing resources grouped by particular interests

(i.e. resources owned by an entity, resources within a

geographic region, etc.).

Bottom-level: Within each federation, many

individual computing resources (e.g. PCs, clusters and

supercomputers).

When an application (metatask) is submitted to the

Grid, the top level resource manager would give tasks to a

particular federation, and that federation would then be

responsible for giving the tasks to the particular

computing resource that will execute it. By delegating

responsibility for the tasks to the federation, the Grid can

be viewed as a set of tens or hundreds of individual

entities (the federations), instead of thousands or tens of

thousands of resources, as would be the case with a flat

model. This makes management of the overall system

much easier. Additionally, each federation, due to the

similar interests or common ownership of its participants,

can follow the same administrative guidelines. This

allows for ease of management and administration at both

the federation level because each federation can have a

set of unique administrative policies while maintaining its

participation in the Grid through common interfaces, and

at the Grid level by reducing the number of visible

participants from view of the top-level resource manager.

5. Grid Computing Environment

To facilitate the management of this hierarchical grid

architecture (as described in Section 4), we propose a

multi-agent system. At the top level a Grid broker is

responsible for handling the Grid job queue (we call it a

job queue since it includes both user submitted tasks and

local system tasks), similar to the setup of the Globus

framework [11]. The federation level special agents called

ambassadors are responsible for interaction with the

broker. Underneath the ambassadors, each computing

resource would be represented by an agent. By creating a

grid economy, such as the one used in Nimrod-G [5], the

ambassadors can submit bids for execution contracts to

the broker, who would then select the winning federation

by means of a sealed-bid auction. In order for the

ambassadors to effectively estimate the execution time for

a contract bid, each ambassador will query the agents in

its federation for estimates on each task in order to

generate an Estimated Time of Completion (ETC) matrix.

(Details of how to obtain an ETC matrix are provided in

Section 7.) The ambassador will then be responsible for

selecting which tasks it can execute and the price at which

it can execute those tasks.

The remainder of this paper will be concerned with

how an ambassador efficiently distributes tasks from an

awarded execution contract to its agents.

6. Resource Allocation Methods

In this section we first describe the conventional

baseline method, followed by detailing the three game

theoretical resource allocation techniques.

6.1. Conventional Baseline Method (BASE)

A conventional baseline (BASE) method is necessary

to establish a lower bound on the performance of various

game theoretical methods. We will use this method to

visualize the difference in the solution quality between

BASE and the studied game theoretical techniques. The

BASE method was originally proposed in [18]. The basic

idea of BASE is that when tasks arrive at the middle-tier,

each agent is assigned a task on random by the

ambassador. If an agent is unable to execute the task

within the specified deadline, it is rejected without any

reallocation. (Notice that if all the machines are heavily

loaded, BASE can be a very effective strategy.) It is easy

to see that BASE can allocate tasks in linear time O(m).

6.2. Non-cooperative Method (NC)

The non-cooperative (NC) sealed-bid method relies

on the solicitation of bids from the agents. Each agent

submits a bid for a task that is at the head of the

ambassador’s job queue. After receiving bids from all the

agents, the ambassador selects the agent which submitted

the highest bid and awards the task for execution. For

simplicity, we assume that an agent j’s bid (bj) is

inversely proportional to the ETC of a job onto its

machine. (This is very common assumption; for instance,

see [11] and [16].) That is, bj=[n-1/n]vj, where vj=1/ETC

of task and n is the number of agents in the system. The

following steps are involved in a successful run of NC:

Step 1: Ambassador de-queues the job queue and

announces that a task i is ready for bidding.

Step 2: Each agent in parallel does the following:

Step 2a: Derive ETC for task i.

Step 2b: Artificially en-queues task i into its local

job queue to observe if it is possible to execute the task

within its associated deadline. (Details of how the

deadlines are associated with a particular task is discussed

in detail in Section 7. For the time being assume that each

task has a deadline associated with it).

Step 2c: If answer to Step 2b is yes then submit

bj=[n-1/n]vj, otherwise submit bj=0 (since ETC=).

Step 3: Ambassador sorts the bids and chooses the

agent with the highest bid.

Step 4: Ambassador allocates the task to the agent

identified in Step 3, and the sequence repeats.

Notice that the ambassador does not immediately

compensate the agent for executing the task. This is

because the bidding process is entirely based on ETC. It

is possible that after the allocation of a task i, an agent j’s

job queue (which includes both local and Grid tasks) is

overwhelmed with local (machine generated) tasks. This

would delay the processing of task i, and probably to the

extent that it is no longer possible to finish i’s execution

before its deadline. If that happens then there is no option

than to reject task i. Based on this observation, the

ambassador compensates the agent if and only if it

receives the required output (a guarantee on the actual

execution of tasks) of the task. The compensation is

equivalent to the bid posed by the agent who executed the

task, making it a first-price sealed-bid auction [13]. By

inspecting NC, we observe that tasks can be allocated in

O(mnlogn), where the most expensive computation takes

place in Step 3 (sorting of the submitted bids).

6.3. Non-cooperative Method with Certain

Degree of Cooperation (NNC)

The semi-distributed n-round non-cooperative (NNC)

sealed bid method is similar to the NC method, but allows

some limited cooperation. This is accomplished by

handing a task to a different agent if the original agent

cannot execute that task before the specified deadline, as

opposed to immediately rejecting the task as is the case

with NC. This handing off occurs n-1 times, after which

the task is rejected. Since the initial task allocation

procedure of NNC is exactly the same as NC, below we

describe the task handoff steps involved in a successful

run of NNC:

Step 1: For each assigned task repeatedly observe the

deadline constraint in conjunction to the local job queue.

Step 2: If (at some point) the task cannot be

executed, then randomly choose an agent (to differentiate

we tag these agents as helper agents) and send the task for

execution. (With the task attach a data structure (D) that

holds the information about who is the original agent and

which helpers have already been consulted.)

Step 3: After the job arrives at the helper’s site, it

artificially en-queues the task into its local job queue to

observe if it is possible to execute the task within its

associated deadline.

Step 3a: If it can execute the handoff task, then the

process terminates.

Step 3b: Otherwise, choose on random another agent

that is currently not present in D and send the task to it. If

in D the number of helpers is equivalent to n-1, then

reject the task. (The data structure remains associated

with the task until the task is successfully executed or it is

rejected.)

Notice that the compensation method of NC is fully

applicable in NCC without any alteration. The agents

(original or helper) are duly paid upon receiving the

necessary output of tasks. Since NNC is similar to NC the

initial allocation takes O(mnlogn), but NNC allows

reallocation of tasks so the running time of NNC becomes

O(mnlogn+mr), where mr is the number of reallocated

tasks.

6.4. Cooperative Method (COOP)

In this setup all agents cooperate (COOP) to

collectively progress towards the global goal of

efficiently allocating tasks. In non-cooperative games,

agents’ sets of possible actions and their preferences over

the possible outcomes, where an outcome is a profile of

actions; each action is taken by a single agent

autonomously. The primitive of the cooperative game

model is the collection of set of joint actions that each

group of agents (coalition) can take independently of the

remaining agents. An outcome of a cooperative (or more

appropriately a coalition) game is a specification of the

coalition that forms and the joint action it takes. The other

primitive of the model of a coalition game is the profile of

the players’ preferences over the set of all possible

outcomes. Thus although actions are taken by coalitions,

the theory is based on the individual’s preferences.

Definition 1 [17]: A coalition game consists of:

1) a finite set of agents (players) N, and

2) a function v that associates with every nonempty

subset S of N (which forms a coalition) a real number

v(S) (which is the worth of S).

For each coalition S, v(S) is the total payoff that is

available for division among the members of S. In other

words, the set of joint actions that the coalition S can take

consists of all possible divisions of v(S) among the

members of S. It is important to understand that v(S)

should be interpreted as the maximum payoff that the

coalition S can guarantee independently of the behavior

of the coalition N\S. Another important property

(Definition 3) of the worth of the coalition of all players

(v(N)) is that the worth is at least as large as the sum of

the worth of the members of any partition of N.

Definition 2 [17]: A coalition game (N,v) is cohesive

if
1

() ()
K

kk
v N v S for every partition {S1, …, SK} of N.

In essence, Definition 2 is a special case of the

condition of superadditivity, which requires that v(S

T) v(S)+v(T) for all coalitions S and T with S T =

This property is also important to understand the central

concept of coalition games – the core. The main idea

behind the core is similar to that of the Nash equilibrium

of a non-cooperative game, i.e., an outcome is stable (or

in equilibrium) if no deviation is profitable. In the case of

the core, the outcome is stable if no coalition can deviate

and obtain an outcome better for all of its members. Note

that in a coalition game there can be as many as 2N

possible coalitions. It would be impractical to go through

each and every coalition in order to find which coalition

is the most beneficial. But from Definitions 1 and 2 it is

clear that the coalition game profits the most when a

coalition of N agents forms – called the grand coalition

[22]. Thus, if we are able to (some how) guarantee that in

a particular coalition game the grand coalition is always

the most beneficial, then we can simply confine our

search to the grand coalition. To be technically precise,

we need to prove that the core of a coalition game is

nonempty [17]. If the core is nonempty, then there exists

at least one outcome that is stable via the grand coalition.

On the other hand if the core is empty then there is no

outcome that can guarantee stability. Below we proceed

in that direction.

Let (N,M,U, 0) be a coalition Gird task allocation

game, where N = {1,…,n} is the set of agents, M = {1,…,

m} is the set of tasks in the ambassador’s job queue, U is

a non-negative n×m matrix that gives the utility (uij) of

each task i for each agent j (the utility is to be interpreted

as the ETC of a task on an agent’s machine, i.e., the

smaller the ETC the larger is the utility), and 0 is the

order of the ambassador’s job queue. We define the worth

v(S) of a coalition S N as the maximum total profit

(utility) it can guarantee itself without any help from N\S.

This utility can be determined in two stages. In the first

stage, all players sequentially choose a task, respecting 0.

In the second stage, the members of S reallocate the

chosen tasks among themselves to reach coalitional

efficiency. Obviously, the outcome of this reallocation

depends on the tasks chosen by the members of S, and

therefore also on the tasks chosen by the members of N\S.

In order to describe the value v(S) of a coalition S

N, we make use of a very common technique to describe

coalition structure formation – the extensive form game

[13]. We define an extensive form coalition task

allocation game ({S,N\S},T,CS,uS) with agent set {S,N\S}.

The various components of this game are as follows.

1. The Root: For the root of the tree T, let 1 k m

and the set of bijective maps from {1,…,k} to M is

denoted by Sk. A map Sk is interpreted as a situation

where task (i) is chosen by agent i for each 1 i k.

Similarly, we define S0 as the situation where none of the

tasks is chosen yet. Let T be the rooted tree with node set

Sk and root S0. There is an arc between Sk and Sk+1

with 0 k m-1, if and only if (i)= (i) for all 1 i k. That

is, there is an arc between and if can be extended to

 by assigning an appropriate task to player k+1. So,

V1=Sk and V2=Sm are the sets of non-terminal and terminal

nodes, respectively.

2. Control: The control function CS:Sk {S,N\S} is

defined as follows. Let Sk for some 0 k m-1. Then

we define CS()=S if and only if k+1 S. So coalition S

controls the nodes at which one of its members is to

choose a task for scheduling. Let S and N\S be the set

of all possible strategies of agents S and N\S, respectively.

3. Utility function: Finally, we describe the utility

function uS: S× N\S
{S,N\S}. Let y=(yS,yN\S)

S× N\S. Let Sm be the terminal node reached by

strategy profile y, and let HS()={ (i):i S} be the

corresponding set of tasks identified for scheduling by S.

Now define uS
S(y)=max{ i S: (S,HS())}, and

uS
N\S(y)=-uS

S(y). So, the payoff of S at terminal node

Sm is the maximum utility S obtains after reallocating the

initially chosen tasks and the payoff for N\S is just the

opposite of the payoff of S. Hence, N\S maximizes its

payoff at the extensive form game by minimizing the

payoff of S and vice versa.

Based on that above discussion the coalition grid task

allocation game (N,v) is defined by:

\

\
() max min (),

N SS

S
SyN SyS

v S u y S N .
(1)

Notice that v(S) is precisely the maximum utility that

coalition S can guarantee itself, without any help from

N\S. Using Equation 1, we show the non-emptiness of the

core of the coalition grid task allocation game.

Theorem 1: Let (N,M,U, 0) be the coalition gird task

allocation game and let (N,v) be its corresponding

coalition game. Let the core of (N,v) be the set C(v) = {x
N: i Sxi v(S)} for every S N and i Nxi v(N). Let

(u,w) C(v) and let the mapping :{1,…,m} M be a

bijection such that w (1) … w (m). Define xi=ui+ w (i) for

all i N. Then, the allocation x belongs to the core of

(N,v), i.e., x C(v).

Proof: By definition of x, i Nxi=v(N M). Since

v(N M) = v(N), i Nxi = v(N). It remains only to show

stability. Consider the extensive form game

({S,N\S},T,CS,uS), with strategy zN\S N\S for the agents

in set N\S: “always schedule the task with highest wi that

is still available.” More precisely, let zN\S N\S be such

that zN\S() = for each Sk, k+1 N\S, and Sk+1

with w (k+1) wj for all j M\{ (1),…, (k)}.

Now if the agents in set S would use a similar

strategy in the strategic form game as the agents in set

N\S, i.e., also “always pick the highest wi that remains,”

then the agents in set S would acquire { (i):i S} as its

set of tasks. If the agents in set S use a different strategy,

then, given the agents in set N\S’s strategy zN\S, it would

obtain a set of tasks A with lower wi values. Formally,

()a
a A i S

w w i .
(2)

In particular, let the agents in set S play a best reply

against strategy zN\S. Let A* be the set of tasks scheduled

by the agents in set S. Let :S A* be the optimal

rescheduling of the tasks. From Equation 2 it follows that:

*

() ()a
i S i Sa A

w i w w i .
(3)

Hence,

()

() () ({ (): })A

i
i S

i i
i S i S i S i S

i i
i S

U

x

u w i u w i v S i i S

.

(4)

The first inequality is due to Equation 3. The second

inequality is satisfied because (u,w) C(vA). The last

equality is satisfied since the matching {(i, (i)):i S} is

an optimal rescheduling, and hence optimal for coalition

S { (i):i S} at the assignment game (N,vA).

From the definition of the game (N,v) it follows that:

\

\
\()

max (,) max min () ()
N SS S

S S
S SN S

yN SyS ySi i
i S

u yS z u y v SU .
(5)

Now the theorem follows immediately from

Equations 4 and 5.

The above results assert that in the coalition gird task

scheduling game, the agents can only gain a superior

utility if they all cooperate to find an allocation for the

tasks. Thus, rather than investigating all the 2N possible

forms of coalition, we can confine ourselves with

evaluating the outcome of the grand coalition. However,

it remains to be seen how one can optimally match n

agents to the m tasks, since the total possible

combinations are of magnitude O(m!/(n-m)!). It turns out

that this computationally infeasible problem can be

solved in O(nm2) time using the widely cited Hungarian

method [14] . Below we detail the Hungarian method.

Step 0: Take as input the ETC matrix U.

Step 1: Subtract the smallest entry in each row form

all the entries in that row. (Each row will have at least one

zero entry and all other entries will remain positive.)

Step 2: Subtract the smallest entry in each column

from each entry in that column. (Each row and column

will have at least one zero entry.)

Step 3: Cover the zeros identified by Steps 1 and 2

by crossing out the rows and columns of U. This cover

should be obtained by the minimal number of crossings.

Step 4: Check for optimality.

Step 4a: If the number of crossings is n, then

optimality is reached. Go to Step 6.

Step 4b: If the number of crossing is less than n, then

an optimal assignment need to be found. Go to Step 5.

Step 5: Determine the smallest entry not covered by

any crossing. Subtract this entry from all uncovered

entries and add it to all entries covered by both a

horizontal and vertical crossings. Go to Step 3.

Step 6: Scan each row. The first zero is the task to

agent allocation provided that the column does not

already contain an allocation.

Below we detail the steps involved in a successful

run of COOP:

Step 1: Ambassador de-queues the job queue n

times, where n is the number of agents in the system. This

is done for the following two reasons. First, in a real life

system, the number of tasks would be much larger than

the number of agents in the system. To permit a realistic

negotiation process, limiting the number of tasks for a

single round of negotiation is extremely important.

Second, coalition formation requires perfect information,

if we do not limit the size of the utility matrix for the

Hungarian method, then we run into the problem of how

to obtain ETC for every task that arrives in real-time at

the ambassador’s job queue. Essentially we want the

agents to meet, discuss, negotiate, agree on the allocation,

send their allocated tasks to their local job queues and

repeat the process for the next set of tasks.

Step 2: Use the Hungarian method to find the task to

agent mapping.

Step 3: Ambassador allocates the tasks to the agents

that are identified in Step 3, and the sequence repeats.

Once again notice that the compensation method of

NC is fully applicable in COOP without any alteration.

The agents are duly paid upon receiving the necessary

output of tasks. To cater for the case when an agent is

unable to execute an allocated task due to deadline

constraints, that particular task is sent to the ambassador

who inserts that task in front of its job queue so that it can

be immediately included in the next round of task

allocation. Observe that the Hungarian method is called at

least O(m/n) times in a successful rum of COOP. The

Hungarian method itself takes O(nm2). Therefore

including the number of reallocated tasks, the total

running time of COOP becomes O((m/n)nm2+mr).

Finally, we quote from literature the following result

which enables us to prove that the COOP method is a

society-efficient method for task scheduling in a

computational grid.

Lemma 1 [22]: A coalition game is society-efficient

if and only if the core is nonempty.

Theorem 2 [22]: COOP is a society-efficient

method.

Proof: Follows from the result of Theorem 1 by

applying Lemma 1.

7. Experiments and Discussion of Results

A hierarchical Grid infrastructure is simulated using

a discrete event-driven simulator, where tasks are

submitted to a centralized broker. The broker then

advertises the job queue to be bid on, after which each

federation submits a bid to the broker. The bids are

generated by soliciting estimates from the federation’s

sites. As mentioned in Section 5, we only confine

ourselves with the allocation of tasks at the middle and

bottom tier levels. Therefore, the simulation encapsulates

a federation of workstations.

Note that the ETC values may differ from actual

times, e.g., actual times may depend on input data and

communication delays. Therefore, for the simulation

studies, the Actual Time to Complete (ATC) values were

calculated using the ETC values as the mean. (The ATC

values were used for the evaluation of the techniques.)

The tasks were assumed to be independent with multiple

deadlines. The worth of a submitted task degrades

according to a degradation scheme, if the task misses a

certain deadline. More specifically, let wi be a deadline

factor for task i, where

1.00 if finished at or below its primary deadline,

0.50 if finished at or below its 50% deadline,

0.25 if finished at or below its 25% deadline,

0.00 if is never executed.

i

i
i

i

i

t

t
w

t

t

(Note that wi indicates the degradation scheme of the

worth a task according to when the task finishes.)

A grid system with 16 machines and an average of

200,000 tasks was simulated for a period of 300 minutes.

For each of the scenarios that are discussed later in this

section, 50 trials were run. (A trial is defined as one such

simulation of the Grid system.) The period from 0 to 10

minutes was the system start-up period. The period

between 10 to 250 minutes was considered the evaluation

period (i.e., the period where the scheduling techniques’

performances were measured). Within the simulation

period (i.e., the system start up period and the evaluation

period), the arrival times of the tasks were randomly

generated using a Poisson distribution. To better simulate

an overloaded system, the mean task inter-arrival time

was faster (3.2 seconds) during the system start-up period

than during the evaluation period (7.6 seconds). In

addition, random bursty arrival rate periods were

introduced during the evaluation period, where the arrival

rate was increased. These periods did not overlap with

each other and had a mean task inter-arrival time of 7

seconds. The duration of a bursty period was 10 minutes.

The estimated execution times of all tasks taking

heterogeneity into consideration were generated using the

gamma distribution method described in [2]. Four

different cases of ETC heterogeneities were used in this

study, the high task and high machine heterogeneity case,

the low task and low machine heterogeneity case, the high

task and low machine heterogeneity case and the low task

and high machine heterogeneity case. (The data presented

in this article is the average of the 4 cases over all the

trials.)

The deadline of each task was calculated by

incorporating the arrival time of the task, plus the median

execution time of the task (across all machines), plus a

multiplier times the median execution time of all tasks

(i.e., 20 minutes of simulation study). Two types of

deadlines, i.e., loose and tight, were used in the

simulation. The multiplier was changed to make the

deadlines (i.e., the 100%, 50%, and 25% deadline) for the

two types of deadlines. For the loose deadline, the

multiplier was set to four, eight, and twelve for the

primary (100%), 50%, and 25% deadline, respectively.

the tight deadline, the multiplier was set to one, two, and

four for the primary (100%), 50%, and 25% deadline,

respectively. (By loosening the deadlines the depreciation

of the task as its execution is delayed is reduced, thereby

increasing the task’s after-execution worth. For example,

a multiplier of 4 would increase a task’s after-execution

worth by 25%; a multiplier of 8 would increase it by

50%, etc.) To evaluate the various techniques discussed

in this paper, we made use of the following performance

matrices:

Makespan: The latest finish time among all tasks.

Turnaround time: The average time spent by a task

in the Grid.

Slowdown ratio: The ratio of the average turnaround

Makespan

BASE NC

NNC COOP

1.0E+09

6.0E+09

1.1E+10

1.6E+10

2.1E+10

Methods

T
im

e
 (

s
e

c
.)

Turnaround time

BASE
NC

NNC
COOP

1.0E+08

6.0E+08

1.1E+09

1.6E+09

2.1E+09

2.6E+09

3.1E+09

3.6E+09

4.1E+09

4.6E+09

Methods

T
im

e
 (

s
e

c
.)

Slowdown Ratio

BASE

NC

NNC
COOP

1

1.00005

1.0001

1.00015

1.0002

Methods

S
lo

w
d

o
w

n
 (

R
a

ti
o

)

Figure 1. Makespan. Figure 2. Turnaround time. Figure 3. Slowdown ratio.

Utilization

NNC

COOP

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

Methods

U
ti

li
z
a

ti
o

n
 (

%
)

Rejection rate

BASE

NC

NNC

COOP

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

Methods

R
e

j.
 r

a
te

 (
%

)

Average Tasks per Agent

BASE

NC
NNC

COOP

10500

11000

11500

12000

12500

13000

Methods

A
v

g
.

ta
s

k
s

/a
g

e
n

t

Figure 4. Utilization. Figure 5. Task rejection rate. Figure 6. Average Tasks per agent.

Table 1. Load balancing: Tasks per agent and standard deviation on the distribution of tasks.

Agents Methods (Tasks per Agent)

 BASE NC NNC COOP

1 11066 11736 1097 12443

2 11350 12014 1806 12474

3 11385 12479 3393 12517

4 11025 11773 1378 12437

5 11644 12431 6048 12549

6 10886 11585 934 12417

7 11845 12750 17104 12560

8 11413 12607 4377 12543

9 11143 11919 1599 12483

10 11572 12347 3288 12527

11 11300 12103 1917 12490

12 11476 12251 2289 12514

13 11190 11933 1647 12473

14 11797 13014 147496 12579

15 11053 11937 1497 12476

16 11387 12125 2347 12503

Standard deviation 278.50 394.00 36239.22 46.02

time to the average waiting time of all tasks.

Utilization: The fraction of resources used by

reallocated tasks.

Task rejection rate: The percentage of tasks

rejected by all the agents in the system.

To begin, we study (Figure 1) the makespan achieved

by the techniques. Some very interesting results are

observable. First, surprisingly BASE outperforms NC by

producing a smaller makespan. This is because in NC the

task allocation is biased in favor of more powerful (faster

machines) agents. Second, we can observe tremendous

reduction in makespan even with minor cooperation

among agents. The makespan is reduced by as much as

85% in case of NCC. COOP outperforms all the

techniques by producing a makespan of 2409119610.

Although this is only an improvement of 8.52% compared

to NCC’s makespan of 2633596204, yet COOP’s task

allocation is superior in load balancing, reduced task

rejection and other important performance matrices which

will be discussed subsequently.

Turnaround time is an important factor in

determining how fast an application enters and exits the

Grid system. This measure includes: 1) the time a task

takes to come to the front of the queue (of the broker) so

that it can be considered for scheduling, 2) the time

required for a task to propagate through the network from

the broker to the ambassador queue, 3) the time taken for

a task to move to the front of the ambassador queue, 4)

propagation delay from the ambassador to the agent’s

machine (site), 5) the time a task takes to reach the front

of the site queue at which it is to be executed, 6) the time

needed to schedule a task on the site’s local scheduler, 7)

the time a task takes if reallocation is performed, 8) the

time a task actually takes for execution, and 9) the time it

takes to go back to the broker (possibly through the

ambassador). We seek to identify methods that can

effectively reduce the cumulative time that a task spends

in the Grid system. A technique that exhibits a small

turnaround time makes itself available faster to process

other inline tasks. Figure 2 illustrates the average

turnaround time of the studied techniques. These results

are almost identical to the makespan results. The

techniques based on shortest turnaround time are ranked

as: 1) COOP, 2) NNC, 3) BASE, 4) NC.

The slowdown ratio encapsulates the average total

time taken by a job in the Gird infrastructure due to

various task allocation decisions. A method that makes

allocation decisions correctly and in a timely fashion

would have a reduced slowdown ratio. Figure 3 portrays

the results obtained by observing the slowdown ratio.

Clearly NC, which basically takes decisions locally in a

greedy fashion, exhibits the minimum slowdown ratio.

COOP performed surprisingly well with a slowdown ratio

of 1.0016 (third best). It is natural to think that COOP

would depict the worst of the slowdown time; however,

COOP’s decision quality is unparallel. No decision on

task allocation is made unless it is negotiated with all the

agents in the system. On the other hand BASE which uses

no informed decision on task allocation performs the

worst among all the techniques. The techniques ranked

according to the smallest slowdown ratio are as follows:

1) NC, 2) COOP, 3) NNC, 4) BASE.

If an agent cannot executed a given task, it may

become necessary to reallocate that task to another agent.

However, this necessity comes at a cost of increase in

turnaround time and slowdown ratio. A technique that

exhibits a smaller utilization factor ensures superior

allocation. Note that BASE and NC cannot be included in

this comparison because they have no facility for

reallocation of tasks. Figure 4 shows COOP with 0.69%

utilization compared to 1.2% of NNC. This is analogous

to the measure of task rejection rate (Figure 5), where

COOP again outperforms the other methods, followed by

NNC and NC.

The average tasks per node or agent (Figure 6) is a

mirror inverse of the rejection rate measurement, as it is

based on the total number of tasks completed by the

federation. Load balancing (Table 1), however, provides

important information about how well the methods can

distribute the tasks among the various agents in order to

create the most efficient use of the federation’s resources.

The entries in Table 1 represent the number of tasks

executed by each agent averaged (and rounded off) over

the number of trials. Due to the heterogeneous nature of

the federation, NNC has the worst load balancing in our

study (based on standard deviation). In this case one

agent (Agent 14) completely outclasses the other agents

in the system, and as a result more tasks are allocated

there. This in turn increases the reallocation of tasks,

hence the worst load balancing. BASE demonstrated

acceptable load balancing because of the random

assignment of tasks to sites. NC provides a mediocre load

balancing but worst than the naïve BASE method. COOP

demonstrated the best load balancing of any method due

to the desire of sites to ensure the most efficient execution

scheme possible. The techniques ranked according to the

best load balanced workload are: 1) COOP, 2) BASE, 3)

NC, 4) NNC.

8. Conclusions

This paper proposed and compared various game

theoretical resource allocation techniques in the Grid

computing environment. The cooperation among the

agents needed when an agent is unable to guarantee the

execution of task can occur in a number of ways as

illustrated by the techniques discussed in this paper. On

one extreme was a technique that did not allow any

cooperation among agents, while on the other extreme

was a method that utilized the concept of coalition

formation to collectively approach the problem.

The simulation study, which was built around a

newly proposed hierarchical Grid infrastructure, used a

diverse workload that captures task to machine

heterogeneity extremely well. The hierarchical Grid

infrastructure consists of machines that abstract into

larger computing centers labeled “federations,” each of

which is responsible for managing its own resources

independently. These federations are then linked together

with a primary portal to which Grid jobs would be

submitted. Using this simulation model we extensively

evaluated the proposed game theoretical techniques and

studied their behaviors under various performance

metrics, such as, makespan, turnaround time, slowdown

ratio, utilization, task rejection rate and load balancing.

Based on our experimental findings, we conclude that the

cooperation among agents is not only important but

extremely necessary in order to execute tasks that bear

multiple execution time deadlines. Although the proposed

cooperative method has high computational complexity,

yet the task allocation has low: 1) task rejection, 2)

utilization, 3) slowdown ratio, and 4) turn around time.

Moreover, the allocation has near perfect load balancing

and minimum makespan. For applications that are of

critical nature this cooperative approach is the best

choice. For other applications the simple conventional

baseline method would be best suitable as other game

theoretical approaches such as, the non-cooperative and

semi-cooperative are only just better.

References

[1] D. Abramson, R. Buyya, and J. Giddy, “A Computational

Economy for Grid Computing and its Implementation in the

Nimrod-G Resource Broker,” Future Generation Computer

Systems Journal, vol. 18, no. 8, pp. 1061-1074, 2002.

[2] S. Ali, H. J. Siegel, M. Maheswaran and D. Hensgen,

“Representing Task and Machine Heterogeneities for

Heterogeneous Computing Systems,” Tamkang Journal of

Science and Engineering, Special 50th Anniversary Issue, vol.

3, no. 3, 2000, pp. 195-207, 2000.

[3] M. Backschat, A. Pfaffinger, and C. Zenger, “Economic-

based Dynamic Load Distribution in Large Workstation

Network,” in Proc. of the 2nd International. Euro-Par

Conference, vol. 2, 1996, pp. 631-634.

[4] F. Berman and R. Wolski, “The AppLes Project: A Status

Report,” in Proc. of the 8th NEC Research Symposium, 1997.

[5] J. Brooke, M. Foster, S. Pickles, K. Taylor, T. Hewitt,

“Mini-Grids: Effective test-beds for Grid Application,” in Proc.

of the 1st IEEE/ACM International Workshop on Grid

Computing, 2000, pp. 158-169.

[6] R. Buyya, D. Abramson and J. Giddy, “Nimrod-G: An

Architecture for a Resource Management and Scheduling

System in a Global Computational Grid,” International

Conference on High Performance Computing in Asia-Pacific

Region, 2000, pp. 283-289.

[7] H. Casanova and J. Dongarra, “NetSolve: A network server

for solving computational science problems,” International

Journal of Supercomputing Applications and High Performance

Computing, vol. 11, no. 3, pp. 212-223, 1997.

[8] T. Casavant and J. Kuhl, “A Taxonomy of Scheduling in

General-purpose Distributed Computing Systems,” IEEE Trans.

on Software Engineering, vol. 14, no. 2, pp. 141-154, 1988.

[9] S. Chaplin, J. Karpovich and A. Grimshaw, “The Legion

Resource Management System,” in Proc. of the 5th Workshop

on Job Scheduling Strategies for Parallel Processing, 1999, pp.

162-178.

[10] A. Chavez, A. Moukas, and P. Maes, “Challenger: A

Multi-agent System for Distributed Resource Allocation,” in

Proc. of the 1st ACM International Conference on Autonomous

Agents, 1997, pp. 323-331.

[11] I. Foster, C. Kesselman, “Globus: A Metacomputing

Infrastructure Toolkit,” International Journal of

Supercomputing Applications, vol. 11, no. 2, pp. 115-128, 1997.

[12] D. Grosu and A. T. Chronopoulos, “Algorithm Mechanism

Design for Load Balancing in Distributed Systems,” IEEE

Trans. Systems, Man, and Cybernetics, vol. 34, no. 1, pp. 77–84,

2004.

[13] V. Krishna. Auction Theory, Academic Press, San Diego,

U.S.A., 2002.

[14] H. Kuhn, “The Hungarian Method for the Assignment

Problem,” Naval Res. Logistics Quarterly, vol. 2, pp. 83-97,

1955.

[15] B. Lesyng, P. Ba a, D. Erwin, “EUROGRID: European

Computational Grid Test bed,” Journal of Parallel and

Distributed Computing, vol. 63 no. 5, pp. 590-596, May 2003

[16] N. Nisan, S. London, O. Regev, and N. Camiel, “Globally

Distributed Computation over the Internet: The POPCORN

Project,” in Proc. of the 18th ICDCS, 1998, pp. 592-601.

[17] M. Osborne and A. Rubinstein, A Course in Game Theory,

The MIT Press, Cambridge, MA, 1994.

[18] T. Quint, “On One-sided Versus Two-sided Matching

Markets,” Games and Economic Behavior, vol. 16, pp. 124-134,

1996.

[19] K. Ramamritham, J. Stankovic and W. Zhao, “Distributed

Scheduling of Tasks with Deadlines and Resource

Requirements,” IEEE Trans. on Computers, vol. 38, no. 4, pp.

1110-1123, 1989.

[20] T. Sandholm, “Distributed Rational Decision Making”,

Multi-agent Systems. MIT Press, 2000.

[21] H. Scarf, “The Allocation of Resources in the Presence of

Indivisibilities,” Journal of Economic Prespectives, vol. 4, pp.

111-128, 1994.

[22] L. Shapley, “On Balanced Sets and Cores,” Naval Res.

Logistics Quaterly, vol. 14, pp. 453-460, 1967.

[23] L . Shapley and M. Shubik, “The Assignment Game I: The

Core,” International Journal of Game Theory, vol. 1, pp. 111-

130, 1971.

[24] L. Svenson, “Large Indivisibilities: An Analysis with

Indivisibilities,” Econometrica, vol. 51, pp. 939-954, 1983.

[25] D. E. Volper, J. C. Oh, and M. Jung, “GameMosix: Game-

Theoretic Middleware for CPU Sharing in Un trusted P2P

Environment,” in Proc. of 17th ICDCS, 2004.

[26] C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and

W. Stornetta, “Spawn: A Distributed Computational Economy,”

IEEE Trans. on Software Engineering, vol. 18, no. 2, pp. 103-

117, 1992.

