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Abstract

In this paper we consider, compare and analyze 

three game theoretical Grid resource allocation 

mechanisms. Namely, 1) the non-cooperative sealed-bid 

method where tasks are auctioned off to the highest 

bidder, 2) the semi-cooperative n-round sealed-bid 

method in which each site delegate its work to others if it 

cannot perform the work itself, and 3) the cooperative 

method in which all of the sites deliberate with one 

another to execute all the tasks as efficiently as possible.

To experimentally evaluate the above mentioned 

techniques, we perform extensive simulation studies that 

effectively encapsulate the task and machine 

heterogeneity. The tasks are assumed to be independent 

and bear multiple execution time deadlines. The 

simulation model is built around a hierarchical Grid 

infrastructure where machines are abstracted into larger 

computing centers labeled “federations,” each of which 

are responsible for managing their own resources 

independently. These federations are then linked together 

with a primary portal to which Grid tasks would be 

submitted. To measure the effectiveness of these game 

theoretical techniques, the recorded performance is 

evaluated against a conventional baseline method in 

which tasks are randomly assigned to the sites without 

any task execution guarantee. 

1. Introduction

Computational Grids provide transparent access to 

large-scale distributed computational resources and lend 

themselves, by their size and geographic distribution, to 

the creation of federations for sharing and aggregating

large repertoire of resources [11], [14]. These grids 

consist of heterogeneous resources (PCs, workstations, 

clusters and supercomputers), with varying resource 

management requirements (single system image OS, 

queuing systems, etc.). The resource management systems 

for such grids should provide mechanisms and tools that 

facilitate the realization of the goals of both resource 

owners and users. Most of the existing work on resource 

management and scheduling problems in grids adopts a 

conventional style where a scheduling component decides 

which jobs are to be executed at which site based on 

certain cost functions (AppLeS [3], Netsolve [6], Legion 

[9]). Such cost functions are often driven by system-

centric parameters that enhance system throughput and 

utilization rather than improving the utility of application 

processing.  

This paper presents agent-based game theoretic 

resource management techniques, classified as 

cooperative, semi-cooperative and non-cooperative 

games. Using game theory, the behavior of these agents 

can be tailored to provide profitable contracts to the 

various federations of the grid, and, therefore, can 

provide allocation with a reasonable amount of 

processing and communications overhead. Within each 

federation care must be taken to ensure that the federation 

as a whole operates profitably. The individual resources 

that compose the federation also have their particular 

interests (i.e. some sites may not wish to execute jobs). 

Thus, the need to accommodate the wishes of the 

individual resources and the need of the federation as a 

whole to turn a profit must be balanced out.  

The rules of resource management must decide 

whether the individuals are free to cater for their own 

interests or they have the option of planning as a group in 

advance of choosing their actions. This leads to the main 

question of whether or not the gaming mechanism 

involves cooperation. This paper seeks to find answers to 

these questions by proposing and comparing cooperative 

and non-cooperative gaming mechanism, using 

theoretical and experimental framework. The results are 

not surprising but the study highlights the pros and cons 

of each approach, describing as to how to best optimize 

the system resources. The main highlights of this paper 

are:

An economic model for grid environments: In this 

model an agent represents a grid site (or machine) and 
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thus has the knowledge of the available computational 

resources, such as, CPU, memory, I/O, etc. Based on this 

information the agents compete individually or 

collectively to execute user submitted tasks.  

Hierarchical policies for resource management in 

grid environments: The hierarchical resource 

management mechanism is a three-tier computational 

model. At the top level is the global portal to which the 

tasks are submitted to be executed by the Grid. This top 

level is a control structure for the middle-level 

federations, which are composed of individual sites. The 

proposed architecture has various advantages, such as 

ease of maintenance, decentralized control and fault 

tolerance. This approach is also analogous to many real 

life examples and consumer models, e.g. food chain 

models [7]. 

Gaming mechanisms for grid resource 

management: The paper proposes three game theoretical 

mechanisms for resource management: (a) A non-

cooperative gaming mechanism where every site 

competes to maximize its profit without having the option 

for cooperation; (b) A cooperative method in which all of 

the sites deliberate with one another to execute all the 

tasks as efficiently as possible (each site negotiates with 

the other sites to maximize the profit of the group as a 

whole); (c) A semi-cooperative method in which each site 

tries to delegate its work to others in a limited fashion. All 

three methods are compared.

 A mathematical foundation for the use of 

cooperative games in grid scheduling: Specifically, we 

derive mathematical game theoretical results that enable 

us to propose a cooperative Grid resource allocation 

mechanism. Based on this mathematical model, we prove 

that in any cooperative approach, global optima are only 

achievable when cooperation occurs among all the agents.  

The remainder of this paper is organized as follows: 

Section 2 covers the related work pertaining to Grid 

resource allocation. In Section 3 we provide some 

necessary background game theoretical material and push 

the case of choosing different gaming environments. 

Section 4 focuses on describing the system architecture, 

while Section 5 illustrates the Grid computing 

environment.  In Section 6 we focus on describing the 

four game theoretical resource allocation models and also 

describe the baseline method. We provide experimental 

results and final concluding remarks in Sections 7 and 8, 

respectively.

2. Related Work 

Over the past several years, economic approaches to 

resource allocation have been developed quite 

successfully. They satisfy some basic requirements for a 

Grid setting [20], namely: 1) they are naturally 

decentralized, 2) decisions about whether to consume or 

provide resources are taken locally by the clients or 

service providers, 3) the use of currency provides 

incentives for service providers to contribute resources, 

and 4) clients have to act responsibly and cannot afford to 

waste resources due to their limited budget. A number of 

systems [1], [3], [10], [16], [26] have been built using a 

market mechanism to allocate the computational 

resources. However, all of them make the inherent 

assumption that a market-based approach is per se better, 

which is ad hoc, as the allocation depends on many 

factors besides demand and supply, such as 

communication delays, bandwidth, server speeds, etc. 

Market mechanisms provide a way of representing 

the system state. They value resources and achieve an 

efficient match of supply and demand. While some 

systems use only a price and match or offers and bids, 

others employ more sophisticated auction protocols [20]. 

Spawn [26], POPCORN [16], and CPM [4] are examples 

of systems which employ decentralized auctions with 

resource accounting. Dynasty [3] pursues a different 

approach: avoiding the communication overhead of 

auctions, it uses brokering without any ongoing 

negotiation. Prices are periodically fixed and there are 

fees for migration and data transport services. A different, 

yet interesting, approach is taken in Challenger [10], 

which implements load balancing with a market approach 

but without money. When a task is submitted, a request 

for bids containing its priority value and information that 

can be used to estimate its execution time is sent to the 

agents in the network. These agents provide bids by 

estimating the job execution time (incorporating certain 

important parameters such as, message delays etc.). A 

similar but more flexible approach is proposed in 

Nimrod-G Resource Broker [1], which is a resource 

management system for scheduling computations on 

globally distributed resources with varying QoS.  

In a resource allocation mechanism proposed in [11] 

each computer optimizes its profits by considering the 

payment and cost involved in handling a task. Another 

approach, GameMosix, is adopted in [25], where agent 

behavior is modeled using a “friendship” model. Through 

this model, computers help each other (by sharing 

resources) only when they have previously established 

friendships. The main focus in both approaches is to 

provide a load balanced environment, which in many 

scenarios is a secondary issue. 

Our work differs from all the above in: 1) providing a 

new hierarchical grid resource management 

infrastructure, 2) proposing various game theoretical 

resource allocation techniques that fit well in the 

proposed infrastructure, 3) extensively comparing the 

gaming strategies, and 4) deriving a cooperative method 

that focuses on optimizing the Grid usage as a whole.

3. The Case for Gaming Environments 



Game theory is a collection of analytical tools 

designed to help understand the phenomena observable 

when players or decision makers interact. The basic 

assumptions that underlie the theory are that players 

pursue well-defined objectives, that are rational and take 

into account their knowledge or expectations of other 

player’s behavior. There are two basic types of games 

[17]:  

1. Non-cooperative game: It is a game structure in 

which the players do not have the option of planning as a 

group in advance of choosing their actions.  

2. Cooperative game: A game structure in which the 

players have the option of planning as a group in advance 

of choosing their actions.  

In essence, the three game theoretical methods 

proposed here fall in one of the two (or some combination 

of the two) basic categories. From the category of non-

cooperative games we choose to formulate the game of 

Grid task allocation (or resource allocation) as a sealed-

bid auction. In such a setup, a task is awarded to the 

highest bidder, meaning that the agent that is the best fit 

to execute the task wins. Thus, each agent competes in a 

non-cooperative environment to obtain the rights to 

execute tasks. For the work done, each agent is 

compensated by side-payments. If somehow an agent fails 

to execute a task, the game has no procedure to allow 

reallocation of the task.  

To tackle the problem of immediate rejection of 

tasks, we propose a semi-cooperative n-round sealed-bid 

auction, which incorporates task reallocation. The agent 

who is unable to execute the task, on random, chooses an 

agent and passes the un-executable task to it. If the newly 

chosen agent can execute the task then the reallocating 

procedure finishes, otherwise, another agent is chosen on 

random. This process is repeated n-1 times, where n is the 

number of the agents. If even on the n-1 attempt the task 

still remains un-executable, then it is rejected. 

The cooperative approach is the pin-up of this paper. 

All the agents collectively negotiate and deliberate to 

come up with a task allocation that is beneficial to the 

system as a whole. It is to be noted that some individual 

agents may not be content with the decision of the 

coalition, but the resulting allocation is efficient in the 

sense that it aims to reduce the makespan and provides a 

load balanced task allocation. We prove that this 

approach results in a society-efficient allocation that is 

superior to any non-cooperative or semi-cooperative 

approach.

4. Hierarchical Management of Grids 

For managing large-scale grid systems, a multi-tier 

hierarchical organization is proposed which consists of: 

Top level: A top-level resource manager is 

responsible for handling tasks submitted to the Grid. This 

manager could be either centralized or distributed. 

Mid-level: Many mid-level federations: collections 

of computing resources grouped by particular interests 

(i.e. resources owned by an entity, resources within a 

geographic region, etc.). 

Bottom-level: Within each federation, many 

individual computing resources (e.g. PCs, clusters and 

supercomputers). 

When an application (metatask) is submitted to the 

Grid, the top level resource manager would give tasks to a 

particular federation, and that federation would then be 

responsible for giving the tasks to the particular 

computing resource that will execute it. By delegating 

responsibility for the tasks to the federation, the Grid can 

be viewed as a set of tens or hundreds of individual 

entities (the federations), instead of thousands or tens of 

thousands of resources, as would be the case with a flat 

model. This makes management of the overall system 

much easier. Additionally, each federation, due to the 

similar interests or common ownership of its participants, 

can follow the same administrative guidelines. This 

allows for ease of management and administration at both 

the federation level because each federation can have a 

set of unique administrative policies while maintaining its 

participation in the Grid through common interfaces, and 

at the Grid level by reducing the number of visible 

participants from view of the top-level resource manager. 

5. Grid Computing Environment 

To facilitate the management of this hierarchical grid 

architecture (as described in Section 4), we propose a 

multi-agent system. At the top level a Grid broker is 

responsible for handling the Grid job queue (we call it a 

job queue since it includes both user submitted tasks and 

local system tasks), similar to the setup of the Globus 

framework [11]. The federation level special agents called 

ambassadors are responsible for interaction with the 

broker. Underneath the ambassadors, each computing 

resource would be represented by an agent. By creating a 

grid economy, such as the one used in Nimrod-G [5], the 

ambassadors can submit bids for execution contracts to 

the broker, who would then select the winning federation 

by means of a sealed-bid auction. In order for the 

ambassadors to effectively estimate the execution time for 

a contract bid, each ambassador will query the agents in 

its federation for estimates on each task in order to 

generate an Estimated Time of Completion (ETC) matrix. 

(Details of how to obtain an ETC matrix are provided in 

Section 7.) The ambassador will then be responsible for 

selecting which tasks it can execute and the price at which 

it can execute those tasks. 

The remainder of this paper will be concerned with 

how an ambassador efficiently distributes tasks from an 

awarded execution contract to its agents. 



6. Resource Allocation Methods 

In this section we first describe the conventional 

baseline method, followed by detailing the three game 

theoretical resource allocation techniques. 

6.1. Conventional Baseline Method (BASE) 

A conventional baseline (BASE) method is necessary 

to establish a lower bound on the performance of various 

game theoretical methods. We will use this method to 

visualize the difference in the solution quality between 

BASE and the studied game theoretical techniques. The 

BASE method was originally proposed in [18].  The basic 

idea of BASE is that when tasks arrive at the middle-tier, 

each agent is assigned a task on random by the 

ambassador. If an agent is unable to execute the task 

within the specified deadline, it is rejected without any 

reallocation. (Notice that if all the machines are heavily 

loaded, BASE can be a very effective strategy.) It is easy 

to see that BASE can allocate tasks in linear time O(m).

6.2. Non-cooperative Method (NC) 

The non-cooperative (NC) sealed-bid method relies 

on the solicitation of bids from the agents. Each agent 

submits a bid for a task that is at the head of the 

ambassador’s job queue. After receiving bids from all the 

agents, the ambassador selects the agent which submitted 

the highest bid and awards the task for execution. For 

simplicity, we assume that an agent j’s bid (bj) is 

inversely proportional to the ETC of a job onto its 

machine. (This is very common assumption; for instance, 

see [11] and [16].) That is, bj=[n-1/n]vj, where vj=1/ETC

of task and n is the number of agents in the system. The 

following steps are involved in a successful run of NC: 

Step 1: Ambassador de-queues the job queue and 

announces that a task i is ready for bidding. 

Step 2: Each agent in parallel does the following: 

Step 2a:  Derive ETC for task i.

Step 2b: Artificially en-queues task i into its local 

job queue to observe if it is possible to execute the task 

within its associated deadline. (Details of how the 

deadlines are associated with a particular task is discussed 

in detail in Section 7. For the time being assume that each 

task has a deadline associated with it). 

Step 2c: If answer to Step 2b is yes then submit 

bj=[n-1/n]vj, otherwise submit bj=0 (since ETC= ).

Step 3: Ambassador sorts the bids and chooses the 

agent with the highest bid. 

Step 4: Ambassador allocates the task to the agent 

identified in Step 3, and the sequence repeats. 

Notice that the ambassador does not immediately 

compensate the agent for executing the task. This is 

because the bidding process is entirely based on ETC. It 

is possible that after the allocation of a task i, an agent j’s

job queue (which includes both local and Grid tasks) is 

overwhelmed with local (machine generated) tasks. This 

would delay the processing of task i, and probably to the 

extent that it is no longer possible to finish i’s execution 

before its deadline. If that happens then there is no option 

than to reject task i. Based on this observation, the 

ambassador compensates the agent if and only if it 

receives the required output (a guarantee on the actual 

execution of tasks) of the task. The compensation is 

equivalent to the bid posed by the agent who executed the 

task, making it a first-price sealed-bid auction [13]. By 

inspecting NC, we observe that tasks can be allocated in 

O(mnlogn), where the most expensive computation takes 

place in Step 3 (sorting of the submitted bids).  

6.3. Non-cooperative Method with Certain 

Degree of Cooperation (NNC) 

The semi-distributed n-round non-cooperative (NNC) 

sealed bid method is similar to the NC method, but allows 

some limited cooperation. This is accomplished by 

handing a task to a different agent if the original agent 

cannot execute that task before the specified deadline, as 

opposed to immediately rejecting the task as is the case 

with NC. This handing off occurs n-1 times, after which 

the task is rejected. Since the initial task allocation 

procedure of NNC is exactly the same as NC, below we 

describe the task handoff steps involved in a successful 

run of NNC: 

Step 1: For each assigned task repeatedly observe the 

deadline constraint in conjunction to the local job queue. 

Step 2: If (at some point) the task cannot be 

executed, then randomly choose an agent (to differentiate 

we tag these agents as helper agents) and send the task for 

execution. (With the task attach a data structure (D) that 

holds the information about who is the original agent and 

which helpers have already been consulted.) 

Step 3: After the job arrives at the helper’s site, it 

artificially en-queues the task into its local job queue to 

observe if it is possible to execute the task within its 

associated deadline.

Step 3a: If it can execute the handoff task, then the 

process terminates.  

Step 3b: Otherwise, choose on random another agent 

that is currently not present in D and send the task to it. If 

in D the number of helpers is equivalent to n-1, then 

reject the task. (The data structure remains associated 

with the task until the task is successfully executed or it is 

rejected.)

Notice that the compensation method of NC is fully 

applicable in NCC without any alteration. The agents 

(original or helper) are duly paid upon receiving the 

necessary output of tasks. Since NNC is similar to NC the 



initial allocation takes O(mnlogn), but NNC allows 

reallocation of tasks so the running time of NNC becomes 

O(mnlogn+mr), where mr is the number of reallocated 

tasks.

6.4. Cooperative Method (COOP) 

In this setup all agents cooperate (COOP) to 

collectively progress towards the global goal of 

efficiently allocating tasks. In non-cooperative games, 

agents’ sets of possible actions and their preferences over 

the possible outcomes, where an outcome is a profile of 

actions; each action is taken by a single agent 

autonomously. The primitive of the cooperative game 

model is the collection of set of joint actions that each 

group of agents (coalition) can take independently of the 

remaining agents. An outcome of a cooperative (or more 

appropriately a coalition) game is a specification of the 

coalition that forms and the joint action it takes. The other 

primitive of the model of a coalition game is the profile of 

the players’ preferences over the set of all possible 

outcomes. Thus although actions are taken by coalitions, 

the theory is based on the individual’s preferences.  

Definition 1 [17]: A coalition game consists of: 

1) a finite set of agents (players) N, and 

2) a function v that associates with every nonempty 

subset S of N (which forms a coalition) a real number 

v(S) (which is the worth of S). 

For each coalition S, v(S) is the total payoff that is 

available for division among the members of S. In other 

words, the set of joint actions that the coalition S can take 

consists of all possible divisions of v(S) among the 

members of S. It is important to understand that v(S)

should be interpreted as the maximum payoff that the 

coalition S can guarantee independently of the behavior 

of the coalition N\S. Another important property 

(Definition 3) of the worth of the coalition of all players 

(v(N)) is that the worth is at least as large as the sum of 

the worth of the members of any partition of N.

Definition 2 [17]: A coalition game (N,v)  is cohesive 

if
1

( ) ( )
K

kk
v N v S for every partition {S1, …, SK} of N. 

In essence, Definition 2 is a special case of the 

condition of superadditivity, which requires that v(S

T) v(S)+v(T) for all coalitions S and T with S T =

This property is also important to understand the central 

concept of coalition games – the core. The main idea 

behind the core is similar to that of the Nash equilibrium 

of a non-cooperative game, i.e., an outcome is stable (or 

in equilibrium) if no deviation is profitable. In the case of 

the core, the outcome is stable if no coalition can deviate 

and obtain an outcome better for all of its members. Note

that in a coalition game there can be as many as 2N

possible coalitions. It would be impractical to go through 

each and every coalition in order to find which coalition 

is the most beneficial. But from Definitions 1 and 2 it is 

clear that the coalition game profits the most when a 

coalition of N agents forms – called the grand coalition

[22]. Thus, if we are able to (some how) guarantee that in 

a particular coalition game the grand coalition is always 

the most beneficial, then we can simply confine our 

search to the grand coalition. To be technically precise, 

we need to prove that the core of a coalition game is 

nonempty [17]. If the core is nonempty, then there exists 

at least one outcome that is stable via the grand coalition. 

On the other hand if the core is empty then there is no 

outcome that can guarantee stability. Below we proceed 

in that direction.

Let (N,M,U, 0) be a coalition Gird task allocation 

game, where N = {1,…,n} is the set of agents, M = {1,…, 

m} is the set of tasks in the ambassador’s job queue, U is 

a non-negative n×m matrix that gives the utility (uij) of 

each task i for each agent j (the utility is to be interpreted 

as the ETC of a task on an agent’s  machine, i.e., the 

smaller the ETC the larger is the utility), and 0 is the 

order of the ambassador’s job queue. We define the worth 

v(S) of a coalition S N as the maximum total profit 

(utility) it can guarantee itself without any help from N\S.

This utility can be determined in two stages. In the first 

stage, all players sequentially choose a task, respecting 0.

In the second stage, the members of S reallocate the 

chosen tasks among themselves to reach coalitional 

efficiency. Obviously, the outcome of this reallocation 

depends on the tasks chosen by the members of S, and 

therefore also on the tasks chosen by the members of N\S.

In order to describe the value v(S) of a coalition S

N, we make use of a very common technique to describe 

coalition structure formation – the extensive form game 

[13]. We define an extensive form coalition task 

allocation game ({S,N\S},T,CS,uS) with agent set {S,N\S}.

The various components of this game are as follows.  

1. The Root: For the root of the tree T, let 1 k m

and the set of bijective maps from {1,…,k} to M is 

denoted by Sk. A map Sk is interpreted as a situation 

where task (i) is chosen by agent i for each 1 i k.

Similarly, we define S0 as the situation where none of the 

tasks is chosen yet. Let T be the rooted tree with node set 

Sk and root S0. There is an arc between Sk and Sk+1

with 0 k m-1, if and only if (i)= (i) for all 1 i k. That 

is, there is an arc between  and  if  can be extended to 

 by assigning an appropriate task to player k+1. So, 

V1=Sk and V2=Sm are the sets of non-terminal and terminal 

nodes, respectively.  

2. Control: The control function CS:Sk {S,N\S} is 

defined as follows. Let Sk for some 0 k m-1. Then 

we define CS( )=S if and only if k+1 S. So coalition S

controls the nodes at which one of its members is to 

choose a task for scheduling. Let S and N\S be the set 

of all possible strategies of agents S and N\S, respectively. 



3. Utility function: Finally, we describe the utility 

function uS: S× N\S
{S,N\S}. Let y=(yS,yN\S)

S× N\S. Let Sm be the terminal node reached by 

strategy profile y, and let HS( )={  (i):i S} be the 

corresponding set of tasks identified for scheduling by S.

Now define uS
S(y)=max{ i S: (S,HS( ))}, and 

uS
N\S(y)=-uS

S(y). So, the payoff of S at terminal node 

Sm is the maximum utility S obtains after reallocating the 

initially chosen tasks and the payoff for N\S is just the 

opposite of the payoff of S. Hence, N\S maximizes its 

payoff at the extensive form game by minimizing the 

payoff of S and vice versa. 

Based on that above discussion the coalition grid task 

allocation game (N,v) is defined by: 

\

\
( ) max min ( ),        

N SS

S
SyN SyS

v S u y S N .
(1)

Notice that v(S) is precisely the maximum utility that 

coalition S can guarantee itself, without any help from 

N\S. Using Equation 1, we show the non-emptiness of the 

core of the coalition grid task allocation game. 

Theorem 1: Let (N,M,U, 0) be the coalition gird task 

allocation game and let (N,v) be its corresponding 

coalition game. Let the core of (N,v) be the set C(v) = {x
N: i Sxi v(S)} for every S N and i Nxi v(N). Let 

(u,w) C(v) and let the mapping :{1,…,m} M be a 

bijection such that w  (1) … w  (m). Define xi=ui+ w  (i) for 

all i N. Then, the allocation x belongs to the core of 

(N,v), i.e.,  x C(v). 

Proof: By definition of x, i Nxi=v(N M). Since 

v(N M) = v(N), i Nxi = v(N). It remains only to show 

stability. Consider the extensive form game 

({S,N\S},T,CS,uS), with strategy zN\S N\S for the agents 

in set N\S: “always schedule the task with highest wi that 

is still available.” More precisely, let zN\S N\S be such 

that zN\S( ) =  for each Sk, k+1 N\S, and Sk+1

with w (k+1) wj for all j M\{ (1),…, (k)}.

Now if the agents in set S would use a similar 

strategy in the strategic form game as the agents in set 

N\S, i.e., also “always pick the highest wi that remains,” 

then the agents in set S would acquire { (i):i S} as its 

set of tasks. If the agents in set S use a different strategy, 

then, given the agents in set N\S’s strategy zN\S, it would 

obtain a set of tasks A with lower wi values. Formally, 

( )a
a A i S

w w i .
(2)

In particular, let the agents in set S play a best reply 

against strategy zN\S. Let A* be the set of tasks scheduled 

by the agents in set S. Let :S A* be the optimal 

rescheduling of the tasks. From Equation 2 it follows that: 

*

( ) ( )a
i S i Sa A

w i w w i .
(3)

Hence,

( )

( ) ( ) ( { ( ): })A

i
i S

i i
i S i S i S i S

i i
i S

U

x

u w i u w i v S i i S

.

(4)

The first inequality is due to Equation 3. The second 

inequality is satisfied because (u,w) C(vA). The last 

equality is satisfied since the matching {(i, (i)):i S} is 

an optimal rescheduling, and hence optimal for coalition 

S { (i):i S} at the assignment game (N,vA).

From the definition of the game (N,v) it follows that: 

\

\
\( )

max ( , ) max min ( ) ( )
N SS S

S S
S SN S

yN SyS ySi i
i S

u yS z u y v SU .
(5)

Now the theorem follows immediately from 

Equations 4 and 5.

The above results assert that in the coalition gird task 

scheduling game, the agents can only gain a superior 

utility if they all cooperate to find an allocation for the 

tasks. Thus, rather than investigating all the 2N possible 

forms of coalition, we can confine ourselves with 

evaluating the outcome of the grand coalition. However, 

it remains to be seen how one can optimally match n

agents to the m tasks, since the total possible 

combinations are of magnitude O(m!/(n-m)!). It turns out 

that this computationally infeasible problem can be 

solved in O(nm2) time using the widely cited Hungarian 

method [14] . Below we detail the Hungarian method. 

Step 0: Take as input the ETC matrix U.

Step 1: Subtract the smallest entry in each row form 

all the entries in that row. (Each row will have at least one 

zero entry and all other entries will remain positive.) 

Step 2: Subtract the smallest entry in each column 

from each entry in that column. (Each row and column 

will have at least one zero entry.) 

Step 3: Cover the zeros identified by Steps 1 and 2 

by crossing out the rows and columns of U. This cover 

should be obtained by the minimal number of crossings. 

Step 4: Check for optimality. 

Step 4a: If the number of crossings is n, then 

optimality is reached. Go to Step 6. 

Step 4b: If the number of crossing is less than n, then 

an optimal assignment need to be found. Go to Step 5. 

Step 5: Determine the smallest entry not covered by 

any crossing. Subtract this entry from all uncovered 

entries and add it to all entries covered by both a 

horizontal and vertical crossings. Go to Step 3. 

Step 6: Scan each row. The first zero is the task to 

agent allocation provided that the column does not 

already contain an allocation. 

Below we detail the steps involved in a successful 

run of COOP: 

Step 1: Ambassador de-queues the job queue n

times, where n is the number of agents in the system. This 



is done for the following two reasons. First, in a real life 

system, the number of tasks would be much larger than 

the number of agents in the system. To permit a realistic 

negotiation process, limiting the number of tasks for a 

single round of negotiation is extremely important. 

Second, coalition formation requires perfect information, 

if we do not limit the size of the utility matrix for the 

Hungarian method, then we run into the problem of how 

to obtain ETC for every task that arrives in real-time at 

the ambassador’s job queue. Essentially we want the 

agents to meet, discuss, negotiate, agree on the allocation, 

send their allocated tasks to their local job queues and 

repeat the process for the next set of tasks.  

Step 2: Use the Hungarian method to find the task to 

agent mapping. 

Step 3: Ambassador allocates the tasks to the agents 

that are identified in Step 3, and the sequence repeats. 

Once again notice that the compensation method of 

NC is fully applicable in COOP without any alteration. 

The agents are duly paid upon receiving the necessary 

output of tasks. To cater for the case when an agent is 

unable to execute an allocated task due to deadline 

constraints, that particular task is sent to the ambassador 

who inserts that task in front of its job queue so that it can 

be immediately included in the next round of task 

allocation. Observe that the Hungarian method is called at 

least O(m/n) times in a successful rum of COOP. The 

Hungarian method itself takes O(nm2). Therefore 

including the number of reallocated tasks, the total 

running time of COOP becomes O((m/n)nm2+mr).

Finally, we quote from literature the following result 

which enables us to prove that the COOP method is a 

society-efficient method for task scheduling in a 

computational grid.  

Lemma 1 [22]: A coalition game is society-efficient 

if and only if the core is nonempty. 

Theorem 2 [22]: COOP is a society-efficient 

method.

Proof: Follows from the result of Theorem 1 by 

applying Lemma 1. 

7. Experiments and Discussion of Results 

A hierarchical Grid infrastructure is simulated using 

a discrete event-driven simulator, where tasks are 

submitted to a centralized broker. The broker then 

advertises the job queue to be bid on, after which each 

federation submits a bid to the broker. The bids are 

generated by soliciting estimates from the federation’s 

sites. As mentioned in Section 5, we only confine 

ourselves with the allocation of tasks at the middle and 

bottom tier levels. Therefore, the simulation encapsulates 

a federation of workstations. 

Note that the ETC values may differ from actual 

times, e.g., actual times may depend on input data and 

communication delays. Therefore, for the simulation 

studies, the Actual Time to Complete (ATC) values were 

calculated using the ETC values as the mean. (The ATC 

values were used for the evaluation of the techniques.) 

The tasks were assumed to be independent with multiple 

deadlines. The worth of a submitted task degrades 

according to a degradation scheme, if the task misses a 

certain deadline. More specifically, let wi be a deadline 

factor for task i, where 

1.00 if finished at or below its primary deadline,

0.50 if finished at or below its 50% deadline,

0.25 if finished at or below its 25% deadline,

0.00 if is never executed.
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(Note that wi indicates the degradation scheme of the 

worth a task according to when the task finishes.) 

A grid system with 16 machines and an average of 

200,000 tasks was simulated for a period of 300 minutes. 

For each of the scenarios that are discussed later in this 

section, 50 trials were run. (A trial is defined as one such 

simulation of the Grid system.) The period from 0 to 10 

minutes was the system start-up period. The period 

between 10 to 250 minutes was considered the evaluation 

period (i.e., the period where the scheduling techniques’ 

performances were measured). Within the simulation 

period (i.e., the system start up period and the evaluation 

period), the arrival times of the tasks were randomly 

generated using a Poisson distribution. To better simulate 

an overloaded system, the mean task inter-arrival time 

was faster (3.2 seconds) during the system start-up period 

than during the evaluation period (7.6 seconds). In 

addition, random bursty arrival rate periods were 

introduced during the evaluation period, where the arrival 

rate was increased. These periods did not overlap with 

each other and had a mean task inter-arrival time of 7 

seconds. The duration of a bursty period was 10 minutes. 

The estimated execution times of all tasks taking 

heterogeneity into consideration were generated using the 

gamma distribution method described in [2]. Four 

different cases of ETC heterogeneities were used in this 

study, the high task and high machine heterogeneity case, 

the low task and low machine heterogeneity case, the high 

task and low machine heterogeneity case and the low task 

and high machine heterogeneity case. (The data presented 

in this article is the average of the 4 cases over all the 

trials.)

The deadline of each task was calculated by 

incorporating the arrival time of the task, plus the median 

execution time of the task (across all machines), plus a 

multiplier times the median execution time of all tasks 

(i.e., 20 minutes of simulation study). Two types of 

deadlines, i.e., loose and tight, were used in the 

simulation. The multiplier was changed to make the 

deadlines (i.e., the 100%, 50%, and 25% deadline) for the 

two types of deadlines. For the loose deadline, the



multiplier was set to four, eight, and twelve for the 

primary (100%), 50%, and 25% deadline, respectively. 

the tight deadline, the multiplier was set to one, two, and 

four for the primary (100%), 50%, and 25% deadline, 

respectively. (By loosening the deadlines the depreciation 

of the task as its execution is delayed is reduced, thereby 

increasing the task’s after-execution worth. For example, 

a multiplier of 4 would increase a task’s after-execution 

worth by 25%; a multiplier of 8 would increase it by 

50%, etc.) To evaluate the various techniques discussed 

in this paper, we made use of the following performance 

matrices:

Makespan: The latest finish time among all tasks. 

Turnaround time: The average time spent by a task 

in the Grid. 

Slowdown ratio: The ratio of the average turnaround 
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Figure 1. Makespan. Figure 2. Turnaround time. Figure 3. Slowdown ratio.
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Figure 4. Utilization. Figure 5. Task rejection rate. Figure 6. Average Tasks per agent.

Table 1. Load balancing: Tasks per agent and standard deviation on the distribution of tasks. 

Agents Methods (Tasks per Agent) 

 BASE NC NNC COOP 

1 11066 11736 1097 12443 

2 11350 12014 1806 12474 

3 11385 12479 3393 12517 

4 11025 11773 1378 12437 

5 11644 12431 6048 12549 

6 10886 11585 934 12417 

7 11845 12750 17104 12560 

8 11413 12607 4377 12543 

9 11143 11919 1599 12483 

10 11572 12347 3288 12527 

11 11300 12103 1917 12490 

12 11476 12251 2289 12514 

13 11190 11933 1647 12473 

14 11797 13014 147496 12579 

15 11053 11937 1497 12476 

16 11387 12125 2347 12503 

Standard deviation 278.50 394.00 36239.22 46.02 



time to the average waiting time of all tasks.  

Utilization: The fraction of resources used by 

reallocated tasks. 

Task rejection rate: The percentage of tasks 

rejected by all the agents in the system. 

To begin, we study (Figure 1) the makespan achieved 

by the techniques. Some very interesting results are 

observable. First, surprisingly BASE outperforms NC by 

producing a smaller makespan. This is because in NC the 

task allocation is biased in favor of more powerful (faster 

machines) agents. Second, we can observe tremendous 

reduction in makespan even with minor cooperation 

among agents. The makespan is reduced by as much as 

85% in case of NCC. COOP outperforms all the 

techniques by producing a makespan of 2409119610. 

Although this is only an improvement of 8.52% compared 

to NCC’s makespan of 2633596204, yet COOP’s task 

allocation is superior in load balancing, reduced task 

rejection and other important performance matrices which 

will be discussed subsequently. 

Turnaround time is an important factor in 

determining how fast an application enters and exits the 

Grid system. This measure includes: 1) the time a task 

takes to come to the front of the queue (of the broker) so 

that it can be considered for scheduling, 2) the time 

required for a task to propagate through the network from 

the broker to the ambassador queue, 3) the time taken for 

a task to move to the front of the ambassador queue, 4) 

propagation delay from the ambassador to the agent’s 

machine (site), 5) the time a task takes to reach the front 

of the site queue at which it is to be executed, 6) the time 

needed to schedule a task on the site’s local scheduler, 7) 

the time a task takes if reallocation is performed, 8) the 

time a task actually takes for execution, and 9) the time it 

takes to go back to the broker (possibly through the 

ambassador). We seek to identify methods that can 

effectively reduce the cumulative time that a task spends 

in the Grid system. A technique that exhibits a small 

turnaround time makes itself available faster to process 

other inline tasks. Figure 2 illustrates the average 

turnaround time of the studied techniques. These results 

are almost identical to the makespan results. The 

techniques based on shortest turnaround time are ranked 

as: 1) COOP, 2) NNC, 3) BASE, 4) NC. 

The slowdown ratio encapsulates the average total 

time taken by a job in the Gird infrastructure due to 

various task allocation decisions. A method that makes 

allocation decisions correctly and in a timely fashion 

would have a reduced slowdown ratio.  Figure 3 portrays 

the results obtained by observing the slowdown ratio. 

Clearly NC, which basically takes decisions locally in a 

greedy fashion, exhibits the minimum slowdown ratio. 

COOP performed surprisingly well with a slowdown ratio 

of 1.0016 (third best). It is natural to think that COOP 

would depict the worst of the slowdown time; however, 

COOP’s decision quality is unparallel. No decision on 

task allocation is made unless it is negotiated with all the 

agents in the system. On the other hand BASE which uses 

no informed decision on task allocation performs the 

worst among all the techniques. The techniques ranked 

according to the smallest slowdown ratio are as follows: 

1) NC, 2) COOP, 3) NNC, 4) BASE.

If an agent cannot executed a given task, it may 

become necessary to reallocate that task to another agent. 

However, this necessity comes at a cost of increase in 

turnaround time and slowdown ratio. A technique that 

exhibits a smaller utilization factor ensures superior 

allocation. Note that BASE and NC cannot be included in 

this comparison because they have no facility for 

reallocation of tasks. Figure 4 shows COOP with 0.69% 

utilization compared to 1.2% of NNC. This is analogous 

to the measure of task rejection rate (Figure 5), where 

COOP again outperforms the other methods, followed by 

NNC and NC. 

The average tasks per node or agent (Figure 6) is a 

mirror inverse of the rejection rate measurement, as it is 

based on the total number of tasks completed by the 

federation. Load balancing (Table 1), however, provides 

important information about how well the methods can 

distribute the tasks among the various agents in order to 

create the most efficient use of the federation’s resources. 

The entries in Table 1 represent the number of tasks 

executed by each agent averaged (and rounded off) over 

the number of trials. Due to the heterogeneous nature of 

the federation, NNC has the worst load balancing in our 

study (based on standard deviation). In this case one 

agent (Agent 14) completely outclasses the other agents 

in the system, and as a result more tasks are allocated 

there. This in turn increases the reallocation of tasks, 

hence the worst load balancing. BASE demonstrated 

acceptable load balancing because of the random 

assignment of tasks to sites. NC provides a mediocre load 

balancing but worst than the naïve BASE method. COOP 

demonstrated the best load balancing of any method due 

to the desire of sites to ensure the most efficient execution 

scheme possible. The techniques ranked according to the 

best load balanced workload are: 1) COOP, 2) BASE, 3) 

NC, 4) NNC. 

8. Conclusions

This paper proposed and compared various game 

theoretical resource allocation techniques in the Grid 

computing environment. The cooperation among the 

agents needed when an agent is unable to guarantee the 

execution of task can occur in a number of ways as 

illustrated by the techniques discussed in this paper. On 

one extreme was a technique that did not allow any 

cooperation among agents, while on the other extreme 

was a method that utilized the concept of coalition 



formation to collectively approach the problem. 

The simulation study, which was built around a 

newly proposed hierarchical Grid infrastructure, used a 

diverse workload that captures task to machine 

heterogeneity extremely well. The hierarchical Grid 

infrastructure consists of machines that abstract into 

larger computing centers labeled “federations,” each of 

which is responsible for managing its own resources 

independently. These federations are then linked together 

with a primary portal to which Grid jobs would be 

submitted. Using this simulation model we extensively 

evaluated the proposed game theoretical techniques and 

studied their behaviors under various performance 

metrics, such as, makespan, turnaround time, slowdown 

ratio, utilization, task rejection rate and load balancing. 

Based on our experimental findings, we conclude that the 

cooperation among agents is not only important but 

extremely necessary in order to execute tasks that bear 

multiple execution time deadlines. Although the proposed 

cooperative method has high computational complexity, 

yet the task allocation has low: 1) task rejection, 2) 

utilization, 3) slowdown ratio, and 4) turn around time. 

Moreover, the allocation has near perfect load balancing 

and minimum makespan. For applications that are of 

critical nature this cooperative approach is the best 

choice. For other applications the simple conventional 

baseline method would be best suitable as other game 

theoretical approaches such as, the non-cooperative and 

semi-cooperative are only just better.  
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