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Classical intermolecular potentials typically require an extensive parametrization procedure for any
new compound considered. To do away with prior parametrization, we propose a combination of
physics-based potentials with machine learning (ML), coined IPML, which is transferable across
small neutral organic and biologically relevant molecules. ML models provide on-the-fly predictions
for environment-dependent local atomic properties: electrostatic multipole coefficients (significant
error reduction compared to previously reported), the population and decay rate of valence atomic
densities, and polarizabilities across conformations and chemical compositions of H, C, N, and O
atoms. These parameters enable accurate calculations of intermolecular contributions—electrostatics,
charge penetration, repulsion, induction/polarization, and many-body dispersion. Unlike other poten-
tials, this model is transferable in its ability to handle new molecules and conformations without
explicit prior parametrization: All local atomic properties are predicted from ML, leaving only eight
global parameters—optimized once and for all across compounds. We validate IPML on various gas-
phase dimers at and away from equilibrium separation, where we obtain mean absolute errors between
0.4 and 0.7 kcal/mol for several chemically and conformationally diverse datasets representative of
non-covalent interactions in biologically relevant molecules. We further focus on hydrogen-bonded
complexes—essential but challenging due to their directional nature—where datasets of DNA base
pairs and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and as a first look,
we consider IPML for denser systems: water clusters, supramolecular host-guest complexes, and the
benzene crystal. Published by AIP Publishing. https://doi.org/10.1063/1.5009502

I. INTRODUCTION

Our understanding of the physical laws that govern molec-
ular interactions have led to an ever-improving description of
the high-dimensional potential energy surface of condensed
molecular systems. A variety of computational methods pro-
vide various approximations thereof: while high-level methods
(e.g., coupled cluster) are restricted to a small number of atoms,
other electronic-structure methods (e.g., density functional
theory—DFT) can reach larger system sizes of up to 102–103

atoms. Beyond this limit, classical potentials and force fields
provide a much faster estimate of the interactions, enabling the
calculation of thermodynamic and even kinetic properties for
complex materials.

Many classical potentials and force fields are often termed
physics-based because they encode assumptions about the
governing physics of the interactions via their functional
forms. Despite their widespread interest by the community,

a)Electronic mail: bereau@mpip-mainz.mpg.de

classical potentials are currently limited to a narrow set of
molecules and materials, due to tedious and non-systematic
parametrization strategies. Additive (i.e., non-polarizable)
atomistic force fields are typically parametrized from a com-
bination of ab initio calculations and experimental measure-
ments, e.g., pure-liquid density, heat of vaporization, or NMR
chemical shifts. Ensuring the accurate reproduction of var-
ious molecular properties, from conformational changes to
thermodynamic properties (e.g., free energy of hydration),
but also consistency across all other molecules parametrized
remains challenging, time consuming, and difficult to
automate.

Recently, a number of studies have brought forward
the idea of more automated parametrizations. For instance,
QMDFF is based on reference DFT calculations to parametrize
a set of classical potentials.1 We also point out the automatic
generation of intermolecular energies2 extracted from refer-
ence symmetry-adapted perturbation theory3 (SAPT) calcula-
tions. Interestingly, recent efforts have aimed at parametrizing
potentials and force fields from atom-in-molecule (AIM) prop-
erties. Van Vleet et al.4 and Vandenbrande et al.5 showed
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that a systematic use of AIMs can significantly reduce the
number of global parameters to scale the individual energetic
contributions. Overall, they propose AIMs as a means to
more systematically parametrize models. Similar conclusions
were reached for the additive OPLS force field,6 for which
the missing polarization effects make a systematic scheme
all the more challenging. These methodologies still require
a number of a priori reference electronic-structure calcula-
tions to optimize various parameters of any new molecule
encountered.

In the context of developing classical potentials for
in silico screening across large numbers of compounds,
the necessary computational investment for the parametriza-
tion procedures of each new molecule can become daunt-
ing. A radically different strategy consists in predicting the
potential energy surface of a system from machine learn-
ing (ML).7–9 ML encompasses a number of statistical mod-
els that improve their accuracy with data. Recent studies
have reported unprecedented accuracies in reproducing ref-
erence energies from electronic-structure calculations, effec-
tively offering a novel framework for accurate intramolecular
interactions freed from molecular-mechanics-type approxi-
mations (e.g., harmonic potential).10–12 While they do away
with free parameters that need optimization (i.e., unlike force
fields), they typically suffer from limited transferability: an
ML model is inherently limited to interpolating across the
training samples. A model trained on water clusters can
be remarkably accurate toward describing liquid-state prop-
erties (e.g., pair-correlation functions) but remains specific
to interactions solely involving water.13 Transferability of
an ML model that would predict interactions across chem-
ical compound space (i.e., the diversity of chemical com-
pounds) stands nowadays as computationally intractable. Part
of the reason is the necessity to interpolate across all physi-
cal phenomena for any geometry, as these models are driven
by experience, rather than physical principles. Symmetries
and conservation laws will require large amounts of data to
be appropriately satisfied if they are not correctly encoded
a priori.

In this work, we propose a balance between the afore-
mentioned physics-based models and an ML approach, coined
IPML. To best take advantage of both approaches, we choose
to rely on a physics-based model, where most parameters are
predicted from ML. This approach holds two main advan-
tages: (i) Leverage our understanding of the physical inter-
actions at hand, together with the associated symmetries
and functional forms, and (ii) alleviate the reference calcu-
lations necessary to optimize the parameters of each new
molecule.

The aforementioned AIM-based classical potentials, in
this respect, offer an interesting strategy: they largely rely
on perturbation theory to treat the long-range interactions
(i.e., electrostatics, polarization, and dispersion), while over-
lap models of spherically symmetric atomic densities describe
the short-range interactions. Both theoretical frameworks esti-
mate interaction energies from monomer properties—thereby
significantly reducing the ML challenge from learning inter-
actions between any combination of molecules to the much
simpler prediction of (isolated) atomic properties. Incidentally,

learning atomic and molecular properties has recently been the
subject of extended research, providing insight into the appro-
priate representations and ML models.12,14–16 Parametriz-
ing small-molecule force fields based on ML has already
shown advantageous at a more coarse-grained resolution.17

At the atomistic level, Bereau et al. had shown early devel-
opments of learning AIM properties, namely, distributed mul-
tipole coefficients to describe the electrostatic potential of a
molecule.18 The study was aiming at an accurate prediction
of multipole coefficients across the chemical space of small
organic molecules. These coefficients provide the necessary
ingredients to compute the electrostatic interaction between
molecules via a multipole expansion.19 Here, we extend this
idea by further developing physics-based models parametrized
from ML to all major interaction contributions: electrostatics,
polarization, repulsion, and dispersion. We base our method
on a few ML models of AIM properties: distributed multi-
poles, atomic polarizabilities from Hirshfeld ratios, and the
population and decay rate of valence atomic densities. The
combination of physics-based potentials and ML reduces the
number of global parameters to only 8 in the present model.
We optimize our global parameters once and for all such that
a new compound requires no single parameter to be opti-
mized (because the ML needs no refitting), unlike most other
aforementioned AIM- and physics-based models.1,2,4 Vanden-
brande et al. did present results using frozen global parameters,
but their model still requires quantum-chemistry calculations
on every new compound to fit certain parameters (e.g., point
charges).5 After parametrization on parts of the S22x5 small-
molecule dimer dataset,20 we validate IPML on more chal-
lenging dimer databases of small molecules, DNA base pairs,
and amino-acid pairs. We later discuss examples beyond small-
molecule dimers toward the condensed phase: water clusters,
host-guest complexes, and the benzene crystal.

II. IPML: PHYSICS-BASED POTENTIALS
PARAMETRIZED FROM MACHINE LEARNING

A. Learning of environment-dependent
local atomic properties

The set of intermolecular potentials is based on ML of
local (i.e., atom in molecule) properties targeted at predicting
electrostatic multipole coefficients, the decay rate of atomic
densities, and atomic polarizabilities, which we present in the
following.

1. Electrostatic multipole coefficients

The prediction of atomic multipole coefficients up to
quadrupoles was originally presented in the work of Bereau
et al.18 DFT calculations at the M06-2X level21 followed by
a Gaussian distributed multipole analysis (GDMA)19 (i.e.,
wavefunction partitioning scheme) provided reference mul-
tipoles for several thousands of small organic molecules. ML
of the multipoles was achieved using kernel-ridge regression.
The geometry of the molecule was encoded in the Coulomb
matrix,14

C, such that for two atoms i and j,

Cij =


Z2.4

i
/2 i = j,

ZiZj/rij i , j.
(1)
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Though the Coulomb matrix accounts for translational and
rotational symmetry, it does not provide sufficient information
to unambiguously encode non-scalar, orientation-dependent
quantities, such as dipolar (i.e., vector) and quadrupolar (i.e.,
second-rank tensor) terms. A consistent encoding of these
terms had been achieved by rotating them along a local axis
system, provided by the molecular moments of inertia. To
improve learning, the model aimed at predicting the differ-
ence between the reference GDMA multipoles and a simple
physical, parameter-free baseline that helped identify symme-
tries in vector and tensor components (hereafter mentioned as
delta learning). The large memory required to optimize kernel-
ridge regression models led us to construct one ML model per
chemical element.

In this work, we both simplify the protocol and signifi-
cantly improve the model’s accuracy. Reference multipoles are
now extracted from DFT calculations at the PBE0 level. Rather
than using GDMA multipoles, we now rely on the minimal
basis iterative stockholder (MBIS) partitioning scheme. While
Misquitta et al. recently recommended the use of the iterated
stockholder atom (ISA) multipoles,22 we use MBIS multipoles
for their consistency with the abovementioned atomic-density
parameters and the small magnitude of the higher multipoles,
easing the learning procedure. We have also found MBIS
multipoles to yield reasonable electrostatic energies at long
ranges (data not shown). MBIS multipoles were computed
using Horton.23 Instead of relying on the molecular moments
of inertia as a local axis system, we project each non-scalar
multipole coefficient into a basis set {eij, eik , eil} formed by
three non-collinear vectors e from the atom of interest i to
its three closest neighbors: j, k, and l [e.g., eij = (rj ☞ ri)/||rj

☞ ri ||, where ri denotes the Cartesian coordinates of atom
i]. The vectors eik and eil are further adjusted to form a
right-handed orthonormal basis set.

Further, the representation used for the ML model of elec-
trostatic multipoles is now the atomic Spectrum of London
and Axilrod-Teller-Muto (aSLATM) potentials.24,25 aSLATM
represents an atomic sample and its environment through a
distribution of (i) chemical elements, (ii) pairwise distances
scaled according to London dispersion, and (iii) triplet config-
urations scaled by the three-body Axilrod-Teller-Muto poten-
tial. We point out that aSLATM is atom-index invariant and as
such does not suffer from discontinuities other representations
may have. We used the qml implementation.26 Point charges
are systematically corrected so as to yield an exactly neutral
molecule.

2. Atomic-density overlap

Exchange-repulsion and other short-ranged interactions
are proportional to the overlap of the electron densities,4,27

Sij =

∫
d3

r ni(r)nj(r). (2)

Van Vleet et al.4 presented a series of short-ranged intermolec-
ular potentials based on a Slater-type model of overlapping
valence atomic densities. They approximated the atomic den-
sity using the iterated stockholder atom (ISA) approach.22,28

The atomic density of atom i, ni(r), is approximated by a single
exponential function centered around the nucleus,

ni(r) ∝ exp(−σir), (3)

where σi characterizes the rate of decay of the valence atomic
density. The short-ranged interactions proposed by Van Vleet
et al. rely on combinations of the decay rates of atomic den-
sities, i.e., σij =

√
σiσj, for the atom pair i and j. While

the decay rates were obtained from reference DFT calcu-
lations, atom-type-dependent prefactors were fitted to short-
range interaction energies. Vandenbrande et al. more recently
applied a similar methodology to explicitly include the ref-
erence populations as normalization, N i = ∫ dr ni(r), i.e.,
the volume integrals of the valence atomic densities.5 Their
method allowed reducing the number of unknown prefac-
tors per dimer: a single value for repulsion and short-range
polarization and no free parameter for penetration effects
(vide infra).

We constructed an ML model of N and σ using the
same representations and kernel as for Hirshfeld ratios (see
above). Reference coefficients N and σ were computed using
Horton23,29 for 1102 molecules using PBE0, amounting
to 16 945 atom-in-molecule properties. Instead of the ISA
approach, we followed Verstraelen et al. and relied on the
MBIS partitioning method.29

3. Atomic polarizabilities

The Hirshfeld scheme provides a partitioning of the
molecular charge density into atomic contributions (i.e., an
atom-in-molecule description).30–33 It consists of estimating
the change of atomic volume of atom p due to the neigh-
boring atoms, as compared to the corresponding atom in free
space

V eff
p

V free
p

=

∫ drr3wp(r)n(r)

∫ drr3nfree
p (r)

, (4)

where nfree
p (r) is the electron density of the free atom, n(r)

is the electron density of the molecule, and wp(r) weighs
the contribution of the free atom p against all free atoms
at r

wp(r) =
nfree

p (r)
∑

q nfree
q (r)

, (5)

where the sum runs over all atoms in the molecule.31 The
static polarizability is then estimated from the free-atom
polarizability scaled by the Hirshfeld ratio, h,34

αp = α
free
p

*,
V eff

p

V free
p

+-
4/3

= αfree
p h4/3. (6)

Reference Hirshfeld ratios were provided from DFT cal-
culations of 1000 molecules using the PBE035 functional and
extracted using postg.36,37 The geometry of the molecule was
encoded in the Coulomb matrix [Eq. (1)]. An ML model
of the Hirshfeld ratios was built using kernel-ridge regres-
sion and provided predictions for atomic polarizabilities of
atoms in molecules for the chemical elements H, C, O, and N.
For all ML models presented here, datasets are split between
training and test subsets at an 80:20 ratio, in order to avoid
overfitting.
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B. Intermolecular interactions from
physics-based models

In the following, we present the different terms in our
interaction energy and how they rely on the abovementioned
ML properties.

1. Distributed multipole electrostatics

The description of atom-distributed multipole electrostat-
ics implemented here follows the formalism of Stone.19 A
Taylor series expansion of the electrostatic potential of atom i

gives rise to a series of multipole coefficients

φi(r) =
1

4πǫ0

[
qi

(

1
r

)

− µi,ξ∇ξ
(

1
r

)

+
1
3
Θi,ξζ∇ξ∇ζ

(

1
r

)

− · · ·
]

, (7)

where ξ and ζ indices run over coordinates and the Ein-
stein summation applies throughout. We lump the multi-
pole coefficients in a vector Mi = (qi, µi,1, µi,2, µi,3, . . .)t

and derivatives of 1/r into the interaction matrix T
ij

= (T ij, T
ij

1 , T
ij

2 , T
ij

3 , T
ij

11, . . .)t for the interaction between atoms
i and j, where the number of indices indicates the order of the
derivative [e.g., T

ij

ξ
= ∇ξ (1/rij)]. In this way, the multipole

electrostatic interaction energy is given by

Eelec =

∑

ij

MiT
ijMj. (8)

More details on the formalism and implementation of multi-
pole electrostatics can be found elsewhere.19,38,39 Multipole
coefficients are provided by the ML model for electrostat-
ics originally presented in the work of Bereau et al.18 and
improved herein (see Methods Sec. II A 1 above).

2. Charge penetration

The abovementioned multipole expansion explicitly
assumes no wavefunction overlap between molecules. At short
range, the assumption is violated, leading to discrepancies in
the electrostatic energy, denoted penetration effects. The link
between penetration and charge-density overlap19 has been
leveraged before by separating an atomic point charge into an
effective core and a damped valence electron distribution.40–43

An extension has later been proposed by Vandenbrande et al. to
efficiently estimate the correction without any free parameter.5

This is achieved by including the atomic-density population
N i of atom i—the normalization term in Eq. (3). Penetration
is modeled by correcting the monopole-monopole interactions
in a pairwise fashion,

Epen =

∑

ij

qc
i
Nj

r
g(σj, r) +

Niq
c
j

r
g(σi, r)

− NiNj

r

(

f (σi,σj, r) + f (σj,σi, r)
)

,

g(σ, r) =
(

1 +
r

2σ

)

exp
(

− r

σ

)

,

f (σi,σj, r) =
σ4

i

(σ2
i
− σ2

j
)2

*,1 +
r

2σi

−
2σ2

j

σ2
i
− σ2

j

+- exp

(

− r

σi

)

.

(9)

The present expression for f (σi, σj, r) is problematic when
σi ≈σj given the denominator, but Vandenbrande et al. derived
corrections for such cases.5 The parameter qc corresponds
to a core charge that is not subject to penetration effects,
i.e., q = qc

☞ N, where q is determined from the multipole
expansion.

We note the presence of three terms when considering
electrostatics together with penetration [Eq. (9)]: the core-
core interaction [part of Eelec, Eq. (8)], the damping term
between the core and smeared density, and the last is the
overlap between two smeared density distributions. In most
existing approaches, the damping functions aim at modeling
the outer Slater-type orbitals of atoms—e.g., note the presence
of exponential functions in Eq. (9). Unfortunately, penetration
effects due to the higher moments are not presently corrected.
Conceptually, a separation between core and smeared contri-
butions of higher multipoles is unclear. Rackers et al. proposed
an interesting framework that assumes a simplified functional
form for the damping term and factors out of the entire inter-
action matrix T

ij

ξ
.44 We have not attempted to express Eq. (9)

for the interaction matrix T
ij

ξ
of all multipoles.

3. Repulsion

Following Vandenbrande et al.,5 we parametrize the
repulsive energy based on the overlap of valence atomic
densities:

Erep = U
rep
i

U
rep
j

∑

ij

NiNj

8πr

(

h(σi,σj, r) + h(σj,σi, r)
)

,

h(σi,σj, r) = *,
4σ2

i
σ2

j

(σ2
j
− σ2

i
)3

+
σi

(σ2
j
− σ2

i
)2
+- exp

(

− r

σi

)

, (10)

where U
rep
i

is an overall prefactor that depends only on the
chemical element of i. The multiplicative mixing rule we
apply leads to U

rep
i

having units of (energy)1/2. Here again,
corrections for h(σi, σj, r) when σi ≈ σj can be found
elsewhere.5

4. Induction/polarization

Polarization effects are introduced via a standard
Thole-model description.45 Induced dipoles, µind, are self-
consistently converged against the electric field generated by
both multipoles and the induced dipoles themselves,

µind
i,ξ = αi

*.,
∑

j

T
ij

ξ
Mj +

∑

j′
T

ij′
ξζ
µind

j′,ζ
+/- , (11)

where we follow the notation of Ren and Ponder:38 the first sum
(indexed by j) only runs over atoms outside of the molecule
containing i—a purely intermolecular contribution—while the
second sum (indexed by j′) contains all atoms except for i. We
self-iteratively converge the induced dipoles using an overre-
laxation coefficientω = 0.75 as well as a smeared charge distri-
bution, n′, following Thole’s prescription45 and the AMOEBA
force field,38

n′ =
3a

4π
exp

(

−au3
)

, (12)
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where u = rij/(αiαj)1/6 and a controls the strength of damp-
ing of the charge distribution. The smeared charge distribu-
tion n′ leads to a modified interaction matrix, as described
by Ren and Ponder.38 The electrostatic contribution of the
induced dipoles is then evaluated to yield the polarization
energy. In this scheme, polarization thus relies on both
the predicted atomic polarizabilities and predicted multipole
coefficients.

5. Many-body dispersion

Many-body dispersion46 (MBD) relies on the formalism
of Tkatchenko and co-workers.47 It consists of a computation-
ally efficient cast of the random-phase approximation into a
system of quantum harmonic oscillators.48 In Appendix A, we
briefly summarize the MBD implementation and suggest the
interested reader to Ref. 32 for additional details.

6. Overall model

To summarize, our intermolecular IPML model is made
of five main contributions: (i) electrostatics, (ii) charge pen-
etration, (iii) repulsion, (iv) induction/polarization, and (v)
many-body dispersion. Our use of ML to predict AIM prop-
erties yields only eight global parameters to be optimized: (i)
none; (ii) none; (iii) U

rep
H , U

rep
C , U

rep
N , U

rep
O ; (iv) a; and (v) β,

γ, d. We will optimize these parameters simultaneously across
different compounds to explore their transferability.

We provide a Python-based implementation of this work
at https://gitlab.mpcdf.mpg.de/trisb/ipml for download. The

ML models relied on kernel ridge regression, implemented
here using numpy routines.49 Different atomic properties were
trained on different datasets. These datasets are also provided
in the repository. While a single training set for all properties
would offer more consistency, different properties require very
different training sizes to reach an accuracy that is satisfactory.
Molecular configurations were generated from smiles strings
using Open Babel.50 These approximate configurations were
purposefully not further optimized to obtain a more hetero-
geneous training set of configurations, thereby improving the
interpolation of the ML.

III. TRAINING AND PARAMETRIZATION OF IPML

We show the accuracy of the prediction of the multipole
coefficients, the Hirshfeld ratios, and the atomic-density decay
rates, followed by the assessment of experimental molecular
polarizabilities. We then parametrize the different terms of the
intermolecular potentials against reference total energies on
parts of the S22x5 dataset and validate it against various other
intermolecular datasets.

A. Training of multipole coefficients

We performed ML of the multipole coefficients trained
on up to 20 000 atoms in molecules—limited to neutral com-
pounds. While our methodology allows us to learn all com-
pounds together, we chose to train an individual ML model
for each chemical element. Figure 1 shows the correlation
between reference and predicted components for ∼103 atoms

FIG. 1. ML of the multipole coefficients of neutral
molecules. Scatter correlation plots (out-of-sample pre-
dictions) for all components of (a) monopoles, (b)
dipoles, and (c) quadrupoles of each chemical element,
as predicted by the ML model with 80% training fraction.
All quantities are expressed in units eÅl , where l is the
rank of the multipole.

https://gitlab.mpcdf.mpg.de/trisb/ipml
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in the test set. Compared to our previous report,18 the accuracy
of the learning procedure is strongly improved for all ranks,
i.e., mean-absolute errors (MAEs) of 0.01 e, 0.01 eÅ, and
0.02 eÅ2 instead of 0.04 e, 0.06 eÅ, and 0.13 eÅ2 for
monopoles, dipoles, and quadrupoles, respectively. The basis-
set projection used here yields significantly more accurate
predictions compared to the previously reported local-axis
system augmented by a delta-learning procedure.18 We also
point out the strong improvement due to aSLATM (see below).
Finally, we draw the reader’s attention to the much smaller
MBIS multipoles, as compared to GDMA, thereby helping
reaching lower MAEs.

Figure 2 displays learning curves for the different multi-
pole moments of each chemical element. It compares the two
representations considered in this work: (a) Coulomb matrix
and (b) aSLATM. The latter performs significantly better for
point charges. Though we reach excellent accuracy for the
monopoles, some of the higher multipoles remain more dif-
ficult, namely, C and N. On the other hand, H and O both
display excellent accuracy. The main difference between these
two types of elements lies in their valency: H and O are
often found as terminal atoms, while N and C display much
more complex local environments. This likely affects the per-
formance of the basis-set projection used in this work. The
similar learning efficiency between the Coulomb matrix and
aSLATM for dipoles and quadrupoles further suggests the need
for larger training sets (e.g., Faber et al., went up to 120 000
samples51) or better local projections. We note the existence of
ML methodologies that explicitly deal with tensorial objects,

FIG. 2. ML of the multipole coefficients of neutral molecules. Comparison
of representations: (a) Coulomb matrix and (b) aSLATM. Saturation curves
of the mean-absolute error (MAE) for monopoles, dipoles, and quadrupoles
of each chemical element.

though only applied to dipoles so far.52,53 In Appendix B,
we extend Glielmo et al.’s covariant-kernel description to
quadrupoles using atom-centered Gaussian functions. Tests
on small training sets indicated results on par with Fig. 2.
We suspect that while covariant kernels offer a more robust
description of the rotational properties of tensorial objects,
the Coulomb matrix and aSLATM offer more effective rep-
resentations, offsetting overall the results. Furthermore, the
construction of covariant kernels is computationally involved:
it requires several outer products of rotation matrices to
construct a 9 × 9 matrix [Eqs. (B6) and (B7)] for a
quadrupole alone. This significant computational overhead
led us to use aSLATM with the basis-set projection for the
rest of this work. Covariant kernels for multipoles up to
quadrupoles are nonetheless implemented in our Python-based
software.

B. Training of valence atomic densities

The accuracy of prediction of the populations and decay
rates of valence atomic densities, N and σ, respectively, for

FIG. 3. Correlation plots of out-of-sample predictions. (a) ML of the popu-
lations (i.e., volume integral) of the valence atomic densities, N (units in e).
(b) ML of the decay rate of the valence atomic densities, σ (units in a.u.☞1).
(c) ML of the Hirshfeld ratios, h.
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FIG. 4. Correlation plot between (a) isotropic and (b)
fractional anisotropies of molecular polarizabilities pre-
dicted from the current ML model (blue) and Tkatchenko-
Scheffler polarizabilities after SCS procedure31,54 (red)
against experimental values for the set of 18 compounds
proposed in Ref. 45.

a size of the Coulomb matrix n = 6 is shown in Figs. 3(a)
and 3(b). The model was trained against 13 500 atoms in 800
molecules and tested against a separate set of 3400 atoms in
200 molecules. The model shows high accuracy with MAEs of
only 0.04 e and 0.004 a.u.☞1, respectively. Both models yield
correlation coefficients above 99.5%.

C. Training of Hirshfeld ratios

Figure 3(c) shows a correlation plot of the predicted and
reference Hirshfeld ratios using the n = 12 (i.e., size of the
Coulomb matrix) model trained against 12 300 atoms in 1000
small organic molecules. We test the prediction accuracy on a
different set of 17 100 atoms. We find high correlation (coef-
ficient of determination R2 = 99.5%) and a small MAE of
0.006.

D. Molecular polarizabilities

Predictions of the Hirshfeld ratios were further assessed
by calculating (anisotropic) molecular polarizabilities. Refer-
ence experimental values of 18 small molecules were taken
from the work of Thole,45 for both the isotropic molecular
polarizability as well as the fractional anisotropy, as defined
elsewhere.32 Figure 4 shows both the isotropic [panel (a)]
and fractional anisotropy [panel (b)], comparing the present
ML prediction with the calculations using the Tkatchenko-
Scheffler method after solving the self-consistent screening
(SCS) equation.31,54 We find excellent agreement between
the ML prediction and experiment for the isotropic compo-
nent: an MAE of 3.2 bohr3 and a mean-absolute relative error
(MARE) of 8.6%, both virtually identical to the Tkatchenko-
Scheffler calculations after SCS.54 The fractional anisotropy
tends to be underestimated, though overall the agreement
with experiment is reasonable, as compared to previous cal-
culations that explicitly relied on DFT calculations for each
compound.

E. Parametrization of the intermolecular energies

To optimize the abovementioned free parameters, we
aimed at reproducing the intermolecular energies of a rep-
resentative set of molecular dimers. The collection of global
parameters optimized during this work are reported in Table I.
The parameters, shown in Table I, were optimized simulta-
neously using basin hopping55,56 to reproduce the total inter-
molecular energy from reference calculations. We also provide
a rough estimate of the sensitivity of these parameters through

the standard deviation of all models up to 20% above the
identified global minimum. We introduce chemical-element-
specific prefactors for the repulsion interaction. The repulsive
interaction is thus scaled by the product of element specific
prefactors for each atom pair. The apparent lack of depen-
dence of the dispersion parameter d led us to fix it to the value
d = 3.92.32

A better understanding of the variability of our global
parameters led us to consider two sets of reference datasets
for fitting, coined below, model 1 and model 2. While model
1 only considers small-molecule dimers, model 2 also incor-
porates host-guest complexes. For both models, we rely on
the S22x5 small-molecule dataset20,57 at the equilibrium dis-
tance (i.e., 1.0× distance factor). In addition, model 1 also
considers configurations at the shorter distance factor 0.9× to
help improve the description of the curvature of the poten-
tial energy landscape. Model 2, on the other hand, adds to
S22x5 at 1.0× a series of host-guest complexes: the S12L
database.58 All the results presented below will be derived from
model 1, unless otherwise indicated. The comparison with
model 2 aims at showing (i) the robustness of the fit from the
relatively low variability of global parameters (except possibly
for UH) and (ii) an outlook toward modeling condensed-phase
systems.

TABLE I. Optimized global parameters determined from two different train-
ing sets. Model 1: fitting to the S22x5 at distances 0.9× and 1.0×. Model
2: fitting to the S22x5 at distance 1.0× and S12L. Parameters UX corre-
spond to the repulsion of chemical element X, expressed in (kcal/mol)1/2.
“Value” corresponds to the optimal parameter, while “sensitivity” reflects
the standard deviation of parameters around (up to 20% above) the iden-
tified global minimum. Sensitivity is not provided for d (see the main
text).

Model 1 Model 2

Interaction Parameter Value Sensitivity Value Sensitivity

Polarization a 0.0187 0.09 0.0193 0.03

Dispersion γ 0.9760 0.04 0.9772 0.04

β 2.5628 0.08 2.2789 0.04

d 3.92 3.92

Repulsion U
rep
H 27.3853 1 23.5936 1

U
rep
C 24.6054 0.5 24.0509 0.5

U
rep
N 22.4496 0.6 21.4312 0.3

U
rep
O 16.1705 0.8 16.0782 0.2
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FIG. 5. Correlation of intermolecular energies for
S22x5. The different panels describe the interactions at
specific distance factors (i.e., from 0.9× to 2.0×). Color
coding corresponds to the compound ID—hydrogen
bonding compounds correspond to low values, while van
der Waals compounds correspond to the larger values.
The different diagonals bracket the ±1 kcal/mol area of
accuracy.

While the overall MAE averaged over all distance fac-
tors is 0.7 kcal/mol, the error clearly drops with distances 1.0,
0.8, 0.8, 0.5, and 0.2 for distance factors 0.9×, 1.0×, 1.2×,
1.5×, and 2.0×, respectively (Fig. 5). This illustrates that the
model yields robust asymptotics, with significant improve-
ment compared to a cruder model that only included multi-
pole electrostatics and many-body dispersion.32 Outliers from
the ±1 kcal/mol accuracy region are composed of strongly
hydrogen-bonding complexes (e.g., 2-pyridoxine with 2-
aminopyridine), which depend significantly on the quality of
the electrostatic description. The correlation achieved here
depends critically on the accuracy of the multipole moments.
Indeed, the few global parameters included in our model pro-
vide little room for error compensations. For instance, we
found that a poorer ML model of the multipole moments
yielded significant artifacts on the partial charges of hydrogen

cyanide, leading to an artificially strong polarization of the
hydrogen.

We also point out the small value of the polarization
parameter, a (Table I), leading effectively to small polarization
energies. Rather than an imbalance in the model, we suspect
that significant short-range polarization energy is absorbed in
the repulsion terms. Indeed, several AIM- and physics-based
force fields use the same overlap model to describe repulsion
and short-range polarization.4,5 Since we optimize all terms
directly against the total energy rather than decompose each
term, such cancellations may well occur. We also expect that
including systems in which strong non-additive polarization
effects would play a role in outweighing effective pairwise
polarization. In addition, we note that the pairwise scheme
is optimized per chemical element, while the Thole model is
not.
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IV. PERFORMANCE OF THE IPML MODEL

A. Non-equilibrium geometries (S66a8)

A recent extension of the S66 dataset of molecular dimers
provides angular-displaced non-equilibrium geometries, i.e.,
S66a8 (66 × 8 = 528 dimers).59 The correlation between
our model and reference calculations using coupled cluster
singles doubles perturbative triples at the complete basis-
set limit (CCSD(T)/CBS) are presented in Fig. 6(a). Excel-
lent agreement is found for most samples, with an MAE
of only 0.4 kcal/mol across a larger, representative set of
molecular dimers, as compared to the S22 used for train-
ing. Model 2 performs virtually on par with an MAE of only
0.5 kcal/mol.

We compare our results with the MEDFF model whose
overlap model is used in the present work but relies on point-
charge electrostatics and a pairwise dispersion model.5 They
report root-mean squared errors of 0.36 kcal/mol for the
dispersion-dominated complexes of the S66 dataset at equi-
librium distances. Given that hydrogen-bonded complexes
are typically more challenging,1,5 our model likely compares
favorably, keeping in mind that the dataset and error measure-
ment are different. They also report a reduced 0.26 kcal/mol
error over the entire S66 dataset when each parameter is

FIG. 6. Correlation plots for the total intermolecular energy between refer-
ence and present calculations for (a) the S66a8 dataset of dimers translated
and rotated away from their equilibrium geometry and (b) the SSI dataset
of amino acids (only dimers involving neutral compounds made of HCON
atoms). Inset: strongly-repulsive tryptophan-glutamine dimer.

optimized specifically for each complex. Given our focus
on model transferability, we did not attempt a similar mea-
surement. For the same dataset and error measurement, the
QMDFF model reports a larger 1.1 kcal/mol error.5

B. Amino-acid side chains (SSI dataset)

The SSI dataset contains pairs of amino-acid side chains
extracted from the protein databank.60 We removed dimers
containing charged compounds and sulfur-containing side
chains (i.e., cysteine and methionine), for a total of 2216
dimers. We computed intermolecular energies using the
present method and compare them with reference CCSD(T)
at the complete basis set limit. In Fig. 6(b), we compare the
total energy with reference energies. We find again excellent
agreement throughout the much larger range. We note the pres-
ence of a high-energy dimer at +23 kcal/mol, corresponding to
a tryptophan-glutamine dimer [inset of Fig. 6(b)]. The strong
deformation of the tryptophan ring illustrates the robustness
of our model in accurately reproducing intermolecular inter-
actions for a variety of conformers. Model 1 yields overall
an MAE of 0.37 kcal/mol. Interestingly, this accuracy is on
par with additive force fields, such as GAFF and CGenFF
(0.35 and 0.23 kcal/mol, respectively), and better than certain
semi-empirical methods, e.g., AM1 (1.45 kcal/mol).60 Model
2 yields virtually the same MAE, 0.38 kcal/mol, but under-
predicts the high-energy dimer highlighted in Fig. 6(b), 3.6
instead of 22.6 kcal/mol. It highlights how widening the train-
ing set of the model to both small molecules and host-guest
complexes decreases the accuracy on the former.

C. DNA-base and amino-acid pairs (JSCH-2005)

The JSCH-2005 dataset offers a benchmark of represen-
tative DNA base and amino-acid pairs.20 Again, we focus on
neutral molecules only, for a total of 127 dimers. The cor-
relation of total interaction energies is shown in Fig. 7(a).
We find a somewhat larger MAE of 1.4 kcal/mol. This result
remains extremely encouraging, given the emphasis of strong
hydrogen-bonded complexes present in this dataset. While oth-
ers have pointed out the challenges associated with accurately
modeling these interactions,1,5 we have not found reference
benchmarks on specific datasets such as this one for simi-
lar physics-based models. Given the prevalence of hydrogen
bonds in organic and biomolecular systems, we hope that
this work will motivate a more systematic validation on these
interactions.

Representative examples are shown on Fig. 7. While the
Watson-Crick complex of the guanine (G) and cytosine (C)
dimer [panel (b)] leads to one of the strongest binders, weak
hydrogen bonds can still lead to the dominant contribution,
as seen in (f) for the methylated GC complex. We find two
outliers, shown in (d) and (e), where π-stacking interactions
dominate the interaction energy. The discrepancies likely arise
from an inadequate prediction of some quadrupole moments,
especially involving nitrogen (see Fig. 1). Note the structural
similarity between (d)–(f): the weak hydrogen bonds in the
latter case dominate the interaction and resolve any appar-
ent discrepancy with the reference energy. For this dataset,
model 2 performs significantly worse, with an MAE of 2.3
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FIG. 7. (a) Correlation plots for the
total intermolecular energy between
reference and present calculations for
the JSCH-2005 dataset20 of DNA-base
and amino-acid pairs (dimers involving
charged compounds are not shown); (b)
GC in a Watson-Crick geometry; (c)
lysine and phenylalanine; (d) GG com-
plex; (e) CC complex; (f) methylated
GC complex.

kcal/mol, indicating that forcing transferability across both
small-molecule dimers and host-guest complexes strains the
accuracy of the model for challenging small molecules exhibit-
ing significant π-stacking and hydrogen-bonding behavior.
This significant change in performance contrasts the very
similar parameters between the two models, highlighting a
sensitive parameter dependence.

D. Water clusters

Beyond dimers, we test the ability of our potentials to
reproduce energies of larger clusters. Figure 8(a) shows the
correlation of the total energy between the present work and
CCSD(T) calculations at the complete basis set limit of water
clusters involving from 2 to 10 molecules.61 The model’s ener-
gies correlate highly with the reference but progressively over-
stabilize. This shift results from compounding errors that grow
with cluster size, amounting to an MAE of 8.1 kcal/mol. Note
that we can correct the slope by including a single water clus-
ter in the above-mentioned parametrization (data not shown).
Model 2 performs virtually on par with model 1.

IPML recovers the overall trend of energies for complexes
of various sizes, but there is still room for improvements. This
is notable given that the many-body polarization term was
optimized to zero in both models (see Table I). It indicates
that a pairwise description captures the main effects even for
the larger complexes considered here. Improving the results
would require forcing the parametrization to rely more signifi-
cantly on many-body polarization. Improving the modeling of
other terms, such as repulsion, may also help reduce incidental
cancellations of errors.

E. Supramolecular complexes (S12L)

Moving toward more complex systems, we test the ability
to reproduce intermolecular energies of host-guest complexes.
Figure 8(b) shows the correlation of the total intermolecular
energy against diffusion Monte Carlo.58 Although we find high
correlation, the MAE is substantial: 9.7 kcal/mol. A compari-
son with model 2, which significantly improves the agreement,
demonstrates the benefit of including larger complexes in the
fit of the global parameters. Still, one outlier remains: the
glycine anhydride-macrocycle, with an overstabilization of

8 kcal/mol, despite being fitted into the global parameters.
This compound (displayed in Fig. 8 of Ref. 32) displays sites
at which multiple hydrogen bonds coincide. It further sug-
gests the role of inaccurate multipoles, as well as an inadequate
electrostatic penetration model (i.e., missing higher-order mul-
tipoles beyond monopole correction), and possibly many-body
repulsion interactions.

FIG. 8. Correlation plots for the total intermolecular energy between the ref-
erence and present calculations for (a) the water-clusters dataset and (b) the
host-guest complexes in the S12L database. The colors in (a) indicate the
number of molecules involved in the cluster: from two (red) to 10 (blue)
molecules.
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F. Benzene crystal

As another example leading to condensed-phase proper-
ties, we evaluate the model’s ability to reproduce the cohesive
energy of the benzene crystal. We scale the lattice unit cell
around the equilibrium value, as detailed in previous work.32

The various contributions of the energy are shown in Fig. 9(c).
For reference, we compare the cohesive energy with the
experimental results62 and dispersion-corrected atom-centered
potentials (DCACP).63

As reported before,32,64 we find the benzene crystal to
display significant dispersion interactions. Though the overall
curvature against density changes agrees reasonably well with
DCACP, we find that the method overstabilizes the molecular
crystal. Model 1 yields a cohesive energy of ☞17.2 kcal/mol at
equilibrium, as compared to the experimental value of ☞12.2
kcal/mol.62 For reference, we show the potential energy land-
scapes of the benzene dimer in the stacked (a) and T-shaped
(b) conformations. Excellent agreement is found in the latter
case, while the former shows an overstabilization.

Interestingly, while model 2 seems to understabilize these
two dimer configurations, it better reproduces the cohesive
energy of the crystal, with a value at equilibrium density
of ☞14.3 kcal/mol, only 2 kcal/mol away from the experi-
mental value. We conclude that the inclusion of host-guest
complexes in the optimization of the global parameters helps
describe systems toward or in the condensed phase. Still, the
compounding errors present in the model limit a systematic
extension to molecular crystals. We again point at the necessity
for extremely accurate multipole moments, where any dis-
crepancy can have significant effects in the condensed phase.

FIG. 9. Comparison of the intermolecular energy as a function of the dimer
distance for the benzene dimer in the (a) parallel-displaced and (b) T-shaped
conformations. (c) Cohesive binding energy of the benzene crystal as a
function of the scaling factor of the unit cell.

Further improving the prediction of the multipole moments
will strongly contribute to an improved accuracy of the present
energy model.

V. CONCLUSIONS AND FUTURE OUTLOOK

We have presented a set of classical potentials to describe
the intermolecular interactions of small molecules, coined
IPML. Notably, we present a methodology that readily pro-
vides parameters for a large range of small molecules by rely-
ing on atom-in-molecule properties predicted from machine
learning (ML). Predictions for distributed multipoles, Hirsh-
feld ratios, valence atomic density decay rate, and population
provide the necessary parameters for electrostatics, polariza-
tion, repulsion, and many-body dispersion. Remarkably, our
methodology provides a first attempt at transferable inter-
molecular potentials with few global parameters optimized
across a subset of chemical space containing H, C, N, and O
atoms only. In contrast to other studies, we do not reoptimize
the global parameters for every new compound. We rational-
ize this by the use of more sophisticated physical models, e.g.,
many-body rather than pairwise dispersion, multipole rather
than point-charge electrostatics, and non-additive rather than
pairwise additive polarization.

As compared to purely data-driven methodologies, IPML
starts from physics-based interactions and only relies on
ML to predict parameters thereof. Perturbation theory and
the short-range overlap method offer an appealing frame-
work to describe interactions based on monomer properties—
effectively simplifying greatly the training of ML models of
parameters. Conceptually, inserting physical constraints in
an ML model would ideally take the form of specific prior
probability distributions. As an example, reproducing kernel
Hilbert space can fit a potential energy surface by imposing
the asymptotics at long range.65,66

Extensions of the present work to a force field would
amount to computing derivatives. Analytical derivatives of
the potentials with respect to atomic coordinates are either
straightforward (e.g., pairwise repulsion and charge penetra-
tion) or already available (e.g., many-body dispersion67 or
electrostatics and induction68). Our ML models being confor-
mationally dependent, computation of the forces would also
entail a derivative with respect to the atom-in-molecule proper-
ties. While not implemented here, this information can readily
be extracted from derivatives of the kernel used in the ML.69

How to optimize such a conformationally dependent force
field to best balance the extra accuracy with the additional
computational overhead remains an open problem.

Even though we did not aim at a performance optimiza-
tion, the present implementation can help us gain insight into
the computational cost of each term. Compared to standard
classical force fields, the inclusion of explicit polarization
and many-body dispersion leads to larger evaluation times:
1–100 s for systems composed of 10–100 atoms on a single
core, respectively. Notably, roughly 90% of this time is spent
predicting the multipoles, due to the large training set and
complexity of the aSLATM representation. While such an eval-
uation time is significant, several strategies may be devised in
the context of a molecular dynamics simulation. For instance,
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multipoles may remain frozen and only get updated when large
conformational changes are detected.

We presented electrostatic calculations using distributed
multipole—up to quadrupole—models. In comparison with
other atomic properties, an accurate prediction of multipole
electrostatics proves all the more challenging and critical
for the accurate estimation of various molecular systems.
Improvements will require more accurate models, and possi-
bly the incorporation of more advanced physical interactions,
such as anisotropic70 or many-body repulsion interactions. Our
framework paves the way toward significantly more transfer-
able models that blend in the physical laws and symmetries rel-
evant for the phenomena at hand with a data-driven approach to
infer the variation of environmentally dependent local atomic
parameters across chemical space. We expect such models
that are transferable across chemical composition to be of
use in systems of interest in chemistry, biology, and materials
science.
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APPENDIX A: MANY-BODY DISPERSION

The following summarizes the many-body dispersion
(MBD) method31,46,47 as implemented elsewhere.32 We start
with the atomic polarizability αp of atom p. The frequency
dependence of αp allows for an estimation of the pairwise
dispersion coefficient via the Casimir-Polder integral,

C6pq =
3
π

∫ ∞
0

dωαp(iω)αq(iω), (A1)

where iω are imaginary frequencies and p and q are a
pair of atoms. Given reference free-atom values for C6pp,
we can estimate the characteristic frequency of atom pωp

= 4C6pp/3α2
p.71

The atomic polarizabilities and characteristic frequen-
cies yield the necessary ingredients for the system of coupled
quantum harmonic oscillators with N atoms,

C
QHO
pq = ω2

pδpq + (1 − δpq)ωpωq
√
αpαqTpq, (A2)

where Tpq = ∇rp
⊗ ∇rq

W (rpq) is a dipole interaction tensor
with modified Coulomb potential

W (rpq) =

1 − exp

[
−

(

rpq

RvdW
pq

)β
]

rpq

. (A3)

In this equation, β is a range-separation parameter and RvdW
pq

= γ(RvdW
p + RvdW

q ) is the sum of effective van der Waals
radii scaled by a chemistry-independent fitting parameter. The
effective van der Waals radius is obtained by scaling its ref-
erence free-atom counterpart: RvdW

p = (αp/α
free
p )1/3R

vdW, free
p .

An expression for Tpq is provided in the work of Bereau
and von Lilienfeld.32 In particular, we apply a range sepa-
ration to the dipole interaction tensor by scaling it by a Fermi
function72

f (rpq) =
1

1 + exp
[
−d(rpq/R

vdW
pq − 1)

] . (A4)

Diagonalizing the 3N × 3N matrix C
QHO
pq yields its

eigenvalues {λi}, which in turn provide the MBD energy,

EMBD =
1
2

3N
∑

i=1

√

λi − 3
2

N
∑

p=1

ωp. (A5)

The methodology depends on three chemistry-independent
parameters: β, γ, and d.

APPENDIX B: COVARIANT KERNELS

Glielmo et al.52 recently proposed a covariant kernel K
µ

for vector quantities—suitable here to predict dipoles—such
that two samples ρ and ρ′ subject to rotations S and S′,
respectively, will obey

K
µ(Sρ,S′ρ′) = SK

µ(ρ, ρ′)S′T. (B1)

The atom i from sample ρ is encoded by a set of atom-centered
Gaussian functions

ρ(r, {ri}) = 1

(2πσ2)3/2

∑

i

exp

(

− ||r − ri | |2
2σ2

)

, (B2)

and the covariant kernel is analytically integrated over all 3D
rotations to yield52

K
µ(ρ, ρ′) =

1
L

∑

ij

φ(ri, rj)ri ⊗ r
′T
j ,

φ(ri, rj) =
exp

(

−αij

)

γ2
ij

(

γij cosh γij − sinh γij

)

,

L = (2
√

πσ2)3, αij =

r2
i

+ r2
j

4σ2
, γij =

rirj

2σ2
, (B3)

where ⊗ denotes the outer product.
In the present work, we extend the construction of covari-

ant kernels to predict quadrupole moments. Following a similar
procedure adapted to second-rank tensors, we enforce the
relation

K
Q(Sρ,S′ρ′) = S

′
S

T
K

Q(ρ, ρ′)SS
′T (B4)

onto a base pairwise kernel of diagonal form K
b(ρ, ρ′)

= 1kb(ρ, ρ′), where kb(ρ, ρ′) is independent of the reference
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frame. The covariant kernel is constructed by integrating the
base kernel over all 3D rotations

K
Q(ρ, ρ′) =

1
L

∑

ij

∫
dSS ⊗ S

Tkb(ρ,STρ′), (B5)

which leads to the expression

K
Q(ρ, ρ′) =

1
L

∑

ij

(

R
T
j ⊗ Ri

)

Φ(ri, rj)
(

Ri
T ⊗ Rj

)

,

Φ(ri, rj) =
∫

dR̃R̃
T ⊗ R̃kb(r̃i, R̃r̃

′
j ), (B6)

where Ri and Rj are the rotation matrices that align ri and rj

onto the z axis to form r̃i and r̃
′
j
, respectively.52 We analytically

integrate all 3D rotations

Φ(ri, rj) = e
−α2

ij

4σ2

∫
dα

∫
dβ

∫
dγ

sin β

8π2

× R
T(α, β, γ) ⊗ R(α, β, γ)e

rirj cos β

2σ2

=

*....................,

ϕ1 0 0 0 ϕ2 0 0 0 0

0 ϕ1 0 −ϕ2 0 0 0 0 0

0 0 ϕ3 0 0 0 0 0 0
0 −ϕ2 0 ϕ1 0 0 0 0 0

ϕ2 0 0 0 ϕ1 0 0 0 0

0 0 0 0 0 ϕ3 0 0 0

0 0 0 0 0 0 ϕ3 0 0

0 0 0 0 0 0 0 ϕ3 0

0 0 0 0 0 0 0 0 ϕ4

+////////////////////-

, (B7)

where

ϕ1=
e
−α2

ij

4σ2

4γ2
ij

(

γ2
ij

sinh γij − γij cosh γij + sinh γij

)

,

ϕ2=
e
−α2

ij

4σ2

4γij

(

γij cosh γij − sinh γij

)

,

ϕ3=
e
−α2

ij

4σ2

2γ2
ij

(

γij cosh γij − sinh γij

)

,

ϕ4=
e
−α2

ij

4σ2

γ2
ij

*,
γ2

ij

2
sinh γij − γij cosh γij + sinh γij

+- .

(B8)
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58A. Ambrosetti, D. Alfè, R. A. DiStasio, Jr., and A. Tkatchenko, J. Phys.

Chem. Lett. 5, 849 (2014).
59J. Rezác, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 3466

(2011).
60L. A. Burns, J. C. Faver, Z. Zheng, M. S. Marshall, D. G. A. Smith,

K. Vanommeslaeghe, A. D. MacKerell, Jr., K. M. Merz, Jr., and D. Sherrill,
J. Chem. Phys. 147, 161727 (2017).

61B. Temelso, K. A. Archer, and G. C. Shields, J. Phys. Chem. A 115, 12034
(2011).

62W. B. Schweizer and J. D. Dunitz, J. Chem. Theory Comput. 2, 288
(2006).

63E. Tapavicza, I.-C. Lin, O. A. von Lilienfeld, I. Tavernelli, M. D. Coutinho-
Neto, and U. Rothlisberger, J. Chem. Theory Comput. 3, 1673 (2007).

64O. A. von Lilienfeld and A. Tkatchenko, J. Chem. Phys. 132, 234109
(2010).

65T.-S. Ho and H. Rabitz, J. Chem. Phys. 104, 2584 (1996).
66O. T. Unke and M. Meuwly, J. Chem. Inf. Model. 57, 1923 (2017).
67M. A. Blood-Forsythe, T. Markovich, R. A. DiStasio, Jr., R. Car, and

A. Aspuru-Guzik, Chem. Sci. 7, 1712 (2016).
68J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders,

I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, Jr. et al., J. Phys.
Chem. B 114, 2549 (2010).

69C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine

Learning (MIT Press, Cambridge, 2006), Vol. 1.
70M. J. Van Vleet, A. J. Misquitta, and J. R. Schmidt, J. Chem. Theory

Comput. 14, 739 (2018).
71X. Chu and A. Dalgarno, J. Chem. Phys. 121, 4083 (2004).
72A. Ambrosetti, A. M. Reilly, R. A. DiStasio, Jr., and A. Tkatchenko,

J. Chem. Phys. 140, 18A508 (2014).

https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1021/acs.jctc.7b00577
https://doi.org/10.1021/acs.jctc.7b00577
https://doi.org/10.1103/physrevb.95.214302
https://doi.org/10.1103/PhysRevLett.120.036002
https://doi.org/10.1088/0953-8984/26/21/213202
https://doi.org/10.1088/0953-8984/26/21/213202
https://doi.org/10.1021/jp970984n
https://doi.org/10.1021/ct1002253
https://doi.org/10.1021/jz402663k
https://doi.org/10.1021/jz402663k
https://doi.org/10.1021/ct200523a
https://doi.org/10.1063/1.5001028
https://doi.org/10.1021/jp2069489
https://doi.org/10.1021/ct0502357
https://doi.org/10.1021/ct700049s
https://doi.org/10.1063/1.3432765
https://doi.org/10.1063/1.470984
https://doi.org/10.1021/acs.jcim.7b00090
https://doi.org/10.1039/c5sc03234b
https://doi.org/10.1021/jp910674d
https://doi.org/10.1021/jp910674d
https://doi.org/10.1021/acs.jctc.7b00851
https://doi.org/10.1021/acs.jctc.7b00851
https://doi.org/10.1063/1.1779576
https://doi.org/10.1063/1.4865104

